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;
Ramsey’s Theorem

Theorem (Ramsey 1930)

Every coloring c : [N]n → k admits an infinite homogeneous set
M ⊆ N.

I Here [M]n denotes the set of n–element subsets of M ⊆ N.

I We identify k with {0, 1, ..., k − 1} for all k ∈ N.

I A set M ⊆ N is called homogeneous for the coloring c , if
there is some i ∈ k such that c(A) = i for all A ∈ [M]n.

I By Cnk we denote the set of colorings c : [N]n → k .

I c : [N]n → k is called stable if limi→∞ c(A ∪ {i}) exists for all
A ∈ [N]n−1.

I We also consider the case k = N, which corresponds to an
unspecified but finite number of colors.
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Ramsey’s Theorem

Theorem (Ramsey 1930)

Every coloring c : [N]n → k admits an infinite homogeneous set
M ⊆ N.

Specker (1969) proved that there are computable colorings of pairs
without computable homogenous sets.

Jockusch (1972) showed the following now classical results:

I There is a computable c : [N]n → 2 for each n ≥ 2 without an
infinite homogeneous set M ⊆ N that is computable in ∅(n−1).

I For every computable coloring c : [N]n → 2 with n ≥ 1 there
exists an infinite homogeneous set M ⊆ N with M ′≤T ∅(n).

Hence, the instancewise complexity of Ramsey’s theorem RTn
k is

Σ0
n+1 in the arithmetical hierarchy.
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General Question on the Complexity

How complicated is Ramsey’s theorem RTn
k seen as a

mathematical problem?

I How do computability properties of homogeneous sets do
depend on computability properties of colorings?

I In this sense it has been studied for a long time, starting with
Specker (1969), Jockusch (1972), Seetapun (1995), Cholak,
Jockusch and Slaman (2001) and many others.

I How can Ramsey’s theorem be classified in reverse
mathematics (from a proof theoretic perspective)?

I How can Ramsey’s theorem be classified in descriptive set
theory?

I How can Ramsey’s theorem be classified in the Weihrauch
lattice?

The Weihrauch lattice refines the Borel hierarchy and can be seen
as a uniform computability theoretic version of reverse mathem.
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Mathematical Problems

I We consider partial multi-valued functions f :⊆ X ⇒ Y as
mathematical problems.

I We assume that the underlying spaces X and X are
represented spaces, hence notions of computability and
continuity are well-defined.

I Every theorem of the form

(∀x ∈ X )(∃y ∈ Y )(x ∈ D =⇒ P(x , y))

can be identified with F :⊆ X ⇒ Y with dom(F ) := D and
F (x) := {y ∈ Y : P(x , y)}.

I Example: Ramsey’s Theorem is the mathematical problem
RTn

k : Cnk ⇒ 2N with

RTn
k(c) := {M ⊆ N : M is an infinite homogenous set for c}.

SRTn
k denotes the restriction of RTn

k to stable colorings.
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;
Examples of Mathematical Problems

I Weak Kőnig’s Lemma is the mathematical problem

WKL :⊆ Tr⇒ 2N,T 7→ [T ]

with dom(WWKL) := {T ∈ Tr : T infinite}.
I Bolzano Weierstraß Theorem is the mathematical problem

BWTX :⊆ XN ⇒ X , (xn) 7→ {x ∈ X : x is a cluster point of (xn)}

where dom(BWTX ) contains only sequences (xn) with a
relatively compact range.

I limX :⊆ XN → X is called the limit problem of the space X .

I The cohesiveness problems COH : (2N)N ⇒ 2N is defined such
that COH((Ri )i∈N) is the set of all infinite sets A such that

A ∩ Ri is finite or A ∩ (N \ Ri ) is finite

for each i , i.e., A ⊆∗ Ri or A ⊆∗ N \ Ri for each i .
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Weihrauch Reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two mathematical problems.

K Hg

f

x f (x)

I f is called Weihrauch reducible to g , in symbols f ≤W g , if
there are computable H,K :⊆ NN → NN such that H〈id,GK 〉
realizes f whenever G :⊆ NN → NN realizes g .

For the “realization” we use representations δ :⊆ NN → X of the
underyling objects.

Example: In order to prove COH≤W RT2
2, one would have to

utilize RT2
2 in order to compute COH.
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Algebraic Operations in the Weihrauch Lattice

Let f , g be two mathematical problems. We consider:

I f × g : both problems are available in parallel (Product)

I f t g : both problems are available, but for each instance one
has to choose which one is used (Coproduct)

I f u g : given an instance of f and g , only one of the solutions
will be provided (Sum)

I f ∗ g : f and g can be used consecutively (Comp. Product)

I g → f : this is the simplest problem h such that f can be
reduced to g ∗ h (Implication)

I f ∗: f can be used any given finite number of times in parallel
(Star)

I f̂ : f can be used countably many times in parallel
(Parallelization)

I f ′: f can be used on the limit of the input (Jump)
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Ramsey’s Theorem in the Weihrauch Lattice

Theorem (Cholak, Jockusch, Slaman 2009)

RTn
k is equivalent to SRTn

k ∧ COH over RCA0 for all n, k ≥ 2.

Corollary

SRTn
k t COH≤W RTn

k ≤W SRTn
k ∗ COH for all n, k ≥ 2.

COH

SRT2
2

RT2
2

SRT2
2 t COH

SRT2
2 × COH

SRT2
2 ∗ COH

D2
2

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey, Pauly 2018)

RT2
2 |W SRT2

2 × COH.
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Ramsey’s Theorem in the Weihrauch Lattice

lim′′

WKL′′

lim′

WKL′≡W KL

COH LPO× NON

BWT′2

lim

WKL WWKL DNCN

SRT2
2≡W CRT1

2
′

RT2
2

SRT2
2 t COH

SRT2
2 × COH

SRT2
2 ∗ COH

D2
2 = RT1

2
′

RT1
2
′ × lim

Σ0
4

Σ0
3

Σ0
2
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A Separation Technique for Jumps

Theorem

RT1
2
′ |W BWT′2.

RT1
2
′ 6≤W BWT′2 follows since CN≤W RT1

2
′
, but CN 6≤W BWT′2. For

BWT′2 6≤W RT1
2
′

we have used the following theorem (note that
BWT2≡W RT1

2).

Theorem (Baire’s grand theorem)

Let X ,Y be metric spaces, X a Baire space and Y separable. Then
the restriction f |U of every Σ0

2–measurable function f : X → Y to
any non-empty open subset U ⊆ X has a point of continuity.

Corollary

CRT1
2
′ 6≤W RT1

2
′
.

Corollary (Dzhafarov 2016)

SRT2
2 6≤W D2

2.
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The Cohesiveness Problem

Theorem (B., Hendtlass and Kreuzer 2017)

COH≡W(lim→WKL′) and WKL′≡W lim ∗COH.

Theorem

SRTn+1
k ≡W CRTn

k
′.

Altogether, we have
I RTn

k ≤W SRTn
k ∗ COH and

I SRTn+1
k ≤W RTn

k ∗ lim, which implies
I RTn+1

k ≤W RTn
k ∗ lim ∗COH≡W RTn

k ∗WKL′.

I WKL(n) ∗WKL(k)≡W WKL(n+k−1) is also known.

Corollary

R̂Tn
k ≡W WKL(n) for all n ≥ 1, k ≥ 2.

This degree is known to be Σ0
n+2–measurable, but not

Σ0
n+1–measurable.
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lim(3)

WKL(3) ≡W Ĉ
(3)
2 RT3

N ...
RT3

4 RT3
3 RT3

2 C
(3)
2

lim′′

WKL′′ ≡W Ĉ′′2 RT2
N ...

RT2
4 RT2

3 RT2
2 C′′2

lim′

WKL′ ≡W Ĉ′2 RT1
N ...

RT1
4 RT1

3 RT1
2 C′2

lim≡W ĈN

WKL≡WĈ2

CN

C∗2 ...
C4 C3 C2

Σ0
5

Σ0
4

Σ0
3

Σ0
2
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Products and Parallellization of Ramsey

Theorem

RTn
N × RTn+1

k ≤sW RTn+1
k+1 for all n, k ≥ 1.

Proof. (Idea.) Given a coloring c1 : [N]n → N with finite range
and a coloring c2 : [N]n+1 → k we construct a coloring
c+ : [N]n+1 → k + 1 as follows:

c+(A) :=

{
c2(A) if A is homogeneous for c1
k otherwise

for all A ∈ [N]n+1. Then RTn+1
2 (c+) ⊆ RTn

N(c1) ∩ RTn+1
k (c2) and

hence the desired reduction follows. �

Corollary

(RTn
k)∗≤W RTn

N≤W RTn+1
2 for all n, k ≥ 1.
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Parallelization of Ramsey

Theorem

R̂Tn
k ≤sW RTn+2

2 for all n, k ≥ 1.

Proof. (Idea.) Given a sequence (ci )i of colorings ci : [N]n → k,
we compute a sequence (dm)m of colorings dm ∈ Cnkm that capture
the products (RTn

k)m and a sequence (d+
m )m of colorings

d+
m : [N]n+1 → 2 by

d+
m (A) :=

{
0 if A is homogeneous for dm
1 otherwise

for all A ∈ [N]n+1. Now, in a final step we compute a coloring
c : [N]n+2 → 2 with

c({m} ∪ A) := d+
m (A)

for all A ∈ [N]n+1 and m < min(A). Given an infinite
homogeneous set M ∈ RTn+2

2 (c) we determine a sequence (Mi )i
as follows: for each fixed i ∈ N we first search for a number m > i
in M and then we let Mi := {x ∈ M : x > m}. �
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;
Weak Kőnig’s Lemma and Ramsey’s Theorem

Theorem

R̂Tn
k ≤sW RTn+2

2 for all n, k ≥ 1.

Corollary

WKL′≤W RT3
2 and WKL(n)≤W SRTn+2

2 for n ≥ 2.

The first statement was also proved independently by Hirschfeldt
and Jockusch (2016).

Corollary

PA 6≤W SRT2
2 ∗ COH and in particular WKL 6≤W RT2

2.

This follows from results of Liu (2012). We note that PA<W WKL.

Proposition (B., Hendtlass and Kreuzer 2017)

PA ≡ (C′N →WKL).
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Weak Kőnig’s Lemma and Ramsey’s Theorem

Theorem

R̂Tn
k ≤sW RTn+2

2 for all n, k ≥ 1.

Corollary

WKL′≤W RT3
2 and WKL(n)≤W SRTn+2

2 for n ≥ 2.

The first statement was also proved independently by Hirschfeldt
and Jockusch (2016).

Corollary

PA 6≤W SRT2
2 ∗ COH and in particular WKL 6≤W RT2

2.

Question

Is there a simple proof of WKL 6≤W RT2
2?

To prove that there is no uniform reduction should potentially be
much simpler to prove than the non-uniform result.



;
The Squashing Theorem

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

Let f , g :⊆ NN ⇒ NN and let f be finitely tolerant and total. Then
g × f ≤W f =⇒ ĝ ≤W f .

I f :⊆ NN ⇒ NN is called finitely tolerant if there is a
computable T :⊆ NN → NN such that for all p, q ∈ dom(f ),
r ∈ NN, k ∈ N:

I (∀n ≥ k) p(n) = q(n) and
I r ∈ f (q) =⇒ T 〈r , k〉 ∈ f (p).

I RTn
k ,RTn

N are finitely tolerant.

A similar version of the squashing theorem also holds for ≤sW and
Dorais, Dzhafarov, Hirst, Mileti and Shafer (2016) proved
RTn

k <sW RTn
k+1 for all n, k ≥ 1.
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;
Color Separation

Theorem (Rakotoniaina, Hirschfeldt & Jockusch, Patey 2015)

RTn
k <W RTn

k+1 for all n, k ≥ 1.

Proof. (B. and Rakotoniaina 2015)

I RTn
2 × RTn+1

k ≤W RTn+1
k+1 by the Product Theorem.

I RTn
2 × RTn+1

k ≤W RTn+1
k implies R̂Tn

2 ≤W RTn+1
k by the

Squashing Theorem which leads to a contradiction:

lim(n−1)≤W WKL(n)≡W R̂Tn
2 ≤W RTn+1

k

I RTn
2 × RTn+1

k 6≤W RTn+1
k for all n, k ≥ 1 follows.

I RTn+1
k <W RTn+1

k+1 for all n, k ≥ 1 follows. �



;
Products and Colors

Can colors make up for products?

I RTn
k × RTn

l ≤W RTn
kl is easy to see, hence

I
∏m

i=1 RTn
ki
≤W RTn∏m

i=1 ki
follows.

I Dzhafarov, Goh, Hirschfeldt, Patey, Pauly (2018) proved that
the upper bound is optimal in the case of n = 1.

Corollary⊔∞
i=1(RTn

k)i ≤W
⊔∞

j=1 RTn
j for n ≥ 1, k ≥ 2.

Here ≡W holds at least in the case of n = 1.

Can products make up for colors?

Question

Does
⊔∞

i=1(RTn
k)i ≡W

⊔∞
j=1 RTn

j hold for all for n ≥ 1, k ≥ 2?
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