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How hard is to certify that a graph is Ramsey?

A graph G with n vertices we say that is k-Ramsey if it has no set

of k vertices forming a clique or an independent set.

If k = d2 log2 ne we just say that G is Ramsey.

Erdős-Rényi random graphs

A graph G = (V ,E ) ⇠ G(n, p) is such that |V | = n and each edge

{u, v} 2 E independently with prob. p 2 [0, 1]

• if p ⌧ n
�2/(k�1)

then a.a.s. G ⇠ G(n, p) has no k-cliques

• A.a.s. G ⇠ G(n, 1
2
) is Ramsey
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How hard is to certify that a graph is Ramsey?

Construct a propositional formula  G ,k unsatisfiable if and only if

“G is k-Ramsey”

xv ,j ⌘ “v is the j-th vertex of a k-clique in G

or the j-th vertex of a k-indpendent set”.

_

v2V

xv ,i for i 2 [k]

and

y _ ¬xu,i _ ¬xv ,j for i 6= j 2 [k], u 6= v 2 V , (u, v) /2 E

and

¬y _ ¬xu,i _ ¬xv ,j for i 6= j 2 [k], u 6= v 2 V , (u, v) 2 E
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How hard is to certify that a graph is Ramsey?

Resolution

clause1 _ clause2

clause1 _ var clause2 _ ¬var

x _ c

¬x _ z ¬y

y _ ¬c

¬y _ ¬z ¬x

x _ c

¬x _ z ¬y

y _ ¬c

¬y _ ¬z ¬x

x _ y

y _ z z

x _ ¬z ¬z

?

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG

4
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?

x

¬x

x _ ¬y

x _ yx _ y _ z

x _ y _ ¬z¬c _ x _ y

c _ z

¬x _ ¬w

¬x _ w

¬x _ w _ ¬z

¬x _ w _ z

¬c _ ¬x _ w

¬a _ c

a _ z

¬b _ z

a _ b

x _ a _ b

¬x _ a _ b

Regular? No. And none of the shortest proofs is regular [HY87].

[HY87] Huang and Yu, 1987. A DNF without regular shortest consensus

path. 5
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What is Resolution good for?

• algorithms routinely used to solve NP-complete problems

(hardware verification, ...) are somewhat formalizable in

resolution

• the state-of-the-art algorithms to solve k-clique

(Bron-Kerbosch, Österg̊ard, Russian dolls algorithms, ...) are

formalizable in regular resolution

[HKM16] All possible 2-colorings of {1, . . . , 7825} have a

monochromatic Pythagorean triple.

This slide is too small to contain the 200Terabyte

resolution proof...

[HKM16] M. Heule, O. Kullmann and V. Marek, 2016. Solving and

Verifying the Boolean Pythagorean Triples problem via Cube-and-Conquer

6
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Resolution size

Let � be an conjunction of clauses in N variables with |�| = N
O(1)

S(�) = minimum size of a resolution refutation of �

Stree(�) = minimum size of a tree-like resolution refutation of �

Sreg (�) = minimum size of a regular resolution refutation of �

• for every �, S(�) 6 Sreg (�) 6 Stree(�)

(and there are examples of exponential separations)

• for every �, Stree(�) = 2
O(N)

7
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How hard is to certify that a graph is Ramsey?

Theorem? (folklore)

 G ,k , whenever unsatisfiable, has Stree( G ,k) = n
O(k)

Theorem [LPRT17]

If G is a Ramsey graph in n vertices and k = d2 log ne then

Stree( G ,k) = n
⌦(log n)

.

Theorem

If G ⇠ G(n, 1
2
) (hence in particular a.a.s. G is Ramsey) and

k = d2 log ne then Sreg ( G ,k)
a.a.s.
= n

⌦(log n)
.

Open Problem

Let G be a Ramsey graph in n vertices and let k = d2 log ne. Is it

true that S( G ,k) = n
⌦(log n)

?

[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of

proving that a graph is Ramsey. 8
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[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of

proving that a graph is Ramsey. 8



How hard is to certify that a graph is Ramsey?

Theorem? (folklore)

 G ,k , whenever unsatisfiable, has Stree( G ,k) = n
O(k)

Theorem [LPRT17]

If G is a Ramsey graph in n vertices and k = d2 log ne then

Stree( G ,k) = n
⌦(log n)

.

Theorem

If G ⇠ G(n, 1
2
) (hence in particular a.a.s. G is Ramsey) and

k = d2 log ne then Sreg ( G ,k)
a.a.s.
= n

⌦(log n)
.

Open Problem

Let G be a Ramsey graph in n vertices and let k = d2 log ne. Is it

true that S( G ,k) = n
⌦(log n)

?
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How hard is to certify that a graph does not contain a k-clique?

Construct a propositional formula �G ,k unsatisfiable if and only if

“G does not contain a k-clique”

We already have it: �G ,k =  G ,k�y=0

xv ,j ⌘ “v is the j-th vertex of a k-clique in G”.

_

v2V

xv ,i for i 2 [k]

and

¬xu,i _ ¬xv ,j for i 6= j 2 [k], u 6= v 2 V , (u, v) /2 E

lower bounds on S(�G ,k) imply lower bounds on S( G ,k)

9
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Overview of the literature: Upper Bounds

[⇠BGL13] if G is (k � 1)-colorable then

Sreg (�G ,k) 6 2
k
k
2
n
2

[folklore] �G ,k , whenever unsatisfiable, has

Stree(�G ,k) = n
O(k)

[BGL13] Beyersdor↵, Galesi and Lauria 2013. Parameterized complexity of

DPLL search procedures.
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Overview of the literature: Lower Bounds

[BGL13] If G is the complete (k � 1)-partite graph,

then Stree(�G ,k) = n
⌦(k)

.

The same holds for G ⇠ G(n, p) with suitable edge

density p.

[BIS07] for n
5/6

⌧ k < n
3
and G ⇠ G(n, p) (with suitable

edge density p), then S(�G ,k)
a.a.s.
= 2

n⌦(1)

[LPRT17] if we encode k-clique using some other propositional

encodings (e.g. in binary) we get n
⌦(k)

size lower

bounds for resolution

[BIS07] Beame, Impagliazzo and Sabharwal, 2007. The resolution

complexity of independent sets and vertex covers in random graphs.
[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of

proving that a graph is Ramsey.
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Main Result (simplified versions)

Main Theorem (version 1)

Let G ⇠ G(n, p) be an Erdős-Rényi random graph with, for

simplicity, p = n
�4/(k�1)

and let k 6 n
1/2�✏

for some arbitrary

small ✏. Then, Sreg (�G ,k)
a.a.s.
= n

⌦(k)
.

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2)

Let G ⇠ G(n, 1
2
), then

Sreg (�G ,k)
a.a.s.
= n

⌦(log n)
for k = O(log n)

and

Sreg (�G ,k)
a.a.s.
= n

!(1)
for k = o(log2 n).

12
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simplicity, p = n
�4/(k�1)

and let k 6 n
1/2�✏

for some arbitrary

small ✏. Then, Sreg (�G ,k)
a.a.s.
= n

⌦(k)
.

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2)

Let G ⇠ G(n, 1
2
), then

Sreg (�G ,k)
a.a.s.
= n

⌦(log n)
for k = O(log n)

and

Sreg (�G ,k)
a.a.s.
= n

!(1)
for k = o(log2 n).

12



Main Result (simplified versions)

Main Theorem (version 1)
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Rest of the talk

Focus on proving the following.

Theorem

Let k = d2 log ne and G ⇠ G(n, 1
2
), then Sreg (�G ,k)

a.a.s.
= n

⌦(log n)

13



bNW (R) is the set of common neighbors of R in W

W is (r , q)-dense if for every subset R ✓ V of size 6 r , it holds

| bNW (R)| > q

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E ) ⇠ G(n, 1
2
) satisfies the

following:

(?) V is (
k
50
,⇥(n0.9))-dense; and

(??) For every (
k

10000
,⇥(n0.9))-dense W ✓ V there exists S ✓ V ,

|S | 6 p
n s.t. for every R ✓ V , with |R | 6 k

50
and

| bNW (R)| < e⇥(n0.6) it holds that |R \ S | > k
10000

.

Theorem 2

Let k = d2 log ne. For every G satisfying properties (?) and (??),

Sreg (�G ,k) = n
⌦(log n)

14
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50
and

| bNW (R)| < e⇥(n0.6) it holds that |R \ S | > k
10000

.

Theorem 2

Let k = d2 log ne. For every G satisfying properties (?) and (??),

Sreg (�G ,k) = n
⌦(log n)

14



Regular resolution ⌘ Read-Once Branching Programs

x _ c

¬x _ z ¬y

y _ ¬c

¬y _ ¬z ¬x

x _ y

y _ z z

x _ ¬z ¬z

?
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Haken bottleneck counting idea

“Lemma 1”

Every random path � ⇠ D in the ROBP passes through a

bottleneck node.

“Lemma 2”

Given any bottleneck node b in the ROBP,

Pr
�⇠D

[b 2 �] 6 n
�⇥(k).

Then, it is trivial to conclude:

1 = Pr
�⇠D

[9b 2 ROBP b bottleneck and b 2 �]

6 |ROBP | · max
b bottleneck
in the ROBP

Pr
�⇠D

[b 2 �]

6 |ROBP | · n
�⇥(k)
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The real bottleneck counting



�(c) = max (partial) assignment contained in all paths from the

source to c

j 2 [k] is forgotten at c if no sink reachable from c has labelW
v2V xv ,j

The random path �

• if j forgotten at c or

�(c) [ {xv ,j = 1} falsifies a short clause of �G ,k

then continue with xv ,j = 0

• otherwise toss a coin and with prob. ⇥(n
�0.6

)

continue with xv ,j = 1
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V
0

j (a) = {v 2 V : �(a)(xv ,j) = 0}

Lemma 1

For every random path �, there exists two nodes a, b in the ROBP

s.t.

1. � touches a, sets 6 d
k
200

e variables to 1 and then touches b;

2. there exists a j
⇤
2 [k] not-forgotten at b and such that

V
0

j⇤(b)rV
0

j⇤(a) is (
k

10000
,⇥(n0.9))-dense.

Lemma 2

For every pair of nodes (a, b) in the ROBP satisfying point (2) of

Lemma 1,

Pr
�
[� touches a, sets 6

⇠
k

200

⇡
vars to 1 and then touches b] 6 n

�⇥(k)

Go to Conclusions
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Proof sketch of Lemma 2

Let E=“� touches a, sets 6 dk/200e vars to 1 and then touches b”

and let W = V
0

j⇤(b)rV
0

j⇤(a)

Case 1: V 1
(a) = {v 2 V : 9i 2 [k] �(a)(xv ,i ) = 1} has large size

(> k/20000). Then Pr[E ] 6 n
�⇥(k)

because of the prob. of 1s in

the random path � and a Markov chain argument.

Case 2.1: V 1
(a) is not large but many (> e⇥(n0.6)) vertices in W

are set to 0 by coin tosses.

So Pr[E ^W has many coin tosses] 6 n
�⇥(k)

again by a Markov

chain argument as in Case 1.

Case 2.2: V 1
(a) is not large and not many vertices in W are set

to 0 by coin tosses. Then many of the 1s set by the random path

� between a and b must belong to a set of size at most
p
n, by the

new combinatorial property (??).

So Pr[E ^W has not many coin tosses] 6 n
�⇥(k)

.
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Conclusions

Open Problem: How hard is to prove that a graph is Ramsey?

Let G be a Ramsey graph in n vertices and let k = d2 log ne. Is it

true that S( G ,k) = n
⌦(log n)

?

([LPRT17] proved this but for a binary encoding of “G is Ramsey”)

full paper

Thanks!

bonacina@cs.upc.edu
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