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VC-dimension

Let Ω be a set, and let S be a collection of subsets of Ω (also called a
“set system on Ω”).

Definition

(1) Given X ⊆ Ω, let X ∩ S = {X ∩ Y : Y ∈ S}.
(2) S shatters X ⊆ Ω if X ∩ S = P(X ).
(3) The VC-dimension of S, denoted VC(S), is the supremum of all

integers k ≥ 1 such that S shatters a k -element subset of Ω.
Note: VC(S) ∈ N ∪ {∞}.

Examples
• Ω = R and S is the collection of all intervals. VC(S) = 2
• Ω = R2 and S is the collection of axis-parallel rectangles. VC(S) = 4
• Ω = R2 and S is the collection of convex sets. VC(S) =∞
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Omitting bipartite graphs

Let (V ,W ; E) be a bipartite graph, and let S be the collection of
V -neighborhoods of all vertices in W .

Then VC(S) ≥ k if and only if (V ,W ; E) contains ([k ],P([k ]);∈) as an
induced subgraph.

Corollary: If (V ,W ; E) omits some bipartite graph (V0,W0; E0), with
|V0|, |W0| ≤ k , then VC(S) ≤ k + log k .
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VC-dimension in groups

Definition
Given a group G and a set A ⊆ G, let VC(A) := VC({gA : g ∈ G}).

This coincides with VC-dimension for the bipartite graph on (G,G)
induced by yx ∈ A (as in the last slide).

If VC(A) <∞, then A is called a “VC-set”.

Examples:
(1) G = (Rn,+) for some and n > 0. A ⊆ Rn is a Boolean combination

of solutions sets to polynomial inequalities in n variables.

(2) G = (Z/pZ,+) for some prime p > 2. A = {0,1, . . . , p−1
2 }.

Then VC(A) ≤ 3.
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VC-dimension and measure

Let G be a group.

• A ⊆ G is piecewise syndetic if there is some finite K ⊆ G such that
KA contains a right translate of any finite subset of G.
• G is amenable if there is a left-invariant finitely additive probability

measure (hereafter: invariant measure) on all subsets of G.

Fact. If G is amenable and A ⊆ G is piecewise syndetic then there is
an invariant measure µ on G such that µ(A) > 0.

Theorem (AIM group 2017; Chernikov-Simon 2015)

Let G be a group and fix A ⊆ G such that VC(A) <∞. If there is an
invariant measure µ on G such that µ(A) > 0, then A is piecewise
syndetic.
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KA contains a right translate of any finite subset of G.
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measure (hereafter: invariant measure) on all subsets of G.

Fact. If G is amenable and A ⊆ G is piecewise syndetic then there is
an invariant measure µ on G such that µ(A) > 0.

Theorem (AIM group1 2017; Chernikov-Simon 2015)

Let G be a group and fix A ⊆ G such that VC(A) <∞. If there is an
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1Chernikov, C., Freitag, Goldbring, Wagner



VC-dimension and measure

• Hindman: If N = C1 ∪ . . . ∪ Cn then some Ci is an IP-set.

• Erdös: Is there a “density” analogue of Hindman’s Theorem?

• E. G. Straus: No.

Corollary (Density Hindman’s Theorem for VC-sets)

Let G be an infinite torsion-free group. Fix A ⊆ G and suppose there is
an invariant measure µ on G with µ(A) > 0. If VC(A) <∞ then there is
g ∈ G such that gA is an IP-set.
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Local amenability

Let G be a group and let B be a left-invariant Boolean algebra of
subsets of G.

Then B is amenable if there is a left-invariant finitely additive
probability measure µ on B.

Examples:
(1) There are many examples in which B is the Boolean algebra of

definable subsets of G in some first-order expansion of G.
For example, let G be the free group on n generators, as a
first-order structure in the group language.

(2) If G is pseudofinite then the Boolean algebra of internal sets is
amenable.
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Regularity

Szemerédi’s Regularity Lemma: Any sufficiently large finite graph can
be nontrivially partitioned into a small number of pieces so that most
pairs of pieces have regular edge distribution.

←− highly structured highly random −→

Szemerédi’s Regularity Lemma processes large graphs into
manageable ingredients:
• structured: the partition
• random: edges between pieces of regular pairs
• small: edges in some piece, or between pieces of irregular pairs
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Arithmetic regularity

First developed for finite abelian groups by Green in 2005.

Given a finite abelian group G and A ⊆ G, find structured subsets of G
which behave regularly with respect to A, up to small error.

Special case: If n is sufficiently large and A ⊆ (Z/2Z)n, then there is a
subgroup H of small index such that A is uniformly distributed inside
almost all cosets of H.

Applications:
• Green: Given α, ε > 0, if N ≥ n(α, ε) and A ⊆ [N] is such that
|A| ≥ αN, then A contains (α3 − ε)N three-term arithmetic
progressions of the same common difference.
• Chow, Lindqvist, Prendiville: Rado’s criterion for partition regularity

of sums of sufficiently many k th powers.
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Tame regularity

There have been many results concerning strengthened regularity
lemmas for graphs satisfying combinatorial restrictions.

• (Malliaris and Shelah 2013) “stable” graphs
• (Alon, Fischer, Newman 2007) bounded VC-dimension

In the arithmetic setting,
• Terry and Wolf (2017) “stable” subsets of (Z/pZ)n (with p fixed)
• C., Pillay, Terry (2017) “stable” subsets of finite groups
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Arithmetic regularity for VC-sets in finite groups

Theorem (Alon, Fox, Zhao 2018)

Fix r ,d ≥ 1. Suppose G is a finite abelian group of exponent at most r
and A ⊆ G is such that VC(A) ≤ d.

Then, for any ε > 0, there are:
∗ a subgroup H ≤ G, of index at most (1/ε)d+or,d (1), and
∗ a set D ⊆ G, which is a union of cosets of H,

such that |A4D| ≤ ε|G|.
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Fix r ,d ≥ 1. Suppose G is a finite group of exponent at most r and
A ⊆ G is such that VC(A) ≤ d. Then, for any ε > 0, there are:

∗ a normal subgroup H ≤ G, of index Or ,d ,ε(1),
∗ a set D ⊆ G, which is a union of cosets of H, and
∗ a set Z ⊆ G, which is a union of cosets of H, with |Z | < ε|G|,

satisfying the following properties.
(i) |(A\Z )4D| < ε|H| (and so |A4D| < 2ε|G|).
(ii) For any g 6∈ Z, either |gH ∩ A| < ε|H| or |gH\A| < ε|H|.

Clause (ii) gives a regular partition for the bipartite graph on (G,G)
induced by xy ∈ A, in which the pieces are the cosets of H and the
regular pairs have density within ε of 0 or 1.
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Pseudofinite groups

Let (Gs)s∈N be a fixed sequence of finite groups and let U be an
ultrafilter on N.

As a set, the ultraproduct of (Gs)s∈N is
(∏

s∈N Gs
)
/∼, where

(as) ∼ (bs) if and only if {s : as = bs} ∈ U . This is denoted
∏
U Gs.

There is a well-defined group operation on
∏
U Gs, namely:

[(as)] · [(bs)] = [(as · bs)]
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Internal subsets of pseudofinite groups

Suppose G =
∏
U Gs, as in the last slide.

Given a sequence (Xs)s∈N, with Xs ⊆ Gs, set
∏
U Xs :=

(∏
s∈N Xs

)
/∼.

Such sets are called internal, and they form a left and right invariant
Boolean algebra of subsets of G.

Proposition: The Boolean algebra of internal sets is amenable. In
particular, given X =

∏
U Xs, define

µ(X ) = lim
U
|Xs|/|Gs|.

Łoś’s Theorem: First-order properties of internal subsets of G
correspond to U-asymptotic properties of subsets of Gs.
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Łoś’s Theorem: First-order properties of internal subsets of G
correspond to U-asymptotic properties of subsets of Gs.



Internal subsets of pseudofinite groups

Suppose G =
∏
U Gs, as in the last slide.

Given a sequence (Xs)s∈N, with Xs ⊆ Gs, set
∏
U Xs :=

(∏
s∈N Xs

)
/∼.

Such sets are called internal, and they form a left and right invariant
Boolean algebra of subsets of G.

Proposition: The Boolean algebra of internal sets is amenable. In
particular, given X =

∏
U Xs, define

µ(X ) = lim
U
|Xs|/|Gs|.
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VC-sets in pseudofinite groups

Let G =
∏
U Gs be pseudofinite. Fix A ⊆ G internal with VC(A) <∞.

Let B(A) be the Boolean algebra generated by {gAh : g,h ∈ G}.

Theorem (C.-Pillay 2018)

(a) If X ∈ B(A), then µ(X ) > 0 if and only if G is covered by finitely
many left translates of X .

(b) The restriction of µ to B(A) is the unique left-invariant finitely
additive probability measure on B(A).

(c) Set G00
A = {x ∈ G : µ(gA4xgA) = 0 for all g ∈ G}. Then:

(i) G00
A is a normal subgroup of G.

(ii) G00
A is an intersection of countably many sets in B(A).

(iii) Any internal set containing G00
A has positive measure.
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VC-sets in pseudofinite groups of finite exponent
Let G =

∏
U Gs be pseudofinite. Fix A ⊆ G internal with VC(A) <∞.

Lemma (C.-Pillay-Terry 2018)

Suppose G has finite exponent. Then for any ε > 0, there are:
∗ a finite-index normal subgroup H ≤ G in B(A),
∗ sets D,Z ⊆ G, which are unions of cosets of H, with µ(Z ) < ε,

satisfying the following properties.
(i) µ((A\Z )4D) = 0.
(ii) For any g 6∈ Z , either µ(gH ∩ A) = 0 or µ(gH\A) = 0.

Ingredients:
• (C.-Pillay) There is a certain compactification Γ of G/G00

A , which is
used to show a version of (ii) for H = G00

A .
• Since G has finite exponent, Γ is an inverse limit of finite groups.
• From this, it follows that G00

A is an intersection of normal finite-index
subgroups of G in B(A).



VC-sets in pseudofinite groups of finite exponent
Let G =

∏
U Gs be pseudofinite. Fix A ⊆ G internal with VC(A) <∞.

Lemma (C.-Pillay-Terry 2018)

Suppose G has finite exponent. Then for any ε > 0, there are:
∗ a finite-index normal subgroup H ≤ G in B(A),
∗ sets D,Z ⊆ G, which are unions of cosets of H, with µ(Z ) < ε,

satisfying the following properties.
(i) µ((A\Z )4D) = 0.
(ii) For any g 6∈ Z , either µ(gH ∩ A) = 0 or µ(gH\A) = 0.

Ingredients:
• (C.-Pillay) There is a certain compactification Γ of G/G00

A , which is
used to show a version of (ii) for H = G00

A .
• Since G has finite exponent, Γ is an inverse limit of finite groups.
• From this, it follows that G00

A is an intersection of normal finite-index
subgroups of G in B(A).



VC-sets in pseudofinite groups of finite exponent
Let G =

∏
U Gs be pseudofinite. Fix A ⊆ G internal with VC(A) <∞.

Lemma (C.-Pillay-Terry 2018)

Suppose G has finite exponent. Then for any ε > 0, there are:
∗ a finite-index normal subgroup H ≤ G in B(A),
∗ sets D,Z ⊆ G, which are unions of cosets of H, with µ(Z ) < ε,

satisfying the following properties.
(i) µ((A\Z )4D) = 0.
(ii) For any g 6∈ Z , either µ(gH ∩ A) = 0 or µ(gH\A) = 0.

Ingredients:
• (C.-Pillay) There is a certain compactification Γ of G/G00

A , which is
used to show a version of (ii) for H = G00

A .

• Since G has finite exponent, Γ is an inverse limit of finite groups.
• From this, it follows that G00

A is an intersection of normal finite-index
subgroups of G in B(A).



VC-sets in pseudofinite groups of finite exponent
Let G =

∏
U Gs be pseudofinite. Fix A ⊆ G internal with VC(A) <∞.

Lemma (C.-Pillay-Terry 2018)

Suppose G has finite exponent. Then for any ε > 0, there are:
∗ a finite-index normal subgroup H ≤ G in B(A),
∗ sets D,Z ⊆ G, which are unions of cosets of H, with µ(Z ) < ε,

satisfying the following properties.
(i) µ((A\Z )4D) = 0.
(ii) For any g 6∈ Z , either µ(gH ∩ A) = 0 or µ(gH\A) = 0.

Ingredients:
• (C.-Pillay) There is a certain compactification Γ of G/G00

A , which is
used to show a version of (ii) for H = G00

A .
• Since G has finite exponent, Γ is an inverse limit of finite groups.

• From this, it follows that G00
A is an intersection of normal finite-index

subgroups of G in B(A).



VC-sets in pseudofinite groups of finite exponent
Let G =

∏
U Gs be pseudofinite. Fix A ⊆ G internal with VC(A) <∞.

Lemma (C.-Pillay-Terry 2018)

Suppose G has finite exponent. Then for any ε > 0, there are:
∗ a finite-index normal subgroup H ≤ G in B(A),
∗ sets D,Z ⊆ G, which are unions of cosets of H, with µ(Z ) < ε,

satisfying the following properties.
(i) µ((A\Z )4D) = 0.
(ii) For any g 6∈ Z , either µ(gH ∩ A) = 0 or µ(gH\A) = 0.

Ingredients:
• (C.-Pillay) There is a certain compactification Γ of G/G00

A , which is
used to show a version of (ii) for H = G00

A .
• Since G has finite exponent, Γ is an inverse limit of finite groups.
• From this, it follows that G00

A is an intersection of normal finite-index
subgroups of G in B(A).



Arithmetic regularity with bounded exponent

Theorem (CPT)

Fix r ,d ≥ 1. Suppose G is a finite group of exponent at most r and
A ⊆ G is such that VC(A) ≤ d. Then, for any ε > 0, there are:
∗ a normal subgroup H ≤ G, of index Or ,d ,ε(1),
∗ a set D ⊆ G, which is a union of cosets of H, and
∗ a set Z ⊆ G, which is a union of cosets of H, with |Z | < ε|G|,

such that |(A\Z )4D| < ε|H|.

Proof sketch: If not then, for a fixed ε > 0, every integer s fails as a
candidate for Or ,d ,ε(1). This is witnessed by some finite group Gs of
exponent r and subset As ⊆ Gs with VC(As) ≤ d .

If G =
∏
U Gs and A =

∏
U As then G has exponent r and VC(A) ≤ d .

Assuming U is nonprincipal, this contradicts the previous lemma.
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U As then G has exponent r and VC(A) ≤ d .

Assuming U is nonprincipal, this contradicts the previous lemma.



Removing the dependence on the exponent

Theorem (CPT)

Fix r ,d ≥ 1. Suppose G is a finite group of exponent at most r and
A ⊆ G is such that VC(A) ≤ d. Then, for any ε > 0, there are:
∗ a normal subgroup H ≤ G, of index Or ,d ,ε(1),
∗ a set D ⊆ G, which is a union of cosets of H, and
∗ a set Z ⊆ G, which is a union of cosets of H, with |Z | < ε|G|,

such that |(A\Z )4D| < ε|H|.

Recall: If G = (Z/pZ,+) and A = {0,1, . . . , p−1
2 } then VC(A) ≤ 3.

But we cannot have |A4D| < 1
2 |G|, where D is a union of cosets of a

subgroup of Z/pZ whose index is independent of p.
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Compactifications of pseudofinite groups

Setting: G is pseudofinite, and A ⊆ G is internal with VC(A) <∞.

We have a compactification Γ of G/G00
A , which is used to show that

G00
A behaves regularly with respect to A.

Let Γ0 be the connected component of the identity in Γ.

Then Γ/Γ0 is an inverse limit of finite groups.

Theorem (Pillay 2017)

Γ0 is abelian.

Nikolov, Schneider, Thom (2017) Any compactification of a
pseudofinite group has an abelian connected component.

So Γ0 is an inverse limit of real tori (i.e. Tn for varying n).
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Bohr sets

Definition
Given a group H, a homomorphism τ : H → Tn, and some δ > 0, set

Bn
δ,τ := {x ∈ H : d(τ(x),0) < δ},

where d denotes the usual metric on Tn, and 0 is the identity in Tn.

B ⊆ H is a (δ, n)-Bohr set in H if B = Bn
τ,δ for some τ .

Remarks:
• Bn

δ,τ is closed under inverses and contains the identity.
• Bn

δ,τ · Bn
δ,τ ⊆ Bn

2δ,τ .
• If H is finite then |Bn

δ,τ | ≥ (δ/2)n|H|.
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Arithmetic regularity for VC-sets

Theorem (C., Pillay, Terry 2018)

Fix d ≥ 1. Suppose G is a finite group and A ⊆ G is such that
VC(A) ≤ d. Then, for any ε > 0, there are:

∗ a normal subgroup H ≤ G of index at most Od ,ε(1),
∗ a (δ, n)-Bohr set B ⊆ H, with δ-1,n ≤ Od ,ε(1),
∗ a set D ⊆ G, which is a union of finitely many translates of B, and
∗ a set Z ⊆ G, with |Z | < ε|G|,

satisfying the following properties.
(i) |(A4D)\Z | < ε|B|.
(ii) For any g 6∈ Z, either |gB ∩ A| < ε|B| or |gB\A| < ε|B|.

A quantitative version for finite abelian groups was obtained
independently by Sisask (2018).
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VC sets in nonabelian finite simple groups

Remark: If G is a nonabelian simple group, and B ⊆ G is a Bohr set,
then B = G.

Corollary

For any d ≥ 1 and ε > 0, there is n = n(d , ε) such that if G is a
nonabelian finite simple group of size at least n, and A ⊆ G is such
that VC(A) ≤ d , then |A| < ε|G| or |A| > (1− ε)|G|.

By adapting the methods of Alon, Fox, and Zhao, and applying work of
Gowers on “quasirandom groups”, one can give a direct proof of the
previous corollary, which yields log(n(d , ε)) ≤ O((90/ε)6d ).

If one also uses the classification of finite simple groups then 6 can be
improved to 3 + µ for any fixed µ > 0.
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Bounds in the bounded exponent case

The following result is proved by combining methods of Alon, Fox, and
Zhao with structural results on “approximate groups” due to Breuillard,
Green, and Tao.

Theorem (C. 2018)

Fix r ,d ≥ 1. Suppose G is a finite group of exponent at most r and
A ⊆ G is such that VC(A) ≤ d. Then, for any ε > 0, there are:

∗ a normal subgroup H ≤ G, of index 2Or,d ((1/ε)4d+1),
∗ a set D ⊆ G, which is a union of cosets of H, and
∗ a set Z ⊆ G, which is a union of cosets of H, with |Z | < ε|G|,

satisfying the following properties.
(i) |A4D| < ε4|G|.
(ii) For any g 6∈ Z, either |gH ∩ A| < ε|H| or |gH\A| < ε|H|.
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