Concentration of Measure for the Analysis of Randomized Algorithms

Cambridge University Press

Errata Corrige

Devdatt P. Dubhashi Chalmers University Alessandro Panconesi Sapienza University

January 4, 2010

In this note corrections appear in increasing order of page number.

1 From page 21, line +17 until the end of §2.1 on page 22

The argument is a bit murky. It can be replaced by the following:

We have observed that the cost of the search is equal to the number of tosses of a coin of bias p that are necessary until we obtain H successes. That is, we flip the coin repeatedly and stop as soon as we observe H successes. The difficulty here is that the random variable we are studying is the sum of geometrically distributed random variables. The distribution of this random variable is called *negative binomial* and some of its properties are explored in the problem section. Here, we take a different approach.

To fix ideas, let $p := \frac{1}{2}$. Suppose that we toss the coin L times where

 $L := 14 \log n.$

Let X denote the number of successes. Then E[X] = L/2 and let $t := 4 \log n$. By (1.6) we have that

$$\Pr(X \le E[X] - t) \le e^{-2t^2/L} \le \frac{1}{n^2}.$$
(1)

In other words, if we toss a coin L times, the probability that we do not see $3 \log n$ successes is at most $\frac{1}{n^2}$. Things can go wrong in two ways: either we do not observe $3 \log n$ successes in a sequence of L coin tosses, or the number of successes is greater than $3 \log n$. By Proposition 2.1, $\Pr(H > 3 \log n) \le n^{-2}$. Therefore, the probability that a search costs more than L is at most $\frac{2}{n^2}$.

2 Page 62, Definition 5.2

"...for some reals $a, b_i \dots$ " \longrightarrow "...for some reals $a_i, b_i \dots$ "

3 Page 90, line -2

"...distribution X, denoted as.." \longrightarrow "...distribution of X, denoted as.."

4 Page 100, line -9

Reference [66] should be [67].