Clique is hard on average for regular resolution

Ilario Bonacina, UPC Barcelona Tech
July 20, 2018
RaTLoCC, Bertinoro

How hard is to certify that a graph is Ramsey?

Ilario Bonacina, UPC Barcelona Tech
July 20, 2018
RaTLoCC, Bertinoro

Talk based on a joint work with:

A. Atserias

S. de Rezende

M. Lauria

J. Nordström

A. Razborov

How hard is to certify that a graph is Ramsey?

A graph G with n vertices we say that is k-Ramsey if it has no set of k vertices forming a clique or an independent set.
If $k=\left\lceil 2 \log _{2} n\right\rceil$ we just say that G is Ramsey.

How hard is to certify that a graph is Ramsey?

A graph G with n vertices we say that is k-Ramsey if it has no set of k vertices forming a clique or an independent set.
If $k=\left\lceil 2 \log _{2} n\right\rceil$ we just say that G is Ramsey.

Erdős-Rényi random graphs

A graph $G=(V, E) \sim \mathcal{G}(n, p)$ is such that $|V|=n$ and each edge $\{u, v\} \in E$ independently with prob. $p \in[0,1]$

How hard is to certify that a graph is Ramsey?

A graph G with n vertices we say that is k-Ramsey if it has no set of k vertices forming a clique or an independent set.
If $k=\left\lceil 2 \log _{2} n\right\rceil$ we just say that G is Ramsey.

Erdős-Rényi random graphs

A graph $G=(V, E) \sim \mathcal{G}(n, p)$ is such that $|V|=n$ and each edge $\{u, v\} \in E$ independently with prob. $p \in[0,1]$

- if $p \ll n^{-2 /(k-1)}$ then a.a.s. $G \sim \mathcal{G}(n, p)$ has no k-cliques
- A.a.s. $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ is Ramsey

How hard is to certify that a graph is Ramsey?

Construct a propositional formula $\Psi_{G, k}$ unsatisfiable if and only if " G is k-Ramsey"

How hard is to certify that a graph is Ramsey?

Construct a propositional formula $\Psi_{G, k}$ unsatisfiable if and only if " G is k-Ramsey"
$x_{v, j} \equiv " v$ is the j-th vertex of a k-clique in G
or the j-th vertex of a k-indpendent set".

How hard is to certify that a graph is Ramsey?

Construct a propositional formula $\Psi_{G, k}$ unsatisfiable if and only if " G is k-Ramsey"
$x_{v, j} \equiv$ " v is the j-th vertex of a k-clique in G
or the j-th vertex of a k-indpendent set".

$$
\begin{gathered}
\bigvee_{v \in V} x_{v, i} \quad \text { for } i \in[k] \\
\text { and } \\
y \vee \neg x_{u, i} \vee \neg x_{v, j} \text { for } i \neq j \in[k], u \neq v \in V,(u, v) \notin E \\
\text { and } \\
\neg y \vee \neg x_{u, i} \vee \neg x_{v, j} \quad \text { for } i \neq j \in[k], u \neq v \in V,(u, v) \in E
\end{gathered}
$$

How hard is to certify that a graph is Ramsey?

Resolution

$$
\neg y \vee \neg z
$$

$y \vee \neg c$

$$
x \vee c
$$

$\neg y$

How hard is to certify that a graph is Ramsey?

Resolution

$$
\neg y \vee \neg z
$$

$\neg x \vee z$
(7y)

How hard is to certify that a graph is Ramsey?

Resolution

$7 y$

How hard is to certify that a graph is Ramsey?

Resolution

How hard is to certify that a graph is Ramsey?

Resolution

How hard is to certify that a graph is Ramsey?

Resolution

How hard is to certify that a graph is Ramsey?

Resolution

How hard is to certify that a graph is Ramsey?

Resolution

Tree-like $=$ the proof DAG is a tree
Regular $=$ no variable resolved twice in any source-to-sink path
Size $=\#$ of nodes in the proof DAG

Regular?

Regular? No.

Regular? No. And none of the shortest proofs is regular [HY87].
[HY87] Huang and Yu, 1987. A DNF without regular shortest consensus path.

What is Resolution good for?

- algorithms routinely used to solve NP-complete problems (hardware verification, ...) are somewhat formalizable in resolution
- the state-of-the-art algorithms to solve k-clique (Bron-Kerbosch, Östergård, Russian dolls algorithms, ...) are formalizable in regular resolution

What is Resolution good for?

- algorithms routinely used to solve NP-complete problems (hardware verification, ...) are somewhat formalizable in resolution
- the state-of-the-art algorithms to solve k-clique (Bron-Kerbosch, Östergård, Russian dolls algorithms, ...) are formalizable in regular resolution
[HKM16] All possible 2-colorings of $\{1, \ldots, 7825\}$ have a monochromatic Pythagorean triple.
[HKM16] M. Heule, O. Kullmann and V. Marek, 2016. Solving and Verifying the Boolean Pythagorean Triples problem via Cube-and-Conquer

What is Resolution good for?

- algorithms routinely used to solve NP-complete problems (hardware verification, ...) are somewhat formalizable in resolution
- the state-of-the-art algorithms to solve k-clique
(Bron-Kerbosch, Östergård, Russian dolls algorithms, ...) are formalizable in regular resolution
[HKM16] All possible 2-colorings of $\{1, \ldots, 7825\}$ have a monochromatic Pythagorean triple.
This slide is too small to contain the 200Terabyte resolution proof...
[HKM16] M. Heule, O. Kullmann and V. Marek, 2016. Solving and Verifying the Boolean Pythagorean Triples problem via Cube-and-Conquer

Resolution size

Let ϕ be an conjunction of clauses in N variables with $|\phi|=N^{\mathcal{O}(1)}$
$S(\phi)=$ minimum size of a resolution refutation of ϕ
$S_{\text {tree }}(\phi)=$ minimum size of a tree-like resolution refutation of ϕ
$S_{\text {reg }}(\phi)=$ minimum size of a regular resolution refutation of ϕ

Resolution size

Let ϕ be an conjunction of clauses in N variables with $|\phi|=N^{\mathcal{O}(1)}$
$S(\phi)=$ minimum size of a resolution refutation of ϕ
$S_{\text {tree }}(\phi)=$ minimum size of a tree-like resolution refutation of ϕ
$S_{\text {reg }}(\phi)=$ minimum size of a regular resolution refutation of ϕ

- for every $\phi, S(\phi) \leqslant S_{\text {reg }}(\phi) \leqslant S_{\text {tree }}(\phi)$
(and there are examples of exponential separations)
- for every $\phi, S_{\text {tree }}(\phi)=2^{\mathcal{O}(N)}$

How hard is to certify that a graph is Ramsey?

Theorem? (folklore)
$\Psi_{G, k}$, whenever unsatisfiable, has $S_{\text {tree }}\left(\Psi_{G, k}\right)=n^{\mathcal{O}(k)}$

How hard is to certify that a graph is Ramsey?

Theorem? (folklore)

$\Psi_{G, k}$, whenever unsatisfiable, has $S_{\text {tree }}\left(\Psi_{G, k}\right)=n^{\mathcal{O}(k)}$

Theorem [LPRT17]

If G is a Ramsey graph in n vertices and $k=\lceil 2 \log n\rceil$ then $S_{\text {tree }}\left(\Psi_{G, k}\right)=n^{\Omega(\log n)}$.
[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

How hard is to certify that a graph is Ramsey?

Theorem? (folklore)

$\Psi_{G, k}$, whenever unsatisfiable, has $S_{\text {tree }}\left(\Psi_{G, k}\right)=n^{\mathcal{O}(k)}$

Theorem [LPRT17]

If G is a Ramsey graph in n vertices and $k=\lceil 2 \log n\rceil$ then $S_{\text {tree }}\left(\Psi_{G, k}\right)=n^{\Omega(\log n)}$.

Theorem

If $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ (hence in particular a.a.s. G is Ramsey) and $k=\lceil 2 \log n\rceil$ then $S_{r e g}\left(\Psi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(\log n)}$.
[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

How hard is to certify that a graph is Ramsey?

Theorem? (folklore)

$\Psi_{G, k}$, whenever unsatisfiable, has $S_{\text {tree }}\left(\Psi_{G, k}\right)=n^{\mathcal{O}(k)}$

Theorem [LPRT17]

If G is a Ramsey graph in n vertices and $k=\lceil 2 \log n\rceil$ then $S_{\text {tree }}\left(\Psi_{G, k}\right)=n^{\Omega(\log n)}$.

Theorem

If $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ (hence in particular a.a.s. G is Ramsey) and $k=\lceil 2 \log n\rceil$ then $S_{r e g}\left(\Psi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(\log n)}$.

Open Problem

Let G be a Ramsey graph in n vertices and let $k=\lceil 2 \log n\rceil$. Is it true that $S\left(\Psi_{G, k}\right)=n^{\Omega(\log n)}$?
[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

How hard is to certify that a graph does not contain a k-clique?

Construct a propositional formula $\Phi_{G, k}$ unsatisfiable if and only if " G does not contain a k-clique"
We already have it: $\Phi_{G, k}=\left.\Psi_{G, k}\right|_{y=0}$

How hard is to certify that a graph does not contain a k-clique?

Construct a propositional formula $\Phi_{G, k}$ unsatisfiable if and only if " G does not contain a k-clique"
We already have it: $\Phi_{G, k}=\left.\Psi_{G, k}\right|_{y=0}$
$x_{v, j} \equiv$ " v is the j-th vertex of a k-clique in G ".

How hard is to certify that a graph does not contain a k-clique?

Construct a propositional formula $\Phi_{G, k}$ unsatisfiable if and only if " G does not contain a k-clique"
We already have it: $\Phi_{G, k}=\left.\Psi_{G, k}\right|_{y=0}$
$x_{v, j} \equiv$ " v is the j-th vertex of a k-clique in G ".

$$
\begin{aligned}
& \qquad \bigvee_{v \in V} x_{V, i} \quad \text { for } i \in[k] \\
& \quad \text { and } \\
& \neg x_{u, i} \vee \neg x_{v, j} \quad \text { for } i \neq j \in[k], u \neq v \in V,(u, v) \notin E
\end{aligned}
$$

How hard is to certify that a graph does not contain a k-clique?

Construct a propositional formula $\Phi_{G, k}$ unsatisfiable if and only if " G does not contain a k-clique"
We already have it: $\Phi_{G, k}=\left.\Psi_{G, k}\right|_{y=0}$
$x_{v, j} \equiv$ " v is the j-th vertex of a k-clique in G ".

$$
\begin{aligned}
& \qquad \bigvee_{v \in V} x_{V, i} \quad \text { for } i \in[k] \\
& \quad \text { and } \\
& \neg x_{u, i} \vee \neg x_{v, j} \quad \text { for } i \neq j \in[k], u \neq v \in V, \quad(u, v) \notin E
\end{aligned}
$$

lower bounds on $S\left(\Phi_{G, k}\right)$ imply lower bounds on $S\left(\Psi_{G, k}\right)$

Overview of the literature: Upper Bounds

[\sim BGL13] if G is $(k-1)$-colorable then

$$
S_{\text {reg }}\left(\Phi_{G, k}\right) \leqslant 2^{k} k^{2} n^{2}
$$

[folklore] $\Phi_{G, k}$, whenever unsatisfiable, has

$$
S_{\text {tree }}\left(\Phi_{G, k}\right)=n^{\mathcal{O}(k)}
$$

[BGL13] Beyersdorff, Galesi and Lauria 2013. Parameterized complexity of DPLL search procedures.

Overview of the literature: Lower Bounds

[BGL13] If G is the complete $(k-1)$-partite graph, then $S_{\text {tree }}\left(\Phi_{G, k}\right)=n^{\Omega(k)}$.
The same holds for $G \sim \mathcal{G}(n, p)$ with suitable edge density p.
[BIS07] for $n^{5 / 6} \ll k<\frac{n}{3}$ and $G \sim \mathcal{G}(n, p)$ (with suitable edge density $p)$, then $S\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} 2^{n^{\Omega(1)}}$
[LPRT17] if we encode k-clique using some other propositional encodings (e.g. in binary) we get $n^{\Omega(k)}$ size lower bounds for resolution
[BIS07] Beame, Impagliazzo and Sabharwal, 2007. The resolution complexity of independent sets and vertex covers in random graphs.
[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that a graph is Ramsey.

Main Result (simplified versions)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p=n^{-4 /(k-1)}$ and let $k \leqslant n^{1 / 2-\epsilon}$ for some arbitrary small ϵ. Then, $S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(k)}$.

Main Result (simplified versions)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p=n^{-4 /(k-1)}$ and let $k \leqslant n^{1 / 2-\epsilon}$ for some arbitrary small ϵ. Then, $S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(k)}$.
the actual lower bound decreases smoothly w.r.t. p

Main Result (simplified versions)

Main Theorem (version 1)

Let $G \sim \mathcal{G}(n, p)$ be an Erdős-Rényi random graph with, for simplicity, $p=n^{-4 /(k-1)}$ and let $k \leqslant n^{1 / 2-\epsilon}$ for some arbitrary small ϵ. Then, $S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(k)}$.
the actual lower bound decreases smoothly w.r.t. p
Main Theorem (version 2)
Let $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$, then

$$
S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(\log n)} \text { for } k=\mathcal{O}(\log n)
$$

and

$$
S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\omega(1)} \text { for } k=o\left(\log ^{2} n\right)
$$

Rest of the talk

Focus on proving the following.
Theorem
Let $k=\lceil 2 \log n\rceil$ and $G \sim \mathcal{G}\left(n, \frac{1}{2}\right)$, then $S_{r e g}\left(\Phi_{G, k}\right) \stackrel{\text { a.a.s. }}{=} n^{\Omega(\log n)}$
$\widehat{N}_{W}(R)$ is the set of common neighbors of R in W
$\widehat{N}_{W}(R)$ is the set of common neighbors of R in W
W is (r, q)-dense if for every subset $R \subseteq V$ of size $\leqslant r$, it holds $\left|\widehat{N}_{W}(R)\right| \geqslant q$
$\widehat{N}_{W}(R)$ is the set of common neighbors of R in W
W is (r, q)-dense if for every subset $R \subseteq V$ of size $\leqslant r$, it holds $\left|\widehat{N}_{W}(R)\right| \geqslant q$

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ satisfies the following:
$(\star) V$ is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
(**) For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.
$\widehat{N}_{W}(R)$ is the set of common neighbors of R in W
W is (r, q)-dense if for every subset $R \subseteq V$ of size $\leqslant r$, it holds $\left|\widehat{N}_{W}(R)\right| \geqslant q$

Theorem 1

Let $k=\lceil 2 \log n\rceil$. A.a.s. $G=(V, E) \sim \mathcal{G}\left(n, \frac{1}{2}\right)$ satisfies the following:
$(\star) V$ is $\left(\frac{k}{50}, \Theta\left(n^{0.9}\right)\right)$-dense; and
($\star \star$) For every $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense $W \subseteq V$ there exists $S \subseteq V$,
$|S| \leqslant \sqrt{n}$ s.t. for every $R \subseteq V$, with $|R| \leqslant \frac{k}{50}$ and
$\left|\widehat{N}_{W}(R)\right|<\widetilde{\Theta}\left(n^{0.6}\right)$ it holds that $|R \cap S| \geqslant \frac{k}{10000}$.

Theorem 2

Let $k=\lceil 2 \log n\rceil$. For every G satisfying properties (\star) and $(\star \star)$, $S_{\text {reg }}\left(\Phi_{G, k}\right)=n^{\Omega(\log n)}$

Regular resolution \equiv Read-Once Branching Programs

Regular resolution \equiv Read-Once Branching Programs

Haken bottleneck counting idea

Haken bottleneck counting idea

"Lemma 1"
Every random path $\gamma \sim \mathcal{D}$ in the ROBP passes through a bottleneck node.

Haken bottleneck counting idea

"Lemma 1"

Every random path $\gamma \sim \mathcal{D}$ in the ROBP passes through a bottleneck node.
"Lemma 2"
Given any bottleneck node b in the ROBP,

$$
\operatorname{Pr}_{\gamma \sim \mathcal{D}}[b \in \gamma] \leqslant n^{-\Theta(k)}
$$

Haken bottleneck counting idea

"Lemma 1"

Every random path $\gamma \sim \mathcal{D}$ in the ROBP passes through a bottleneck node.
"Lemma 2"
Given any bottleneck node b in the ROBP,

$$
\operatorname{Pr}_{\gamma \sim \mathcal{D}}[b \in \gamma] \leqslant n^{-\Theta(k)}
$$

Then, it is trivial to conclude:

$$
\begin{aligned}
1 & =\underset{\gamma \sim \mathcal{D}}{\operatorname{Pr}}[\exists b \in R O B P b \text { bottleneck and } b \in \gamma] \\
& \leqslant|R O B P| \cdot \max _{\begin{array}{c}
b \text { bottleneck } \\
\text { in the ROBP }
\end{array}}^{\gamma \sim \mathcal{D}} \operatorname{Pr}[b \in \gamma] \\
& \leqslant|R O B P| \cdot n^{-\Theta(k)}
\end{aligned}
$$

The real bottleneck counting

$\beta(c)=\max ($ partial $)$ assignment contained in all paths from the source to c
$\beta(c)=\max ($ partial $)$ assignment contained in all paths from the source to c
$j \in[k]$ is forgotten at c if no sink reachable from c has label $\bigvee_{v \in V} x_{v, j}$
$\beta(c)=\max ($ partial $)$ assignment contained in all paths from the source to c
$j \in[k]$ is forgotten at c if no sink reachable from c has label $\bigvee_{v \in V} x_{v, j}$

The random path γ

- if j forgotten at c or
$\beta(c) \cup\left\{x_{v, j}=1\right\}$ falsifies a short clause of $\Phi_{G, k}$
then continue with $x_{v, j}=0$
- otherwise toss a coin and with prob. $\Theta\left(n^{-0.6}\right)$ continue with $x_{v, j}=1$

$$
V_{j}^{0}(a)=\left\{v \in V: \beta(a)\left(x_{v, j}\right)=0\right\}
$$

$V_{j}^{0}(a)=\left\{v \in V: \beta(a)\left(x_{v, j}\right)=0\right\}$
Lemma 1
For every random path γ, there exists two nodes a, b in the ROBP s.t.
$V_{j}^{0}(a)=\left\{v \in V: \beta(a)\left(x_{v, j}\right)=0\right\}$
Lemma 1
For every random path γ, there exists two nodes a, b in the ROBP s.t.

1. γ touches a, sets $\leqslant\left\lceil\frac{k}{200}\right\rceil$ variables to 1 and then touches b;
$V_{j}^{0}(a)=\left\{v \in V: \beta(a)\left(x_{v, j}\right)=0\right\}$
Lemma 1
For every random path γ, there exists two nodes a, b in the ROBP s.t.
2. γ touches a, sets $\leqslant\left\lceil\frac{k}{200}\right\rceil$ variables to 1 and then touches b;
3. there exists a $j^{*} \in[k]$ not-forgotten at b and such that $V_{j^{*}}^{0}(b) \backslash V_{j^{*}}^{0}(a)$ is $\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right)$-dense.
$V_{j}^{0}(a)=\left\{v \in V: \beta(a)\left(x_{v, j}\right)=0\right\}$

Lemma 1

For every random path γ, there exists two nodes a, b in the ROBP s.t.

1. γ touches a, sets $\leqslant\left\lceil\frac{k}{200}\right\rceil$ variables to 1 and then touches b;
2. there exists a $j^{*} \in[k]$ not-forgotten at b and such that

$$
V_{j^{*}}^{0}(b) \backslash V_{j^{*}}^{0}(a) \text { is }\left(\frac{k}{10000}, \Theta\left(n^{0.9}\right)\right) \text {-dense. }
$$

Lemma 2
For every pair of nodes (a, b) in the ROBP satisfying point (2) of Lemma 1,
$\underset{\gamma}{\operatorname{Pr}}\left[\gamma\right.$ touches a, sets $\leqslant\left\lceil\frac{k}{200}\right\rceil$ vars to 1 and then touches $\left.b\right] \leqslant n^{-\Theta(k)}$

Proof sketch of Lemma 2

Let $E=" \gamma$ touches a, sets $\leqslant\lceil k / 200\rceil$ vars to 1 and then touches $b "$ and let $W=V_{j^{*}}^{0}(b) \backslash V_{j^{*}}^{0}(a)$

Proof sketch of Lemma 2

Let $E=" \gamma$ touches a, sets $\leqslant\lceil k / 200\rceil$ vars to 1 and then touches $b "$ and let $W=V_{j^{*}}^{0}(b) \backslash V_{j^{*}}^{0}(a)$
Case 1: $V^{1}(a)=\left\{v \in V: \exists i \in[k] \beta(a)\left(x_{v, i}\right)=1\right\}$ has large size $(\geqslant k / 20000)$. Then $\operatorname{Pr}[E] \leqslant n^{-\Theta(k)}$ because of the prob. of 1 s in the random path γ and a Markov chain argument.

Proof sketch of Lemma 2

Let $E=" \gamma$ touches a, sets $\leqslant\lceil k / 200\rceil$ vars to 1 and then touches $b "$ and let $W=V_{j^{*}}^{0}(b) \backslash V_{j^{*}}^{0}(a)$
Case 1: $V^{1}(a)=\left\{v \in V: \exists i \in[k] \beta(a)\left(x_{v, i}\right)=1\right\}$ has large size $(\geqslant k / 20000)$. Then $\operatorname{Pr}[E] \leqslant n^{-\Theta(k)}$ because of the prob. of 1 s in the random path γ and a Markov chain argument.
Case 2.1: $V^{1}(a)$ is not large but many $\left(\geqslant \widetilde{\Theta}\left(n^{0.6}\right)\right)$ vertices in W are set to 0 by coin tosses.
So $\operatorname{Pr}[E \wedge W$ has many coin tosses $] \leqslant n^{-\Theta(k)}$ again by a Markov chain argument as in Case 1.

Proof sketch of Lemma 2

Let $E=$ " γ touches a, sets $\leqslant\lceil k / 200\rceil$ vars to 1 and then touches $b "$ and let $W=V_{j^{*}}^{0}(b) \backslash V_{j^{*}}^{0}(a)$
Case 1: $V^{1}(a)=\left\{v \in V: \exists i \in[k] \beta(a)\left(x_{v, i}\right)=1\right\}$ has large size $(\geqslant k / 20000)$. Then $\operatorname{Pr}[E] \leqslant n^{-\Theta(k)}$ because of the prob. of 1 s in the random path γ and a Markov chain argument.
Case 2.1: $V^{1}(a)$ is not large but many $\left(\geqslant \widetilde{\Theta}\left(n^{0.6}\right)\right)$ vertices in W are set to 0 by coin tosses.
So $\operatorname{Pr}[E \wedge W$ has many coin tosses $] \leqslant n^{-\Theta(k)}$ again by a Markov chain argument as in Case 1.
Case 2.2: $V^{1}(a)$ is not large and not many vertices in W are set to 0 by coin tosses. Then many of the 1 s set by the random path γ between a and b must belong to a set of size at most \sqrt{n}, by the new combinatorial property ($\star \star$).
So $\operatorname{Pr}[E \wedge W$ has not many coin tosses $] \leqslant n^{-\Theta(k)}$.

Conclusions

Open Problem: How hard is to prove that a graph is Ramsey? Let G be a Ramsey graph in n vertices and let $k=\lceil 2 \log n\rceil$. Is it true that $S\left(\Psi_{G, k}\right)=n^{\Omega(\log n)}$?
([LPRT17] proved this but for a binary encoding of " G is Ramsey")

Thanks!

full paper
bonacina@cs.upc.edu

