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Complete sequences

Definition

A sequence A = (ai )
∞
i=1 of natural numbers is said to be complete

if every sufficiently large positive integer can be written as a sum
of distinct elements of A and entirely complete if this holds for
every positive integer.

We write Σ(A) for the set of all natural numbers representable as
the sum of distinct elements of A.

Examples

(2i )∞i=0 - entirely complete

(2i )∞i=1 - not complete

(ik)∞i=1 - complete

{piqj : i , j ≥ 0}, (p, q) = 1 - complete
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A criterion for completeness

Lemma

A = (ai )
∞
i=1 is entirely complete iff a1 = 1 and, for all k ≥ 2,

k−1∑
i=1

ai ≥ ak − 1.

=⇒ If ak > 1 +
∑k−1

i=1 ai , then
∑k−1

i=1 ai + 1 not represented.

⇐= Suppose Σ((ai )
k−1
i=1 ) contains [

∑k−1
i=1 ai ]. Then

Σ((ai )
k
i=1) ⊇ [

k−1∑
i=1

ai ] ∪ (ak + [
k−1∑
i=1

ai ]) ⊇ [
k∑

i=1

ai ].
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Ramsey complete sequences

Definition

A sequence A = (ai )
∞
i=1 of natural numbers is said to be r -Ramsey

complete if whenever A is partitioned into A1, . . . ,Ar , every
sufficiently large positive integer is in ∪ri=1Σ(Ai ) and entirely
r -Ramsey complete if this holds for every positive integer.

If ai are all distinct, can’t guarantee the same colour everywhere.
To see this, consider the 2-colouring χ where

χ(i) =

{
0 if i is in (22

j − 1, 22
j+1

] with j even,

1 if i is in (22
j − 1, 22

j+1
] with j odd.
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Ramsey complete sequences

Theorem (Burr–Erdős, 1985)

There exists a constant C and an entirely 2-Ramsey complete
sequence A such that, for all n,

|A ∩ [n]| ≤ C log3 n.

Moreover, there exists c > 0 such that there is no 2-Ramsey
complete sequence with |A ∩ [n]| ≤ c log2 n for all large n.

Two problems of Burr and Erdős

Improve these bounds.

Extend to r -colour case.
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Ramsey complete sequences

Theorem (Burr–Erdős, 1985)

There exists a constant C and an entirely 2-Ramsey complete
sequence A such that, for all n,

|A ∩ [n]| ≤ C log3 n.

Moreover, there exists c > 0 such that there is no 2-Ramsey
complete sequence with |A ∩ [n]| ≤ c log2 n for all large n.

Two problems of Burr and Erdős, reiterated by Erdős

Improve these bounds. $100

Extend to r -colour case. $250
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New results

Theorem (C.–Fox)

For every integer r ≥ 2, there exist C = C (r) and an entirely
Ramsey complete sequence A with

|A ∩ [n]| ≤ C log2 n.

Solves both problems at once.
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Lower bound

In their paper, Burr and Erdős state that their proof for the lower
bound is ‘quite complicated’ and because of the gap between their
upper and lower bounds, they could not ‘justify the effort’ of
reproducing their proof. Consequently, they only proved that

Theorem (Burr–Erdős, 1985)

There exists c > 0 such that there is no 2-Ramsey complete
sequence with |A ∩ [n, 2n)| ≤ c log n for all large n.

We give a full proof of the lower bound, but I will only try to
explain the result of Burr and Erdős here.
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Lower bound

Again consider the 2-colouring χ where

χ(i) =

{
0 if i is in (22

j − 1, 22
j+1

] with j even,

1 if i is in (22
j − 1, 22

j+1
] with j odd.

The rough idea then is that if there are only c log n numbers in
each interval [n, 2n), then sums of numbers from the interval

[1, 22
j − 1] can never make it as far as the interval [22

j+j , 22
j+j+1],

while there are too few numbers above 22
j

to cover the same
interval.
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Upper bound

Main Lemma

There is ε0 such that the following holds for all 0 < ε < ε0: for all
x sufficiently large, there is a set A of ε−3 log x elements from
[x , 2x) such that, for any A′ ⊆ A with |A′| ≥ ε|A|, Σ(A′) contains
[y , 4y) for y = 30ε−3/2x log x .

Now, for some ε ≤ 1/2, choose such a set from [2j , 2j+1) for all j .
Within each such set, half the elements are red or half are blue,
meaning that we can cover the set [yj , 4yj) with yj = 30ε−3/2j2j

monochromatically. Since these intervals cover all sufficiently large
positive integers, this proves the main result for r = 2.

Clearly a similar proof works for any r .
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The Main Lemma

Main Lemma

There is ε0 such that the following holds for all 0 < ε < ε0: for all
x sufficiently large, there is a set A of ε−3 log x elements from
[x , 2x) such that, for any A′ ⊆ A with |A′| ≥ ε|A|, Σ(A′) contains
[y , 4y) for y = 30ε−3/2x log x .

Idea

Choose A randomly!

Doesn’t work! Roughly half of the elements in a random set will be
even and this subset cannot possibly cover the required interval
(since the sum of even numbers is even).
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The Main Lemma

Main Lemma

There is ε0 such that the following holds for all 0 < ε < ε0: for all
x sufficiently large, there is a set A of ε−3 log x elements from
[x , 2x) such that, for any A′ ⊆ A with |A′| ≥ ε|A|, Σ(A′) contains
[y , 4y) for y = 30ε−3/2x log x .

Second idea

Choose A randomly from the set of elements of [x , 2x) with no
small prime factors.

This avoids the previous issue and can be made work.
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The Main Lemma

Say that a set of positive integers T is (p, x)-full if there is an
interval [z , z + x) such that

|Σ(T ) ∩ [z , z + x)| ≥ px + 1.

Steps of the proof

1 Show that every A′ ⊆ A with |A′| ≥ ε|A| contains ` sets
A1, . . . ,A`, each (p, x)-full, where p = ε3/2 and ` = 10/p.

2 Show that A1 + · · ·+ A` contains an interval of length 2x .

3 Use the remaining elements of A′ to expand and shift this set
so that it contains the required interval.
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Step 1

Step 1

Show that every A′ ⊆ A with |A′| ≥ ε|A| contains ` sets
A1, . . . ,A`, each (p, x)-full, where p = ε3/2 and ` = 10/p.

Construct the required sets greedily, adding elements from A′ in
order of index. At step i , there is a set Aj , called the active set,
which is currently not full, but all sets Aj ′ with j ′ < j are full, and
we consider whether or not to add ai to Aj . Initially, all the Ah are
empty. In the first step, A1 is the active set and a1 is added to A1.
If |Σ(Aj ∪ {ai})| ≥ 3

2 |Σ(Aj)|, then we add ai to Aj . If the updated
set Aj is now full, then Aj+1 = ∅ becomes the active set, and we
move on to the next step i + 1. If the updated set Aj is not full,
then it remains the active set, and we move on to the next step
i + 1. The remaining case is when |Σ(Aj ∪ {ai})| < 3

2 |Σ(Aj)|. In
this case, we call i bad, we do not add ai to Aj , the set Aj remains
the active set, and we move on to the next step i + 1.
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empty. In the first step, A1 is the active set and a1 is added to A1.
If |Σ(Aj ∪ {ai})| ≥ 3

2 |Σ(Aj)|, then we add ai to Aj . If the updated
set Aj is now full, then Aj+1 = ∅ becomes the active set, and we
move on to the next step i + 1. If the updated set Aj is not full,
then it remains the active set, and we move on to the next step
i + 1. The remaining case is when |Σ(Aj ∪ {ai})| < 3

2 |Σ(Aj)|. In
this case, we call i bad, we do not add ai to Aj , the set Aj remains
the active set, and we move on to the next step i + 1.
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Step 2

Step 2

Show that A1 + · · ·+ A` contains an interval of length 2x .

Lev’s lemma

Suppose that `, q ≥ 1 and n ≥ 3 are integers with
` ≥ 2d(q − 1)/(n − 2)e. If S1, . . . ,S` are integer sets each having
at least n elements, each a subset of an interval of at most q + 1
integers, and none of which is a subset of an arithmetic progression
of common difference greater than one, then S1 + · · ·+ S` contains
an interval of at least `(n − 1) + 1 integers.

More roughly, the sum of 10/δ intervals of density δ contains an
interval (provided they were not all arithmetic progressions with
the same difference).
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Step 3

Step 3

Use the remaining elements of A′ to expand and shift this set so
that it contains the required interval.

The trick here we’ve already seen in the characterisation of entirely
complete sequences.

If y ≤ 2x and Σ((ai )
k
i=1) contains an interval of length 2x , say

[w ,w + 2x), then

Σ((ai )
k
i=1 ∪ y) ⊇ [w ,w + 2x + y).

Therefore, with more choices for y , we can cover longer and longer
intervals.
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Completeness of polynomial sequences

To state the relevant results, we need to extend the definition of
completeness to real numbers, saying that a sequence A of real
numbers is complete if Σ(A) contains all sufficiently large positive
integers.

Theorem (Graham, 1964)

Note that every polynomial P : N→ R can be written in the form

P(x) =
k∑

i=0

αi

(
x

i

)
.

Then {P(m)}m≥1 is complete if and only if

1 αk > 0,

2 αi = pi/qi for integers pi and qi with (pi , qi ) = 1,

3 gcd(p0, p1, . . . , pk) = 1.
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Completeness of polynomial sequences

Problem (Burr–Erdős, 1985)

Which polynomial sequences are r -Ramsey complete?

Theorem (C.–Fox)

Complete polynomial sequences are r -Ramsey complete for all r .

Theorem (C.–Fox)

Suppose {P(m)}m≥1 is a complete polynomial sequence. Then
there is C = C (P, r) and A ⊂ {P(m)}m≥1 with

|A ∩ [n]| ≤ C log2 n

for all n such that A is r -Ramsey complete.
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A density result

Definition

A sequence A is said to be ε-complete if every subsequence A′ of A
with |A′ ∩ [n]| ≥ ε|A ∩ [n]| for n sufficiently large is complete.

Note that the positive integers are not (1/2− δ)-complete for any
δ > 0 since the even numbers are not complete.

However, ε-complete sequences do exist for all ε > 0. For instance,
a result of Szemerédi and Vu shows that any subsequence A of the
primes with |A ∩ [n]| ≥ C (ε)

√
n is ε-complete.

Problem

How sparse can an ε-complete sequence be?
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a result of Szemerédi and Vu shows that any subsequence A of the
primes with |A ∩ [n]| ≥ C (ε)

√
n is ε-complete.

Problem

How sparse can an ε-complete sequence be?

David Conlon Ramsey complete sequences



A density result

Theorem (C.–Fox)

Let F = (fi )i≥1 be any sequence of positive integers for which
fn =

∑
i≤εn fi for all sufficiently large n. Then every ε-complete

sequence A = (ai )i≥1 must satisfy ai = O(fi ) and there is an
ε-complete sequence with ai = Θ(fi ).

Corollary (C.–Fox)

There exists an ε-complete sequence A with

|A ∩ [n]| ≤ 2
√

(2 log2(1/ε)+o(1)) log2 n

and this is essentially best possible.
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Complete but not Ramsey complete

Consider the set
{piqj : i , j ≥ 0}.

Birch showed that this is complete when (p, q) = 1.

However, it is not 2-Ramsey complete. To see this, suppose
without loss of generality that p ≥ 3 and consider the 2-colouring
χ given by

χ(i) =

{
0 if i is a power of p,

1 otherwise.

Then everything which is a sum of elements in colour 0 can be
written with only 0s and 1s in base p, while everything in colour 1
(and hence everything which is a sum of elements in colour 1) is
divisible by q. Together, these cannot hope to cover everything.
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Complete but not Ramsey complete

Open problem

If p, q and r are pairwise coprime, then the sequence

{piqj rk : i , j , k ≥ 0}

is complete but, by a similar argument to above, not 3-Ramsey
complete. Is it 2-Ramsey complete?
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The Ramsey–Waring problem

Open problem

Given natural numbers r , k ≥ 2, does there exist C = C (r , k) such
that, for every r -colouring of the kth powers, every natural number
can be written as the sum of at most C kth powers of the same
colour?
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Thank you for listening!
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