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A, and S1 = {w ∈ T1 : v occurs in W}. If w ∈ S1 and a ∈ A,
then w(a) is the result of replacing each occurrence of v in w
by a.

For example, assume A = {a, b, c} and w = avvbva. Then
w(a) = aaabaa and w(c) = accbca.

Theorem (Hales-Jewett). If S0 is finitely colored, then
there exists w ∈ S1 such that {w(a) : a ∈ A} is monochro-
matic.
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(3) If T is a subsemigroup of S we pretend that βT ⊆ βS by
identifying p ∈ βT with the ultrafilter {C ⊆ S : C ∩T ∈ p}
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)
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∑
n∈F xn.



Theorem. Let D be a piecewise syndetic subset of S0 and
let B be an IP-set in (N,+). There exists w ∈ S1 such that
{w(a) : a ∈ A} ⊆ D and µ(w) ∈ B. Thus, if S0 is finitely
colored and 〈xn〉∞n=1 is a sequence in N (think a thin sequence
like xn = 2n!), there exist w ∈ S1 and F ∈ Pf (N) such that
{w(a) : a ∈ A} is monochromatic and µ(w) =

∑
n∈F xn.

Proof. Since D is piecewise syndetic in S0, pick u ∈ S0

such that u−1D is central in S0. Pick an idempotent r ∈
E

(
K(βS0)

)
such that u−1D ∈ r.



Theorem. Let D be a piecewise syndetic subset of S0 and
let B be an IP-set in (N,+). There exists w ∈ S1 such that
{w(a) : a ∈ A} ⊆ D and µ(w) ∈ B. Thus, if S0 is finitely
colored and 〈xn〉∞n=1 is a sequence in N (think a thin sequence
like xn = 2n!), there exist w ∈ S1 and F ∈ Pf (N) such that
{w(a) : a ∈ A} is monochromatic and µ(w) =

∑
n∈F xn.

Proof. Since D is piecewise syndetic in S0, pick u ∈ S0

such that u−1D is central in S0. Pick an idempotent r ∈
E

(
K(βS0)

)
such that u−1D ∈ r.

Pick an additive idempotent p ∈ βN such that B ∈ p.
Since µ : S1 → N is surjective, µ̃ : βS1 → βN is surjective.
Let V = µ̃−1[{p}]. Then V is a nonempty compact subset of
βS1.



Theorem. Let D be a piecewise syndetic subset of S0 and
let B be an IP-set in (N,+). There exists w ∈ S1 such that
{w(a) : a ∈ A} ⊆ D and µ(w) ∈ B. Thus, if S0 is finitely
colored and 〈xn〉∞n=1 is a sequence in N (think a thin sequence
like xn = 2n!), there exist w ∈ S1 and F ∈ Pf (N) such that
{w(a) : a ∈ A} is monochromatic and µ(w) =

∑
n∈F xn.

Proof. Since D is piecewise syndetic in S0, pick u ∈ S0

such that u−1D is central in S0. Pick an idempotent r ∈
E

(
K(βS0)

)
such that u−1D ∈ r.

Pick an additive idempotent p ∈ βN such that B ∈ p.
Since µ : S1 → N is surjective, µ̃ : βS1 → βN is surjective.
Let V = µ̃−1[{p}]. Then V is a nonempty compact subset of
βS1.

Since µ̃ is a homomorphism, V is a subsemigroup of βS1.
(If s, q ∈ V , then µ̃(sq) = µ̃(s) + µ̃(q) = p + p = p.) Also, if
q ∈ V , then by the lemma above, µ̃(rq) = µ̃(qr) = µ̃(q) = p,
so rV ⊆ V and V r ⊆ V .



Theorem. Let D be a piecewise syndetic subset of S0 and
let B be an IP-set in (N,+). There exists w ∈ S1 such that
{w(a) : a ∈ A} ⊆ D and µ(w) ∈ B. Thus, if S0 is finitely
colored and 〈xn〉∞n=1 is a sequence in N (think a thin sequence
like xn = 2n!), there exist w ∈ S1 and F ∈ Pf (N) such that
{w(a) : a ∈ A} is monochromatic and µ(w) =

∑
n∈F xn.

Proof. Since D is piecewise syndetic in S0, pick u ∈ S0

such that u−1D is central in S0. Pick an idempotent r ∈
E

(
K(βS0)

)
such that u−1D ∈ r.

Pick an additive idempotent p ∈ βN such that B ∈ p.
Since µ : S1 → N is surjective, µ̃ : βS1 → βN is surjective.
Let V = µ̃−1[{p}]. Then V is a nonempty compact subset of
βS1.

Since µ̃ is a homomorphism, V is a subsemigroup of βS1.
(If s, q ∈ V , then µ̃(sq) = µ̃(s) + µ̃(q) = p + p = p.) Also, if
q ∈ V , then by the lemma above, µ̃(rq) = µ̃(qr) = µ̃(q) = p,
so rV ⊆ V and V r ⊆ V .

Pick an idempotent q ∈ rV ∩ V r. Then q = rq = qr so
q ≤ r (in βT1). For a ∈ A, h̃a(q) ≤ h̃a(r) = r so, since r is
minimal in βS0, h̃a(q) = r and so h−1

a [u−1D] ∈ q.



Theorem. Let D be a piecewise syndetic subset of S0 and
let B be an IP-set in (N,+). There exists w ∈ S1 such that
{w(a) : a ∈ A} ⊆ D and µ(w) ∈ B. Thus, if S0 is finitely
colored and 〈xn〉∞n=1 is a sequence in N (think a thin sequence
like xn = 2n!), there exist w ∈ S1 and F ∈ Pf (N) such that
{w(a) : a ∈ A} is monochromatic and µ(w) =

∑
n∈F xn.

Proof. Since D is piecewise syndetic in S0, pick u ∈ S0

such that u−1D is central in S0. Pick an idempotent r ∈
E

(
K(βS0)

)
such that u−1D ∈ r.

Pick an additive idempotent p ∈ βN such that B ∈ p.
Since µ : S1 → N is surjective, µ̃ : βS1 → βN is surjective.
Let V = µ̃−1[{p}]. Then V is a nonempty compact subset of
βS1.

Since µ̃ is a homomorphism, V is a subsemigroup of βS1.
(If s, q ∈ V , then µ̃(sq) = µ̃(s) + µ̃(q) = p + p = p.) Also, if
q ∈ V , then by the lemma above, µ̃(rq) = µ̃(qr) = µ̃(q) = p,
so rV ⊆ V and V r ⊆ V .

Pick an idempotent q ∈ rV ∩ V r. Then q = rq = qr so
q ≤ r (in βT1). For a ∈ A, h̃a(q) ≤ h̃a(r) = r so, since r is
minimal in βS0, h̃a(q) = r and so h−1

a [u−1D] ∈ q.
Since B ∈ µ̃(q) = p, µ−1[B] ∈ q. Pick w ∈ S1 ∩ µ−1[B] ∩⋂
a∈A h

−1
a [u−1D]. Then µ(uw) = µ(w) ∈ B and for a ∈ A,

w(a) ∈ u−1D so (uw)(a) ∈ D.



Theorem. Let D be a piecewise syndetic subset of S0 and
let B be an IP-set in (N,+). There exists w ∈ S1 such that
{w(a) : a ∈ A} ⊆ D and µ(w) ∈ B. Thus, if S0 is finitely
colored and 〈xn〉∞n=1 is a sequence in N (think a thin sequence
like xn = 2n!), there exist w ∈ S1 and F ∈ Pf (N) such that
{w(a) : a ∈ A} is monochromatic and µ(w) =

∑
n∈F xn.

Proof. Since D is piecewise syndetic in S0, pick u ∈ S0

such that u−1D is central in S0. Pick an idempotent r ∈
E

(
K(βS0)

)
such that u−1D ∈ r.

Pick an additive idempotent p ∈ βN such that B ∈ p.
Since µ : S1 → N is surjective, µ̃ : βS1 → βN is surjective.
Let V = µ̃−1[{p}]. Then V is a nonempty compact subset of
βS1.

Since µ̃ is a homomorphism, V is a subsemigroup of βS1.
(If s, q ∈ V , then µ̃(sq) = µ̃(s) + µ̃(q) = p + p = p.) Also, if
q ∈ V , then by the lemma above, µ̃(rq) = µ̃(qr) = µ̃(q) = p,
so rV ⊆ V and V r ⊆ V .

Pick an idempotent q ∈ rV ∩ V r. Then q = rq = qr so
q ≤ r (in βT1). For a ∈ A, h̃a(q) ≤ h̃a(r) = r so, since r is
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Note that we cannot conclude from the proof that {w ∈
S1 : {w(a) : a ∈ A} ⊆ D and µ(w) ∈ B} is piecewise syndetic
in S1 because q is not known to be minimal in βS1. In fact,
unless B is central in N, it won’t be.



The following corollary is known to be a consequence of the
Central Sets Theorem.

Corollary. Let k ∈ N, let B be an IP-set in N, and let N
be finitely colored. There exist b ∈ N and d ∈ B such that
{b, b+ d, b+ 2d, . . . , b+ kd} is monochromatic.
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The extensions of the Hales-Jewett Theorem from the title
involve multiple variables.

Notation. Let n ∈ N. Then Tn is the free semigroup over
A∪ {v1, v2, . . . , vn} where v1, v2, . . . , vn are distinct variables
that are not members of A and Sn = {w ∈ Tn : for each
i ∈ {1, 2, . . . , n}, vi occurs in w}.
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and entries below the diagonal less than or equal to 0 and
w ∈ Sn for n ≥ m. I present it with m = n = 2.
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)
=

∑
n∈H 7n .



The full generality of the following theorem has M as an
m×m upper triangular matrix with positive diagonal entries
and entries below the diagonal less than or equal to 0 and
w ∈ Sn for n ≥ m. I present it with m = n = 2.

Theorem A. Assume that M is a 2 × 2 lower triangular
matrix with rational entries, positive diagonal entries, and
the entry below the diagonal is at most 0. Assume that
τ1 = α1,1µ1 + α1,2µ2 and τ2 = α2,1µ1 + α2,2µ2 where(
α1,1 α1,2

α2,1 α2,2

)
is of the form

(
+ 0
≤ 0 +

)
or

(
0 +
+ ≤ 0

)
.

If S0 is finitely colored and B1 and B2 are IP-sets in N, then
there exists w ∈ S2 such that {w(~x) : ~x ∈ A2} is monochro-

matic and M
(
τ1(w)
τ2(w)

)
∈ B1 ×B2.

For example, assume M =
(

1 0
−1 2

)
, τ1 = µ2,

τ2 = µ1 − µ2, B1 = FS(〈4n〉∞n=1), and B2 = FS(〈7n〉∞n=1).
If S0 is finitely colored, then there exists w ∈ S2 such that
{w(~x) : ~x ∈ A2} is monochromatic and(

1 0
−1 2

) (
µ2(w)

µ1(w)− µ2(w)

)
∈ B1 ×B2 .

That is, there exist F and H in Pf (N) such that

µ2(w) =
∑

n∈F 4n and

−µ2(w) + 2
(
µ1(w)− µ2(w)

)
=

∑
n∈H 7n .

That is, there exist F and H in Pf (N) such that
µ2(w) =

∑
n∈F 4n and µ1(w) = 1

2 (
∑

n∈H 7n − 3
∑

n∈F 4n).



The full generality of the following theorem has k,m, n ∈ N
with m ≤ n, M a k ×m image partition regular matrix, and
w ∈ Sn. I present it with k = m = n = 2.
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w ∈ Sn. I present it with k = m = n = 2.

Theorem B. Let M be a 2×2 image partition regular matrix
with rational entries. If S0 is finitely colored and B is a
central set in N, then there exists w ∈ S2 such that {w(~x) :

~x ∈ A2} is monochromatic and M
(
µ1(w)
µ2(w)

)
∈ B ×B.
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Theorem B applies to many more matrices than does Theo-
rem A, especially in its full generality, since the class of image
partition regular matrices is much wider than the class of up-
per triangular matrices with positive diagonal entries.
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But we pay two prices for this greater generality. First, we
have the same central set B on both coordinates.
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Example. Let M =
(

1 1
1 2

)
. Then M is image partition

regular and there exist central sets B1 and B2 in N such that

there do not exist x, y ∈ N such that M
(
x
y

)
∈ B1 ×B2 .
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than just an IP-set.



The full generality of the following theorem has k,m, n ∈ N
with m ≤ n, M a k ×m image partition regular matrix, and
w ∈ Sn. I present it with k = m = n = 2.

Theorem B. Let M be a 2×2 image partition regular matrix
with rational entries. If S0 is finitely colored and B is a
central set in N, then there exists w ∈ S2 such that {w(~x) :

~x ∈ A2} is monochromatic and M
(
µ1(w)
µ2(w)

)
∈ B ×B.

Theorem B applies to many more matrices than does Theo-
rem A, especially in its full generality, since the class of image
partition regular matrices is much wider than the class of up-
per triangular matrices with positive diagonal entries.

But we pay two prices for this greater generality. First, we
have the same central set B on both coordinates.

Example. Let M =
(

1 1
1 2

)
. Then M is image partition

regular and there exist central sets B1 and B2 in N such that

there do not exist x, y ∈ N such that M
(
x
y

)
∈ B1 ×B2 .

The second price is that B must be a central set, rather
than just an IP-set.

Example. Let M =

 1 0
1 1
1 2

 and let B = FS(〈22n〉∞n=1).

Then M is image partition regular and there do not exist

x, y ∈ N such that M
(
x
y

)
∈ B ×B ×B .



The audience member who has managed to stay awake dur-
ing this presentation probably noticed that I stated Theorem
B for 2 × 2 matrices, and gave an example showing that the
central set B cannot be replaced by an arbitrary IP-set B
using a 3× 2 matrix. There is a reason.



The audience member who has managed to stay awake dur-
ing this presentation probably noticed that I stated Theorem
B for 2 × 2 matrices, and gave an example showing that the
central set B cannot be replaced by an arbitrary IP-set B
using a 3× 2 matrix. There is a reason.

Theorem B*. Let M be a 2× 2 image partition regular ma-
trix with rational entries. If S0 is finitely colored and B

is an IP-set set in N, then there exists w ∈ S2 such that

{w(~x) : ~x ∈ A2} is monochromatic and M
(
µ1(w)
µ2(w)

)
∈ B×B.


