Ramsey complete sequences

David Conlon
Joint with Jacob Fox

19 July 2018

Complete sequences

Definition

A sequence $A=\left(a_{i}\right)_{i=1}^{\infty}$ of natural numbers is said to be complete if every sufficiently large positive integer can be written as a sum of distinct elements of A and entirely complete if this holds for every positive integer.

We write $\Sigma(A)$ for the set of all natural numbers representable as the sum of distinct elements of A.

Complete sequences

Definition

A sequence $A=\left(a_{i}\right)_{i=1}^{\infty}$ of natural numbers is said to be complete if every sufficiently large positive integer can be written as a sum of distinct elements of A and entirely complete if this holds for every positive integer.

We write $\Sigma(A)$ for the set of all natural numbers representable as the sum of distinct elements of A.

Examples

- $\left(2^{i}\right)_{i=0}^{\infty}$ - entirely complete

Complete sequences

Definition

A sequence $A=\left(a_{i}\right)_{i=1}^{\infty}$ of natural numbers is said to be complete if every sufficiently large positive integer can be written as a sum of distinct elements of A and entirely complete if this holds for every positive integer.

We write $\Sigma(A)$ for the set of all natural numbers representable as the sum of distinct elements of A.

Examples

- $\left(2^{i}\right)_{i=0}^{\infty}$ - entirely complete
- $\left(2^{i}\right)_{i=1}^{\infty}$ - not complete

Complete sequences

Definition

A sequence $A=\left(a_{i}\right)_{i=1}^{\infty}$ of natural numbers is said to be complete if every sufficiently large positive integer can be written as a sum of distinct elements of A and entirely complete if this holds for every positive integer.

We write $\Sigma(A)$ for the set of all natural numbers representable as the sum of distinct elements of A.

Examples

- $\left(2^{i}\right)_{i=0}^{\infty}$ - entirely complete
- $\left(2^{i}\right)_{i=1}^{\infty}$ - not complete
- $\left(i^{k}\right)_{i=1}^{\infty}$ - complete

Complete sequences

Definition

A sequence $A=\left(a_{i}\right)_{i=1}^{\infty}$ of natural numbers is said to be complete if every sufficiently large positive integer can be written as a sum of distinct elements of A and entirely complete if this holds for every positive integer.

We write $\Sigma(A)$ for the set of all natural numbers representable as the sum of distinct elements of A.

Examples

- $\left(2^{i}\right)_{i=0}^{\infty}$ - entirely complete
- $\left(2^{i}\right)_{i=1}^{\infty}$ - not complete
- $\left(i^{k}\right)_{i=1}^{\infty}$ - complete
- $\left\{p^{i} q^{j}: i, j \geq 0\right\},(p, q)=1$ - complete

A criterion for completeness

Lemma

$A=\left(a_{i}\right)_{i=1}^{\infty}$ is entirely complete iff $a_{1}=1$ and, for all $k \geq 2$,

$$
\sum_{i=1}^{k-1} a_{i} \geq a_{k}-1
$$

A criterion for completeness

Lemma

$A=\left(a_{i}\right)_{i=1}^{\infty}$ is entirely complete iff $a_{1}=1$ and, for all $k \geq 2$,

$$
\sum_{i=1}^{k-1} a_{i} \geq a_{k}-1
$$

\Longrightarrow If $a_{k}>1+\sum_{i=1}^{k-1} a_{i}$, then $\sum_{i=1}^{k-1} a_{i}+1$ not represented.

A criterion for completeness

Lemma

$A=\left(a_{i}\right)_{i=1}^{\infty}$ is entirely complete iff $a_{1}=1$ and, for all $k \geq 2$,

$$
\sum_{i=1}^{k-1} a_{i} \geq a_{k}-1
$$

\Longrightarrow If $a_{k}>1+\sum_{i=1}^{k-1} a_{i}$, then $\sum_{i=1}^{k-1} a_{i}+1$ not represented.
\Longleftarrow Suppose $\Sigma\left(\left(a_{i}\right)_{i=1}^{k-1}\right)$ contains [$\sum_{i=1}^{k-1} a_{i}$]. Then

$$
\Sigma\left(\left(a_{i}\right)_{i=1}^{k}\right) \supseteq\left[\sum_{i=1}^{k-1} a_{i}\right] \cup\left(a_{k}+\left[\sum_{i=1}^{k-1} a_{i}\right]\right) \supseteq\left[\sum_{i=1}^{k} a_{i}\right] .
$$

Ramsey complete sequences

Definition

A sequence $A=\left(a_{i}\right)_{i=1}^{\infty}$ of natural numbers is said to be r-Ramsey complete if whenever A is partitioned into A_{1}, \ldots, A_{r}, every sufficiently large positive integer is in $\cup_{i=1}^{r} \Sigma\left(A_{i}\right)$ and entirely r-Ramsey complete if this holds for every positive integer.

Ramsey complete sequences

Definition

A sequence $A=\left(a_{i}\right)_{i=1}^{\infty}$ of natural numbers is said to be r-Ramsey complete if whenever A is partitioned into A_{1}, \ldots, A_{r}, every sufficiently large positive integer is in $\cup_{i=1}^{r} \Sigma\left(A_{i}\right)$ and entirely r-Ramsey complete if this holds for every positive integer.

If a_{i} are all distinct, can't guarantee the same colour everywhere. To see this, consider the 2 -colouring χ where

$$
\chi(i)= \begin{cases}0 & \text { if } i \text { is in }\left(2^{2^{j}}-1,2^{2^{j+1}}\right] \text { with } j \text { even }, \\ 1 & \text { if } i \text { is in }\left(2^{2^{j}}-1,2^{2^{j+1}}\right] \text { with } j \text { odd } .\end{cases}
$$

Ramsey complete sequences

Theorem (Burr-Erdős, 1985)

There exists a constant C and an entirely 2-Ramsey complete sequence A such that, for all n,

$$
|A \cap[n]| \leq C \log ^{3} n
$$

Ramsey complete sequences

Theorem (Burr-Erdős, 1985)

There exists a constant C and an entirely 2-Ramsey complete sequence A such that, for all n,

$$
|A \cap[n]| \leq C \log ^{3} n
$$

Moreover, there exists $c>0$ such that there is no 2-Ramsey complete sequence with $|A \cap[n]| \leq c \log ^{2} n$ for all large n.

Ramsey complete sequences

Theorem (Burr-Erdős, 1985)

There exists a constant C and an entirely 2-Ramsey complete sequence A such that, for all n,

$$
|A \cap[n]| \leq C \log ^{3} n
$$

Moreover, there exists $c>0$ such that there is no 2-Ramsey complete sequence with $|A \cap[n]| \leq c \log ^{2} n$ for all large n.

Two problems of Burr and Erdős

- Improve these bounds.

Ramsey complete sequences

Theorem (Burr-Erdős, 1985)

There exists a constant C and an entirely 2-Ramsey complete sequence A such that, for all n,

$$
|A \cap[n]| \leq C \log ^{3} n
$$

Moreover, there exists $c>0$ such that there is no 2-Ramsey complete sequence with $|A \cap[n]| \leq c \log ^{2} n$ for all large n.

Two problems of Burr and Erdős

- Improve these bounds.
- Extend to r-colour case.

Ramsey complete sequences

Theorem (Burr-Erdős, 1985)

There exists a constant C and an entirely 2-Ramsey complete sequence A such that, for all n,

$$
|A \cap[n]| \leq C \log ^{3} n
$$

Moreover, there exists $c>0$ such that there is no 2-Ramsey complete sequence with $|A \cap[n]| \leq c \log ^{2} n$ for all large n.

Two problems of Burr and Erdős, reiterated by Erdős

- Improve these bounds.
- Extend to r-colour case.

New results

Theorem (C.-Fox)

For every integer $r \geq 2$, there exist $C=C(r)$ and an entirely Ramsey complete sequence A with

$$
|A \cap[n]| \leq C \log ^{2} n .
$$

New results

Theorem (C.-Fox)

For every integer $r \geq 2$, there exist $C=C(r)$ and an entirely Ramsey complete sequence A with

$$
|A \cap[n]| \leq C \log ^{2} n .
$$

Solves both problems at once.

Lower bound

In their paper, Burr and Erdős state that their proof for the lower bound is 'quite complicated' and because of the gap between their upper and lower bounds, they could not 'justify the effort' of reproducing their proof. Consequently, they only proved that

Theorem (Burr-Erdős, 1985)

There exists $c>0$ such that there is no 2-Ramsey complete sequence with $|A \cap[n, 2 n)| \leq c \log n$ for all large n.

Lower bound

In their paper, Burr and Erdős state that their proof for the lower bound is 'quite complicated' and because of the gap between their upper and lower bounds, they could not 'justify the effort' of reproducing their proof. Consequently, they only proved that

Theorem (Burr-Erdős, 1985)

There exists $c>0$ such that there is no 2-Ramsey complete sequence with $|A \cap[n, 2 n)| \leq c \log n$ for all large n.

We give a full proof of the lower bound, but I will only try to explain the result of Burr and Erdős here.

Lower bound

Again consider the 2-colouring χ where

$$
\chi(i)= \begin{cases}0 & \text { if } i \text { is in }\left(2^{2^{j}}-1,2^{j^{j+1}}\right] \text { with } j \text { even, } \\ 1 & \text { if } i \text { is in }\left(2^{2^{j}}-1,2^{j^{j+1}}\right] \text { with } j \text { odd. }\end{cases}
$$

Again consider the 2-colouring χ where

$$
\chi(i)= \begin{cases}0 & \text { if } i \text { is in }\left(2^{2^{j}}-1,2^{2^{j+1}}\right] \text { with } j \text { even }, \\ 1 & \text { if } i \text { is in }\left(2^{2^{j}}-1,2^{2^{j+1}}\right] \text { with } j \text { odd. }\end{cases}
$$

The rough idea then is that if there are only $c \log n$ numbers in each interval [$n, 2 n$), then sums of numbers from the interval $\left[1,2^{2^{j}}-1\right]$ can never make it as far as the interval $\left[2^{2^{j}+j}, 2^{2^{j}+j+1}\right]$, while there are too few numbers above $2^{2^{j}}$ to cover the same interval.

Upper bound

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from $[x, 2 x)$ such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Upper bound

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from [$x, 2 x$) such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Now, for some $\epsilon \leq 1 / 2$, choose such a set from $\left[2^{j}, 2^{j+1}\right)$ for all j. Within each such set, half the elements are red or half are blue, meaning that we can cover the set $\left[y_{j}, 4 y_{j}\right)$ with $y_{j}=30 \epsilon^{-3 / 2}{ }_{j} 2^{j}$ monochromatically. Since these intervals cover all sufficiently large positive integers, this proves the main result for $r=2$.

Upper bound

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from [$x, 2 x$) such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Now, for some $\epsilon \leq 1 / 2$, choose such a set from $\left[2^{j}, 2^{j+1}\right)$ for all j. Within each such set, half the elements are red or half are blue, meaning that we can cover the set $\left[y_{j}, 4 y_{j}\right)$ with $y_{j}=30 \epsilon^{-3 / 2}{ }_{j} 2^{j}$ monochromatically. Since these intervals cover all sufficiently large positive integers, this proves the main result for $r=2$.

Clearly a similar proof works for any r.

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from $[x, 2 x)$ such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from [$x, 2 x$) such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Idea

Choose A randomly!

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from $[x, 2 x)$ such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Idea

Choose A randomly!

Doesn't work! Roughly half of the elements in a random set will be even and this subset cannot possibly cover the required interval (since the sum of even numbers is even).

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from $[x, 2 x)$ such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from $[x, 2 x)$ such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Second idea

Choose A randomly

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from [$x, 2 x$) such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Second idea

Choose A randomly from the set of elements of $[x, 2 x)$ with no small prime factors.

Main Lemma

There is ϵ_{0} such that the following holds for all $0<\epsilon<\epsilon_{0}$: for all x sufficiently large, there is a set A of $\epsilon^{-3} \log x$ elements from $[x, 2 x)$ such that, for any $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|, \Sigma\left(A^{\prime}\right)$ contains $[y, 4 y)$ for $y=30 \epsilon^{-3 / 2} x \log x$.

Second idea

Choose A randomly from the set of elements of $[x, 2 x)$ with no small prime factors.

This avoids the previous issue and can be made work.

Say that a set of positive integers T is (p, x)-full if there is an interval $[z, z+x)$ such that

$$
|\Sigma(T) \cap[z, z+x)| \geq p x+1
$$

Say that a set of positive integers T is (p, x)-full if there is an interval $[z, z+x)$ such that

$$
|\Sigma(T) \cap[z, z+x)| \geq p x+1
$$

Steps of the proof

(1) Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.

Say that a set of positive integers T is (p, x)-full if there is an interval $[z, z+x)$ such that

$$
|\Sigma(T) \cap[z, z+x)| \geq p x+1
$$

Steps of the proof

(1) Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.
(2) Show that $A_{1}+\cdots+A_{\ell}$ contains an interval of length $2 x$.

Say that a set of positive integers T is (p, x)-full if there is an interval $[z, z+x)$ such that

$$
|\Sigma(T) \cap[z, z+x)| \geq p x+1
$$

Steps of the proof

(1) Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.
(2) Show that $A_{1}+\cdots+A_{\ell}$ contains an interval of length $2 x$.
(3) Use the remaining elements of A^{\prime} to expand and shift this set so that it contains the required interval.

Step 1

Step 1

Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.

Step 1

Step 1

Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.

Construct the required sets greedily, adding elements from A^{\prime} in order of index.

Step 1

Step 1

Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.

Construct the required sets greedily, adding elements from A^{\prime} in order of index. At step i, there is a set A_{j}, called the active set, which is currently not full, but all sets $A_{j^{\prime}}$ with $j^{\prime}<j$ are full, and we consider whether or not to add a_{i} to A_{j}.

Step 1

Step 1

Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.

Construct the required sets greedily, adding elements from A^{\prime} in order of index. At step i, there is a set A_{j}, called the active set, which is currently not full, but all sets $A_{j^{\prime}}$ with $j^{\prime}<j$ are full, and we consider whether or not to add a_{i} to A_{j}. Initially, all the A_{h} are empty. In the first step, A_{1} is the active set and a_{1} is added to A_{1}.

Step 1

Step 1

Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.

Construct the required sets greedily, adding elements from A^{\prime} in order of index. At step i, there is a set A_{j}, called the active set, which is currently not full, but all sets $A_{j^{\prime}}$ with $j^{\prime}<j$ are full, and we consider whether or not to add a_{i} to A_{j}. Initially, all the A_{h} are empty. In the first step, A_{1} is the active set and a_{1} is added to A_{1}. If $\left|\Sigma\left(A_{j} \cup\left\{a_{i}\right\}\right)\right| \geq \frac{3}{2}\left|\Sigma\left(A_{j}\right)\right|$, then we add a_{i} to A_{j}. If the updated set A_{j} is now full, then $A_{j+1}=\emptyset$ becomes the active set, and we move on to the next step $i+1$.

Step 1

Step 1

Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.

Construct the required sets greedily, adding elements from A^{\prime} in order of index. At step i, there is a set A_{j}, called the active set, which is currently not full, but all sets $A_{j^{\prime}}$ with $j^{\prime}<j$ are full, and we consider whether or not to add a_{i} to A_{j}. Initially, all the A_{h} are empty. In the first step, A_{1} is the active set and a_{1} is added to A_{1}. If $\left|\Sigma\left(A_{j} \cup\left\{a_{i}\right\}\right)\right| \geq \frac{3}{2}\left|\Sigma\left(A_{j}\right)\right|$, then we add a_{i} to A_{j}. If the updated set A_{j} is now full, then $A_{j+1}=\emptyset$ becomes the active set, and we move on to the next step $i+1$. If the updated set A_{j} is not full, then it remains the active set, and we move on to the next step $i+1$.

Step 1

Step 1

Show that every $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \epsilon|A|$ contains ℓ sets A_{1}, \ldots, A_{ℓ}, each (p, x)-full, where $p=\epsilon^{3 / 2}$ and $\ell=10 / p$.

Construct the required sets greedily, adding elements from A^{\prime} in order of index. At step i, there is a set A_{j}, called the active set, which is currently not full, but all sets $A_{j^{\prime}}$ with $j^{\prime}<j$ are full, and we consider whether or not to add a_{i} to A_{j}. Initially, all the A_{h} are empty. In the first step, A_{1} is the active set and a_{1} is added to A_{1}. If $\left|\Sigma\left(A_{j} \cup\left\{a_{i}\right\}\right)\right| \geq \frac{3}{2}\left|\Sigma\left(A_{j}\right)\right|$, then we add a_{i} to A_{j}. If the updated set A_{j} is now full, then $A_{j+1}=\emptyset$ becomes the active set, and we move on to the next step $i+1$. If the updated set A_{j} is not full, then it remains the active set, and we move on to the next step $i+1$. The remaining case is when $\left|\Sigma\left(A_{j} \cup\left\{a_{i}\right\}\right)\right|<\frac{3}{2}\left|\Sigma\left(A_{j}\right)\right|$. In this case, we call i bad, we do not add a_{i} to A_{j}, the set A_{j} remains the active set, and we move on to the next step $i+1$.

Step 2

Step 2

Show that $A_{1}+\cdots+A_{\ell}$ contains an interval of length $2 x$.

Step 2

Step 2

Show that $A_{1}+\cdots+A_{\ell}$ contains an interval of length $2 x$.

Lev's lemma

Suppose that $\ell, q \geq 1$ and $n \geq 3$ are integers with $\ell \geq 2\lceil(q-1) /(n-2)\rceil$. If S_{1}, \ldots, S_{ℓ} are integer sets each having at least n elements, each a subset of an interval of at most $q+1$ integers, and none of which is a subset of an arithmetic progression of common difference greater than one, then $S_{1}+\cdots+S_{\ell}$ contains an interval of at least $\ell(n-1)+1$ integers.

Step 2

Step 2

Show that $A_{1}+\cdots+A_{\ell}$ contains an interval of length $2 x$.

Lev's lemma

Suppose that $\ell, q \geq 1$ and $n \geq 3$ are integers with $\ell \geq 2\lceil(q-1) /(n-2)\rceil$. If S_{1}, \ldots, S_{ℓ} are integer sets each having at least n elements, each a subset of an interval of at most $q+1$ integers, and none of which is a subset of an arithmetic progression of common difference greater than one, then $S_{1}+\cdots+S_{\ell}$ contains an interval of at least $\ell(n-1)+1$ integers.

More roughly, the sum of $10 / \delta$ intervals of density δ contains an interval (provided they were not all arithmetic progressions with the same difference).

Step 3

Step 3
Use the remaining elements of A^{\prime} to expand and shift this set so that it contains the required interval.

Step 3

Step 3

Use the remaining elements of A^{\prime} to expand and shift this set so that it contains the required interval.

The trick here we've already seen in the characterisation of entirely complete sequences.

Step 3

Step 3

Use the remaining elements of A^{\prime} to expand and shift this set so that it contains the required interval.

The trick here we've already seen in the characterisation of entirely complete sequences.

If $y \leq 2 x$ and $\Sigma\left(\left(a_{i}\right)_{i=1}^{k}\right)$ contains an interval of length $2 x$, say $[w, w+2 x)$, then

$$
\Sigma\left(\left(a_{i}\right)_{i=1}^{k} \cup y\right) \supseteq[w, w+2 x+y)
$$

Therefore, with more choices for y, we can cover longer and longer intervals.

Completeness of polynomial sequences

To state the relevant results, we need to extend the definition of completeness to real numbers, saying that a sequence A of real numbers is complete if $\Sigma(A)$ contains all sufficiently large positive integers.

Completeness of polynomial sequences

To state the relevant results, we need to extend the definition of completeness to real numbers, saying that a sequence A of real numbers is complete if $\Sigma(A)$ contains all sufficiently large positive integers.

Theorem (Graham, 1964)

Note that every polynomial $P: \mathbb{N} \rightarrow \mathbb{R}$ can be written in the form

$$
P(x)=\sum_{i=0}^{k} \alpha_{i}\binom{x}{i}
$$

Then $\{P(m)\}_{m \geq 1}$ is complete if and only if
(1) $\alpha_{k}>0$,
(2) $\alpha_{i}=p_{i} / q_{i}$ for integers p_{i} and q_{i} with $\left(p_{i}, q_{i}\right)=1$,
(3) $\operatorname{gcd}\left(p_{0}, p_{1}, \ldots, p_{k}\right)=1$.

Completeness of polynomial sequences

Problem (Burr-Erdős, 1985)

Which polynomial sequences are r-Ramsey complete?

Completeness of polynomial sequences

Problem (Burr-Erdős, 1985)

Which polynomial sequences are r-Ramsey complete?

Theorem (C.-Fox)

Complete polynomial sequences are r-Ramsey complete for all r.

Completeness of polynomial sequences

Problem (Burr-Erdős, 1985)

Which polynomial sequences are r-Ramsey complete?

Theorem (C.-Fox)

Complete polynomial sequences are r-Ramsey complete for all r.

Theorem (C.-Fox)

Suppose $\{P(m)\}_{m \geq 1}$ is a complete polynomial sequence. Then there is $C=C(P, r)$ and $A \subset\{P(m)\}_{m \geq 1}$ with

$$
|A \cap[n]| \leq C \log ^{2} n
$$

for all n such that A is r-Ramsey complete.

A density result

Definition

A sequence A is said to be ϵ-complete if every subsequence A^{\prime} of A with $\left|A^{\prime} \cap[n]\right| \geq \epsilon|A \cap[n]|$ for n sufficiently large is complete.

A density result

Definition

A sequence A is said to be ϵ-complete if every subsequence A^{\prime} of A with $\left|A^{\prime} \cap[n]\right| \geq \epsilon|A \cap[n]|$ for n sufficiently large is complete.

Note that the positive integers are not ($1 / 2-\delta$)-complete for any $\delta>0$ since the even numbers are not complete.

A density result

Definition

A sequence A is said to be ϵ-complete if every subsequence A^{\prime} of A with $\left|A^{\prime} \cap[n]\right| \geq \epsilon|A \cap[n]|$ for n sufficiently large is complete.

Note that the positive integers are not ($1 / 2-\delta$)-complete for any $\delta>0$ since the even numbers are not complete.

However, ϵ-complete sequences do exist for all $\epsilon>0$. For instance, a result of Szemerédi and Vu shows that any subsequence A of the primes with $|A \cap[n]| \geq C(\epsilon) \sqrt{n}$ is ϵ-complete.

A density result

Definition

A sequence A is said to be ϵ-complete if every subsequence A^{\prime} of A with $\left|A^{\prime} \cap[n]\right| \geq \epsilon|A \cap[n]|$ for n sufficiently large is complete.

Note that the positive integers are not ($1 / 2-\delta$)-complete for any $\delta>0$ since the even numbers are not complete.

However, ϵ-complete sequences do exist for all $\epsilon>0$. For instance, a result of Szemerédi and Vu shows that any subsequence A of the primes with $|A \cap[n]| \geq C(\epsilon) \sqrt{n}$ is ϵ-complete.

Problem

How sparse can an ϵ-complete sequence be?

A density result

Theorem (C.-Fox)

Let $F=\left(f_{i}\right)_{i \geq 1}$ be any sequence of positive integers for which $f_{n}=\sum_{i \leq \epsilon n} f_{i}$ for all sufficiently large n. Then every ϵ-complete sequence $A=\left(a_{i}\right)_{i \geq 1}$ must satisfy $a_{i}=O\left(f_{i}\right)$ and there is an ϵ-complete sequence with $a_{i}=\Theta\left(f_{i}\right)$.

A density result

Theorem (C.-Fox)

Let $F=\left(f_{i}\right)_{i \geq 1}$ be any sequence of positive integers for which $f_{n}=\sum_{i \leq \epsilon n} f_{i}$ for all sufficiently large n. Then every ϵ-complete sequence $A=\left(a_{i}\right)_{i \geq 1}$ must satisfy $a_{i}=O\left(f_{i}\right)$ and there is an ϵ-complete sequence with $a_{i}=\Theta\left(f_{i}\right)$.

Corollary (C.-Fox)

There exists an ϵ-complete sequence A with

$$
|A \cap[n]| \leq 2^{\sqrt{\left(2 \log _{2}(1 / \epsilon)+o(1)\right) \log _{2} n}}
$$

and this is essentially best possible.

Complete but not Ramsey complete

Consider the set

$$
\left\{p^{i} q^{j}: i, j \geq 0\right\} .
$$

Birch showed that this is complete when $(p, q)=1$.

Complete but not Ramsey complete

Consider the set

$$
\left\{p^{i} q^{j}: i, j \geq 0\right\}
$$

Birch showed that this is complete when $(p, q)=1$.
However, it is not 2-Ramsey complete. To see this, suppose without loss of generality that $p \geq 3$ and consider the 2-colouring χ given by

$$
\chi(i)= \begin{cases}0 & \text { if } i \text { is a power of } p \\ 1 & \text { otherwise }\end{cases}
$$

Complete but not Ramsey complete

Consider the set

$$
\left\{p^{i} q^{j}: i, j \geq 0\right\} .
$$

Birch showed that this is complete when $(p, q)=1$.
However, it is not 2-Ramsey complete. To see this, suppose without loss of generality that $p \geq 3$ and consider the 2-colouring χ given by

$$
\chi(i)= \begin{cases}0 & \text { if } i \text { is a power of } p \\ 1 & \text { otherwise }\end{cases}
$$

Then everything which is a sum of elements in colour 0 can be written with only 0 s and 1 s in base p, while everything in colour 1 (and hence everything which is a sum of elements in colour 1) is divisible by q. Together, these cannot hope to cover everything.

Complete but not Ramsey complete

Open problem

If p, q and r are pairwise coprime, then the sequence

$$
\left\{p^{i} q^{j} r^{k}: i, j, k \geq 0\right\}
$$

is complete but, by a similar argument to above, not 3-Ramsey complete. Is it 2-Ramsey complete?

The Ramsey-Waring problem

Open problem

Given natural numbers $r, k \geq 2$, does there exist $C=C(r, k)$ such that, for every r-colouring of the $k^{\text {th }}$ powers, every natural number can be written as the sum of at most $C k^{t h}$ powers of the same colour?

Thank you for listening!

