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How hard is to certify that a graph is ?

A graph G with n vertices we say that is k-Ramsey if it has no set
of k vertices forming a clique or an independent set.
If k = [2log, n] we just say that G is Ramsey.

Erd6s-Rényi random graphs
A graph G = (V,E) ~ G(n, p) is such that |V| = n and each edge
{u, v} € E independently with prob. p € [0,1]

o if p< n?/(k=1) then a.as. G ~ G(n, p) has no k-cliques
e Aas. G ~G(n,3) is Ramsey
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How hard is to certify that ?

Construct a propositional formula W  unsatisfiable if and only if
“G is k-Ramsey”

Xy j = "v is the j-th vertex of a k-clique in G
or the j-th vertex of a k-indpendent set”.

\/ Xy i for i € [K]
veVv

and

yVoxyiVoxy fori#jelkl,u#veV, (uv)¢E
and

Ay Vooxyi VX fori£jelkl,u#veV, (uv)eE
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How hard is that a graph is Ramsey?

Resolution clausey V var clause, V —var

NS
clausey V clausey

XV -z ——> Z

TN

xVy 1

yVZ —m8 > 7

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG 4
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c
\
xVyVz xVy X

(ﬂc\/x\/y) (xVy\/—\z) (x\/—\y)

Regular? No. And none of the shortest proofs is regular [HY87].

[HY87] Huang and Yu, 1987. A DNF without regular shortest consensus
path.



What is Resolution good for?

e algorithms routinely used to solve NP-complete problems
(hardware verification, ...) are somewhat formalizable in
resolution

e the state-of-the-art algorithms to solve k-clique
(Bron-Kerbosch, OStergérd, Russian dolls algorithms, ...) are

formalizable in regular resolution


Ilario Bonacina



What is Resolution good for?

e algorithms routinely used to solve NP-complete problems
(hardware verification, ...) are somewhat formalizable in
resolution

e the state-of-the-art algorithms to solve k-clique
(Bron-Kerbosch, OStergérd, Russian dolls algorithms, ...) are
formalizable in regular resolution

[HKM16] All possible 2-colorings of {1,...,7825} have a
monochromatic Pythagorean triple.

[HKM16] M. Heule, O. Kullmann and V. Marek, 2016. Solving and
Verifying the Boolean Pythagorean Triples problem via Cube-and-Conquer



What is Resolution good for?

e algorithms routinely used to solve NP-complete problems
(hardware verification, ...) are somewhat formalizable in
resolution

e the state-of-the-art algorithms to solve k-clique
(Bron-Kerbosch, OStergérd, Russian dolls algorithms, ...) are

formalizable in regular resolution

[HKM16] All possible 2-colorings of {1,...,7825} have a
monochromatic Pythagorean triple.
This slide is too small to contain the 200Terabyte
resolution proof...

[HKM16] M. Heule, O. Kullmann and V. Marek, 2016. Solving and
Verifying the Boolean Pythagorean Triples problem via Cube-and-Conquer



Resolution size

Let ¢ be an conjunction of clauses in N variables with || = NO(1)

5(¢) = minimum size of a resolution refutation of ¢
Stree(®) = minimum size of a tree-like resolution refutation of ¢
Sreg () = minimum size of a regular resolution refutation of ¢



Resolution size

Let ¢ be an conjunction of clauses in N variables with || = NO(1)

5(¢) = minimum size of a resolution refutation of ¢
Stree(®) = minimum size of a tree-like resolution refutation of ¢
Sreg () = minimum size of a regular resolution refutation of ¢

o for every ¢, S(¢) < Sreg(9) < Stree(®)

(and there are examples of exponential separations)

o for every ¢, Stree(®) = 20(N)
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How is to certify that a graph is Ramsey?

Theorem? (folklore)
V¢ «, whenever unsatisfiable, has Stree(Wg k) = n
Theorem [LPRT17]

If G is a Ramsey graph in n vertices and k = [2log n]| then
Stree(wG,k) = nQ(Iog n)_

O(k)

Theorem

If G ~ G(n, %) (hence in particular a.a.s. G is Ramsey) and
k = [2log n] then Seg(W¢ k) °Z> nlogn),

Open Problem

Let G be a Ramsey graph in n vertices and let k = [2logn]. Is it
true that S(Wg x) = n®(loen)?

[LPRT17] Lauria, Pudldk, R&dl, and Thapen, 2017. The complexity of
proving that a graph is Ramsey.
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How hard is to certify that ?

Construct a propositional formula @ , unsatisfiable if and only if
“G does not contain a k-clique”

We already have it: ®¢x = Wg k[, -0

Xy j = "v is the j-th vertex of a k-clique in G".

\/ x.i  foriel[k]
veV

and
Xy,i V Xv,j for I#_/ S [k], u # v E V, (U, V) ¢ 5

lower bounds on S(®¢ ) imply lower bounds on S(V¢ «)



Overview of the literature: Upper Bounds

[~BGL13] if G is (k — 1)-colorable then
Sreg(PG k) < 2Kk?n?
[folklore] ®¢ x, whenever unsatisfiable, has
Stree(d)G,k) = n(’)(k)

[BGL13] Beyersdorff, Galesi and Lauria 2013. Parameterized complexity of
DPLL search procedures.
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Overview of the literature: Lower Bounds

[BGL13] If G is the complete (k — 1)-partite graph,
then Siree(Pc k) = (k).
The same holds for G ~ G(n, p) with suitable edge
density p.

[BISO7] for n°/® < k < g and G ~ G(n, p) (with suitable
edge density p), then S(d¢ x) =" gn)

[LPRT17] if we encode k-clique using some other propositional

encodings (e.g. in binary) we get n{k) size lower
bounds for resolution

[BIS07] Beame, Impagliazzo and Sabharwal, 2007. The resolution

complexity of independent sets and vertex covers in random graphs.
[LPRT17] Lauria, Pudldk, Rddl, and Thapen, 2017. The complexity of
proving that a graph is Ramsey.
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Main Result (simplified versions)

Main Theorem (version 1)
Let G ~ G(n, p) be an Erdés-Rényi random graph with, for
simplicity, p = n=*/(*=1) and let k < n'/2¢ for some arbitrary

small e. Then, Syeg(Pc k) 8L pfk),
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Main Result (simplified versions)

Main Theorem (version 1)

Let G ~ G(n, p) be an Erdés-Rényi random graph with, for
simplicity, p = n=*(=1) and let k < n'/2=¢ for some arbitrary
small e. Then, Syeg(Pc k) 8L pfk),

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2)
Let G ~ G(n, %) then

Sreg(P i) *= n18N) for k = O(log n)
and

Sreg(P k) °Z n*Q) for k = o(log? n).
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Rest of the talk

Focus on proving the following.

Theorem

a.s.

Let k = [2logn] and G ~ G(n, 1), then See(Pg k) *= nloen)

13



Ny (R) is the set of common neighbors of R in W
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Ny (R) is the set of common neighbors of R in W
W is (r, g)-dense if for every subset R C V of size < r, it holds

INw(R)| > q

Theorem 1

Let k = [2logn]. A.as. G = (V,E) ~ G(n, 3) satisfies the
following:

(*) Vis (g5, ©(n%?))-dense; and

(%) For every (10000,@( n%9))-dense W C V there exists S C V,

|S| < ﬁst for every R C V, with |R| < 0 and
|Nw(R)| < ©(n®®) it holds that [R N S| > oo
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Ny (R) is the set of common neighbors of R in W
W is (r, g)-dense if for every subset R C V of size < r, it holds

[Nw(R)| > q

Theorem 1
Let k = [2logn]. A.as. G = (V,E) ~ G(n, 3) satisfies the
following:

(*) Vis (g5, ©(n%?))-dense; and

(%) For every (10000,@( n%9))-dense W C V there exists S C V,

|S| < ﬁst for every R C V, with |R| < 0 and
|Nw(R)| < ©(n®®) it holds that [R N S| > oo

Theorem 2

Let k = [2log n|. For every G satisfying properties (x) and (xx),

Sreg(q)G,k) = nQ(Iog )

14
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Haken bottleneck counting idea

“Lemma 1”
Every random path v ~ D in the ROBP passes through a

bottleneck node.

“Lemma 2"
Given any bottleneck node b in the ROBP,

Prbenr] <n 9.
y~D

Then, it is trivial to conclude:

1= P%[Elb € ROBP b bottleneck and b € 7]
Y~

< |ROBP| - max Pr [b € 7]
b bottleneck ~y~D
in the ROBP

< |ROBP| - n= O 16



The real bottleneck counting




J(c) = max (partial) assignment contained in all paths from the
source to ¢
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J(c) = max (partial) assignment contained in all paths from the
source to ¢

J € [K] is forgotten at c if no sink reachable from ¢ has label
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J(c) = max (partial) assignment contained in all paths from the

source to ¢

J € [K] is forgotten at c if no sink reachable from ¢ has label

\/Ve 14 XV:j

The random path ~

e if j forgotten at c or
B(c) U{xyj = 1} falsifies a short clause of ¢ x
then continue with x, j = 0

e otherwise toss a coin and with prob. ©(n=9)

continue with x, j =1

17



Vi(a)={veV : B(a)(x,) =0}
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Vi(a)={veV : B(a)(x,) =0}

Lemma 1
For every random path ~, there exists two nodes a, b in the ROBP

s.t.
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\/J-O(a) ={veV : B(a)(x ) =0}

Lemma 1
For every random path ~, there exists two nodes a, b in the ROBP

s.t.

1. v touches a, sets < [ﬁ] variables to 1 and then touches b;
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\/J-O(a) ={veV : B(a)(x ) =0}

Lemma 1
For every random path ~, there exists two nodes a, b in the ROBP

s.t.
1. v touches a, sets < [ﬁ] variables to 1 and then touches b;

2. there exists a j* € [k] not-forgotten at b and such that
Vj(l(b) ~ \/ﬁ(a) is (15e90+ ©(n%9))-dense.
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Vi(a)={veV : B(a)(x,;) =0}
Lemma 1
For every random path ~, there exists two nodes a, b in the ROBP

s.t.
1. v touches a, sets < [ﬁ] variables to 1 and then touches b;

2. there exists a j* € [k] not-forgotten at b and such that
Vj(l(b) ~ \/ﬁ(a) is (15e90+ ©(n%9))-dense.

Lemma 2
For every pair of nodes (a, b) in the ROBP satisfying point (2) of

Lemma 1,
k -
Pr[v touches a, sets < 500 | vars to 1 and then touches b] < n

18



Proof sketch of Lemma 2

Let E="vy touches a, sets < [k/200] vars to 1 and then touches b"
and let W = Vj(l(b) ~ \/ﬁ(a)
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Let E="vy touches a, sets < [k/200] vars to 1 and then touches b"
and let W = Vj(l(b) ~ \/ﬁ(a)

Case 1: Vi(a)={v eV : Jie[k] B(a)(xv.;) = 1} has large size
(> k/20000). Then Pr[E] < n~®(k) because of the prob. of 1s in

the random path ~ and a Markov chain argument.
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Proof sketch of Lemma 2

Let E="vy touches a, sets < [k/200] vars to 1 and then touches b"
and let W = V2(b)\ V2(a)

Case 1: Vi(a)={v eV : Jie[k] B(a)(xv.;) = 1} has large size
(> k/20000). Then Pr[E] < n~®(k) because of the prob. of 1s in
the random path ~ and a Markov chain argument.

Case 2.1: V1(a) is not large but many (> ©(n%®)) vertices in W
are set to 0 by coin tosses.

So Pr[E A W has many coin tosses] < n~®(k) again by a Markov
chain argument as in Case 1.
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Proof sketch of Lemma 2

Let E="vy touches a, sets < [k/200] vars to 1 and then touches b"
and let W = V2(b)\ V2(a)

Case 1: Vi(a)={v eV : Jie[k] B(a)(xv.;) = 1} has large size
(> k/20000). Then Pr[E] < n~®(k) because of the prob. of 1s in
the random path ~ and a Markov chain argument.

Case 2.1: V1(a) is not large but many (> ©(n%®)) vertices in W
are set to 0 by coin tosses.

So Pr[E A W has many coin tosses] < n~®(k) again by a Markov
chain argument as in Case 1.

Case 2.2: V1(a) is not large and not many vertices in W are set
to 0 by coin tosses. Then many of the 1s set by the random path
~ between a and b must belong to a set of size at most 1/n, by the
new combinatorial property (xx).

So Pr[E A W has not many coin tosses] < n=©().

19



Conclusions

Open Problem: How hard is to prove that a graph is Ramsey?

Let G be a Ramsey graph in n vertices and let k = [2logn]. Is it
true that S(Wg ) = n®(loen)?

([LPRT17] proved this but for a binary encoding of “G is Ramsey")

Thanks!

full paper

bonacina@cs.upc.edu 20
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