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1.a. Motivation/Overview

Let X and Y be two (say) bounded real-valued random
variables on a probability space (Ω,F ,P). Then
• X ≈ Y in distribution, provided that
• E[Xm] ≈ E[Ym] for every positive integer m.

We will apply this basic fact to the case

X =
∑
i∈I

1Ei and Y =
∑
i∈I

1Di

where
(1) I is a finite index set,
(2) 〈Ei : i ∈ I〉 and 〈Di : i ∈ I〉 are measurable events with

P(Ei) = P(Di) = ε > 0 for every i ∈ I, and
(3) 〈Ei : i ∈ I〉 are independent.



1.b. Motivation/Overview

By expanding the product, for every positive integer m we have
E[Xm] =

∑|I|
j=0 cj,m

∑
F∈(I

j)
P(
⋂

i∈F Ei) for some nonnegative

coefficients c0,m, . . . , c|I|,m, and similarly for Y.

Thus, assuming that X and Y are not close in distribution, then
one is led to the following problem.

Problem
Let F ⊆ I be nonempty, and assume that∣∣∣P(⋂

i∈F

Di

)
− ε|F |

∣∣∣ > σ.

What structural information can be obtained for 〈Di : i ∈ I〉?

Here, σ > 0 is a parameter that measures the deviation of the
joint probability of 〈Di : i ∈ F 〉 from the expected value.



1.c. Motivation/Overview

We will look at this problem when the index set I is a discrete
hypercube.

Let A be a finite set (alphabet) with |A| > 2, let n be a positive
integer, and let An denote the discrete n-dimensional
hypercube, that is,

An := A× · · · × A︸ ︷︷ ︸
n−times

.

Thus, elements of An are strings (finite sequences) of length n
having values in A.

Convention: as we shall see, for our purposes the nature of the
set A is irrelevant. Consequently, if |A| = k , then it is convenient
to identify A with the discrete interval [k ] := {1, . . . , k}.



2.a. Combinatorial background:
the density Hales–Jewett theorem

Let A be a finite set with |A| > 2, and let n be a positive integer.
We fix a letter x /∈ A which we view as a variable.

• A variable word over A of length n is a finite sequence of
length n having values in A ∪ {x} such that the letter x appears
at least once. If v is a variable word and α ∈ A, then v(α)
denotes the unique element of An obtained by replacing all
appearances of x in v with α.
E.g., if v = (1, x ,3,5, x ,2,1), then v(2) = (1,2,3,5,2,2,1).

• A combinatorial line of An is a set of the form {v(α) : α ∈ A}
where v is a variable word over A of length n.



2.b. Combinatorial background:
the density Hales–Jewett theorem

The following result is known as the density Hales–Jewett
theorem.

Theorem (Furstenberg & Katznelson—1991)
For every integer k > 2 and every 0 < ε 6 1 there exists a
positive integer DHJ(k , ε) with the following property.
If A is a set with |A| = k and n > DHJ(k , ε), then every D ⊆ An

with |D| > ε|An| contains a combinatorial line of An.

The best known upper bounds for the numbers DHJ(k , ε) have
an Ackermann-type dependence with respect to k . (We will
come back on this issue later on.)



2.c. Combinatorial background:
the density Hales–Jewett theorem

The density Hales–Jewett theorem has a number of significant
consequences, including:
• Szemerédi’s theorem (1975);
• the multidimensional Szemerédi theorem (Furstenberg &

Katznelson, 1978);
• the density version of the affine Ramsey theorem

(Furstenberg & Katznelson, 1985);
• Szemerédi’s theorem for abelian groups (Furstenberg &

Katznelson, 1985);
• the IPr -Szemerédi theorem (Furstenberg & Katznelson,

1985).



3. From dense sets to stochastic processes

Theorem (density Hales–Jewett theorem—reformulation)
For every integer k > 2 and every 0 < ε 6 1 there exists a
positive integer PHJ(k , ε) with the following property.
If A is a set with |A| = k and n > PHJ(k , ε), then for every family
〈Dt : t ∈ An〉 of measurable events in a probability space
(Ω,F ,P) satisfying P(Dt ) > ε for every t ∈ An, there exists a
combinatorial line L of An such that

P
(⋂

t∈L

Dt

)
> 0.

This result is straightforward if 〈Dt : t ∈ An〉 are independent.
So, the core of the theorem is to understand what happens
when the events are not “behaving” as if they were
independent.



4.a. From dense sets to stochastic processes:
concentration

Let (Ω1,F1,P1), . . . , (Ωn,Fn,Pn) be a finite sequence of
probability spaces, and let (Ω,F ,P) denote their product. More
generally, for every nonempty I ⊆ [n] by (ΩI ,F I ,P I) we denote
the product of the spaces 〈(Ωi ,Fi ,Pi) : i ∈ I〉.

Let I ⊆ [n] be such that I and Ic := [n] \ I are nonempty. For
every integrable random variable f : Ω→ R and every x ∈ ΩI let
fx : ΩIc → R be the section of f at x, that is, fx(y) = f (x,y) for
every y ∈ ΩIc . Fubini’s theorem asserts that the random
variable x 7→ E(fx) is integrable and satisfies∫

E(fx) dPI = E(f ).



4.b. From dense sets to stochastic processes:
concentration

Theorem (D, Kanellopoulos, Tyros—2014)
Let 0 < η 6 1 and 1 < p 6 2, and set

c(η,p) =
1
4
η

2(p+1)
p (p − 1).

Also let n be a positive integer with n > c(η,p)−1 and let
(Ω,F ,P) be the product of a finite sequence
(Ω1,F1,P1), . . . , (Ωn,Fn,Pn) of probability spaces. Then for
every f ∈ Lp(Ω,F ,P) with ‖f‖Lp 6 1 there exists an interval
J ⊆ [n] with Jc 6= ∅ and |J| > c(η,p)n such that for every
nonempty I ⊆ J we have

PI
(
{x ∈ ΩI : |E(fx)− E(f )| 6 η}

)
> 1− η.



4.c. From dense sets to stochastic processes:
concentration

Theorem (“geometric” formulation)

Let 0 < η 6 1 and 1 < p 6 2. If n > c(η,p)−1 and (Ω,F ,P) is
the product of a finite sequence (Ω1,F1,P1), . . . , (Ωn,Fn,Pn) of
probability spaces, then for every A ∈ F there exists an interval
J ⊆ [n] with Jc 6= ∅ and |J| > c(η,p)n such that for every
nonempty I ⊆ J we have

PI

({
x ∈ ΩI : |P Ic(Ax)− P(A)| 6 ηP(A)1/p}) > 1− η.

This result does not hold true for p = 1 (thus, the range of p in
the previous theorem is optimal).



4.d. From dense sets to stochastic processes:
concentration

Corollary
Let k ,m be positive integers with k > 2 and 0 < η 6 1. Also let
A be a set with |A| = k, and let n be a positive integer with

n >
16 m k3m

η3 .

Then for every D ⊆ An there exists an interval I ⊆ [n] with
|I| = m such that for every t ∈ AI we have

|PAIc (Dt )− P(D)| 6 η

where Dt = {s ∈ AIc
: (t , s) ∈ D} is the section of D at t.

(Here, all measures are uniform probability measures.)



5.a. Back to the main problem: examples

Example
Here, A = {1,2,3}. Let n be an arbitrary positive integer. We
start with a family 〈Ex : x ∈ {1,2}n〉 of independent events in a
probability space with equal probability ε > 0. Given
t ∈ {1,2,3}n we “project” it into {1,2}n as follows: let t3→1

denote the unique element of {1,2}n obtained by replacing all
appearances of 3 in t with 1.
E.g., if t = (1,3,2,3,1,2), then t3→1 = (1,1,2,1,1,2).

Define Dt := Et3→1 for every t ∈ {1,2,3}n.



5.b. Back to the main problem: examples

Properties:

• For every t ∈ {1,2,3}n we have P(Dt ) = ε.

• For every combinatorial line L of {1,2,3}n we have

P
(⋂

t∈L

Dt

)
= ε2.

Thus, we have significant deviation from what is expected.

• The stochastic process 〈Dt : t ∈ {1,2,3}n〉 is
(1,3)-insensitive in the following sense. If t , s ∈ {1,2,3}n differ
only in the coordinates taking values in {1,3}, then Dt = Ds.

E.g.,
t = (1,2,3,1,2,3)
s = (3,2,3,3,2,1)

}
⇒ Dt = Ds.



5.c. Back to the main problem: examples

Example (cont’d)
Again, let A = {1,2,3}, let n be an arbitrary positive integer,
and let 〈Ex : x ∈ {1,2}n〉 be independent events in a probability
space with equal probability ε > 0. Given t ∈ {1,2,3}n let t3→1

and t3→2 denote the two “projections” of t into {1,2}n.

Define Dt := Et3→1 ∩ Et3→2 for every t ∈ {1,2,3}n.

• For “almost every” t ∈ {1,2,3}n we have P(Dt ) = ε2.

• For “almost every” combinatorial line L of {1,2,3}n we have

P
(⋂

t∈L

Dt

)
= ε4

.
• Here, Dt is the intersection of “insensitive” events.



6.a. Stationarity

Definition
Let A be a finite set with |A| > 2, let n be a positive integer, and
let 0 < η 6 1. We say that a stochastic process 〈Dt : t ∈ An〉 is
η-stationary if for every nonempty B ⊆ A and every pair v1, v2
of variable words over A of length n we have∣∣∣P( ⋂

α∈B

Dv1(α)

)
− P

( ⋂
α∈B

Dv2(α)

)∣∣∣ 6 η.

Notice, in particular, that if 〈Dt : t ∈ An〉 is η-stationary, then for
every pair L1,L2 of combinatorial lines of An we have∣∣∣P( ⋂

t∈L1

Dt

)
− P

( ⋂
t∈L2

Dt

)∣∣∣ 6 η.



6.b. Stationarity

Stationarity is a mild condition. Specifically, we have the
following fact which follows from a classical result due to
Graham & Rothschild (1971).

Fact
If n is large enough compared with |A| and η, then for every
stochastic process 〈Dt : t ∈ An〉 one can find a
large-dimensional “sub-cube” of An such that the restriction of
the process on the “sub-cube” is η-stationary.



7.a. The main result

Theorem (D, Tyros—2018)
Let k > 2 be an integer, and let ε, σ, η be positive reals with

0 < η � σ � ε 6 1− 1
2k
.

Let A be a finite set with |A| = k, let n > k be an integer,
and let 〈Dt : t ∈ An〉 be an η-stationary process such that
ε− η 6 P(Dt ) 6 ε+ η for every t ∈ An. Then, either

(i) for every combinatorial line L of An and every nonempty
G ⊆ L we have ∣∣∣P( ⋂

t∈G

Dt

)
− ε|G|

∣∣∣ 6 σ,



7.b. The main result

Theorem (cont’d)
(ii) or 〈Dt : t ∈ An〉 correlates with a “structured” stochastic

process 〈St : t ∈ An〉, that is,
(ii.1) St is the intersection of insensitive events; precisely, there

exist nonempty B ⊆ A and α ∈ A \ B such that
St =

⋂
β∈B Eβ

t where for every β ∈ B the stochastic process
〈Eβ

t : t ∈ An〉 is (α, β)-insensitive;
(ii.2) for every t ∈ An which takes the value α (thus, for “almost

every” t ∈ An) we have

P(St ) >
εk−1

4k
and P(Dt |St ) > ε+

σ

4k−1 .



8. Comments

• A similar theorem holds true if (instead of combinatorial lines)
we look at correlations over an arbitrary nonempty subset F
of An. Of course, the “structured” process 〈St : t ∈ An〉 depends
upon the “geometry” of F (type).

• The previous dichotomy yields a new proof of the density
Hales–Jewett theorem; in fact, it is a step towards obtaining
primitive recursive upper bounds for the density Hales–Jewett
numbers (belonging to the class E7 of Grzegorczyk’s hierarchy,
or slightly higher).

• Because we assume stationarity, our theorem is “local” in
nature. It would be much more desirable if we had a “global”
structure theorem. Formulating and proving a useful “global”
theorem (with quantitative aspects comparable to our “local”
version) might lead to upper bounds for the density
Hales–Jewett numbers which are of tower-type, or even better.



9. What about lower bounds?

• For alphabets with two letters the density Hales–Jewett
numbers are understood rather well:

1
ε
6 DHJ(2, ε) 6 4

(1
ε

)2
.

• However, the case k > 3 is quite different. Specifically, by
transferring Behrend’s classical construction of a 3AP-free set,
one obtains a quasi-polynomial lower bound:

2O
(
(log 1

ε
)`
)
6 DHJ(k , ε)

with ` = Θ(log k).



10. A problem

“Perhaps the Hales–Jewett numbers are exponential.”
—József Beck, Combinatorial Games: Tic-Tac-Toe Theory.

Problem
Is it true that

DHJ(k , ε) 6 2( 1
ε
)Ok (1)

with a “reasonable” implied constant?



Thanks for listening!


