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Abstract—The cloud seems to be an excellent companion of
mobile systems, to alleviate battery consumption on smartphones
and to backup user’s data on-the-fly. Indeed, many recent works
focus on frameworks that enable mobile computation offloading
to software clones of smartphones on the cloud and on designing
cloud-based backup systems for the data stored in our devices.
Both mobile computation offloading and data backup involve
communication between the real devices and the cloud. This
communication does certainly not come for free. It costs in terms
of bandwidth (the traffic overhead to communicate with the
cloud) and in terms of energy (computation and use of network
interfaces on the device).

In this work we study the feasibility of both mobile compu-
tation offloading and mobile software/data backups in real-life
scenarios. In our study we assume an architecture where each
real device is associated to a software clone on the cloud. We
consider two types of clones: The off-clone, whose purpose is to
support computation offloading, and the back-clone, which comes
to use when a restore of user’s data and apps is needed. We give
a precise evaluation of the feasibility and costs of both off-clones
and back-clones in terms of bandwidth and energy consumption
on the real device. We achieve this through measurements done on
a real testbed of 11 Android smartphones and an equal number
of software clones running on the Amazon EC2 public cloud.
The smartphones have been used as the primary mobile by the
participants for the whole experiment duration.

I. INTRODUCTION

The advances in technology of the last decades have un-
doubtedly turned yesterday’s must-have devices into today’s
stock. Think of the phones with aerials of the late ’80, or the
Pentium 4 PCs of a few years ago. None of them is compa-
rable to the power of nowadays smartphones, whose recent
worldwide market boost is undeniable. We use smartphones
to do many of the jobs we used to do on desktops, and many
new ones. We browse the Internet, send emails, organize our
lives, watch videos, upload data on social networks, use online
banking, find our way by using GPS and online maps, and
communicate in revolutionary ways. New apps are coming
out at an incredible pace. Apple iPhone commercial’s call
to action “There’s an app for everything” says a lot on this
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matter. Nonetheless, the more eager we get when using our
smartphones by installing new apps, the less happy we are with
the lifetime of the battery. The problem is that we rely upon
a number of crucial pieces of information that are only stored
in the device (phone numbers, addresses, notes, appointments,
etc.), or, in some cases, that can be got only by using the
Internet on the fly as many of us are used to do. It is so
important to keep our smartphone operational that everyday
we pay attention to our battery and try to save it by reducing
the number of phone calls, or by avoiding to watch too many
videos, just enough to be able to reach home and recharge it.
But that means that we cannot use our device to the fullest.

Many researchers believe that cloud computing is an excel-
lent candidate to help reduce battery consumption of smart-
phones, as well as to backup user’s data. Indeed, many recent
works have focused on building frameworks that enable mobile
computation offloading to software clones of smartphones
on the cloud (see [1], [2], [3] among others), as well as
to backup systems for data and applications stored in our
devices [4], [5], [6]. Both mobile computation offloading and
data backup involve communication between the real device
and the cloud. This communication does not come for free,
in terms of both energy consumption (utilization of network
interfaces to send the data) and bandwidth [7]. Several works
consider the trade-off between the energy spent to offload
specific application modules and the energy saved thanks to
the cloud [2], [3], [8], [1], [9]. Also do exist analytical models
that aim to predict approximately these costs in the case of
mobile computation offloading [10], [11]. However, all these
works are limited to consider best case scenarios—ideal WiFi
connectivity and WiFi interface always switched on. To the
best of our knowledge there is no study on the cost of keeping
updated a clone or a backup on the cloud in a real setting with
real mobile smartphone users, where Internet connectivity is
often guaranteed by WiFi only at home and at work, by 2G/3G
when moving outside these areas, and where coverage is often
not present (think of subways, for example).

Our goal in this work is to study the feasibility of both mo-
bile computation offloading and mobile software/data backups
in real-life scenarios. In our study we assume an architecture
as the one in [9], [1], where each real device is associated
to a software clone on the cloud. For the mobile computation
offloading to work, the status of the applications running on
the clone needs to be in sync (as accurately as possible) with
the ones running on the real device. In order to allow users
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to offload mobile computation on the fly, the clone must run
the same applications the real device is running. In addition,
also the state of both the real application (the one running on
the device) and the cloned application (the one running on the
clone), has to be the same. We will refer to a clone that is used
to offload computation on the fly as an off-clone, and to a clone
that is used to backup user’s data and to enable restore as a
back-clone (backup clone). Since the goal of the back-clone is
to restore user’s data and the system (including installed apps)
in case of system/data corruption or loss, it does not need to
keep up with any single application’s status in time, as in the
case of the off-clone. Yet, it needs to be up to date with all
sort of data generated/received by the user like notes, pictures,
videos, contacts, calendar entries, messages, emails etc.

We give a precise evaluation of the feasibility and costs of
both off-clones and back-clones in terms of bandwidth and
energy consumption on the real device. Our contribution is as
follows:

• We study the network availability (2G/3G, WiFi etc.) as
well as the signal quality in a real testbed of mobile
smartphone users, with reference to the requirements of
offloading and backup on the cloud;

• we study the data communication overhead that is neces-
sary to achieve different levels of synchronization (once
every 5min, 30min, 1h, etc.) between devices and clones
in both the off-clone and back-clone case;

• we report on the costs in terms of energy incurred by
each of these synchronization frequencies as well as by
the respective communication overhead.

To achieve all the above we design and build Logger, an
Android app that runs in the foreground and collects data
on the utilization of the device. Logger also handles the
communication between the real device and the cloud. We
run Logger on a testbed of 11 smartphones (associated to
5 different carriers) that make use of clones running on the
Amazon’s EC2 cloud platform. The paper is organized as
follows: Section II presents the related work in the area;
Section III explains, in details, the components of Logger, the
system we built to collect the data for our study; Section IV
describes the results obtained from the real testbed, while
Section V concludes the paper.

II. RELATED WORK

The proliferation of smartphones has undoubtedly spurred
on developers to build a large variety of apps that allow users
to better exploit their powerful devices. Testimonial of this
effect is the plenitude of new apps that are built and uploaded
to official and unofficial markets every day. However, we
are still far from utilizing our last-generation smartphones
to the fullest. The real limitation is the battery. Recently,
researchers have explored the idea that one promising way to
make the battery of our devices last longer is to offload part
of the computation from the mobiles to the cloud. A number
of recent works propose different methodologies to offload
computation for specific applications [12], [13]. Other works
describe frameworks that enable offloading for applications in

general, as long as the application builder correctly identifies
and tags either code binary or methods as “off-loadable” [14],
[3], [9], [2]. Simultaneously, lots of works discuss on how
to pre-compute/estimate the actual gain in terms of energy
that comes from using this technique, independently from the
specific application [10], [11]. In [15] the authors argue that
previous frameworks that enable offloading are inaccurate in
estimating the energy of a certain workload in the system.
This is because they do not operate at kernel level. With
this in mind they present AppScope, an Android-based energy
estimator implemented as a kernel module that uses an event-
driven monitoring method. By operating at kernel level their
framework yields energy consumption estimation values very
close to those of the Mobile Device Power Monitor1, a tool
used in other works in the area [3], [16].

Computation offloading is not the only thing the cloud
comes to use: Arguing on the importance of data that nowa-
days users store on their mobile devices, the authors in [4]
develop a remote control system for lost handsets that aims to
protect personal information of users. Nonetheless, the remote
control system has to be triggered so that to lock/unlock real
device’s functionalities/access to data, and eventually backup
the data on an online server. If the thief abruptly cancels the
data by formatting the SD card and re-installing the OS, the
user will never be able to get her data again. So, backup/restore
systems that regularly send user’s data to remote servers for
backup are very valuable in this context. The system proposed
in [5], besides from backup/restore, also allows for sharing
information in smartphones among groups of people. The
authors test their system in terms of time needed (on the
phone) to backup three different data types: SMS, calendar
events, and contacts. In [6] the authors argue that not only
contacts and emails—synced by e.g. Google sync on Android
OS—but also application settings, game scores etc., are im-
portant to users. With this in mind they build ASIMS, a tool
that has the goal of providing a better application settings
integration and management scheme for Android mobiles.
ASIMS is based on SQLite, it stores other applications’
settings and syncs them to the Internet. Its interface makes
it possible for other applications to store settings in one
common place and for users to select which applications they
want to sync. In addition, SociableSense [17] shows how also
social related applications can benefit from cloud offloading
and CloudShield [18] exploits sociality among smartphone
clones to stop worm propagation in smartphones. Similarly,
also systems like [19], [20], [21], [22] might benefit from
offloading computation to the cloud.

The work in [10] presents energy models that trade-off the
energy consumption on the mobile device versus the energy
needed to send the data to the cloud, to encrypt it, and to
manage other operations related to this process. The authors
of [7] discuss on the main factors that affect the energy
consumption of mobile apps in cloud computing, and deem
that such factors are workload, data communication patterns,

1http://www.msoon.com/LabEquipment/PowerMonitor/
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and usage of WLAN and 3G. In a more recent work [11]
the authors present an analytical study to find the optimal
execution policy. This is identified by optimally configuring
the clock frequency in the mobile device to minimize the
energy used for computation and by optimally scheduling the
data rate over a stochastic wireless channel to minimize the
energy for data transmission. By formulating these issues as
a constrained optimization problem they obtain close-formed
solutions which give analytical insight in finding the optimal
offloading decision.

None of the many previous works related to mobile cloud
computing explicitly studies the actual overhead in terms
of bandwidth and energy to achieve full backup of both
data/applications of a smartphone, as well as to keep, on the
cloud, up-to-date clones of smartphones for mobile computa-
tion offload purposes. In this work we address both issues, and,
for the first time (to the best of our knowledge), we provide
results with a real testbed of 11 Android powered smartphones
and associated clones running on the Amazon EC2 platform.

III. THE LOGGER

Studying the overheads incurred by the off-clones and the
back-clones is not easy. It depends on how user actually uses
her device, on the properties of the network technologies
(WiFi/3G/ etc.) and on which of these technologies is actually
available and used. So, we develop Logger, an Android app
that continuously logs the events occurring in the device. These
includes user and system generated events. Examples of user
generated events are: Mail sending and receiving, phone calls
(both incoming and outgoing), files exchanged over blue-tooth,
device switching on and off, battery charging, installing and
uninstalling applications. Examples of system generated events
are: Access to network interfaces (e.g. regular heartbeat pings
to Google’s servers), access to GPS radio (e.g. Google Latitude
or Facebook), generation and editing of internal files by apps,
automatic updates, and so on.

The Logger service is structured into sub-components, each
responsible for logging data coming from a given resource.
While some information about the device state can be logged
passively by our Logger using standard facilities provided
by the Android OS, collection of other statistics require the
Logger to actively and recurrently send requests to the OS.
In the remaining of this section we give details on both the
passive and active aspects of our Logger. Also, we describe the
difficulties we faced in building this tool and how we overcame
them.

A. Passive data collection

Some of the Android OS components are loosely coupled
(e.g. network interfaces and the browser). To make them
communicate the Android OS provides the Intents—instances
of the android.content.Intent class. Intents are asynchronous
messages and can be used to perform all sorts of operations:
Requesting the system to launch applications, asking the user
to select a WiFi network to connect to, sending notification
messages to other applications, signalling the Android system

that a certain event has occurred (e.g. message received,
connection available, etc.). In this latter case, a component
interested in a specific event does not have to actively send
the system requests on the occurrence of the event. It suffices
that the component registers to the specific event through the
so called intent filters, and it will be notified by the system as
soon as the selected event occurs.

Our Logger uses Intents to be notified about changes in
the device connectivity (2G, 3G, WiFi), of the battery status
(charging, discharging, current battery life), of the screen state
(on/off) etc.

B. Active data collection

Data collected passively through Intents are not enough for
our study. Statistics as network data usage, for example, cannot
be obtained through Intents. In this case, the Android OS has to
actively be sent specific requests by the interested component.
In Android systems this is achieved through Alarms—actions
scheduled to be executed recurrently, even when the device is
in sleep mode.

So, we built a set of alarms and included them in our
Logger architecture in order to log data exchanged through the
network interfaces, the set of currently running applications,
incoming and outgoing emails, SMSs, phone calls, and so on.

C. Filesystem activity

Monitoring the filesystem’s activity includes logging infor-
mation on when and how each file or directory was created,
deleted, accessed, and modified. This information is clearly
important in both the study of the off-clones (as far as files
internal to single applications are concerned) and back-clones
(user-generated files). The Alarms are not suited to achieve
this: They would require very frequent scan of the whole
filesystem, which would be inaccurate, aside from being very
expensive in terms of battery consumption. Fortunately, the
underlying Linux kernel on which Android OS is based in-
cludes Inotify—a filesystem monitoring service with a similar
approach to that of Intents. Inotify allows applications to add
so called watches to directories. Whenever one of the watched
directories, or its content, is modified, the kernel promptly
notifies the “watching application”. The Android OS provides
user-level applications with a Java interface to the Inotify
subsystem.

The notifications are sent only when something actually
happens on the filesystem. So, the interface to the Inotify
subsystem allowed our Logger to get the most accurate in-
formation possible about the filesystem changes at a minimal
cost in terms of resources. Inotify does not allow to watch
for changes happening in the subdirectories of a directory. To
overcome this problem the Logger, when started, adds watches
to all the directories in the filesystem tree of the device.
In addition, whenever a new directory is created/deleted the
watch is added/removed automatically by the Logger. It is
worth noting that adding each directory of the filesystem tree
to the Inotify watch list is not expensive in terms of memory
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and computational resources, and it did not affect the user
experience in a noticeable way.

D. File permissions

An Android device storage is usually composed of an exter-
nal storage unit, in the form of an SD card, and one or more
internal storage units. The external SD card is where most
of the user files are stored (mp3s, pictures, etc.). Conversely,
system files like config files and system binaries are stored
in the internal storage unit. The SD card storage (usually a
FAT32 filesystem) is the one with the highest capacity (for
example 10 GB) and is accessible in read/write mode by all
the apps without restrictions. While it is possible for an app
to have its data stored on the SD card (this is very useful for
large apps like games or other media-based ones), most of
them are installed in the internal storage space.

As opposite to the external SD card, the access to the
internal storage (an ext3 or ext4 filesystem) is restricted: A
user-level app is only allowed to access its private data (usually
stored in the /data/data/ directory). This prevents any user
application (including our Logger), to add Inotify watches
to the private directories of other apps. To overcome this
limitation we root the devices of our experimental testbed.
By rooting a device, an application can execute commands
using the root permissions, thus going past the restrictions
of user applications, including those on filesystem access.
Our Logger, even though running on a rooted device, is not
allowed to execute its own code with root permissions. It
is however enabled to execute shell commands as root. This
permits us to use the Unix shell included in Android OS to
temporarily change the permissions of private application files.
The permission changing step takes place during the starting
phase of the Logger. The old permissions are saved into a
database (internal to Logger), and are restored whenever it is
stopped by the user. To make the permission changing phase
as independent as possible from the Android platform we
used BusyBox2, a popular lightweight collection of Unix tools
largely used and optimized for embedded systems. Finally,
with these modifications, the Logger is enabled to add Inotify
watches to files that are private to other apps.

E. Dealing with file modifications

Once Inotify sends a notification to our Logger about the
modification/editing of a directory/file, we need to understand
the amount of data that we should upload to the cloud
so to keep the clone up-to-date with the user’s device. Of
course, uploading has to be performed in an efficient way—
we certainly do not want to upload the whole file/directory
each time it is modified. A standard technique is to send just
incremental modifications of the file, instead of the whole
file. Unfortunately, nor does Inotify provide details on the
amount of data that was modified, neither does it keep track
of the modified file portion. So we had to find a method to
identify the file portions involved in a modification that was

2http://www.busybox.net/

fast and lightweight. Fast, so that it could cope with frequent
modifications occurring in the system. Lightweight, so that its
overhead is low and it would not affect the user experience.
For all these reasons we decided to apply the rolling hash [23]
technique, widely used on popular backup/sync software
rsync3. Rolling hash is one of the possible implementations of
the so called binary-diff, used also by Dropbox to update users’
modified files yet not wasting users’ network bandwidth4. This
technique allows to compute very quickly (in linear time with
respect to file sizes) hashes of all possible file blocks (the block
size is a parameter of the rolling hash technique). So, it makes
possible to quickly compute the amount of data (in terms of
blocks) that make two file versions differ. A very detailed and
clear description of the rolling hashes technique (including
how to compute it and how to deal with hash collisions) can
be found in [23].

We built from scratch a Java implementation of the rolling
hash technique, and included it as one of the modules of our
Logger app. Old rolling hashes of files are maintained into a
SQLite database (stored in the phone’s SD card) so that they
are promptly available to be compared with the new rolling
hashes each time files are modified. The block size we used
in our implementation equals 8KB, the same used by rsync.

Our implementation of the rolling hash technique turned
out to be very efficient in computing and comparing hashes.
Nonetheless, we believe that an implementation written in
native code (C/C++) and running as a root process would
dramatically improve the performances. We leave this as future
work.

F. Logger output

The data collected by each component of the Logger is
continuously written to a log file (a simple text file) that
is periodically rotated, compressed and stored onto a special
directory within the SD card reserved to the Logger. The user,
on request, can also trigger sending emails with the content of
this directory, from time to time, to a custom gmail account
we created for this purpose. If the user does so, the log files
that are successfully sent by email are deleted from the device.

IV. EXPERIMENTAL RESULTS

Our experiments are based on a testbed of real users.
In this section we describe the testbed, the results, and the
observations of our study on the cost of keeping updated both
off-clones and back-clones in the cloud.

A. Experimental setting

To gather data related to the device usage we set up a
testbed of 11 smartphones running our Logger app. In addition,
the testbed consists of an equal number of software clones—
customized AMIs of the Android x86 OS [1]—running on the
Amazon’s EC2 platform. Logger makes the device communi-
cate with the clones to collect data related to networking.

3http://rsync.net/
4https://www.dropbox.com/help/8/en
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Number, type & OS CPU RAM

7×Samsung Galaxy S Plus 1.4 GHz Scorpion 512 MB
(Android 2.3)
2×Samsung Galaxy S 1 GHz Cortex-A8 512 MB
(Android 2.3)
1×Samsung Galaxy Note 1.4 GHz dual-core Cortex-A9 1 GB
(Android 2.3)
1×Samsung Galaxy Nexus 1.2 GHz dual-core Cortex-A9 1 GB
(Android 4.1)

TABLE I
PHONE SPECIFICATIONS.

The details of the mobile devices involved in the experiment
are shown in Table I. The devices were used as primary
smartphones for the whole duration of the experiment (the
experiment lasted 3 weeks) and involved people living in
the city of Rome, Italy, and Cambridge, UK. The profiles of
the participants are heterogeneous in age and occupation—
university students, faculties, and part-time and full-time work-
ers that are completely external to the university. So is the
technology they use to connect to the Internet with their mobile
devices: One of the participants does not have a cellular data
traffic plan, so he connects only through WiFi networks (home
or work). Another participant does not have an available WiFi
network neither at home nor at work, so he only makes use of
2G/3G technology. The remaining participants use habitually
both cellular data traffic and WiFi interchangeably.

During the experiment the participants used their own
contract with the service provider of their choice. The data
we gathered includes the four major cellular service providers
in Italy, namely, TIM, Vodafone, Wind and 3, as well as O2,
a major provider in UK. It is worth to note that, though each
of these carriers relies on its own network infrastructure, they
all provide cellular data traffic plans with the same upload and
download speed in best case scenarios. The actual speed and
availability depends, of course, on the quality of the signal and
of the load of the cells that are used by the participants during
the three weeks of the experiment. As this is an element that
might impact the performance of mobile cloud paradigms, we
start our study with network availability.

B. Mobile data traffic and network availability

Certainly one of the most important component to keep both
off-clones and back-clones updated is the ability of the real
devices to communicate often and efficiently with the cloud.
Often, so that the user can send data to the cloud anytime she
needs. Efficiently, so that the overhead of this communication
is as low as possible and does not impact the usability of
the system. Indeed, if the networking process becomes a
bottleneck to usability then people will not be happy about it,
and they will less likely accept and use mobile cloud systems.

The first network related result that we present is the average
amount of time per day, in percentage, users spend connected
either to 3G/2G or to WiFi networks (see Figure 1). The first
observation that we make is that the percentage of the daily
time period during which the devices are connected is quite
high (more than 90%), and the trend is similar for all the days
of the week. The period of disconnection are either due to
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Fig. 1. Average daily connectivity percentage for various technologies.

areas with no signal at all (e.g. subways), or due to periods in
which the devices are switched off. The time of connectivity
using the three different networking technologies (WiFi, 3G,
2G) is also quite stable from day to day: Around 45% of WiFi,
around 40% of 3G, and the remaining of 2G. This partitioning
is particularly positive being WiFi and 3G the two connection
technologies with larger bandwidth.

Keeping off-clones and back-clones up-to-date requires the
device to upload data to the cloud. For this reason we measure,
separately for 3G/2G and WiFi, the average speed in upload
during the real life conditions of our testbed. We achieve the
measurement by making Logger send a file of 300kB from
each device to its clone on the Amazon platform every 30
min, keeping track of the technology used to send the data,
and averaging the results. We compute the average speed for
every user (per day). Figure 2(a) shows the average as well as
a representation of the distribution of the values: Minimum,
25th, 50th, and 75th percentiles, and maximum. By doing so
we are able to depict in the graphic results related to scenarios
where the user happens to be in zones that are not well covered
by wireless technology.

Let us first focus on comparing 3G with 2G connectivity.
When using 2G/3G technology, smartphones switch from 3G
to 2G whenever the 3G signal is not present or lower than
a certain threshold, which depends on the smartphone type.
As expected, the 2G upload speeds are much lower than the
3G ones (see Figure 2(a)). Fortunately, this 3G to 2G switch
typically happens only for short periods of time (see Figure 1).
WiFi connections are faster than 3G ones, as far as download
is concerned. However, the mobile cloud paradigm requires
that the majority of traffic travels from the real devices to the
cloud, to keep the clone up-to-date. The results in Figure 2(a)
show that the average upload speeds are higher in the 3G case
with respect to WiFi. This is not surprising: When accessing
the WiFi users typically set up their devices to automatically
connect to known and trusted WiFi routers that are at their
home or work locations. These in Italy are generally ADSL
WiFi routers, and thus they do not provide high speed in
upload. This last consideration makes think that, when a device
is being charged, it is more likely to be connected to a WiFi
network—usually we charge our devices at home or at work
where WiFi is available. Not to mention that ADSL connection
providers make users pay fixed prices for unlimited bandwidth.
So, exploiting WiFi networking to keep clones up-to-date is
more likely to come for free in both terms of costs (no cellular
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data traffic is used) and energy (the device has more chances
to be charging).

Figure 1 shows that the overall WiFi connection time per
day is high, around 45% of the time. However, it is important
to see how this period of time is distributed over the day. This
is an important question to address. Indeed, as long as the
device is under WiFi coverage, keeping off-clones and back-
clones updated is cheap and therefore users might configure
the system in such a way to use WiFi only to sync. So, we
are interested in checking whether it is frequent that users are
without WiFi connection for long period of times. A technical
way to check this property is to compute the distribution of
the intervals between the end of a period of WiFi coverage
and the start of the next period of WiFi coverage. We refer
to this time as the WiFi inter-contact time. The results of our
experiments to this respect are shown in Figure 2(b).

From Figure 2(b) we can see that 20% of the WiFi inter-
contact times are lower than 20 min, 40% are lower than 30
min, 50% are lower than 2h. Just 35% of them are higher than
1 day. Considering that among the participants there are also
people that do not use WiFi at all, this result is excellent—50%
of WiFi inter-contact times are as low as 2h and that means
that 50% of the times users can rely on WiFi connection to
sync their device’s clones as frequently as every 2 hours or
more. And, as we already discussed, this makes users save
their cellular data traffic, and, possibly, save battery (if during
the WiFi connectivity they are charging their device at home
or at work.).

C. Overhead of Mobile Cloud Computing

To keep off-clones and back-clones up-to-date devices need
to recurrently access the network interfaces to send the latest
user-generated data and app statuses to the respective clones.
Clearly, the more often the device syncs with the clone, the
better the clones represent the status of the device. Though,
frequent syncs incur higher bandwidth and energy overhead
to the real device. The overhead depends on the network
technology involved in the device-cloud communication (WiFi
vs 2G/3G), as well as on how the device is used—for example,
the more pictures a user takes with her device’s camera the
more data have to be transferred to the user’s back-clone.
The user should be able to tradeoff this overhead with the

synchronization level of the clone of her device, and decide
the rate of synchronization that better suits her needs.

Off-clone synchronization requires information on the user
apps. For a given app this information includes the app’s
state, its internal private files, its settings specified by the user,
and so on. Back-clone synchronization requires informations
on the apps that are installed in the device and user’s data
(contacts, calendars, pictures, music, notes, emails, SMS etc.).
As we already anticipated in Section III, the Logger computes,
at the end of specific time-intervals that correspond to sync
frequencies, the amount of data that the device should send
to the cloud in order to update each clone type. In particular
we recall that, when a file is modified, we use the efficient
rolling hash technique to compute the difference between the
new and the old version of the file. The sync intervals that
we have considered are 5 min, 30 min, 1h, 2h, 6h, 12h, and
24h. To keep it as real as possible, the Logger computes the
amount of data to be sent at the end of each interval only if
either 2G/3G or WiFi connectivity is available.

1) Network bandwidth overhead: In Figures 3(a) and 3(b)
we plot, for both clone types, the quartiles of the distribution
of the average (per user) daily traffic needed to be sent to the
cloud in dependence of the sync frequency in order to keep
off-clone and back-clone updated. The first simple observation
that we make is that the traffic overhead incurred by the
synchronization decreases as the sync interval increases. This
phenomenon is straightforward—while the device is running
there is a large number of files/directories generated and
then destroyed in the system (temporary files). Typically, this
happens more frequently with system or app private files rather
than with user generated files. Indeed, the results in Figure 5,
that show the complementary cumulative distribution of the
file lifetime for both clone types in the device, confirm this
intuition—more than 90% of off-clone files last less than 1s,
while more than 90% of back-clone files last longer than
5 days. If the device-cloud synchronization interval is long,
most of the temporary files generated during the interval do
not last till its end—when the file diffs are computed. On
the contrary, if the sync interval is short, it is more likely
that temporary files are still “alive” at the end of the interval,
so are involved in the file diffs. This is what boosts up the
overhead traffic incurred by small synchronization intervals
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Fig. 3. Bandwidth overhead for clone synchronization in dependence of the
sync frequency. The graphics include the minimum and maximum speed value
as well as the 25th, 50th and 75th percentile.
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Fig. 4. Average (per user) data traffic sent/received per day.

even in the presence of a smart incremental backup system
like the one we implemented. As this is more likely to happen
with system/app private files, the difference between the
overhead traffic generated by the synchronization for different
sync interval lengths is smaller for back-clones—these clones
involve more user-generated data (like sent/received emails,
texts, calls, and so on) which is rarely deleted by the user.
Another important observation is that, for small sync intervals,
the back-clones incur much less overhead (around 4 times less)
than the off-clones. Again, this is due to the fact that the user
generates data with much less frequency with respect to the
system, and typically do not delete their data. The overhead
difference between the two types of clones is attenuated when
the interval of syncs increases (see Figures 3(a) and 3(b)).

Lastly, for both types of clones, the bandwidth overhead
incurred is not excessive, if we compare it to the data traffic
normally generated by the user’s device to receive/send mail,
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 0.01

 0.1

 1

1s 1m 30m 1d 7d

P(
t >

 T
)

Time
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Fig. 5. Distribution of file lifetime relative to off-clones and back-clones.

access Facebook/Twitter accounts etc. For the sake of compar-
ison we have plotted, in Figure 4, the quartiles of the average
traffic generated normally by the users per day.

2) Energy overhead: To measure the energy overhead in-
curred by the sync of back-clones and off-clones we make use
the Mobile Device Power Monitor, an external power meter
widely used to validate offloading frameworks esteems [3],
[16], [15]. The device samples the smartphone’s battery with
high frequency (5000 Hz) so to yield accurate results on the
battery’s power, current, and voltage. Clearly, we could not
do the measurement when the devices were with the users.
So, at the end of the experiment, we gathered the devices
and re-simulated the device-cloud communication for each
smartphone with the device connected to the Power Monitor.
The simulation included re-computation of the amount of
data to be sent to the clones at the end of the time-interval
considered, as well as the data sending process. The clones
involved are customized Amazon AMIs (Amazon Machine
Image) of the Android-x86 OS and run on the Amazon EC2
platform.

The simulation is run 20 times for every device: 10 times
using WiFi connectivity and the other 10 times using 3G
connectivity. Figures 6(a) and 6(b) show the trend of the
energy overhead in the case of WiFi connectivity for both off-
clones and back-clones in dependence of the sync frequency.
Similarly, Figures 6(c) and 6(d) show the trend of the energy
overhead in dependence of the sync frequency in case of
3G connectivity. There are several considerations to be made.
First, let us consider WiFi sync compared to 3G sync of the
same clone type. See, for example, Figure 6(a) and Figure 6(c)
that depict the results for the off-clones. When the same
clone type is considered, the energy overhead difference is
determined by the communication technology used. Indeed,
the energy dissipated to compute the file diffs is the same,
being that we are comparing the same clone types among
them. However, the energy consumed in computing the rolling
hashes of the files dominates the energy required to actually
send the diffs. As a result, the overall energy overhead of the
sync through WiFi is slightly lower than the overhead of the
sync done through 3G. The difference is of the order of tens
of Joule.

Now, let us focus on one communication technology, say,
WiFi, and compare the energy overhead to sync off-clones
(Figure 6(a)) with the energy overhead to sync back-clones
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Fig. 6. Energy overhead for clone synchronization through WiFi (a and b) and through 3G (c and d) in dependence of the sync frequency. The graphics
include the minimum and maximum speed value as well as the 25th, 50th and 75th percentiles.

(Figure 6(b)). It is worth noting that, although off-clones incur
higher energy costs than back-clones, the difference in energy
requirement is much more attenuated than the difference in
traffic overhead. This is so for the following reason: As shown
in Figure 5, off-clones generate many small temporary files
(the system files). On the other hand, the files generated by
the back-clones are user-generated files. Typically, these are
bigger, are generated with a lower frequency, and last longer.
So, the computation load of the file diffs is somehow balanced
in the two cases—For the off-clones the rolling hashes are
computed very frequently times on small files; for the back-
clones, the rolling hashes are computed much less frequently
on bigger files. The energy for this computation dominates
the energy required to send the file diffs. So, even though
back-clones generate 4 times less traffic overhead than off-
clones, the difference of the overall energy spent to compute
the diffs and to send them to the cloud for both clone types

is attenuated. The same observation holds for the case when
3G technology is used in the device-clone communication.

That said, it is worth noting that mobile cloud computing
does not impact much the life of the battery. The smartphones
we used in our testbed are powered by Lithium–Ion batteries
(1650 mAh, 3.7 V). These batteries, if fully charged contain
21.9 KJoule of energy. According to our experiments, syn-
chronizing off-clones (back-clones) every 5 minutes, incurs,
at max, around 11.8 KJoule (8 KJoule) of energy overhead
per day (see Figure 6). This means that the sync cost is about
53% (36%) of the battery. These values certainly correspond
to an extreme scenario—keeping the clone updated every 5
min certainly has its cost. As soon as lower synchronization
frequencies are considered these values are drastically reduced.
For 30 min (2h) sync intervals the synchronization cost drops
to around 11% (2.7%) of the battery for the off-clone and
around 8% (2.3%) of the battery for the back-clone.
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Lastly, the differences in terms of energy overhead between
off-clones and back-clones (being it WiFi or 3G) are attenuated
with the increasing of the synchronization interval. In addition,
large synchronization intervals yield much lower energy over-
head than short ones.

V. LESSON LEARNED AND CONCLUSIONS

In this work we have described our experience with a
testbed of real users of smartphones and a mobile cloud
system of smartphone software clones in the cloud. The goal
of the experiment is to understand the feasibility of mobile
cloud systems in a real setting—a setting consisting of people
(participants in the experiment) using the smartphone as their
primary device during their normal life. In the experiment, the
participants made use of their mobiles just as usual for three
weeks. Here are some of the key observation we made during
this experience:

• Most of the users are virtually always under coverage of
some wireless technology. In particular, almost 50% of
the time smartphone users are connected to a WiFi access
point. Indeed, this is often the case at home and at work
(recall that these numbers are computed as the average
of all the participants);

• in more than 50% of the cases, users lose WiFi coverage
for just for 2 hours at most. This is probably due to
commuting between places with WiFi, like work and
home. For a systems point of view, it means that sync
operations can optimistically wait until the device is
connected to a WiFi access points, and that most probably
this is going to happen in a short period of time.

• Synchronizing back-clones (for backup purposes) re-
quires less network traffic (down to 4 times less) and
less energy overhead (around to 3 KJoule less) than
synchronizing off-clones (that handle mobile computation
offload).

• The difference in overhead incurred by the synchroniza-
tion of the two clone types decreases drastically as the
sync frequency decreases; reasonable sync frequencies
like 30 min have a reasonable cost in term of energy spent
on the device to keep off-clones and back-clones updated
(11% of the battery for the off-clones and 8% for the
back-clones sync). Recall that by paying this overhead,
the user either has a very efficient backup system or
can efficiently offload computation on the fly. This latter
service has the potential, depending on the application,
to reduce energy consumption by a factor that is much
higher than the cost we computed in this experiment.

• Finally, WiFi technology incurs lower overhead with
respect to 3G. However, the overall energy overhead,
which depends also on the workload before the device-
cloud communication, is almost the same with both
communication technologies.

Our work supports the conclusion that mobile cloud com-
puting can be sustained by continuous update of software
clones in the cloud with a reasonable overhead in terms of

bandwidth and energy costs, especially if the sync intervals
are not too short.
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