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Abstract—We propose the use of opportunistic delegation as a
data traffic offload solution to the recent boost up of mobile data
consumption in metropolitan areas, by investigating two main
questions: (i) “How to gain insights into social mobile networking
scenarios?” and (ii) “How to utilize such insights to design
solutions to alleviate overloaded 3G networks?”. The purpose of
our solution is to leverage usage of mobile applications requiring
large data transfers by channeling the traffic to a few, socially
selected important users in the network called VIP delegates. The
proposed VIP selection strategies are based on social network
properties and are compared to the optimal solution (that covers
100% of users with minimum number of VIPs). Our extensive
experiments with real and synthetic traces show the effectiveness
of VIP delegation both in terms of coverage and required number
of VIPs – down to 7% in average of VIPs are needed in campus-
like scenarios to offload about 90% of the traffic.

I. INTRODUCTION

Since the modern smart-phones have been introduced world-
wide, more and more users have become eager to engage with
mobile applications and connected services. Simultaneously,
smart-phone owners are using an increasing number of appli-
cations requiring the transfer of large amounts of data to/from
mobile devices. Applications related to social networks [1],
[2], global sensing [3], [4], and content distribution [5], [6]
are just a few of the examples. As a consequence, the traffic
generated by such devices has caused many problems to
3G network providers. AT&T’s subscribers in USA were
getting extremely slow or no service at all because of network
straining to meet iPhone users’ demand [7]. The company
switched from unlimited traffic plans to tiered pricing for
3G data users in summer 2010. Similarly, Dutch T-Mobile’s
infrastructure has not been able to cope with intense 3G traffic,
forcing the company to issue refunds for affected users [8].

All these issues are bringing new technical challenges to
the networking and telecommunication communities. In fact,
finding new ways to manage such increased data usage is
essential to improve the level of service required by the new
wave of smart-phones applications. One of the most promising
solutions to avoid overwhelming the 3G infrastructure is to
rely on short-range opportunistic communications (Bluetooth
or Wi-Fi) between wireless devices whenever possible.

In this paper, we propose VIP delegation, a solution to this
problem based solely on the inherent social aspects of user
mobility. Our idea is to exploit a few, important subscribers
that with their movements and interactions are able to com-
municate with all the rest of the network users on a regular

basis. These VIP devices would act as a bridge between the
network infrastructure and all the remaining of the network
each time large amount of data has to be transferred. VIP
delegation can help alleviate the network traffic in different
scenarios. Collection of urban-sensing related data, distribution
of content to users by service providers, and free updates of
(light versions) mobile software’s ad pools are examples of
applications that would directly benefit from the use of VIPs.
As these are applications that induce large amounts network
traffic, delegating the collection/distribution of such traffic to
a few important nodes would result in immediate data offload.

After discussing related work in Section II, we propose,
formalize, and evaluate two methods of VIPs selection: global

and neighborhood VIP delegation (see Section III). While the
former focuses on users that are globally important in the
network (namely, global VIPs), the latter selects users that
are important within their social communities. The importance
of a user within the network is given in terms of well-
known attributes such as centrality (betweenness, degree, and
closeness) and page rank. In both cases, we observe that a short
observation period (one week) is enough to detect users that
keep their importance during long periods (several months).
Selected nodes are then used to cover the entire network, on
a daily basis, through solely direct wireless contacts with the
remaining nodes (see Section IV).

Through extensive experiments on real-life and synthetic
traces, we evaluate the performance of the global and neigh-
borhood VIP delegation methods in terms of network cover-
age, by varying the number of VIPs chosen (see Section VI).
We compare our solution with an optimal benchmark com-
puted from the full knowledge of the system. The results reveal
that our strategies get very close to the performance of the
benchmark VIPs: Only 5.93% page-rank VIPs against almost
4% of the benchmark’s set to offload about 90% of the network
in campus-like scenarios. Additionally we discuss on possible
VIP incentives, the way VIPs offload the traffic accumulated
to the network, and leveraged applications in Section VIII.
Finally, we conclude with Section IX.

II. RELATED WORK

Consumption of mobile data by the pervasive usage of
smart-phones is forcing carriers to find ways to offload the
network. As there is a strong belief that even more efficient
technologies (e.g., 4G or WiMAX) will not be able to solve
the problem [9], network providers have pushed more into



offloading to alternate networks such as femtocells and Wi-
Fi [10]. Femtocells exploit broadband connection to the ser-
vice provider’s network and leverage the licensed spectrum
of cellular macro-cells to offer better indoor coverage to
subscribers [11]. Besides from being localized (indoors only),
such solution suffers from the non-proliferation of femtocells
to subscribers’ homes, partially due to the user-charge for the
necessary equipment (150 USD for AT&T’s microcell).

Carriers, rather than investing on a large-scale distribution
of femtocells, are more willing to use more pervasive tech-
nologies, such as Wi-Fi access points and hot spots. More
and more carriers in USA and worldwide are investing in
this direction [12], by installing access points and hot-spots
close to overloaded cellular towers, and by providing to clients
Wi-Fi access within tiered monthly subscription. Wiffler is a
solution in this context that focuses only on Internet access
from moving vehicles [13]. It is worth mentioning that our
solution is orthogonal to both Wi-Fi and femtocell offloading;
nevertheless, it can be integrated to these methods to further
help alleviate mobile data traffic.

Polat et al. suggest some sort of network members’ pro-
motion to enhance network functionalities in a mobile ad
hoc network [14]. Their solution makes use of the concept
of connected message ferry dominating set (CMFDS), where
ferry-members of the network are connected over space-time
paths. Besides the differences in both the nature of the problem
and the application scenario compared to our work, no social
aspect/importance of the network members is considered in
promotion.

Many research works targeting DTN’s (or opportunistic
networks) make use of social ties between users to leverage
network services ranging from routing [15]–[17] and multi-
casting [18], [19], to selfishness and network security [20],
[21]. To the best of our knowledge, Han et al. are the first to
exploit opportunistic communication to alleviate data traffic in
cellular networks [22]. However, conversely from ours, their
solutions only apply to information dissemination problems
such as broadcasting in multi-hop opportunistic forwarding.
In our scenario, where large amounts of data have to be
transferred, multi-hop forwarding is not feasible – applications
that require collection of sensing data would result highly
expensive in terms of energy [3], [4]. Moreover, multi-hop
forwarding requires collaboration of all users in the network.
Even though such collaboration can be stimulated by incentive
mechanisms [23], there is no guarantee on packet delivery.
Rather, our solution relies on upgrading a crucial small set
of users’ devices (down to 5.93% according to experiments
with real campus-like data traces), that through direct contact
with all network members help alleviate the data traffic in both
upload and download, assuring that no packet is being lost.

III. VIP DELEGATION IN A NUTSHELL

The movement of smart-phone users is not random; rather,
it is a manifestation of their social behavior [16], [24]–[26].
This movement, along with wireless interactions among users,
generates a social mobile network. The analysis of such

mobility patterns and the understanding of how mobile users
“interact” (i.e., meet) play a critical role at the design of
solutions/services for such kind of networks. In general lines,
this paper investigates the following questions: (i) how to gain

insights into social mobile networking scenarios and (ii) how

to utilize such insights to design solutions allowing alleviating

the network traffic in the current overloaded 3G networks.
Though the number of network users can be very large,

just a few of them have an “important” role within the social
graph induced by the encounters. The natural behavior of these
VIP nodes, which are considerably fewer than the rest of
the network, can be a valuable resource in both information
dissemination and collection to/from the rest of the network.
Motivated by the fact that opportunities for users to exchange
data depend on their habits and mobility patterns, our idea is
the following: Turn those few VIP nodes into bridges between
regular users and the Internet, each time large amount of data
is to be uploaded/downloaded by these latter ones. In a word,
the VIP would act as delegates of the network infrastructure
builder. As a side effect, this would immediately drop down
the 3G network usage.

In our scenario, we assume that users download/upload large
amount of data, thus making the use of multi-hop forwarding
protocols unfeasible. Indeed, it is quite hard to convince
the average user to act as a relay for others, even though
to the closest access point, of such an overloading traffic.
Rather, our solution relies on the upgrade of a small, crucial
set of VIP nodes that regularly visit all network users and
collect (disseminate) data to them on behalf of the network
infrastructure. When this happens, we say that the network is

covered. Similarly, when a VIP visits a user, we say that the
user is covered.

Now the problem becomes the following: how to choose

the smallest VIP set that with their natural movement in the

network cover all users daily? We solve this problem by
presenting two VIP selection methods that rely on either a
global or a local view of the network (the methods are detailed
in Section IV). We also present a benchmark solution for
VIP delegation. The benchmark provides an optimal selection
method that (i) requires total pre-knowledge of users’ behavior
and (ii) is based on an adaptation of the well known NP-
hard problem of the Minimum Dominating Set [27]. Such a
method is clearly not feasible in real-life applications, since
future cannot be available in advance, but useful to evaluate
the goodness of our social-based VIP selection methods.

IV. GLOBAL VS. HOOD VIPS SELECTION METHODS

Before presenting the different VIP selection strategies, we
first need to identify when a user/node is “important” in the
network and according to which structural attribute.

A. Who are the VIPs?

From mobility patterns and wireless interactions of users
in a network, we establish a social undirected graph G(V,E)
between users when they are socially related to each other. In
this paper, we consider that there is a social tie between two



nodes if they are frequently in range (or contact) of each other
(see a detailed description in Section VI-B). Using the social
graph, we apply then several structural attributes to define the
importance of a node in the network: betweenness centrality,
closeness centrality, degree centrality, and page rank. All these
are well-known attributes in social network theory [28], [29]:

1) Betweenness centrality measures the number of occur-
rences of a node in the shortest-path between pairs
of others nodes. It thus determines “bridge nodes”
that, with their movement, act as connectors between
node groups. For a given node k it is calculated as:
CB(k) =

∑N
j=1
j 6=k

∑N
i=1
i 6=k

gi,j(k)
gi,j

, where N is the number of

nodes in the network, gi,j is the total number of shortest
paths linking i and j, and gi,j(k) is the number of those
shortest paths that include k.

2) Degree centrality ranks nodes based on the number
of their direct ties (i.e., neighbors) in the graph. It
identifies the most popular nodes, also called hubs in
social network theory, possible conduits for information
exchange. Degree centrality is calculated as: CD(k) =∑N

i=1 a(k, i), where a(k, i) = 1 if k and i are linked,
and a(k, i) = 0 otherwise.

3) Closeness centrality ranks higher nodes with lower
multi-hop distance to other nodes of the graph. It de-
scribes “independent nodes” that do not dependent upon
others as intermediaries or relayers of messages due to
their closeness to other nodes. The closeness centrality
for a node k is calculated as CC(k) = N−1

P

N
i=1

d(k,i)
, where

d(k, i) is the length of the shortest path between nodes k

and i. To deal with disconnections it is computed within
the subgraph induced by the elements of the connected
component to which k belongs.

4) Page rank, the well known Google’s ranking algorithm,
measures the likelihood of nodes in having important
friends in a social graph [29]. In particular, page rank
of a node i in the social graph is given by the equation
PR(k) = 1−d

N
+d

∑
i∈F (k)

PR(i)
|F (i)| , where d (0 ≤ d ≤ 1)

is the damping factor and F (k) is the set of neighbors
of k in the social graph (the graph is undirected). The
damping factor d controls the amount of randomness in
page ranking: Values close to 1 will give high page rank
to socially best-connected nodes.

B. Global VIPs

The global VIP delegation strategy aims to select the
smallest VIP set over the global social graph that is able to
daily cover the network through direct contacts with network
users. For this, the nodes are first ordered according to each of
the earlier discussed rankings, and then one of the following
VIP promoting ways is applied:

• Blind global promotion. It selects the top-ranked nodes
not yet promoted, till the network is covered.

• Greedy global promotion. This is a set-cover flavored
solution. In particular, it starts with promoting to VIP the
top-ranked node. After this promotion, the nodes covered

by this VIP are dumped and ranking on the remaining
nodes are re-computed. Again, the procedure is repeated
till the network is covered.

C. Hood VIPs

The second selection strategy, Neighborhood VIP delega-
tion, is based on the intuition that repetitive meetings among
people happen usually in the same places. The mobile social
network generated by this behavior encompasses, besides con-
tact locality, well tight social-community sub-structures. Thus,
our strategy aims to cover each community at a time, selecting
hood VIPs by their importance within their communities.
Before doing so, we first detect social-communities using
the k-clique community algorithm [30]. Afterwards, we rank
nodes according to betweenness, closeness, or degree central-
ity and page rank. Then we start covering each community by
promoting its members to VIPs similarly to the global VIPs
methods:

• Blind hood promotion. It continuously selects the top-
ranked nodes not yet promoted in the community, till the
network is covered.

• Greedy hood promotion. The highest-ranked member in
the community is promoted, nodes it covers within the
community are dropped, and rankings are computed again
in the remaining community graph.

In both promoting ways, when the whole community is
covered, the procedure continues with another one, until all
the communities are covered.

D. VIP delegation in practice

The computation of previously discussed ranking metrics
and of sub-communities in a social mobile network requires
knowledge on user mobility. None of them is available when
one has to pre-compute the VIPs set that will visit all the
users in the future. We cannot expect to know every single
user movement in advance! Nevertheless, the movement of
users guided by their interests generates repeatability in their
behaviors (e.g., go to work/school every day, hang out with the
same group of friends). Thus, observing users’ movement and

meeting patterns for a short period reveals enough information

to characterize the tightness of the social links in the network

graph.
In a real-life application, we could imagine the network

infrastructure builder asking participating users to log their
meetings for a certain time, called here as training period.
These logs serve then to build the networks’ social graph on
which the VIPs selection is made: the social graph G(V,E) is
composed of vertexes representing nodes and edges describing
their social ties (encounters). Two nodes are linked in the
social graph if they meet frequently during the training period.

The results of our experiments with both real and synthetic
traces show that this is a good strategy. Indeed, as we will see
in Section VI, small sets of VIPs selected with our strategies
on a training period of only 1 week yields very good results
in terms of user visiting, day by day, for all the remaining of
the traces.



u

w

w

v

Day 1

Day 2

u

(a) Encounter exam-
ple.

u w

w

v1

2 2

1 1

u

(b) Rule 1 in G.

u w

w

v1

2 2

1 1

u

(c) Rule 2 in G.

u w

w

v1

2 2

1 1

u

(d) Rule 3 in G.

u w

w

v1

2 2

1 1

u

(e) Final graph G.

Figure 1. (a) Meeting between u, v, and w during days 1 and 2. (b)-(d)
Rules for the construction of graph G. (e) Final representation of graph G.

V. BENCHMARK APPROACH

We propose a benchmark that gives an optimal solution
to our problem: 100% of user coverage daily, with mini-
mum number of VIPs. It is important to underline that the
benchmark serves only for comparison purposes as it requires
knowing the future to compute the exact set of VIPs. It is
obtained by abstracting our application scenario to a formal
representation. Consider that the network has to be covered
daily by VIP delegates, for a period P during which the
activity of all network users is known. Let also P be n days
long. We construct a directed graph G = (V,E) through
the following rules (a step-by-step generation of graph G is
illustrated in Figure 1):

Rule 1: Graph G has a vertex ui for each day i in which
user u is active (i.e., u has at least one contact during the
day). This vertex impersonates u during day i in G and is
referred to as the image of u during that day (see Figures 1(a)
and 1(b)).

Rule 2: Every couple of images of the same user u in G is
connected through a couple of directed edges, i.e., images of
same user u are members of a clique in G (see Figure 1(c)).

Rule 3: If users u and v meet on day i, then every member
ut of the clique composed of u-images in G is connected
to vi through an edge (ut, vi). Similarly, every member vt

of the clique composed of v-images in G is connected to ui

through an edge (vt, ui). In particular, G also contains edges
(vi, ui) and (ui, vi) representing that u and v met on day i

(see Figure 1(d)).

The graph G constructed with the rules above represents
users’ behaviors in the network during the whole period P .
Consider a certain user u. According to Rules 1 and 2, user u

is “expanded” in G into a clique, containing images of u only
for the days u is active (see Figures 1(b) and 1(c)). Moreover,
if u meets v in day i, Rule 3 guarantees that all members of
the clique representing u in G point to vi (see Figure 1(d)).
The intuition behind this rule is that outgoing edges from u′s

clique indicate that “u can be a delegate for v on day i”.
Rule 3 is applied to every day user u is active. Thus, all

members of the u′s clique in G point to the same members
of other users’ cliques. Consequently, any image of u in G

(any member of u′s clique) is enough to determine the set of
users for which u can be a delegate, and on which days.

Intuitively, in order to cover all the network day by day, it is
enough to select as delegates the members of a minimum out-
dominating set of graph G. Moreover, such a set of delegates is
the smallest set that can achieve full coverage. The following
theorems, whose proofs are omitted due to space constraints,
prove such intuition.

Theorem 1: Let MDS be a minimum out-dominating set of
G. The set MDS can cover 100% of the active users for each
day i ∈ P .

Theorem 2: Let MDS be a minimum out-dominating set of
G. Let also S be the smallest set of VIP delegates able to
cover, for every day i ∈ P , 100% of the active network users
on day i. Then, |MDS| ≤ |S|.

The above theorems indicate how to proceed to find the best
possible solution to our problem: After constructing graph G

according to Rules 1, 2, and 3, find a minimum out-dominating
set of G and use the members of such set as benchmark VIPs.

The minimum dominating set is notably a NP-hard problem.
Thus, to individuate our benchmark VIP delegates, we reduce
our problem to Set Cover (equivalent to MDS under L-
reductions [27]) for which a simple greedy algorithm is known
to be only a logarithmic approximation factor away from the
optimum [27]. To the best of our knowledge, there is provably
no polynomial-time algorithm with a smaller approximation
factor. The delegates obtained by this heuristic are then used
as benchmark VIPs in our experiments.

VI. EXPERIMENTAL SETTING

In this section, we give detailed information on both the
real and synthetic data-sets we use for evaluation. Then, we
present, step by step, how the social graph and the social
communities are computed for each dataset.

A. Data-sets

For the evaluation we use two real data-sets: Dartmouth [31]
(movement of students and staff in campus) and Taxis [32]
(movement of cabs in San Francisco)– and three synthetic
datasets generated with the SWIM mobility model [26], shown
to simulate well human mobility from statistical and social
points of view. The vehicular mobility of the cabs is different
from human mobility (Dartmouth). However, the purpose of
using the taxis trace is to test our solution’s extendibility to
different contexts.

Dartmouth. Dartmouth includes SNMP logs from the access
points across the Dartmouth College campus from April 2001
to June 2004. To generate user-to-user wireless contacts from
the data-set, we follow the popular consideration in the liter-
ature that devices associated to the same AP at the same time
are assumed to be in contact [24].

Taxis. The Taxi data-set contains GPS coordinates of 536 cabs
collected over 24 days in San Francisco. Here, we assume that
two cabs are in contact when their geographical distance is
smaller than 250 m (according to Piorkowski et al. [32]).

SWIM. We first generate SWIM-500, a 2-month long, 500-
node simulation of the Cambridge Campus data-set [26]. To
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Figure 2. Performance of the selection strategies on the Dartmouth data-set.
“Bn” refers to the benchmark, “PR” to the page-rank, “BW” to betweenness
centrality, “DG” to degree centrality, and “CL” to closeness centrality.

emulate two possible network-enlargement scenarios–(1) an
urban growing in both area and population and (2) a sudden
over-population of a city– we generate two other traces of
1500 nodes. This is done by (1) keeping the density constant
(D-SWIM-1500) and (2) keeping the area constant (A-SWIM-
1500). Table I summarizes the details of the data-sets. Note
that, although both Dartmouth and SWIM data-sets represent
campus scenarios, they yield different activity per node per
day as they used distinct technologies; respectively Wi-Fi in
Dartmouth, and Bluetooth-like in SWIM.

B. Training period and social graph

Our strategies do not require pre-knowledge of contact
patterns among users. Rather, we use an observation/training
period as short as 1 week, exploiting repeatability of users’
movement patterns and recurrence of contacts (i.e., short-range
wireless connectivity) among them. The length of the training
period is not casual. Our life and the activities we conduct are
organized on a week-base, mostly having a common routine
repeated day by day (e.g., go to work/school or have lunch in
the same place). This also is reflected in the taxi movement,
guided by the clients’ need to reach specific locations in the
city. The repeatability of contacts is due to the popularity of
geographical zones (e.g., city center, stations etc.), and to fixed
tracks connecting them.

Our intuition on the length of the training period is also
confirmed by the results shown in Table I. The properties of
the training period are very close to the whole trace for all
scenarios. This allows us characterizing social relationships
among users and make prediction of future meetings easy.
We are indeed able to generate a social graph, where two
users are connected only if they have met with a certain
frequency – that we call social connectivity threshold – during
the training period. The social connectivity threshold depends
on the scenario considered:

• In the Dartmouth data-set, social connectivity is due to
university life (sharing the same classes, studying in the
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Figure 3. Distribution of VIPs per social attribute on the Dartmouth data-
set with the blind global promotion strategy. The x-axis represents different
communities detected.

same library, living in the same dorm), which generates
lots of meetings between people during the week. We thus
set the social connectivity threshold to at least 1 contact
per day, for at least 5 days during a week.

• The social connectivity threshold in the Taxi data-set is
higher due to higher speeds: At least 8 contacts per day
during the training period’s week.

• SWIM-500 also represents a University campus, thus
the social connectivity threshold value is the same as in
the Dartmouth trace. In D-SWIM-1500 (constant density
scaling) the threshold remains constant. Because of the
increased density, it increases to at least 8 contacts per
day for at least 5 days of the training week in A-SWIM-
1500, the SWIM-500 scaled version with constant area.

Our hood VIPs selection strategies operate on a community
basis and aim at covering single communities by selecting
members that are important in the network. We determine
communities on the social graph of both Dartmouth and
SWIM traces through the k-clique algorithm [30], which is
widely used in the area of social mobile networking [16]. The
communities are well-knit and do not show much intersection
between them: The average Jaccard similarity index [33]
between intersecting communities is 0.038 in the Dartmouth
case and about 0.025 in SWIM-500 and D-SWIM-1500 case,
and 0.045 in A-SWIM-1500 where there is more overlapping.
The Taxi data-set, due to the large number of contacts and
the high mobility of nodes, does not present any community
sub-structuring. When applying the k-clique algorithm, we
only observe a huge community containing almost 80% of
the nodes, whereas the remaining 20% do not belong to any
community. Thus, we decided to apply only the global VIP
selection strategies to this trace.

VII. EXPERIMENTAL RESULTS

We analyze the performance of all our strategies in terms of
coverage when applied to real and synthetic traces. We inves-
tigate the coverage trend with regard to an increasing number



Table I
DETAILS ON THE DATASETS (DS) AND RESPECTIVE TRAINING PERIOD (TR).

Data set Taxi Dartmouth SWIM-500 D-SWIM-1500 A-SWIM-1500
Total nodes 536 1142 500 1500 1500
DS AVG active/day 491 1060 499.98 1500 1500
TR AVG active/day 429 1061.5 500 1500 1500
DS AVG contacts/node/day 7804 292 128 130 380
TR AVG contacts/node/day 7656 284 131 129 378
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Figure 4. Distribution of VIPs per social attribute on the Dartmouth data-
set with the greedy global promotion strategy. The x-axis represents different
communities detected.

of the VIPs. The set used for coverage is updated from time to
time following the order in which each strategy selects VIPs.
For the sake of comparison, the results for the benchmark
(“Bn”) are included in the plots. We use the same technique
as above to build the benchmark’s trend: Updating the VIPs set
and the corresponding network coverage, following the order
in which the benchmark promotes VIPs.

It is worth noting that, for the page rank attribute, we have
firstly analyzed the impact of varying the damping fact values
(i.e., d) on the coverage of the selection strategies. We decided
to use then d = 0.85, since it results in the best performance
in terms of network coverage.

A. Performance results on real data-sets: Dartmouth case

Blind promotion. We show in Figure 2 the coverage obtained
by each of the promotion strategies. The blind promotion in
the global and hood VIP selection strategies yields the results
presented in Figures 2(a) and 2(b). Notice that there is a
coverage efficiency gap between page rank VIPs (referred as
“PR” in the figure) and those of other centralities (referred as
“BW”, “DG”, and “CL”). In addition, page rank is very close
to the benchmark, even for small percentages of delegates
considered. For instance, in the global blind strategy, to get
to 90% of coverage, page rank only requires the promotion
of 5.93% of nodes as delegates against 3.92% with the
benchmark approach (see Table II).

Another consideration to be made is that hood selection
is more effective than global selection. Hence, aiming to

Table II
DELEGATES GIVEN BY EACH STRATEGY TO OBTAIN 90% COVERAGE ON

DARTMOUTH. THE BENCHMARK NEEDS 3.92% OF NODES.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
PR 8.98 6.89 5.93 6.19
BW 15.96 9.16 8.98 6.19
DG 26.96 15.09 5.93 6.19
CL 47.993 26.0035 5.93 6.19

cover the network by forcing VIP selection within different
communities seems to be a very good strategy. Nevertheless,
there exist social attributes such as page rank that do not
gain much from the hood selection. Indeed, global and hood
page rank VIPs perform very similarly in both data-sets. This
is because, on the one hand, page rank VIPs already target
different communities, even in the global case. On the other
hand, betweenness, degree, and closeness centrality tend to
over-select VIPs from a few network communities, and con-
sequently, leave uncovered many marginal ones. This is also
confirmed by the resulting distribution of VIPs in communities
after the global selection according to each attribute (see
Figure 3). The tendency of these social attributes to target
only a few communities is attenuated with the hood selection
that boosts their efficiency in covering the network.

Greedy promotion. When applying the greedy promotion, the
performance of all strategies improves considerably and gets
much closer to the benchmark (see Figures 2(c) and 2(d)). In
addition, VIPs obtained with each social attribute perform very
similarly to each other, in both hood and global selections.
This is due to the capacity of the greedy approach to not

promote as VIPs nodes that are too close to each other in the
social graph. Indeed, after every node’s promotion to VIP, all
its neighbors in the social graph and their links are removed.
Since communities are very well tight, only the promotion of
one member can remove a large part of the community (if not
all of it). Thus, attributes such as betweenness and closeness
do not concentrate their selection on a few communities as in
the global selection. This is also confirmed by Figure 4, where
we show how the greedy strategy distributes VIPs among
communities for different social attributes.

In addition, the results with 90% coverage presented in
Table II confirm page ranks’s high performance ability when
combined with every strategy.

B. Performance results on real data-sets: Taxi case

As already discussed, due to the high mobility of nodes in
this dataset only a huge unique community containing 80%
of nodes is detected, while the 20% remaining nodes do not
belong to any community. Though this effect makes the global
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Figure 5. Coverage stability in time (Dartmouth data-set).

selection the only applicable, all strategies perform very well
in this scenario. Moreover, the sets selected by each strategy
to guarantee up to 90% of coverage have exactly the same
(small) size: Only 0.93% of network nodes. The benchmark
guarantees the same coverage with 0.2% of network nodes
selected. Coverage trend related graphics are omitted due to
lack of space.

C. Performance results on synthetic data-sets: SWIM

Here we present results of our experiments done with the
SWIM mobility model. We first generate SWIM-500, a 500
nodes simulation of the Cambridge University scenario [16],
[26]. Then, to study VIP selection performance in two intuitive
scenarios– a urban growing in both area and population (con-
stant density), and, a sudden over-population of a city (constant
area)– we generate two scaled versions of SWIM-500 with
1500 nodes, D-SWIM-1500 (constant density scaling) and A-
SWIM-1500 (constant area scaling).

We start from the Blind promotion. Like in the Dartmouth
scenario, page-rank VIPs result more efficient than those
of other centralities (see Tables III, IV, and V containing
the percentage of delegates needed by strategies to cover
90% of the network). The reason is the same discussed in
the previous section. I.e. page-rank global VIPs are better
distributed within communities with respect to VIPs of other
centralities. Moreover, again aiming to cover the network by
forcing VIPs to fall in different communities (hood selection)
is a winning strategy.

The Greedy promotion, seamlessly to the Dartmouth case,
boosts up the performance of all strategies by thus yielding
much better coverage results with respect to the Blind promo-

tion (see Tables III, IV, and V).
What’s interesting to notice here is the impact of the way

of scaling on our strategies. When passing from SWIM-500 to
D-SWIM-1500 (constant density) all strategies perform very
similarly, in both blind and greedy promotions (see Tables III
and IV). Conversely, in an emergency situation, where the
network is suddenly much more overloaded as a result of
the over-population of the network area (A-SWIM-1500), our
strategies perform even better. Again, due to space constraints
we omit coverage trend related graphics on SWIM. We want to
stress however that their trend is very similar to the Dartmouth
traces.

D. Coverage stability

Here we study the stability of coverage of our strategies in
time. We focus on VIP sets big enough (according to Table II))

Table III
DELEGATES GIVEN BY EACH STRATEGY TO GET 90% COVERAGE ON

SWIM-500. THE BENCHMARK APPROACH NEEDS 7.4%.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
BW 21 14 9 10.6
CL 48 25.4 12.8 11.6
DG 23 13.6 8 8.8
PR 10.8 10.2 9.8 9.6

Table IV
DELEGATES GIVEN BY EACH STRATEGY TO GET 90% COVERAGE ON

D-SWIM-1500. THE BENCHMARK APPROACH NEEDS 7.06%.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
BW 22 17.26 9 9.93
CL 59 42.06 12.93 11.6
DG 24 17.2 8 9.06
PR 10.9333 10.06 9 9.93

to cover 90% of the network for the whole period and we plot
their actual daily performance in Figure 5. Due to the lack of
space, we only present results related to the Blind strategies on
the Dartmouth data set. We stress however that the same results
hold for all the strategies over all the data-sets considered (also
Taxi and SWIM). We observe that coverage is quite constant
in time for every strategy. This reinforces our intuition on both
the training period and the way the social graph is generated.
With minimal information on the scenario and a very short
observation of the network, our strategies are able to compute
VIP sets that are small, efficient, and stable in time.

VIII. INCENTIVIZING VIPS AND DATA TRANSFER

Being the human nature inherently selfish, it is more likely
that no user would accept the promotion to VIP. However, the
number of VIPs selected by our strategies to guarantee 90%
coverage is quite low (8% in SWIM, 5.93% in Dartmouth,
less than 1% in Taxi). In view of this, VIPs could have
their devices upgraded to more fancy, recent ones, and get
paid for carrying them around and "working" for the net-
work provider/application builder. Considering the amount of
funding that Governments worldwide are putting into global-
sensing research [34]–[36] this incentive is more than real.
Another possibility involves considering users’ traffic load at
the delegates selection and use it to establish a maximum
load threshold per delegate. Accordingly, combine it with the
social attributes for delegate selection considering fairness and
resource constraint among delegates.

Many applications could benefit by the VIPs: collection
of urban-sensing related data; distribution of large content to
users by service/software providers (e.g., software updates and
recurrent security patches); free update of mobile software’s ad
pools. All these are delay-tolerant, and would not suffer from
the 1-day latency of the daily coverage of VIPs. Moreover,
the data transfer between VIPs and the network could happen
with different frequencies according to the time-sensitiveness
of the data. Finally, it is clear that 3G networks cannot handle
such traffic in the classic way (whenever VIPs like), because
it would not be of any benefit to offloading. However, the
3G network can still be used in different moments of the
day to transfer the data. So, the network load would result
distributed in time rather than concentrated in highly congested



Table V
DELEGATES GIVEN BY EACH STRATEGY TO GET 90% COVERAGE ON

A-SWIM-1500. THE BENCHMARK APPROACH NEEDS 2.53%.

G-Blind (%) H-Blind (%) G-Greedy (%) H-Greedy (%)
BW 10 6.73 4 4.4
CL 30 11.6 9 6.06
DG 7 5.13 4 3.53
PR 5 4.33 6 4.4

hours. Another possibility is to transfer the data through
wired networks, whenever a VIPs device gets connected to
a broadband network during the day. After all, if VIPs are
being paid to perform such task, this assumption is more than
reasonable.

Finally, in this work we focus on 90% network coverage
because we empirically observed that this value leads to a
good balance between coverage and number of VIPs. However,
further investigation of the trade off between coverage and VIP
number will be investigated in future work.

IX. CONCLUSION

Dense metropolitan areas are suffering network overloading
due to the data-traffic generated by the proliferation of smart-
phone devices. In this paper, we describe VIP delegation, a
mechanism to alleviate such traffic based on opportunistic
contacts. Our solution relies on the upgrade of a small, crucial
set of VIP nodes that regularly visit all network users and
collect (disseminate) data to them on behalf of the network
infrastructure.

VIPs are defined according to well known social network
attributes (betweenness, closeness, degree centrality and page-
rank), and are selected according to two methods: global
(network-based) and hood (community-based) selection. All
methods rely on a short network observation period of 1 week,
and select VIP sets that result small, efficient, and stable in
time. Extensive experiments with several real and synthetic
data-sets show the effectiveness of our methods in offloading:
VIP sets of about 7% and 1% of network nodes in respectively
campus-like and vehicular mobility scenarios are enough to
guarantee about 90% of network offload. Additionally, the
performance of the VIPs selected by our methods is very
close to an optimal benchmark VIPs set computed from the
full knowledge of the system (i.e., based on past, present, and
future contacts among nodes).
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