Vasco Brattka

Universität der Bundeswehr München, Germany University of Cape Town, South Africa

joint work with

Tahina Rakotoniaina

RaTLoCC18

Ramsey Theory in Logic, Combinatorics and Complexity University Residential Center, Bertinoro, Italy, 15–20 July 2018

Every coloring $c : [\mathbb{N}]^n \to k$ admits an infinite homogeneous set $M \subseteq \mathbb{N}$.

- Here $[M]^n$ denotes the set of *n*-element subsets of $M \subseteq \mathbb{N}$.
- We identify k with $\{0, 1, ..., k 1\}$ for all $k \in \mathbb{N}$.
- A set M ⊆ N is called homogeneous for the coloring c, if there is some i ∈ k such that c(A) = i for all A ∈ [M]ⁿ.
- By \mathcal{C}_k^n we denote the set of colorings $c : [\mathbb{N}]^n \to k$.
- ▶ $c : [\mathbb{N}]^n \to k$ is called stable if $\lim_{i\to\infty} c(A \cup \{i\})$ exists for all $A \in [\mathbb{N}]^{n-1}$.
- We also consider the case k = N, which corresponds to an unspecified but finite number of colors.

Every coloring $c : [\mathbb{N}]^n \to k$ admits an infinite homogeneous set $M \subseteq \mathbb{N}$.

- Here $[M]^n$ denotes the set of *n*-element subsets of $M \subseteq \mathbb{N}$.
- We identify k with $\{0, 1, ..., k 1\}$ for all $k \in \mathbb{N}$.
- A set M ⊆ N is called homogeneous for the coloring c, if there is some i ∈ k such that c(A) = i for all A ∈ [M]ⁿ.
- By \mathcal{C}_k^n we denote the set of colorings $c : [\mathbb{N}]^n \to k$.
- ▶ $c : [\mathbb{N}]^n \to k$ is called stable if $\lim_{i\to\infty} c(A \cup \{i\})$ exists for all $A \in [\mathbb{N}]^{n-1}$.
- We also consider the case k = N, which corresponds to an unspecified but finite number of colors.

Every coloring $c : [\mathbb{N}]^n \to k$ admits an infinite homogeneous set $M \subseteq \mathbb{N}$.

- Here $[M]^n$ denotes the set of *n*-element subsets of $M \subseteq \mathbb{N}$.
- We identify k with $\{0, 1, ..., k 1\}$ for all $k \in \mathbb{N}$.
- A set M ⊆ N is called homogeneous for the coloring c, if there is some i ∈ k such that c(A) = i for all A ∈ [M]ⁿ.
- By \mathcal{C}_k^n we denote the set of colorings $c : [\mathbb{N}]^n \to k$.
- ▶ $c : [\mathbb{N}]^n \to k$ is called stable if $\lim_{i\to\infty} c(A \cup \{i\})$ exists for all $A \in [\mathbb{N}]^{n-1}$.
- We also consider the case k = N, which corresponds to an unspecified but finite number of colors.

Every coloring $c : [\mathbb{N}]^n \to k$ admits an infinite homogeneous set $M \subseteq \mathbb{N}$.

Specker (1969) proved that there are computable colorings of pairs without computable homogenous sets.

Jockusch (1972) showed the following now classical results:

- There is a computable c : [N]ⁿ → 2 for each n ≥ 2 without an infinite homogeneous set M ⊆ N that is computable in Ø⁽ⁿ⁻¹⁾.
- For every computable coloring c : [N]ⁿ → 2 with n ≥ 1 there exists an infinite homogeneous set M ⊆ N with M' ≤_T Ø⁽ⁿ⁾.

Hence, the instancewise complexity of Ramsey's theorem RT_k^n is Σ_{n+1}^0 in the arithmetical hierarchy.

How complicated is Ramsey's theorem RT_k^n seen as a mathematical problem?

- How do computability properties of homogeneous sets do depend on computability properties of colorings?
- In this sense it has been studied for a long time, starting with Specker (1969), Jockusch (1972), Seetapun (1995), Cholak, Jockusch and Slaman (2001) and many others.
- How can Ramsey's theorem be classified in reverse mathematics (from a proof theoretic perspective)?
- How can Ramsey's theorem be classified in descriptive set theory?
- How can Ramsey's theorem be classified in the Weihrauch lattice?

The Weihrauch lattice refines the Borel hierarchy and can be seen as a uniform computability theoretic version of reverse mathem.

Mathematical Problems

- We consider partial multi-valued functions f :⊆ X ⇒ Y as mathematical problems.
- ► We assume that the underlying spaces X and X are represented spaces, hence notions of computability and continuity are well-defined.
- Every theorem of the form

 $(\forall x \in X)(\exists y \in Y)(x \in D \Longrightarrow P(x, y))$

can be identified with $F :\subseteq X \Rightarrow Y$ with dom(F) := D and $F(x) := \{y \in Y : P(x, y)\}.$

▶ **Example**: Ramsey's Theorem is the mathematical problem $RT_k^n : C_k^n \rightrightarrows 2^{\mathbb{N}}$ with

 $RT_k^n(c) := \{M \subseteq \mathbb{N} : M \text{ is an infinite homogenous set for } c\}.$

 SRT_k^n denotes the restriction of RT_k^n to stable colorings.

Mathematical Problems

- We consider partial multi-valued functions f :⊆ X ⇒ Y as mathematical problems.
- ► We assume that the underlying spaces X and X are represented spaces, hence notions of computability and continuity are well-defined.
- Every theorem of the form

$$(\forall x \in X)(\exists y \in Y)(x \in D \Longrightarrow P(x, y))$$

can be identified with $F :\subseteq X \Rightarrow Y$ with dom(F) := D and $F(x) := \{y \in Y : P(x, y)\}.$

▶ **Example**: Ramsey's Theorem is the mathematical problem $RT_k^n : C_k^n \rightrightarrows 2^{\mathbb{N}}$ with

 $\mathsf{RT}_k^n(c) := \{ M \subseteq \mathbb{N} : M \text{ is an infinite homogenous set for } c \}.$

 SRT_k^n denotes the restriction of RT_k^n to stable colorings.

 $\mathsf{WKL}:\subseteq\mathsf{Tr}\rightrightarrows 2^{\mathbb{N}},\, T\mapsto [T]$

with dom(WWKL) := { $T \in Tr : T$ infinite}.

Bolzano Weierstraß Theorem is the mathematical problem

 $\mathsf{BWT}_X :\subseteq X^{\mathbb{N}} \rightrightarrows X, (x_n) \mapsto \{x \in X : x \text{ is a cluster point of } (x_n)\}$

where $dom(BWT_X)$ contains only sequences (x_n) with a relatively compact range.

- $\lim_X :\subseteq X^{\mathbb{N}} \to X$ is called the limit problem of the space X.
- The cohesiveness problems COH : (2^N)^N ⇒ 2^N is defined such that COH((R_i)_{i∈N}) is the set of all infinite sets A such that

 $A \cap R_i$ is finite or $A \cap (\mathbb{N} \setminus R_i)$ is finite

 $\mathsf{WKL}:\subseteq\mathsf{Tr}\rightrightarrows 2^{\mathbb{N}},\,T\mapsto[T]$

with dom(WWKL) := { $T \in Tr : T$ infinite}.

Bolzano Weierstraß Theorem is the mathematical problem

 $\mathsf{BWT}_X :\subseteq X^{\mathbb{N}} \rightrightarrows X, (x_n) \mapsto \{x \in X : x \text{ is a cluster point of } (x_n)\}$

where $dom(BWT_X)$ contains only sequences (x_n) with a relatively compact range.

▶ $\lim_X :\subseteq X^{\mathbb{N}} \to X$ is called the limit problem of the space X.

The cohesiveness problems COH : (2^N)^N ⇒ 2^N is defined such that COH((R_i)_{i∈N}) is the set of all infinite sets A such that

 $A \cap R_i$ is finite or $A \cap (\mathbb{N} \setminus R_i)$ is finite

 $\mathsf{WKL}:\subseteq\mathsf{Tr}\rightrightarrows 2^{\mathbb{N}},\,T\mapsto[T]$

with dom(WWKL) := { $T \in Tr : T$ infinite}.

Bolzano Weierstraß Theorem is the mathematical problem

 $\mathsf{BWT}_X :\subseteq X^{\mathbb{N}} \rightrightarrows X, (x_n) \mapsto \{x \in X : x \text{ is a cluster point of } (x_n)\}$

where $dom(BWT_X)$ contains only sequences (x_n) with a relatively compact range.

- ▶ $\lim_X :\subseteq X^{\mathbb{N}} \to X$ is called the limit problem of the space X.
- The cohesiveness problems COH : (2^N)^N ⇒ 2^N is defined such that COH((R_i)_{i∈N}) is the set of all infinite sets A such that

 $A \cap R_i$ is finite or $A \cap (\mathbb{N} \setminus R_i)$ is finite

 $\mathsf{WKL}:\subseteq\mathsf{Tr}\rightrightarrows 2^{\mathbb{N}},\,T\mapsto[T]$

with dom(WWKL) := { $T \in Tr : T$ infinite}.

Bolzano Weierstraß Theorem is the mathematical problem

 $\mathsf{BWT}_X :\subseteq X^{\mathbb{N}} \rightrightarrows X, (x_n) \mapsto \{x \in X : x \text{ is a cluster point of } (x_n)\}$

where $dom(BWT_X)$ contains only sequences (x_n) with a relatively compact range.

- ▶ $\lim_X :\subseteq X^{\mathbb{N}} \to X$ is called the limit problem of the space X.
- The cohesiveness problems COH : (2^N)^N ⇒ 2^N is defined such that COH((R_i)_{i∈N}) is the set of all infinite sets A such that

 $A \cap R_i$ is finite or $A \cap (\mathbb{N} \setminus R_i)$ is finite

Let $f :\subseteq X \Rightarrow Y$ and $g :\subseteq Z \Rightarrow W$ be two mathematical problems.

f is called Weihrauch reducible to *g*, in symbols *f* ≤_W *g*, if there are computable *H*, *K* :⊆ N^N → N^N such that *H*⟨id, *GK*⟩ realizes *f* whenever *G* :⊆ N^N → N^N realizes *g*.

For the "realization" we use representations $\delta:\subseteq\mathbb{N}^{\mathbb{N}}\to X$ of the underyling objects.

Example: In order to prove COH $\leq_W RT_2^2$, one would have to utilize RT_2^2 in order to compute COH.

Let $f :\subseteq X \rightrightarrows Y$ and $g :\subseteq Z \rightrightarrows W$ be two mathematical problems.

f is called Weihrauch reducible to *g*, in symbols *f* ≤_W *g*, if there are computable *H*, *K* :⊆ N^N → N^N such that *H*⟨id, *GK*⟩ realizes *f* whenever *G* :⊆ N^N → N^N realizes *g*.

For the "realization" we use representations $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ of the underyling objects.

Example: In order to prove COH $\leq_W RT_2^2$, one would have to utilize RT_2^2 in order to compute COH.

-

(Jump)

Let f, g be two mathematical problems. We consider:

- $f \times g$: both problems are available in parallel (Product)
- *f* ⊔ *g*: both problems are available, but for each instance one has to choose which one is used (Coproduct)
- *f* ⊓ *g*: given an instance of *f* and *g*, only one of the solutions will be provided (Sum)
- f * g: f and g can be used consecutively (Comp. Product)
- ► $g \to f$: this is the simplest problem h such that f can be reduced to g * h (Implication)
- f*: f can be used any given finite number of times in parallel (Star)
- ▶ f̂: f can be used countably many times in parallel (Parallelization)
- f': f can be used on the limit of the input

Theorem (Cholak, Jockusch, Slaman 2009)

 RT_k^n is equivalent to $\mathsf{SRT}_k^n \wedge \mathsf{COH}$ over RCA_0 for all $n, k \ge 2$.

Corollary

 $\operatorname{SRT}_k^n \sqcup \operatorname{COH} \leq_{\operatorname{W}} \operatorname{RT}_k^n \leq_{\operatorname{W}} \operatorname{SRT}_k^n * \operatorname{COH} \text{ for all } n, k \geq 2.$

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey, Pauly 2018) $\mathsf{RT}_2^2|_{\mathrm{W}}\,\mathsf{SRT}_2^2 imes\mathsf{COH}.$

Theorem (Cholak, Jockusch, Slaman 2009)

 RT_k^n is equivalent to $\mathsf{SRT}_k^n \wedge \mathsf{COH}$ over RCA_0 for all $n, k \ge 2$.

Corollary

 $\operatorname{SRT}_k^n \sqcup \operatorname{COH} \leq_{\operatorname{W}} \operatorname{RT}_k^n \leq_{\operatorname{W}} \operatorname{SRT}_k^n * \operatorname{COH}$ for all $n, k \geq 2$.

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey, Pauly 2018) $\operatorname{RT}_2^2|_W\operatorname{SRT}_2^2 imes\operatorname{COH}.$

Theorem (Cholak, Jockusch, Slaman 2009)

 RT_k^n is equivalent to $\mathsf{SRT}_k^n \wedge \mathsf{COH}$ over RCA_0 for all $n, k \ge 2$.

Corollary

 $\operatorname{SRT}_k^n \sqcup \operatorname{COH} \leq_{\operatorname{W}} \operatorname{RT}_k^n \leq_{\operatorname{W}} \operatorname{SRT}_k^n * \operatorname{COH}$ for all $n, k \geq 2$.

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey, Pauly 2018) $RT_2^2|_W SRT_2^2 \times COH.$

Theorem (Cholak, Jockusch, Slaman 2009)

 RT_k^n is equivalent to $\mathsf{SRT}_k^n \wedge \mathsf{COH}$ over RCA_0 for all $n, k \ge 2$.

Corollary

 $\operatorname{SRT}_k^n \sqcup \operatorname{COH} \leq_{\operatorname{W}} \operatorname{RT}_k^n \leq_{\operatorname{W}} \operatorname{SRT}_k^n * \operatorname{COH}$ for all $n, k \geq 2$.

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey, Pauly 2018) $\mathsf{RT}_2^2 \mid_W \mathsf{SRT}_2^2 \times \mathsf{COH}.$

Theorem (Cholak, Jockusch, Slaman 2009)

 RT_k^n is equivalent to $\mathsf{SRT}_k^n \wedge \mathsf{COH}$ over RCA_0 for all $n, k \ge 2$.

Corollary

 $\operatorname{SRT}_k^n \sqcup \operatorname{COH} \leq_{\operatorname{W}} \operatorname{RT}_k^n \leq_{\operatorname{W}} \operatorname{SRT}_k^n * \operatorname{COH}$ for all $n, k \geq 2$.

Theorem (Dzhafarov, Goh, Hirschfeldt, Patey, Pauly 2018) $\mathsf{RT}_2^2 \mid_W \mathsf{SRT}_2^2 \times \mathsf{COH}.$

Theorem (Cholak, Jockusch, Slaman 2009)

 RT_k^n is equivalent to $SRT_k^n \wedge COH$ over RCA_0 for all $n, k \ge 2$.

Corollary

 $\operatorname{SRT}_k^n \sqcup \operatorname{COH} \leq_{\operatorname{W}} \operatorname{RT}_k^n \leq_{\operatorname{W}} \operatorname{SRT}_k^n * \operatorname{COH}$ for all $n, k \geq 2$.

Corollary

 $\mathsf{RT}_2^2 \not\leq_{\mathrm{W}} \mathsf{SRT}_2^2.$

Theorem

 $\mathsf{RT}_2^{1'}|_W \mathsf{BWT}_2'$.

 $RT_2^{1'} \not\leq_W BWT_2'$ follows since $C_N \leq_W RT_2^{1'}$, but $C_N \not\leq_W BWT_2'$. For $BWT_2' \not\leq_W RT_2^{1'}$ we have used the following theorem (note that $BWT_2 \equiv_W RT_2^{1}$).

Theorem (Baire's grand theorem)

Let X, Y be metric spaces, X a Baire space and Y separable. Then the restriction $f|_U$ of every Σ_2^0 -measurable function $f : X \to Y$ to any non-empty open subset $U \subseteq X$ has a point of continuity.

Corollary

 $\operatorname{CRT}_2^{\mathbf{1}'} \not\leq_{\mathrm{W}} \operatorname{RT}_2^{\mathbf{1}'}.$

Corollary (Dzhafarov 2016)

 $\operatorname{SRT}_2^2 \not\leq_{\operatorname{W}} \operatorname{D}_2^2$.

Theorem

 $\mathsf{RT}_2^{1'}|_W \mathsf{BWT}_2'.$

 $RT_2^{1'} \not\leq_W BWT_2'$ follows since $C_N \leq_W RT_2^{1'}$, but $C_N \not\leq_W BWT_2'$. For $BWT_2' \not\leq_W RT_2^{1'}$ we have used the following theorem (note that $BWT_2 \equiv_W RT_2^1$).

Theorem (Baire's grand theorem)

Let X, Y be metric spaces, X a Baire space and Y separable. Then the restriction $f|_U$ of every Σ_2^0 -measurable function $f : X \to Y$ to any non-empty open subset $U \subseteq X$ has a point of continuity.

Corollary

 $\operatorname{CRT}_2^{1'} \not\leq_{\operatorname{W}} \operatorname{RT}_2^{1'}.$

Corollary (Dzhafarov 2016)

 $\operatorname{SRT}_2^2 \not\leq_{\operatorname{W}} \operatorname{D}_2^2$.

Theorem

 $\mathsf{RT}_2^{1'}|_W \mathsf{BWT}_2'.$

 $RT_2^{1'} \not\leq_W BWT_2'$ follows since $C_N \leq_W RT_2^{1'}$, but $C_N \not\leq_W BWT_2'$. For $BWT_2' \not\leq_W RT_2^{1'}$ we have used the following theorem (note that $BWT_2 \equiv_W RT_2^1$).

Theorem (Baire's grand theorem)

Let X, Y be metric spaces, X a Baire space and Y separable. Then the restriction $f|_U$ of every Σ_2^0 -measurable function $f : X \to Y$ to any non-empty open subset $U \subseteq X$ has a point of continuity.

Corollary

 $\mathsf{CRT}_2^{\mathbf{1}'} \not\leq_{\mathrm{W}} \mathsf{RT}_2^{\mathbf{1}'}.$

Corollary (Dzhafarov 2016)

 $\mathsf{SRT}_2^2 \not\leq_{\mathrm{W}} \mathsf{D}_2^2.$

Theorem

 $\mathsf{RT}_2^{1'}|_W \mathsf{BWT}_2'.$

 $RT_2^{1'} \not\leq_W BWT_2'$ follows since $C_N \leq_W RT_2^{1'}$, but $C_N \not\leq_W BWT_2'$. For $BWT_2' \not\leq_W RT_2^{1'}$ we have used the following theorem (note that $BWT_2 \equiv_W RT_2^1$).

Theorem (Baire's grand theorem)

Let X, Y be metric spaces, X a Baire space and Y separable. Then the restriction $f|_U$ of every Σ_2^0 -measurable function $f : X \to Y$ to any non-empty open subset $U \subseteq X$ has a point of continuity.

Corollary

 $\operatorname{CRT}_2^{1'} \not\leq_{\operatorname{W}} \operatorname{RT}_2^{1'}$.

Corollary (Dzhafarov 2016)

 $\mathsf{SRT}_2^2 \not\leq_{\mathrm{W}} \mathsf{D}_2^2.$

-

Theorem (B., Hendtlass and Kreuzer 2017)

 $\mathsf{COH}\mathop{\equiv_{\mathrm{W}}}(\mathsf{lim}\to\mathsf{WKL}') \text{ and } \mathsf{WKL}'\mathop{\equiv_{\mathrm{W}}}\mathsf{lim}*\mathsf{COH}.$

Theorem

 $\operatorname{SRT}_{k}^{n+1} \equiv_{\operatorname{W}} \operatorname{CRT}_{k}^{n'}.$

Altogether, we have

- $\operatorname{RT}_{k}^{n} \leq_{\operatorname{W}} \operatorname{SRT}_{k}^{n} * \operatorname{COH}$ and
- ▶ $SRT_k^{n+1} \leq_W RT_k^n * lim$, which implies
- ► $\mathsf{RT}_k^{n+1} \leq_{\mathrm{W}} \mathsf{RT}_k^n * \lim * \mathsf{COH} \equiv_{\mathrm{W}} \mathsf{RT}_k^n * \mathsf{WKL}'.$
- WKL⁽ⁿ⁾ * WKL^(k) \equiv_{W} WKL^(n+k-1) is also known.

Corollary

 $\widehat{\mathsf{RT}}_k^n \equiv_{\mathrm{W}} \mathsf{WKL}^{(n)}$ for all $n \ge 1, k \ge 2$.

This degree is known to be Σ^0_{n+2} –measurable, but not Σ^0_{n+1} –measurable.

-

Theorem (B., Hendtlass and Kreuzer 2017)

 $\mathsf{COH}\mathop{\equiv_{\mathrm{W}}}(\mathsf{lim}\to\mathsf{WKL}') \text{ and } \mathsf{WKL}'\mathop{\equiv_{\mathrm{W}}}\mathsf{lim}*\mathsf{COH}.$

Theorem

 $\operatorname{SRT}_{k}^{n+1} \equiv_{\operatorname{W}} \operatorname{CRT}_{k}^{n'}.$

Altogether, we have

- $\operatorname{RT}_{k}^{n} \leq_{\mathrm{W}} \operatorname{SRT}_{k}^{n} * \operatorname{COH}$ and
- ▶ $SRT_k^{n+1} \leq_W RT_k^n * lim$, which implies
- ► $\mathsf{RT}_k^{n+1} \leq_{\mathrm{W}} \mathsf{RT}_k^n * \lim * \mathsf{COH} \equiv_{\mathrm{W}} \mathsf{RT}_k^n * \mathsf{WKL}'.$
- ► WKL⁽ⁿ⁾ * WKL^(k) ≡_W WKL^(n+k-1) is also known.

Corollary

 $\widehat{\mathsf{RT}_k^n} \equiv_{\mathrm{W}} \mathsf{WKL}^{(n)} \text{ for all } n \ge 1, k \ge 2.$

This degree is known to be Σ^0_{n+2} -measurable, but not Σ^0_{n+1} -measurable.

-

Theorem (B., Hendtlass and Kreuzer 2017)

 $\mathsf{COH}\mathop{\equiv_{\mathrm{W}}}(\mathsf{lim}\to\mathsf{WKL}') \text{ and } \mathsf{WKL}'\mathop{\equiv_{\mathrm{W}}}\mathsf{lim}*\mathsf{COH}.$

Theorem

 $\operatorname{SRT}_{k}^{n+1} \equiv_{\operatorname{W}} \operatorname{CRT}_{k}^{n'}.$

Altogether, we have

- $\operatorname{RT}_{k}^{n} \leq_{\mathrm{W}} \operatorname{SRT}_{k}^{n} * \operatorname{COH}$ and
- ► $SRT_k^{n+1} \leq_W RT_k^n * lim$, which implies
- ► $\mathsf{RT}_{k}^{n+1} \leq_{\mathrm{W}} \mathsf{RT}_{k}^{n} * \lim * \mathsf{COH} \equiv_{\mathrm{W}} \mathsf{RT}_{k}^{n} * \mathsf{WKL}'.$
- WKL⁽ⁿ⁾ * WKL^(k) \equiv_{W} WKL^(n+k-1) is also known.

Corollary

 $\widehat{\mathsf{RT}}_k^n \equiv_{\mathrm{W}} \mathsf{WKL}^{(n)}$ for all $n \ge 1, k \ge 2$.

This degree is known to be Σ_{n+2}^{0} -measurable, but not Σ_{n+1}^{0} -measurable.

-

Theorem (B., Hendtlass and Kreuzer 2017)

 $\mathsf{COH}\mathop{\equiv_{\mathrm{W}}}(\mathsf{lim}\to\mathsf{WKL}') \text{ and } \mathsf{WKL}'\mathop{\equiv_{\mathrm{W}}}\mathsf{lim}*\mathsf{COH}.$

Theorem

 $\operatorname{SRT}_{k}^{n+1} \equiv_{\operatorname{W}} \operatorname{CRT}_{k}^{n'}.$

Altogether, we have

- $\operatorname{RT}_{k}^{n} \leq_{\mathrm{W}} \operatorname{SRT}_{k}^{n} * \operatorname{COH}$ and
- ► $SRT_k^{n+1} \leq_W RT_k^n * lim$, which implies
- ► $\mathsf{RT}_k^{n+1} \leq_{\mathrm{W}} \mathsf{RT}_k^n * \lim * \mathsf{COH} \equiv_{\mathrm{W}} \mathsf{RT}_k^n * \mathsf{WKL}'.$
- WKL⁽ⁿ⁾ * WKL^(k) \equiv_{W} WKL^(n+k-1) is also known.

Corollary

 $\widehat{\mathsf{RT}_k^n} \equiv_{\mathrm{W}} \mathsf{WKL}^{(n)}$ for all $n \ge 1, k \ge 2$.

This degree is known to be Σ_{n+2}^{0} -measurable, but not Σ_{n+1}^{0} -measurable.

Theorem

$\mathsf{RT}^n_{\mathbb{N}} \times \mathsf{RT}^{n+1}_k \leq_{\mathrm{sW}} \mathsf{RT}^{n+1}_{k+1}$ for all $n, k \geq 1$.

Proof. (Idea.) Given a coloring $c_1 : [\mathbb{N}]^n \to \mathbb{N}$ with finite range and a coloring $c_2 : [\mathbb{N}]^{n+1} \to k$ we construct a coloring $c^+ : [\mathbb{N}]^{n+1} \to k+1$ as follows:

$$c^+(A) := \left\{ egin{array}{cl} c_2(A) & ext{if } A ext{ is homogeneous for } c_1 \\ k & ext{otherwise} \end{array}
ight.$$

for all $A \in [\mathbb{N}]^{n+1}$. Then $\mathsf{RT}_2^{n+1}(c^+) \subseteq \mathsf{RT}_{\mathbb{N}}^n(c_1) \cap \mathsf{RT}_k^{n+1}(c_2)$ and hence the desired reduction follows.

Corollary

 $(\mathsf{RT}_k^n)^* \leq_{\mathrm{W}} \mathsf{RT}_{\mathbb{N}}^n \leq_{\mathrm{W}} \mathsf{RT}_2^{n+1}$ for all $n, k \geq 1$.

Theorem

$\mathsf{RT}^n_{\mathbb{N}} \times \mathsf{RT}^{n+1}_k \leq_{\mathrm{sW}} \mathsf{RT}^{n+1}_{k+1}$ for all $n, k \geq 1$.

Proof. (Idea.) Given a coloring $c_1 : [\mathbb{N}]^n \to \mathbb{N}$ with finite range and a coloring $c_2 : [\mathbb{N}]^{n+1} \to k$ we construct a coloring $c^+ : [\mathbb{N}]^{n+1} \to k+1$ as follows:

 $c^+(A) := \begin{cases} c_2(A) & \text{if } A \text{ is homogeneous for } c_1 \\ k & \text{otherwise} \end{cases}$

for all $A \in [\mathbb{N}]^{n+1}$. Then $\mathsf{RT}_2^{n+1}(c^+) \subseteq \mathsf{RT}_{\mathbb{N}}^n(c_1) \cap \mathsf{RT}_k^{n+1}(c_2)$ and hence the desired reduction follows.

Corollary

 $(\mathsf{RT}_k^n)^* \leq_{\mathrm{W}} \mathsf{RT}_{\mathbb{N}}^n \leq_{\mathrm{W}} \mathsf{RT}_2^{n+1}$ for all $n, k \geq 1$.

Parallelization of Ramsey

Theorem

$\widehat{\mathsf{RT}_k^n} \leq_{\mathrm{sW}} \mathsf{RT}_2^{n+2}$ for all $n, k \ge 1$.

Proof. (Idea.) Given a sequence $(c_i)_i$ of colorings $c_i : [\mathbb{N}]^n \to k$, we compute a sequence $(d_m)_m$ of colorings $d_m \in \mathcal{C}^n_{k^m}$ that capture the products $(\mathbb{RT}^n_k)^m$ and a sequence $(d_m^+)_m$ of colorings $d_m^+ : [\mathbb{N}]^{n+1} \to 2$ by

 $d_m^+(A) := \begin{cases} 0 & \text{if } A \text{ is homogeneous for } d_m \\ 1 & \text{otherwise} \end{cases}$

for all $A \in [\mathbb{N}]^{n+1}$. Now, in a final step we compute a coloring $c : [\mathbb{N}]^{n+2} \to 2$ with

 $c(\{m\}\cup A):=d_m^+(A)$

for all $A \in [\mathbb{N}]^{n+1}$ and $m < \min(A)$. Given an infinite homogeneous set $M \in \operatorname{RT}_2^{n+2}(c)$ we determine a sequence $(M_i)_i$ as follows: for each fixed $i \in \mathbb{N}$ we first search for a number m > iin M and then we let $M_i := \{x \in M : x > m\}$.

Parallelization of Ramsey

Theorem

 $\widehat{\mathsf{RT}}_k^n \leq_{\mathrm{sW}} \mathsf{RT}_2^{n+2}$ for all $n, k \ge 1$.

Proof. (Idea.) Given a sequence $(c_i)_i$ of colorings $c_i : [\mathbb{N}]^n \to k$, we compute a sequence $(d_m)_m$ of colorings $d_m \in \mathcal{C}_{k^m}^n$ that capture the products $(\mathbb{RT}_k^n)^m$ and a sequence $(d_m^+)_m$ of colorings $d_m^+ : [\mathbb{N}]^{n+1} \to 2$ by

 $d_m^+(A) := \begin{cases} 0 & \text{if } A \text{ is homogeneous for } d_m \\ 1 & \text{otherwise} \end{cases}$

for all $A \in [\mathbb{N}]^{n+1}$. Now, in a final step we compute a coloring $c : [\mathbb{N}]^{n+2} \to 2$ with

 $c(\{m\}\cup A):=d_m^+(A)$

for all $A \in [\mathbb{N}]^{n+1}$ and $m < \min(A)$. Given an infinite homogeneous set $M \in \operatorname{RT}_2^{n+2}(c)$ we determine a sequence $(M_i)_i$ as follows: for each fixed $i \in \mathbb{N}$ we first search for a number m > iin M and then we let $M_i := \{x \in M : x > m\}$.

Theorem $\widehat{\operatorname{RT}_{k}^{n}} \leq_{\mathrm{sW}} \operatorname{RT}_{2}^{n+2}$ for all $n, k \geq 1$. Corollary WKL' $\leq_{\mathrm{W}} \operatorname{RT}_{2}^{3}$ and WKL⁽ⁿ⁾ $\leq_{\mathrm{W}} \operatorname{SRT}_{2}^{n+2}$ for $n \geq 2$.

The first statement was also proved independently by Hirschfeldt and Jockusch (2016).

Corollary

 $PA \not\leq_W SRT_2^2 * COH$ and in particular $WKL \not\leq_W RT_2^2$.

This follows from results of Liu (2012). We note that $PA <_W WKL$.

Proposition (B., Hendtlass and Kreuzer 2017)

 $\mathsf{PA} \equiv (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL}).$

Theorem $\widehat{\mathsf{RT}_{k}^{n}} \leq_{sW} \mathsf{RT}_{2}^{n+2}$ for all $n, k \ge 1$. Corollary $\mathsf{WKL}' \leq_{W} \mathsf{RT}_{2}^{3}$ and $\mathsf{WKL}^{(n)} \leq_{W} \mathsf{SRT}_{2}^{n+2}$ for $n \ge 2$.

The first statement was also proved independently by Hirschfeldt and Jockusch (2016).

Corollary

 $PA \not\leq_W SRT_2^2 * COH$ and in particular $WKL \not\leq_W RT_2^2$.

This follows from results of Liu (2012). We note that PA ${<_{\rm W}}\,{\sf WKL}.$

Proposition (B., Hendtlass and Kreuzer 2017)

 $\mathsf{PA} \equiv (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL}).$

Theorem $\widehat{\mathsf{RT}_{k}^{n}} \leq_{sW} \mathsf{RT}_{2}^{n+2}$ for all $n, k \ge 1$. Corollary $\mathsf{WKL}' \leq_{W} \mathsf{RT}_{2}^{3}$ and $\mathsf{WKL}^{(n)} \leq_{W} \mathsf{SRT}_{2}^{n+2}$ for $n \ge 2$.

The first statement was also proved independently by Hirschfeldt and Jockusch (2016).

Corollary

 $PA \not\leq_W SRT_2^2 * COH$ and in particular $WKL \not\leq_W RT_2^2$.

This follows from results of Liu (2012). We note that PA ${<_{\rm W}}\,{\sf WKL}.$

Proposition (B., Hendtlass and Kreuzer 2017)

 $\mathsf{PA} \equiv (\mathsf{C}'_{\mathbb{N}} \to \mathsf{WKL}).$

Weak Kőnig's Lemma and Ramsey's Theorem

Theorem

$$\widehat{\mathsf{RT}_k^n} \leq_{\mathrm{sW}} \mathsf{RT}_2^{n+2} \text{ for all } n, k \ge 1.$$

Corollary

WKL'
$$\leq_{\mathrm{W}} \mathsf{RT}_2^3$$
 and WKL⁽ⁿ⁾ $\leq_{\mathrm{W}} \mathsf{SRT}_2^{n+2}$ for $n \geq 2$.

The first statement was also proved independently by Hirschfeldt and Jockusch (2016).

Corollary

 $PA \not\leq_W SRT_2^2 * COH$ and in particular $WKL \not\leq_W RT_2^2$.

Question

Is there a simple proof of WKL $\leq_W RT_2^2$?

To prove that there is no uniform reduction should potentially be much simpler to prove than the non-uniform result.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

Let $f, g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ and let f be finitely tolerant and total. Then $g \times f \leq_{\mathrm{W}} f \Longrightarrow \widehat{g} \leq_{\mathrm{W}} f$.

- f:⊆ N^N ⇒ N^N is called finitely tolerant if there is a computable T:⊆ N^N → N^N such that for all p, q ∈ dom(f), r ∈ N^N, k ∈ N:
 - $(\forall n \ge k) p(n) = q(n)$ and
 - $\blacktriangleright \ r \in f(q) \Longrightarrow T\langle r, k \rangle \in f(p).$
- $\operatorname{RT}_{k}^{n}, \operatorname{RT}_{\mathbb{N}}^{n}$ are finitely tolerant.

A similar version of the squashing theorem also holds for \leq_{sW} and Dorais, Dzhafarov, Hirst, Mileti and Shafer (2016) proved $RT_k^n <_{sW} RT_{k+1}^n$ for all $n, k \geq 1$.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

Let $f, g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ and let f be finitely tolerant and total. Then $g \times f \leq_{\mathrm{W}} f \Longrightarrow \widehat{g} \leq_{\mathrm{W}} f$.

- f:⊆ N^N ⇒ N^N is called finitely tolerant if there is a computable T:⊆ N^N → N^N such that for all p, q ∈ dom(f), r ∈ N^N, k ∈ N:
 - $(\forall n \ge k) p(n) = q(n)$ and
 - $r \in f(q) \Longrightarrow T\langle r, k \rangle \in f(p).$
- $\mathsf{RT}_k^n, \mathsf{RT}_{\mathbb{N}}^n$ are finitely tolerant.

A similar version of the squashing theorem also holds for \leq_{sW} and Dorais, Dzhafarov, Hirst, Mileti and Shafer (2016) proved $RT_k^n <_{sW} RT_{k+1}^n$ for all $n, k \geq 1$.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

Let $f, g :\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$ and let f be finitely tolerant and total. Then $g \times f \leq_{\mathrm{W}} f \Longrightarrow \widehat{g} \leq_{\mathrm{W}} f$.

- f:⊆ N^N ⇒ N^N is called finitely tolerant if there is a computable T:⊆ N^N → N^N such that for all p, q ∈ dom(f), r ∈ N^N, k ∈ N:
 - $(\forall n \ge k) p(n) = q(n)$ and
 - $r \in f(q) \Longrightarrow T\langle r, k \rangle \in f(p).$
- RT_k^n, RT_N^n are finitely tolerant.

A similar version of the squashing theorem also holds for \leq_{sW} and Dorais, Dzhafarov, Hirst, Mileti and Shafer (2016) proved $RT_k^n <_{sW} RT_{k+1}^n$ for all $n, k \geq 1$.

- X

Theorem (Rakotoniaina, Hirschfeldt & Jockusch, Patey 2015)

 $\mathsf{RT}_k^n <_{\mathrm{W}} \mathsf{RT}_{k+1}^n$ for all $n, k \ge 1$.

Proof. (B. and Rakotoniaina 2015)

- ▶ $\mathsf{RT}_2^n \times \mathsf{RT}_k^{n+1} \leq_W \mathsf{RT}_{k+1}^{n+1}$ by the Product Theorem.
- ► $\operatorname{RT}_{2}^{n} \times \operatorname{RT}_{k}^{n+1} \leq_{\mathrm{W}} \operatorname{RT}_{k}^{n+1}$ implies $\widehat{\operatorname{RT}_{2}^{n}} \leq_{\mathrm{W}} \operatorname{RT}_{k}^{n+1}$ by the Squashing Theorem which leads to a contradiction: $\lim^{(n-1)} \leq_{\mathrm{W}} \operatorname{WKL}^{(n)} \equiv_{\mathrm{W}} \widehat{\operatorname{RT}_{2}^{n}} \leq_{\mathrm{W}} \operatorname{RT}_{k}^{n+1}$
- ► $\mathsf{RT}_2^n \times \mathsf{RT}_k^{n+1} \not\leq_{\mathrm{W}} \mathsf{RT}_k^{n+1}$ for all $n, k \ge 1$ follows.
- ► $\mathsf{RT}_k^{n+1} <_{\mathsf{W}} \mathsf{RT}_{k+1}^{n+1}$ for all $n, k \ge 1$ follows.

Can colors make up for products?

- ▶ $\mathsf{RT}_k^n \times \mathsf{RT}_l^n \leq_W \mathsf{RT}_{kl}^n$ is easy to see, hence
- $\prod_{i=1}^{m} \operatorname{RT}_{k_i}^n \leq_{\mathrm{W}} \operatorname{RT}_{\prod_{i=1}^{m} k_i}^n$ follows.
- ▶ Dzhafarov, Goh, Hirschfeldt, Patey, Pauly (2018) proved that the upper bound is optimal in the case of *n* = 1.

Corollary

```
\bigsqcup_{i=1}^{\infty} (\mathsf{RT}_k^n)^i \leq_{\mathrm{W}} \bigsqcup_{j=1}^{\infty} \mathsf{RT}_j^n \text{ for } n \geq 1, \ k \geq 2.
```

```
Here \equiv_{W} holds at least in the case of n = 1.
```

Can products make up for colors?

Question

Does $\bigsqcup_{i=1}^{\infty} (\mathsf{RT}_k^n)^i \equiv_{\mathrm{W}} \bigsqcup_{j=1}^{\infty} \mathsf{RT}_j^n$ hold for all for $n \ge 1$, $k \ge 2$?

Can colors make up for products?

- ▶ $\mathsf{RT}_k^n \times \mathsf{RT}_l^n \leq_W \mathsf{RT}_{kl}^n$ is easy to see, hence
- $\prod_{i=1}^{m} \operatorname{RT}_{k_i}^n \leq_{\mathrm{W}} \operatorname{RT}_{\prod_{i=1}^{m} k_i}^n$ follows.
- ▶ Dzhafarov, Goh, Hirschfeldt, Patey, Pauly (2018) proved that the upper bound is optimal in the case of *n* = 1.

Corollary

```
\bigsqcup_{i=1}^{\infty} (\mathsf{RT}_k^n)^i \leq_{\mathrm{W}} \bigsqcup_{j=1}^{\infty} \mathsf{RT}_j^n \text{ for } n \geq 1, \ k \geq 2.
```

```
Here \equiv_{W} holds at least in the case of n = 1.
```

Can products make up for colors?

Question

Does $\bigsqcup_{i=1}^{\infty} (\mathsf{RT}_k^n)^i \equiv_{\mathrm{W}} \bigsqcup_{j=1}^{\infty} \mathsf{RT}_j^n$ hold for all for $n \ge 1, k \ge 2$?

Can colors make up for products?

- ▶ $\mathsf{RT}_k^n \times \mathsf{RT}_l^n \leq_W \mathsf{RT}_{kl}^n$ is easy to see, hence
- $\prod_{i=1}^{m} \operatorname{RT}_{k_i}^n \leq_{\mathrm{W}} \operatorname{RT}_{\prod_{i=1}^{m} k_i}^n$ follows.
- ▶ Dzhafarov, Goh, Hirschfeldt, Patey, Pauly (2018) proved that the upper bound is optimal in the case of *n* = 1.

Corollary

 $\bigsqcup_{i=1}^{\infty} (\mathsf{RT}_k^n)^i \leq_{\mathrm{W}} \bigsqcup_{j=1}^{\infty} \mathsf{RT}_j^n \text{ for } n \geq 1, \ k \geq 2.$

Here \equiv_{W} holds at least in the case of n = 1.

Can products make up for colors?

Question

Does $\bigsqcup_{i=1}^{\infty} (\mathsf{RT}_k^n)^i \equiv_{\mathrm{W}} \bigsqcup_{j=1}^{\infty} \mathsf{RT}_j^n$ hold for all for $n \ge 1$, $k \ge 2$?

References

- F.G. Dorais, D.D. Dzhafarov, J.L. Hirst, J.R. Mileti, P. Shafer, On Uniform Relationships Between Combinatorial Problems, *Transactions of the AMS* 368 (2016) 1321–1359
- Denis R. Hirschfeldt and Carl G. Jockusch, On notions of computability theoretic reductions between Π¹₁-principles, J. Mathematical Logic 16 (2016)
- Damir D. Dzhafarov, Strong reductions between combinatorial principles Journal of Symbolic Logic 81 (2016) 1405–1431
- Vasco Brattka, Matthew Hendtlass, Alexander P. Kreuzer, On the Uniform Computational Content of Computability Theory, *Theory of Computing Systems* 61 (2017) 1376–1426
- Vasco Brattka, Tahina Rakotoniaina, On the Uniform Computational Content of Ramsey's Theorem, Journal of Symbolic Logic 82 (2017) 1278–1316
- D.D. Dzhafarov, J.L. Goh, D.R. Hirschfeldt, L. Patey, A. Pauly, Ramsey's theorem and products in the Weihrauch degrees http://arxiv.org/abs/1804.10968