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Theorem (Hales-Jewett). If Sy is finitely colored, then
there exists w € Sy such that {w(a) : a € A} is monochro-
matic.
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(3) If T is a subsemigroup of S we pretend that T C 3S by
identifying p € BT with the ultrafilter {C C S : CNT € p}
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(4) For CC S, C={pepS:Cep}. Theset {C:C C S} is
a basis for the open sets (as well as a basis for the closed

sets) of 3S.
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{to A, and g agree on Sy. This is true because, for w € 5,
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Theorem. Let D be a piecewise syndetic subset of Sy and
let B be an IP-set in (N,+). There exists w € Sy such that
{w(a) : a € A} C D and p(w) € B. Thus, if Sy is finitely
colored and (r,)52 1 is a sequence in N (think a thin sequence
like x, = 2™), there exist w € S1 and F € P¢(N) such that

{w(a) : a € A} is monochromatic and p(w) =) 5 Tn.
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such that u='D is central in Sy. Pick an idempotent r &
E(K(8Sp)) such that u™'D € r.
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Pick an additive idempotent p € BN such that B € p.
Since u : S7 — N is surjective, i : 657 — OGN is surjective.
Let V =~ ![{p}]. Then V is a nonempty compact subset of
£S]1.

Since p is a homomorphism, V' is a subsemigroup of 3.5;.
(If s,q € V, then n(sq) = pu(s) + iu(q) = p+ p = p.) Also, if
q € V, then by the lemma above, u(rq) = u(qr) = u(q) = p,
sorV CVand Vr CV.

Pick an idempotent ¢ € rV N Vr. Then ¢ = rq = gr so
g < (in BT1). For a € A, ho(q) < ha(r) = 7 so, since r is
minimal in 350, ha(g) = r and so k' [u"1D] € q.

Since B € ji(q) = p, p~t[B] € q. Pick w € S;nu~t[B]N
Nuea Pz u™'D]. Then pluw) = p(w) € B and for a € A,
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Note that we cannot conclude from the proof that {w €
S1:{w(a):a €A} C D and u(w) € B} is piecewise syndetic
in S7 because ¢ is not known to be minimal in 85;. In fact,
unless B is central in N, it won’t be.



The following corollary is known to be a consequence of the
Central Sets Theorem.

Corollary. Let k € N, let B be an IP-set in N, and let N
be finitely colored. There exist b € N and d € B such that
{bb+d,b+2d,...,b+ kd} is monochromatic.
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A, b+ad=T1(w(a)) so p(b+ad) = p(r(w(a))) = Y (w(a)).
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The extensions of the Hales-Jewett Theorem from the title
involve multiple variables.

Notation. Let n € N. Then T,, is the free semigroup over
AUA{vy,va,...,v,} where vy, vs, ..., v, are distinct variables
that are not members of A and S,, = {w € T, : for each
i €4{1,2,...,n}, v; occurs in w}.



The following corollary is known to be a consequence of the
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be finitely colored. There exist b € N and d € B such that
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S L. Let v = por. Then 1 is a finite coloring of Sp.
Plck w € 57 such that 1 is constant on {w(a) : a € A} and
p(w) € B. Let b = 7(w(0)) and let d = p(w). Then for a €
A, b+ad=T1(w(a)) so p(b+ad) = p(r(w(a))) = Y (w(a)).
[

The extensions of the Hales-Jewett Theorem from the title
involve multiple variables.

Notation. Let n € N. Then T,, is the free semigroup over
AUA{vy,va,...,v,} where vy, vs, ..., v, are distinct variables
that are not members of A and S,, = {w € T, : for each
i €4{1,2,...,n}, v; occurs in w}.

If ¥ € A” and w € S, then w(¥) is the result of replacing
each occurrence of v; by x; for ¢ € {1,2,...,n}. Given i €
{1,2,...,n},and w € S, pu;(w) is the number of occurrences
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The full generality of the following theorem has M as an
m X m upper triangular matrix with positive diagonal entries
and entries below the diagonal less than or equal to 0 and
w € S, for n > m. I present it with m =n = 2.
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Theorem A. Assume that M 1is a 2 X 2 lower triangular
matriz with rational entries, positive diagonal entries, and
the entry below the diagonal is at most 0. Assume that

TI = Q11 + Q122 and To = g 141 + Qo 22 where

11 G122 . + 0 0 +
(042,1 042,2> s of the form (SO _|_) or (_|_ SO) :
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The full generality of the following theorem has M as an
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and entries below the diagonal less than or equal to 0 and
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TI = Qq 11 + Q122 and To = g 141 + Qo 22 where
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If So s finitely colored and B, and By are IP-sets in N, then
there exists w € So such that {w(Z) : £ € A*} is monochro-

matic and M (Tl(w)) € By X Bs.
T2(w)

For example, assume M = (_11 (2) , T1 = M2,

Ty = p1 — p2, B1 = FS((4")72,), and By = FS({T")72,).
If Sy is finitely colored, then there exists w € S5 such that
{w(Z) : Z € A*} is monochromatic and

10 p2(w)
€ By X By.
(—1 2) (Ml(w)—MQ(w)> Po
That is, there exist F' and H in P;(N) such that

po(w) = ,ep 4" and

—pg(w) +2(p1(w) — pa(w)) =32, e T
That is, there exist F' and H in P;(N) such that
p2(w) = ZneF 4™ and py(w) = %(ZneH - BZneF 4m).
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partition regular matrices is much wider than the class of up-
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The second price is that B must be a central set, rather
than just an IP-set.
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and let B = FS((22")> ).

n=1

1
Example. Let M = | 1
1

o = O

Then M 1is image partition reqular and there do not exist

x,yENsuchthatM(zj) €c BxBxB.



The audience member who has managed to stay awake dur-
ing this presentation probably noticed that I stated Theorem
B for 2 x 2 matrices, and gave an example showing that the
central set B cannot be replaced by an arbitrary IP-set B
using a 3 X 2 matrix. There is a reason.



The audience member who has managed to stay awake dur-
ing this presentation probably noticed that I stated Theorem
B for 2 x 2 matrices, and gave an example showing that the
central set B cannot be replaced by an arbitrary IP-set B
using a 3 X 2 matrix. There is a reason.

Theorem B*. Let M be a 2 X 2 image partition reqular ma-
trix with rational entries. If Sy is finitely colored and B
1s an IP-set set in N, then there exists w € So such that

w(Z) : & € A%} is monochromatic and M pa(w) € BxB.
po(w)



