
CDroid: Towards a Cloud-Integrated Mobile
Operating System

Marco V. Barbera, Sokol Kosta, Alessandro Mei, Vasile C. Perta, and Julinda Stefa
Department of Computer Science, Sapienza University of Rome, Italy

Email: {barbera, kosta, mei, perta, stefa}@di.uniroma1.it

Abstract—Current offloading mechanisms for mobile energy-
hungry apps consider the cloud as a separate remote support to
the mobile devices. We take a different approach: We present
CDroid, a system residing partially on the device and partially
on a cloud software clone coupled with the device, and uses the
cloud-side as just-another-resource of the real device. It enhances
the user-experience by improving web navigation, compressing
and caching web-pages, blocking unwanted ads, and protects user
data by virus scanning apps on the cloud-side prior installation
on the real-device. CDroid puts the first steps towards a hybrid
cloud-integrated mobile system of the future.

I. INTRODUCTION

The proliferation of portable devices and high-speed mobile
connectivity has attracted the attention of many developers.
Every day are build new cool apps that allow us to do complex
things on our smartphones, but that also strain their already
limited energy resources. In this scenario, cloud computing is
seen as a promising technology that can offer many benefits
for mobile devices. Many recent works [1], [2], [3], [4],
[5], [6] focus on offloading computation intensive apps from
smartphones to remote servers on the cloud to prolong the
battery life. In these works the device and the cloud are two
different entities, limiting the possibilities offered by the mobile
cloud paradigm.

In this demonstration we propose another approach to the
mobile cloud paradigm: A system aiming at bringing the device
and the cloud closer, towards fully integrating them. In our
approach the cloud is seen as another resource of the real
device, only a 3G/LTE Advanced connection away from it. So
we envision a cloud-integrated mobile operating system, partly
residing on the cloud and partly on the device, that boosts its
performance, reshapes its features and enables new innovative
apps. We build CDroid, a first prototype, with a whole new class
of mobile features residing on a private software device clone
running on the cloud. CDroid tunnels all the mobile internet
data traffic through the cloud-side of the system so to monitor
every connection and decide how to deal with the data trans-
mitted/received by the user. In addition, it provides to the user
text/image compression, mobile advertisement blocking, anti-
phishing filtering, and privacy protection. CDroid considerably
improves both user experience and the efficiency of the system.

This work has been technically supported and partially funded by Telecom
Italia within the Working Capital project.

This work has been performed in the framework of the FP7 project TROPIC
IST-318784 STP, which is funded by the European Community. The Authors
would like to acknowledge the contributions of their colleagues from TROPIC
Consortium (http://www.ict-tropic.eu).

II. THE CDROID SYSTEM

As shown in Figure 1 CDroid consists of two parts: The part
residing on the smartphone and the part residing on the cloud
clone (coupled with the device), hosted either on a public or
on a private cloud. We assume that the users trust their cloud
provider. The cloud-side of the system handles all the external
communication and synchronizes with the phone at regulars
intervals. To achieve this, we set up a secure tunnel between
the smartphone and its clone and make all phone’s Internet
connections pass trough the clone. During the set-up phase the
user sets an account password that allows her to access the
features of CDroid. The system features several components:

CDroid-Device: Is the device-side of the system and ex-
ecutes as a background service. It collects informations about
user activities and behavior like phone call/SMS sender/receiver
information, geographic positions, emails, Bluetooth devices
and WiFi hotspots discovered/connected to, and 3G networks.
The information is written in a log file and sent in batches to
the cloud-side of the system as a piggyback to user traffic.

CDroid-Server: Is the first cloud-side component of the
system and is responsible for the communication with the
CDroid-Device. It collects the information sent by the CDroid-
Device and passes it to the User Profiler component (described
here below). In addition, it handles user commands to enable
or disable specific system features. Finally, it features an Anti-
phishing handler, that checks the urls in the user request
headers to detect if the relative link leads to a phishing website.

User Profiler: Is a security component of the system. It han-
dles the user authentication, constantly verifies the the device
is being used by the actual user, and if not, blocks the access
to sensitive user data stored on the cloud-side and to internet
services accounts like Facebook/Gmail and so on. It works as
follows: The User Profiler keeps a record of user activities
and builds a user profile out of them, using well known
profiling techniques [7]. The profile includes recurrent user-
related activities—contacts usually called/texted/emailed, WiFi
hotspots/Bluetooth devices connected to, GPS coordinates, apps
accessed the most and so on—and is constantly updated with
the information received from the CDroid-Device. The User
Profiler checks for inconsistencies between the recent user
behavior and her profile, and accordingly, puts the user in one of
the two authentication states: Authenticated or ShouldAuthen-
ticate. The former enables the user with all the features of the
system: cloud-side behaves normally, and satisfies all the users’
requests. Rather, the ShouldAuthenticate user state is triggered



Secure channel

Public/Private 
cloud provider

CDroid

Fig. 1. The CDroid architecture.

when the recent behavior of the user is very different from her
profile. An example is a device reporting GPS coordinates of
a different state from that of the user. When the user is in the
ShouldAuthenticate state the system stops providing services
to the device, including access to e.g. the Facebook/Gmail
server, till the user re-authenticates with the password. After
a successful authentication the user is enabled to fully make
use of the system. If the authentication fails, an alert email is
sent to the private email account provided in setup phase.

We stress that this component is entirely settable by the
user: It is the user that adds the apps/interfaces that are to
be monitored and the frequency with which behavior data is
sent to the clone. Clearly, the more information included in the
profile, the better the detection of suspicious behavior becomes.

Cookie handler: It protects the user from cookie theft
and enables the unification of cookies for all applications. If
enabled, it intercepts the cookies received from servers the
user connects to, removes them from the response header prior
sending the response to the user device, and stores them on
the cloud-side of the system only. On consecutive connections
the Cookie handler puts back the correct cookies on request
headers coming from the phone.

Sensitive information blocker: It analyzes the flow of data
generated from the device to detect leakage of (unaware)
users’ sensitive data. If an anomaly is detected the Sensitive
information blocker alerts the CDroid-Server which alerts the
CDroid-Device to inform the user, and blocks the transmission
if necessary. Sensitive informations can be e.g. passwords,
credit card or cellphone numbers etc. and are user settable.

Mobile Advertisement blocker: Often app developers inten-
tionally display in-app ads over areas where the user would
normally tap during the app usage. Once accidentally clicked,
the ad opens the browser by interrupting the user of what she
was doing, resulting in a very annoying user experience. In
addition, ads generate unwanted data traffic, and can be a threat
to the privacy: Many ad companies send ads customized to the
user profile, which suggests that sensitive user information is
leaked on the process of retrieving new ads.

The Mobile Advertisement blocker component operates as
follows: When an app or a web-page sends a request for an
ad, the CDroid-Server is alerted to not satisfy the request, and
simply reply with a denied messages. Ad requests are easily
detectable as they are directed to well-known servers dedicated

to ad distribution. Enabling this component results in less traffic
generated, better user experience, and more privacy.

Push notifications handler: Many apps that we use feature
push notifications, that require the device to keep persistent
connections with any of them. The push notification handler
manages these persistent connections on the cloud-side, and
shrinks the device persistent connections to 1: that with the
cloud resource. In addition, the user can decide the frequency
of receiving notifications of any kind, or even to store them on
the cloud-side and to retrieve them in a consecutive moment.

App handler: This component serves as a security screen
of new apps downloaded, prior the installation on the real
device. When the CDroid-Server detects a request for a new app
download, the App handler installs the relative apk on a limited
sandbox on the cloud-side, and puts it in the quarantine state.
Then, one or more anti-malware softwares are run to scan the
app for malicious behavior. In addition, the App handler blocks
and logs all Internet connections that start from the quarantined
app. If the app passes successfully the quarantine phase, the apk
is sent to the user device for installation. Otherwise, the app
is flagged as malicious and the apk is not sent to the device
unless the user decides to install the flagged app regardless.

III. DEMO SETUP

We demonstrate our CDroid prototype using two Android
Samsung Galaxy S Plus devices and an Android x86 software
clone deployed on Amazon’s EC2 platform. Just one of the two
devices run the CDroid system.

During the demonstration the user (a demo presenter or
possible volunteers) are given each of the smartphones and ask
to perform several tasks to compare the performance of the
plain Android system with that of the CDroid one. The users
are asked to test each of the CDroid components in order to
experience the different features the system: How blocking mo-
bile advertisement results in a better user experience, specially
with games that trick the user into clicking adds that interrupt
the game itself and open other apps (e.g. the browser), and
how the User Profiler protects the user privacy by enforcing
authentication when needed.

REFERENCES

[1] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proc. of EuroSys
’11, 2011.

[2] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for mobile
code offloading.” in Proc. of IEEE INFOCOM 2012, 2012.

[3] A. Saarinen, M. Siekkinen, Y. Xiao, J. Nurminen, M. Kemppainen, and
P. Hui, “Can offloading save energy for popular apps?” in Proc. of ACM
MobiArch ’12, 2012.

[4] M. V. Barbera, S. Kosta, J. Stefa, P. Hui, and A. Mei, “CloudShield:
Efficient anti-malware smartphone patching with a P2P network on the
cloud,” in Proc. of IEEE P2P 2012, 2012.

[5] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To Offload or Not to
Offload? The Bandwidth and Energy Costs of Mobile Cloud Computing,”
in Proc. of IEEE INFOCOM 2013, 2013.

[6] S. Kosta, V. C. Perta, J. Stefa, P. Hui, and A. Mei, “CloneDoc: Exploiting
the Cloud to Leverage Secure Group Collaboration Mechanisms for
Smartphones,” in Proc. of IEEE INFOCOM 2013, 2013.

[7] D. Pepyne, J. Hu, and W. Gong, “User profiling for computer security,” in
Proc. of IEEE ACC ’04, 2004.


