Combining extensions of the Hales-Jewett Theorem with Ramsey Theory in other structures

Neil Hindman,
Dona Strauss, and

Luca Q. Zamboni

Notation. Throughout \mathbb{A} is a finite alphabet (= nonempty set), S_{0} is the free semigroup over \mathbb{A}, T_{1} is the free semigroup over $\mathbb{A} \cup\{v\}$ where v is a variable which is not a member of \mathbb{A}, and $S_{1}=\left\{w \in T_{1}: v\right.$ occurs in $\left.W\right\}$. If $w \in S_{1}$ and $a \in \mathbb{A}$, then $w(a)$ is the result of replacing each occurrence of v in w by a.

Notation. Throughout \mathbb{A} is a finite alphabet (= nonempty set), S_{0} is the free semigroup over \mathbb{A}, T_{1} is the free semigroup over $\mathbb{A} \cup\{v\}$ where v is a variable which is not a member of \mathbb{A}, and $S_{1}=\left\{w \in T_{1}: v\right.$ occurs in $\left.W\right\}$. If $w \in S_{1}$ and $a \in \mathbb{A}$, then $w(a)$ is the result of replacing each occurrence of v in w by a.

For example, assume $\mathbb{A}=\{a, b, c\}$ and $w=a v v b v a$. Then $w(a)=a a a b a a$ and $w(c)=a c c b c a$.

Notation. Throughout \mathbb{A} is a finite alphabet (= nonempty set), S_{0} is the free semigroup over \mathbb{A}, T_{1} is the free semigroup over $\mathbb{A} \cup\{v\}$ where v is a variable which is not a member of \mathbb{A}, and $S_{1}=\left\{w \in T_{1}: v\right.$ occurs in $\left.W\right\}$. If $w \in S_{1}$ and $a \in \mathbb{A}$, then $w(a)$ is the result of replacing each occurrence of v in w by a.

For example, assume $\mathbb{A}=\{a, b, c\}$ and $w=a v v b v a$. Then $w(a)=a a a b a a$ and $w(c)=a c c b c a$.

Theorem (Hales-Jewett). If S_{0} is finitely colored, then there exists $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic.

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.
(1) The topological center of $X, \Lambda(X)=\left\{x \in X: \lambda_{x}\right.$ is continuous $\}$, where $\lambda_{x}(y)=x y$.

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.
(1) The topological center of $X, \Lambda(X)=\left\{x \in X: \lambda_{x}\right.$ is continuous $\}$, where $\lambda_{x}(y)=x y$.
(2) $E(X)=\{x \in X: x x=x\} \neq \emptyset$.

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.
(1) The topological center of $X, \Lambda(X)=\left\{x \in X: \lambda_{x}\right.$ is continuous $\}$, where $\lambda_{x}(y)=x y$.
(2) $E(X)=\{x \in X: x x=x\} \neq \emptyset$.
(3) If $e \in E(X)$, then e is a left identity for $e X$ and a right identity for $X e$.

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.
(1) The topological center of $X, \Lambda(X)=\left\{x \in X: \lambda_{x}\right.$ is continuous $\}$, where $\lambda_{x}(y)=x y$.
(2) $E(X)=\{x \in X: x x=x\} \neq \emptyset$.
(3) If $e \in E(X)$, then e is a left identity for $e X$ and a right identity for $X e$.
[Let $y \in e X$ and pick $x \in X$ such that $y=e x$. Then $e y=$ $e e x=e x=y$.]

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.
(1) The topological center of $X, \Lambda(X)=\left\{x \in X: \lambda_{x}\right.$ is continuous $\}$, where $\lambda_{x}(y)=x y$.
(2) $E(X)=\{x \in X: x x=x\} \neq \emptyset$.
(3) If $e \in E(X)$, then e is a left identity for $e X$ and a right identity for $X e$.
[Let $y \in e X$ and pick $x \in X$ such that $y=e x$. Then $e y=$ $e e x=e x=y$.]
(4) X has a smallest two sided ideal, $K(X)=\bigcup\{R: R$ is a minimal right ideal of $X\}=\bigcup\{L: L$ is a minimal left ideal of $X\}$.

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.
(1) The topological center of $X, \Lambda(X)=\left\{x \in X: \lambda_{x}\right.$ is continuous $\}$, where $\lambda_{x}(y)=x y$.
(2) $E(X)=\{x \in X: x x=x\} \neq \emptyset$.
(3) If $e \in E(X)$, then e is a left identity for $e X$ and a right identity for $X e$.
[Let $y \in e X$ and pick $x \in X$ such that $y=e x$. Then $e y=$ $e e x=e x=y$.]
(4) X has a smallest two sided ideal, $K(X)=\bigcup\{R: R$ is a minimal right ideal of $X\}=\bigcup\{L: L$ is a minimal left ideal of $X\}$.
(5) If $e, f \in E(X)$, we define $e \leq f$ iff $e=e f=f e$. For $e \in E(X), e$ is minimal with respect to \leq iff $e \in K(X)$.

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.
(1) The topological center of $X, \Lambda(X)=\left\{x \in X: \lambda_{x}\right.$ is continuous $\}$, where $\lambda_{x}(y)=x y$.
(2) $E(X)=\{x \in X: x x=x\} \neq \emptyset$.
(3) If $e \in E(X)$, then e is a left identity for $e X$ and a right identity for $X e$.
[Let $y \in e X$ and pick $x \in X$ such that $y=e x$. Then $e y=$ $e e x=e x=y$.]
(4) X has a smallest two sided ideal, $K(X)=\bigcup\{R: R$ is a minimal right ideal of $X\}=\bigcup\{L: L$ is a minimal left ideal of $X\}$.
(5) If $e, f \in E(X)$, we define $e \leq f$ iff $e=e f=f e$. For $e \in E(X), e$ is minimal with respect to \leq iff $e \in K(X)$.
(6) If $e \in E(X)$, there is a minimal idempotent f such that $f \leq e$.

Basic information

I. Compact right topological semigroups. Let (X, \cdot, \mathcal{T}) be a compact Hausdorff right topological semigroup. That is, (X, \cdot) is a semigroup, (X, \mathcal{T}) is a compact Hausdorff space, and for each $x \in X, \rho_{x}$ is continuous, where $\rho_{x}(y)=y \cdot x$. As customary, we write $x y$ for $x \cdot y$.
(1) The topological center of $X, \Lambda(X)=\left\{x \in X: \lambda_{x}\right.$ is continuous $\}$, where $\lambda_{x}(y)=x y$.
(2) $E(X)=\{x \in X: x x=x\} \neq \emptyset$.
(3) If $e \in E(X)$, then e is a left identity for $e X$ and a right identity for $X e$.
[Let $y \in e X$ and pick $x \in X$ such that $y=e x$. Then $e y=$ $e e x=e x=y$.]
(4) X has a smallest two sided ideal, $K(X)=\bigcup\{R: R$ is a minimal right ideal of $X\}=\bigcup\{L: L$ is a minimal left ideal of $X\}$.
(5) If $e, f \in E(X)$, we define $e \leq f$ iff $e=e f=f e$. For $e \in E(X), e$ is minimal with respect to $\leq \operatorname{iff} e \in K(X)$.
(6) If $e \in E(X)$, there is a minimal idempotent f such that $f \leq e$.
(7) If R is a right ideal of X and L is a left ideal of X, then there is an idempotent in $R \cap L$.

II. The Stone-Čech compactification of a discrete

 semigroup. Let (S, \cdot) be a discrete semigroup. The StoneČech compactification $\beta S=\{p: p$ is an ultrafilter on $S\}$.
II. The Stone-Čech compactification of a discrete

 semigroup. Let (S, \cdot) be a discrete semigroup. The StoneČech compactification $\beta S=\{p: p$ is an ultrafilter on $S\}$.(1) We pretend that $S \subseteq \beta S$ by identifying the point $x \in S$ with the principal ultrafilter $e(x)=\{C \subseteq S: x \in C\}$.
II. The Stone-Čech compactification of a discrete semigroup. Let ($S, \cdot \cdot$) be a discrete semigroup. The StoneČech compactification $\beta S=\{p: p$ is an ultrafilter on $S\}$.
(1) We pretend that $S \subseteq \beta S$ by identifying the point $x \in S$ with the principal ultrafilter $e(x)=\{C \subseteq S: x \in C\}$.
(2) The operation on S is extended to βS so that $(\beta S, \cdot)$ is a compact Hausdorff right topological semigroup with $S \subseteq$ $\Lambda(\beta S)$.
II. The Stone-Čech compactification of a discrete semigroup. Let (S, \cdot) be a discrete semigroup. The StoneČech compactification $\beta S=\{p: p$ is an ultrafilter on $S\}$.
(1) We pretend that $S \subseteq \beta S$ by identifying the point $x \in S$ with the principal ultrafilter $e(x)=\{C \subseteq S: x \in C\}$.
(2) The operation on S is extended to βS so that $(\beta S, \cdot)$ is a compact Hausdorff right topological semigroup with $S \subseteq$ $\Lambda(\beta S)$.
(3) If T is a subsemigroup of S we pretend that $\beta T \subseteq \beta S$ by identifying $p \in \beta T$ with the ultrafilter $\{C \subseteq S: C \cap T \in p\}$ on S.
II. The Stone-Čech compactification of a discrete semigroup. Let (S, \cdot) be a discrete semigroup. The StoneČech compactification $\beta S=\{p: p$ is an ultrafilter on $S\}$.
(1) We pretend that $S \subseteq \beta S$ by identifying the point $x \in S$ with the principal ultrafilter $e(x)=\{C \subseteq S: x \in C\}$.
(2) The operation on S is extended to βS so that $(\beta S, \cdot)$ is a compact Hausdorff right topological semigroup with $S \subseteq$ $\Lambda(\beta S)$.
(3) If T is a subsemigroup of S we pretend that $\beta T \subseteq \beta S$ by identifying $p \in \beta T$ with the ultrafilter $\{C \subseteq S: C \cap T \in p\}$ on S.
(4) For $C \subseteq S, \bar{C}=\{p \in \beta S: C \in p\}$. The set $\{\bar{C}: C \subseteq S\}$ is a basis for the open sets (as well as a basis for the closed sets) of βS.

II. The Stone-Čech compactification of a discrete

 semigroup.(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
II. The Stone-Čech compactification of a discrete semigroup.
(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
(6) A set $C \subseteq S$ is an $I P$-set iff there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S such that $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq C$.
II. The Stone-Čech compactification of a discrete semigroup.
(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
(6) A set $C \subseteq S$ is an $I P$-set iff there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S such that $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq C$.
(7) A set $C \subseteq S$ is an IP-set iff there exists $p \in E(\beta S)$ such that $C \in p$, that is $\bar{C} \cap E(\beta S) \neq \emptyset$.
II. The Stone-Čech compactification of a discrete semigroup.
(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
(6) A set $C \subseteq S$ is an $I P$-set iff there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S such that $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq C$.
(7) A set $C \subseteq S$ is an IP-set iff there exists $p \in E(\beta S)$ such that $C \in p$, that is $\bar{C} \cap E(\beta S) \neq \emptyset$.
(8) A set $C \subseteq S$ is central iff $\bar{C} \cap E(K(\beta S)) \neq \emptyset$, that is C is a member of a minimal idempotent.

II. The Stone-Čech compactification of a discrete semigroup.

(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
(6) A set $C \subseteq S$ is an $I P$-set iff there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S such that $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq C$.
(7) A set $C \subseteq S$ is an IP-set iff there exists $p \in E(\beta S)$ such that $C \in p$, that is $\bar{C} \cap E(\beta S) \neq \emptyset$.
(8) A set $C \subseteq S$ is central iff $\bar{C} \cap E(K(\beta S)) \neq \emptyset$, that is C is a member of a minimal idempotent.
(9) A set $C \subseteq S$ is piecewise syndetic iff $\bar{C} \cap K(\beta S) \neq \emptyset$.

II. The Stone-Čech compactification of a discrete semigroup.

(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
(6) A set $C \subseteq S$ is an $I P$-set iff there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S such that $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq C$.
(7) A set $C \subseteq S$ is an IP-set iff there exists $p \in E(\beta S)$ such that $C \in p$, that is $\bar{C} \cap E(\beta S) \neq \emptyset$.
(8) A set $C \subseteq S$ is central iff $\bar{C} \cap E(K(\beta S)) \neq \emptyset$, that is C is a member of a minimal idempotent.
(9) A set $C \subseteq S$ is piecewise syndetic iff $\bar{C} \cap K(\beta S) \neq \emptyset$.
(10) A set $C \subseteq S$ is piecewise syndetic iff there exists $x \in S$ such that $x^{-1} C$ is central, where $x^{-1} C=\{y \in S: x y \in C\}$.

II. The Stone-Čech compactification of a discrete semigroup.

(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
(6) A set $C \subseteq S$ is an $I P$-set iff there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S such that $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq C$.
(7) A set $C \subseteq S$ is an IP-set iff there exists $p \in E(\beta S)$ such that $C \in p$, that is $\bar{C} \cap E(\beta S) \neq \emptyset$.
(8) A set $C \subseteq S$ is central iff $\bar{C} \cap E(K(\beta S)) \neq \emptyset$, that is C is a member of a minimal idempotent.
(9) A set $C \subseteq S$ is piecewise syndetic iff $\bar{C} \cap K(\beta S) \neq \emptyset$.
(10) A set $C \subseteq S$ is piecewise syndetic iff there exists $x \in S$ such that $x^{-1} C$ is central, where $x^{-1} C=\{y \in S: x y \in C\}$.
[Half of this is trivial. If $q \in E(K(\beta S))$ and $x^{-1} C \in q$, then $C \in x q$ and $x q \in K(\beta S)$.]

II. The Stone-Čech compactification of a discrete semigroup.

(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
(6) A set $C \subseteq S$ is an $I P$-set iff there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S such that $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq C$.
(7) A set $C \subseteq S$ is an IP-set iff there exists $p \in E(\beta S)$ such that $C \in p$, that is $\bar{C} \cap E(\beta S) \neq \emptyset$.
(8) A set $C \subseteq S$ is central iff $\bar{C} \cap E(K(\beta S)) \neq \emptyset$, that is C is a member of a minimal idempotent.
(9) A set $C \subseteq S$ is piecewise syndetic iff $\bar{C} \cap K(\beta S) \neq \emptyset$.
(10) A set $C \subseteq S$ is piecewise syndetic iff there exists $x \in S$ such that $x^{-1} C$ is central, where $x^{-1} C=\{y \in S: x y \in C\}$.
[Half of this is trivial. If $q \in E(K(\beta S))$ and $x^{-1} C \in q$, then $C \in x q$ and $x q \in K(\beta S)$.]
(11) If T is an ideal of S, then βT is an ideal of βS.

II. The Stone-Čech compactification of a discrete semigroup.

(5) For a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in $S, F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\prod_{t \in F} x_{t}\right.$: $\left.F \in \mathcal{P}_{f}(\mathbb{N})\right\}$, where $\mathcal{P}_{f}(\mathbb{N})$ is the set of finite nonempty subsets of \mathbb{N} and the product $\prod_{t \in F} x_{t}$ is computed in increasing order of indices. (If the operation is denoted by + , we write $F S\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right)=\left\{\sum_{t \in F} x_{t}: F \in \mathcal{P}_{f}(\mathbb{N})\right\}$.)
(6) A set $C \subseteq S$ is an $I P$-set iff there is a sequence $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ in S such that $F P\left(\left\langle x_{n}\right\rangle_{n=1}^{\infty}\right) \subseteq C$.
(7) A set $C \subseteq S$ is an IP-set iff there exists $p \in E(\beta S)$ such that $C \in p$, that is $\bar{C} \cap E(\beta S) \neq \emptyset$.
(8) A set $C \subseteq S$ is central iff $\bar{C} \cap E(K(\beta S)) \neq \emptyset$, that is C is a member of a minimal idempotent.
(9) A set $C \subseteq S$ is piecewise syndetic iff $\bar{C} \cap K(\beta S) \neq \emptyset$.
(10) A set $C \subseteq S$ is piecewise syndetic iff there exists $x \in S$ such that $x^{-1} C$ is central, where $x^{-1} C=\{y \in S: x y \in C\}$.
[Half of this is trivial. If $q \in E(K(\beta S))$ and $x^{-1} C \in q$, then $C \in x q$ and $x q \in K(\beta S)$.]
(11) If T is an ideal of S, then βT is an ideal of βS.
(12) If X is a compact Hausdorff right topological semigroup and $\varphi: S \rightarrow X$ is a homomorphism such that $\varphi[S] \subseteq$ $\Lambda(X)$, then the continuous extension $\widetilde{\varphi}: \beta S \rightarrow X$ is a homomorphism. If φ is injective, so is $\widetilde{\varphi}$. If φ is surjective, so is $\widetilde{\varphi}$.

Theorem (Hales-Jewett). Let D be a piecewise syndetic subset of S_{0}. There is some $w \in S_{1}$ such that $\{w(a): a \in$ $\mathbb{A}\} \subseteq D$. In particular, if S_{0} is finitely colored, there is some $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic.

Theorem (Hales-Jewett). Let D be a piecewise syndetic subset of S_{0}. There is some $w \in S_{1}$ such that $\{w(a): a \in$ $\mathbb{A}\} \subseteq D$. In particular, if S_{0} is finitely colored, there is some $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic.

Proof. (Blass) Since D is piecewise syndetic, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick $p \in E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in p$.

Theorem (Hales-Jewett). Let D be a piecewise syndetic subset of S_{0}. There is some $w \in S_{1}$ such that $\{w(a): a \in$ $\mathbb{A}\} \subseteq D$. In particular, if S_{0} is finitely colored, there is some $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic.

Proof. (Blass) Since D is piecewise syndetic, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick $p \in E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in p$.

Now $S_{0} \cup S_{1}=T_{1}$, so $\beta S_{0} \cup \beta S_{1}=\beta T_{1}$. Pick an idempotent $q \in K\left(\beta T_{1}\right)$ such that $q \leq p$.

Theorem (Hales-Jewett). Let D be a piecewise syndetic subset of S_{0}. There is some $w \in S_{1}$ such that $\{w(a): a \in$ $\mathbb{A}\} \subseteq D$. In particular, if S_{0} is finitely colored, there is some $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic.

Proof. (Blass) Since D is piecewise syndetic, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick $p \in E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in p$.

Now $S_{0} \cup S_{1}=T_{1}$, so $\beta S_{0} \cup \beta S_{1}=\beta T_{1}$. Pick an idempotent $q \in K\left(\beta T_{1}\right)$ such that $q \leq p$.

Now S_{1} is an ideal of T_{1}. So βS_{1} is an ideal of βT_{1}, and thus $K\left(\beta T_{1}\right) \subseteq \beta S_{1}$ so $q \in \beta S_{1}$, that is $S_{1} \in q$.

Theorem (Hales-Jewett). Let D be a piecewise syndetic subset of S_{0}. There is some $w \in S_{1}$ such that $\{w(a): a \in$ $\mathbb{A}\} \subseteq D$. In particular, if S_{0} is finitely colored, there is some $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic.

Proof. (Blass) Since D is piecewise syndetic, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick $p \in E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in p$.

Now $S_{0} \cup S_{1}=T_{1}$, so $\beta S_{0} \cup \beta S_{1}=\beta T_{1}$. Pick an idempotent $q \in K\left(\beta T_{1}\right)$ such that $q \leq p$.

Now S_{1} is an ideal of T_{1}. So βS_{1} is an ideal of βT_{1}, and thus $K\left(\beta T_{1}\right) \subseteq \beta S_{1}$ so $q \in \beta S_{1}$, that is $S_{1} \in q$.

For $a \in \mathbb{A}$, define $h_{a}: T_{1} \rightarrow S_{0}$ by

$$
h_{a}(w)=\left\{\begin{array}{cl}
w & \text { if } w \in S_{0} \\
w(a) & \text { if } w \in S_{1}
\end{array}\right.
$$

Then h_{a} is a homomorphism so $\widetilde{h}_{a}: \beta T_{1} \rightarrow \beta S_{1}$ is a homomorphism.

Theorem (Hales-Jewett). Let D be a piecewise syndetic subset of S_{0}. There is some $w \in S_{1}$ such that $\{w(a): a \in$ $\mathbb{A}\} \subseteq D$. In particular, if S_{0} is finitely colored, there is some $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic.

Proof. (Blass) Since D is piecewise syndetic, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick $p \in E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in p$.

Now $S_{0} \cup S_{1}=T_{1}$, so $\beta S_{0} \cup \beta S_{1}=\beta T_{1}$. Pick an idempotent $q \in K\left(\beta T_{1}\right)$ such that $q \leq p$.

Now S_{1} is an ideal of T_{1}. So βS_{1} is an ideal of βT_{1}, and thus $K\left(\beta T_{1}\right) \subseteq \beta S_{1}$ so $q \in \beta S_{1}$, that is $S_{1} \in q$.

For $a \in \mathbb{A}$, define $h_{a}: T_{1} \rightarrow S_{0}$ by

$$
h_{a}(w)=\left\{\begin{array}{cl}
w & \text { if } w \in S_{0} \\
w(a) & \text { if } w \in S_{1}
\end{array}\right.
$$

Then h_{a} is a homomorphism so $\widetilde{h}_{a}: \beta T_{1} \rightarrow \beta S_{1}$ is a homomorphism.

Since $q=p q=q p$, we have

$$
\widetilde{h}_{a}(q)=\widetilde{h}_{a}(p) \widetilde{h}_{a}(q)=\widetilde{h}_{a}(q) \widetilde{h}_{a}(p)
$$

and thus $\widetilde{h}_{a}(q) \leq \widetilde{h}_{a}(p)$ for each $a \in \mathbb{A}$. Given $a \in \mathbb{A}, h_{a}$ is the identity on S_{0} so $\widetilde{h}_{a}(p)=p$ and thus $\widetilde{h}_{a}(q) \leq p$. Since p is minimal in βS_{0}, we conclude that $\widetilde{h}_{a}(q)=p$ for each $a \in \mathbb{A}$.

Theorem (Hales-Jewett). Let D be a piecewise syndetic subset of S_{0}. There is some $w \in S_{1}$ such that $\{w(a): a \in$ $\mathbb{A}\} \subseteq D$. In particular, if S_{0} is finitely colored, there is some $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic.

Proof. (Blass) Since D is piecewise syndetic, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick $p \in E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in p$.

Now $S_{0} \cup S_{1}=T_{1}$, so $\beta S_{0} \cup \beta S_{1}=\beta T_{1}$. Pick an idempotent $q \in K\left(\beta T_{1}\right)$ such that $q \leq p$.

Now S_{1} is an ideal of T_{1}. So βS_{1} is an ideal of βT_{1}, and thus $K\left(\beta T_{1}\right) \subseteq \beta S_{1}$ so $q \in \beta S_{1}$, that is $S_{1} \in q$.

For $a \in \mathbb{A}$, define $h_{a}: T_{1} \rightarrow S_{0}$ by

$$
h_{a}(w)=\left\{\begin{array}{cl}
w & \text { if } w \in S_{0} \\
w(a) & \text { if } w \in S_{1}
\end{array}\right.
$$

Then h_{a} is a homomorphism so $\widetilde{h}_{a}: \beta T_{1} \rightarrow \beta S_{1}$ is a homomorphism.

Since $q=p q=q p$, we have

$$
\widetilde{h}_{a}(q)=\widetilde{h}_{a}(p) \widetilde{h}_{a}(q)=\widetilde{h}_{a}(q) \widetilde{h}_{a}(p)
$$

and thus $\widetilde{h}_{a}(q) \leq \widetilde{h}_{a}(p)$ for each $a \in \mathbb{A}$. Given $a \in \mathbb{A}, h_{a}$ is the identity on S_{0} so $\widetilde{h}_{a}(p)=p$ and thus $\widetilde{h}_{a}(q) \leq p$. Since p is minimal in βS_{0}, we conclude that $\widetilde{h}_{a}(q)=p$ for each $a \in \mathbb{A}$.

Since $u^{-1} D \in p$ we have by the continuity of \widetilde{h}_{a} that $h_{a}^{-1}\left[u^{-1} D\right] \in q$ for each $a \in \mathbb{A}$. Pick

$$
w \in S_{1} \cap \bigcap_{a \in \mathbb{A}} h_{a}^{-1}\left[u^{-1} D\right] .
$$

Then for each $a \in \mathbb{A}, w(a) \in u^{-1} D$ so $(u w)(a) \in D$.

Note that the above proof actually shows that $\left\{w \in S_{1}\right.$: $\{w(a): a \in \mathbb{A}\} \subseteq D\}$ is piecewise syndetic in S_{1}. And if D is central in S_{0}, then $\left\{w \in S_{1}:\{w(a): a \in \mathbb{A}\} \subseteq D\right\}$ is central in S_{1}.

Note that the above proof actually shows that $\left\{w \in S_{1}\right.$: $\{w(a): a \in \mathbb{A}\} \subseteq D\}$ is piecewise syndetic in S_{1}. And if D is central in S_{0}, then $\left\{w \in S_{1}:\{w(a): a \in \mathbb{A}\} \subseteq D\right\}$ is central in S_{1}.

Definition. Define $\mu: S_{1} \rightarrow \mathbb{N}$ by $\mu(w)$ is the number of occurrences of v in w.

Note that the above proof actually shows that $\left\{w \in S_{1}\right.$: $\{w(a): a \in \mathbb{A}\} \subseteq D\}$ is piecewise syndetic in S_{1}. And if D is central in S_{0}, then $\left\{w \in S_{1}:\{w(a): a \in \mathbb{A}\} \subseteq D\right\}$ is central in S_{1}.

Definition. Define $\mu: S_{1} \rightarrow \mathbb{N}$ by $\mu(w)$ is the number of occurrences of v in w.

Note that if $w \in S_{1}$ and $u \in S_{0}$, then $\mu(u w)=\mu(w u)=$ $\mu(w)$. Note also that μ is a homomorphism from S_{1} to $(\mathbb{N},+)$.

Note that the above proof actually shows that $\left\{w \in S_{1}\right.$: $\{w(a): a \in \mathbb{A}\} \subseteq D\}$ is piecewise syndetic in S_{1}. And if D is central in S_{0}, then $\left\{w \in S_{1}:\{w(a): a \in \mathbb{A}\} \subseteq D\right\}$ is central in S_{1}.

Definition. Define $\mu: S_{1} \rightarrow \mathbb{N}$ by $\mu(w)$ is the number of occurrences of v in w.

Note that if $w \in S_{1}$ and $u \in S_{0}$, then $\mu(u w)=\mu(w u)=$ $\mu(w)$. Note also that μ is a homomorphism from S_{1} to $(\mathbb{N},+)$.

Lemma. Let $\widetilde{\mu}: \beta S_{1} \rightarrow \beta \mathbb{N}$ be the continuous extension of μ, let $p \in \beta S_{0}$ and $q \in \beta S_{1}$. Then $\widetilde{\mu}(p q)=\widetilde{\mu}(q p)=\widetilde{\mu}(q)$.

Note that the above proof actually shows that $\left\{w \in S_{1}\right.$: $\{w(a): a \in \mathbb{A}\} \subseteq D\}$ is piecewise syndetic in S_{1}. And if D is central in S_{0}, then $\left\{w \in S_{1}:\{w(a): a \in \mathbb{A}\} \subseteq D\right\}$ is central in S_{1}.

Definition. Define $\mu: S_{1} \rightarrow \mathbb{N}$ by $\mu(w)$ is the number of occurrences of v in w.

Note that if $w \in S_{1}$ and $u \in S_{0}$, then $\mu(u w)=\mu(w u)=$ $\mu(w)$. Note also that μ is a homomorphism from S_{1} to $(\mathbb{N},+)$. Lemma. Let $\widetilde{\mu}: \beta S_{1} \rightarrow \beta \mathbb{N}$ be the continuous extension of μ, let $p \in \beta S_{0}$ and $q \in \beta S_{1}$. Then $\widetilde{\mu}(p q)=\widetilde{\mu}(q p)=\widetilde{\mu}(q)$.

Proof. To see that $\widetilde{\mu}(p q)=\widetilde{\mu}(q)$, that is $\widetilde{\mu} \circ \rho_{q}(p)=\widetilde{\mu}(q)$, it suffices that $\widetilde{\mu} \circ \rho_{q}$ is identically equal to $\widetilde{\mu}(q)$ on S_{0}, so let $u \in S_{0}$. Then $\widetilde{\mu} \circ \rho_{q}(u)=\widetilde{\mu}(u q)=\widetilde{\mu} \circ \lambda_{u}(q)$, so it suffices that $\widetilde{\mu} \circ \lambda_{u}$ and $\widetilde{\mu}$ agree on S_{1}. This is true because, for $w \in S_{1}$, $\mu(u w)=\mu(w)$.

Note that the above proof actually shows that $\left\{w \in S_{1}\right.$: $\{w(a): a \in \mathbb{A}\} \subseteq D\}$ is piecewise syndetic in S_{1}. And if D is central in S_{0}, then $\left\{w \in S_{1}:\{w(a): a \in \mathbb{A}\} \subseteq D\right\}$ is central in S_{1}.

Definition. Define $\mu: S_{1} \rightarrow \mathbb{N}$ by $\mu(w)$ is the number of occurrences of v in w.

Note that if $w \in S_{1}$ and $u \in S_{0}$, then $\mu(u w)=\mu(w u)=$ $\mu(w)$. Note also that μ is a homomorphism from S_{1} to $(\mathbb{N},+)$. Lemma. Let $\widetilde{\mu}: \beta S_{1} \rightarrow \beta \mathbb{N}$ be the continuous extension of μ, let $p \in \beta S_{0}$ and $q \in \beta S_{1}$. Then $\widetilde{\mu}(p q)=\widetilde{\mu}(q p)=\widetilde{\mu}(q)$.

Proof. To see that $\widetilde{\mu}(p q)=\widetilde{\mu}(q)$, that is $\widetilde{\mu} \circ \rho_{q}(p)=\widetilde{\mu}(q)$, it suffices that $\widetilde{\mu} \circ \rho_{q}$ is identically equal to $\widetilde{\mu}(q)$ on S_{0}, so let $u \in S_{0}$. Then $\widetilde{\mu} \circ \rho_{q}(u)=\widetilde{\mu}(u q)=\widetilde{\mu} \circ \lambda_{u}(q)$, so it suffices that $\widetilde{\mu} \circ \lambda_{u}$ and $\widetilde{\mu}$ agree on S_{1}. This is true because, for $w \in S_{1}$, $\mu(u w)=\mu(w)$.

One shows in a similar fashion that $\widetilde{\mu}(q p)=\widetilde{\mu}(q)$, by showing that $\widetilde{\mu} \circ \rho_{p}$ and $\widetilde{\mu}$ agree on S_{1}.

Theorem. Let D be a piecewise syndetic subset of S_{0} and let B be an IP-set in $(\mathbb{N},+)$. There exists $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\} \subseteq D$ and $\mu(w) \in B$. Thus, if S_{0} is finitely colored and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence in \mathbb{N} (think a thin sequence like $\left.x_{n}=2^{n!}\right)$, there exist $w \in S_{1}$ and $F \in \mathcal{P}_{f}(\mathbb{N})$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic and $\mu(w)=\sum_{n \in F} x_{n}$.

Theorem. Let D be a piecewise syndetic subset of S_{0} and let B be an IP-set in $(\mathbb{N},+)$. There exists $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\} \subseteq D$ and $\mu(w) \in B$. Thus, if S_{0} is finitely colored and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence in \mathbb{N} (think a thin sequence like $\left.x_{n}=2^{n!}\right)$, there exist $w \in S_{1}$ and $F \in \mathcal{P}_{f}(\mathbb{N})$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic and $\mu(w)=\sum_{n \in F} x_{n}$. Proof. Since D is piecewise syndetic in S_{0}, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick an idempotent $r \in$ $E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in r$.

Theorem. Let D be a piecewise syndetic subset of S_{0} and let B be an IP-set in $(\mathbb{N},+)$. There exists $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\} \subseteq D$ and $\mu(w) \in B$. Thus, if S_{0} is finitely colored and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence in \mathbb{N} (think a thin sequence like $\left.x_{n}=2^{n!}\right)$, there exist $w \in S_{1}$ and $F \in \mathcal{P}_{f}(\mathbb{N})$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic and $\mu(w)=\sum_{n \in F} x_{n}$.

Proof. Since D is piecewise syndetic in S_{0}, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick an idempotent $r \in$ $E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in r$.

Pick an additive idempotent $p \in \beta \mathbb{N}$ such that $B \in p$. Since $\mu: S_{1} \rightarrow \mathbb{N}$ is surjective, $\widetilde{\mu}: \beta S_{1} \rightarrow \beta \mathbb{N}$ is surjective. Let $V=\widetilde{\mu}^{-1}[\{p\}]$. Then V is a nonempty compact subset of βS_{1}.

Theorem. Let D be a piecewise syndetic subset of S_{0} and let B be an IP-set in $(\mathbb{N},+)$. There exists $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\} \subseteq D$ and $\mu(w) \in B$. Thus, if S_{0} is finitely colored and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence in \mathbb{N} (think a thin sequence like $\left.x_{n}=2^{n!}\right)$, there exist $w \in S_{1}$ and $F \in \mathcal{P}_{f}(\mathbb{N})$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic and $\mu(w)=\sum_{n \in F} x_{n}$.

Proof. Since D is piecewise syndetic in S_{0}, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick an idempotent $r \in$ $E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in r$.

Pick an additive idempotent $p \in \beta \mathbb{N}$ such that $B \in p$. Since $\mu: S_{1} \rightarrow \mathbb{N}$ is surjective, $\widetilde{\mu}: \beta S_{1} \rightarrow \beta \mathbb{N}$ is surjective. Let $V=\widetilde{\mu}^{-1}[\{p\}]$. Then V is a nonempty compact subset of βS_{1}.

Since $\widetilde{\mu}$ is a homomorphism, V is a subsemigroup of βS_{1}. (If $s, q \in V$, then $\widetilde{\mu}(s q)=\widetilde{\mu}(s)+\widetilde{\mu}(q)=p+p=p$.) Also, if $q \in V$, then by the lemma above, $\widetilde{\mu}(r q)=\widetilde{\mu}(q r)=\widetilde{\mu}(q)=p$, so $r V \subseteq V$ and $V r \subseteq V$.

Theorem. Let D be a piecewise syndetic subset of S_{0} and let B be an IP-set in $(\mathbb{N},+)$. There exists $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\} \subseteq D$ and $\mu(w) \in B$. Thus, if S_{0} is finitely colored and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence in \mathbb{N} (think a thin sequence like $\left.x_{n}=2^{n!}\right)$, there exist $w \in S_{1}$ and $F \in \mathcal{P}_{f}(\mathbb{N})$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic and $\mu(w)=\sum_{n \in F} x_{n}$.

Proof. Since D is piecewise syndetic in S_{0}, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick an idempotent $r \in$ $E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in r$.

Pick an additive idempotent $p \in \beta \mathbb{N}$ such that $B \in p$. Since $\mu: S_{1} \rightarrow \mathbb{N}$ is surjective, $\widetilde{\mu}: \beta S_{1} \rightarrow \beta \mathbb{N}$ is surjective. Let $V=\widetilde{\mu}^{-1}[\{p\}]$. Then V is a nonempty compact subset of βS_{1}.

Since $\widetilde{\mu}$ is a homomorphism, V is a subsemigroup of βS_{1}. (If $s, q \in V$, then $\widetilde{\mu}(s q)=\widetilde{\mu}(s)+\widetilde{\mu}(q)=p+p=p$.) Also, if $q \in V$, then by the lemma above, $\widetilde{\mu}(r q)=\widetilde{\mu}(q r)=\widetilde{\mu}(q)=p$, so $r V \subseteq V$ and $V r \subseteq V$.

Pick an idempotent $q \in r V \cap V r$. Then $q=r q=q r$ so $q \leq r$ (in βT_{1}). For $a \in \mathbb{A}, \widetilde{h}_{a}(q) \leq \widetilde{h}_{a}(r)=r$ so, since r is minimal in $\beta S_{0}, \widetilde{h}_{a}(q)=r$ and so $h_{a}^{-1}\left[u^{-1} D\right] \in q$.

Theorem. Let D be a piecewise syndetic subset of S_{0} and let B be an IP-set in $(\mathbb{N},+)$. There exists $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\} \subseteq D$ and $\mu(w) \in B$. Thus, if S_{0} is finitely colored and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence in \mathbb{N} (think a thin sequence like $\left.x_{n}=2^{n!}\right)$, there exist $w \in S_{1}$ and $F \in \mathcal{P}_{f}(\mathbb{N})$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic and $\mu(w)=\sum_{n \in F} x_{n}$.

Proof. Since D is piecewise syndetic in S_{0}, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick an idempotent $r \in$ $E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in r$.

Pick an additive idempotent $p \in \beta \mathbb{N}$ such that $B \in p$. Since $\mu: S_{1} \rightarrow \mathbb{N}$ is surjective, $\widetilde{\mu}: \beta S_{1} \rightarrow \beta \mathbb{N}$ is surjective. Let $V=\widetilde{\mu}^{-1}[\{p\}]$. Then V is a nonempty compact subset of βS_{1}.

Since $\widetilde{\mu}$ is a homomorphism, V is a subsemigroup of βS_{1}. (If $s, q \in V$, then $\widetilde{\mu}(s q)=\widetilde{\mu}(s)+\widetilde{\mu}(q)=p+p=p$.) Also, if $q \in V$, then by the lemma above, $\widetilde{\mu}(r q)=\widetilde{\mu}(q r)=\widetilde{\mu}(q)=p$, so $r V \subseteq V$ and $V r \subseteq V$.

Pick an idempotent $q \in r V \cap V r$. Then $q=r q=q r$ so $q \leq r$ (in βT_{1}). For $a \in \mathbb{A}, \widetilde{h}_{a}(q) \leq \widetilde{h}_{a}(r)=r$ so, since r is minimal in $\beta S_{0}, \widetilde{h}_{a}(q)=r$ and so $h_{a}^{-1}\left[u^{-1} D\right] \in q$.

Since $B \in \widetilde{\mu}(q)=p, \mu^{-1}[B] \in q$. Pick $w \in S_{1} \cap \mu^{-1}[B] \cap$ $\bigcap_{a \in \mathbb{A}} h_{a}^{-1}\left[u^{-1} D\right]$. Then $\mu(u w)=\mu(w) \in B$ and for $a \in \mathbb{A}$, $w(a) \in u^{-1} D$ so $(u w)(a) \in D$.

Theorem. Let D be a piecewise syndetic subset of S_{0} and let B be an IP-set in $(\mathbb{N},+)$. There exists $w \in S_{1}$ such that $\{w(a): a \in \mathbb{A}\} \subseteq D$ and $\mu(w) \in B$. Thus, if S_{0} is finitely colored and $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is a sequence in \mathbb{N} (think a thin sequence like $\left.x_{n}=2^{n!}\right)$, there exist $w \in S_{1}$ and $F \in \mathcal{P}_{f}(\mathbb{N})$ such that $\{w(a): a \in \mathbb{A}\}$ is monochromatic and $\mu(w)=\sum_{n \in F} x_{n}$.

Proof. Since D is piecewise syndetic in S_{0}, pick $u \in S_{0}$ such that $u^{-1} D$ is central in S_{0}. Pick an idempotent $r \in$ $E\left(K\left(\beta S_{0}\right)\right)$ such that $u^{-1} D \in r$.

Pick an additive idempotent $p \in \beta \mathbb{N}$ such that $B \in p$. Since $\mu: S_{1} \rightarrow \mathbb{N}$ is surjective, $\widetilde{\mu}: \beta S_{1} \rightarrow \beta \mathbb{N}$ is surjective. Let $V=\widetilde{\mu}^{-1}[\{p\}]$. Then V is a nonempty compact subset of βS_{1}.

Since $\widetilde{\mu}$ is a homomorphism, V is a subsemigroup of βS_{1}. (If $s, q \in V$, then $\widetilde{\mu}(s q)=\widetilde{\mu}(s)+\widetilde{\mu}(q)=p+p=p$.) Also, if $q \in V$, then by the lemma above, $\widetilde{\mu}(r q)=\widetilde{\mu}(q r)=\widetilde{\mu}(q)=p$, so $r V \subseteq V$ and $V r \subseteq V$.

Pick an idempotent $q \in r V \cap V r$. Then $q=r q=q r$ so $q \leq r$ (in βT_{1}). For $a \in \mathbb{A}, \widetilde{h}_{a}(q) \leq \widetilde{h}_{a}(r)=r$ so, since r is minimal in $\beta S_{0}, \widetilde{h}_{a}(q)=r$ and so $h_{a}^{-1}\left[u^{-1} D\right] \in q$.

Since $B \in \widetilde{\mu}(q)=p, \mu^{-1}[B] \in q$. Pick $w \in S_{1} \cap \mu^{-1}[B] \cap$ $\bigcap_{a \in \mathbb{A}} h_{a}^{-1}\left[u^{-1} D\right]$. Then $\mu(u w)=\mu(w) \in B$ and for $a \in \mathbb{A}$, $w(a) \in u^{-1} D$ so $(u w)(a) \in D$.

Note that we cannot conclude from the proof that $\{w \in$ $S_{1}:\{w(a): a \in \mathbb{A}\} \subseteq D$ and $\left.\mu(w) \in B\right\}$ is piecewise syndetic in S_{1} because q is not known to be minimal in βS_{1}. In fact, unless B is central in \mathbb{N}, it won't be.

The following corollary is known to be a consequence of the Central Sets Theorem.

Corollary. Let $k \in \mathbb{N}$, let B be an IP-set in \mathbb{N}, and let \mathbb{N} be finitely colored. There exist $b \in \mathbb{N}$ and $d \in B$ such that $\{b, b+d, b+2 d, \ldots, b+k d\}$ is monochromatic.

The following corollary is known to be a consequence of the Central Sets Theorem.

Corollary. Let $k \in \mathbb{N}$, let B be an IP-set in \mathbb{N}, and let \mathbb{N} be finitely colored. There exist $b \in \mathbb{N}$ and $d \in B$ such that $\{b, b+d, b+2 d, \ldots, b+k d\}$ is monochromatic.

Proof. Assume that φ is a finite coloring of \mathbb{N}. Let $\mathbb{A}=$ $\{0,1, \ldots, k\}$. For $u=l_{1} l_{2} \cdots l_{m}$ where each $l_{i} \in \mathbb{A}$, let $\tau(u)=$ $\sum_{i=1}^{m} l_{i}$. Let $\psi=\varphi \circ \tau$. Then ψ is a finite coloring of S_{0}.

The following corollary is known to be a consequence of the Central Sets Theorem.

Corollary. Let $k \in \mathbb{N}$, let B be an IP-set in \mathbb{N}, and let \mathbb{N} be finitely colored. There exist $b \in \mathbb{N}$ and $d \in B$ such that $\{b, b+d, b+2 d, \ldots, b+k d\}$ is monochromatic.

Proof. Assume that φ is a finite coloring of \mathbb{N}. Let $\mathbb{A}=$ $\{0,1, \ldots, k\}$. For $u=l_{1} l_{2} \cdots l_{m}$ where each $l_{i} \in \mathbb{A}$, let $\tau(u)=$ $\sum_{i=1}^{m} l_{i}$. Let $\psi=\varphi \circ \tau$. Then ψ is a finite coloring of S_{0}.

Pick $w \in S_{1}$ such that ψ is constant on $\{w(a): a \in \mathbb{A}\}$ and $\mu(w) \in B$. Let $b=\tau(w(0))$ and let $d=\mu(w)$. Then for $a \in$ $\mathbb{A}, b+a d=\tau(w(a))$ so $\varphi(b+a d)=\varphi(\tau(w(a)))=\psi(w(a))$.

The following corollary is known to be a consequence of the Central Sets Theorem.

Corollary. Let $k \in \mathbb{N}$, let B be an IP-set in \mathbb{N}, and let \mathbb{N} be finitely colored. There exist $b \in \mathbb{N}$ and $d \in B$ such that $\{b, b+d, b+2 d, \ldots, b+k d\}$ is monochromatic.

Proof. Assume that φ is a finite coloring of \mathbb{N}. Let $\mathbb{A}=$ $\{0,1, \ldots, k\}$. For $u=l_{1} l_{2} \cdots l_{m}$ where each $l_{i} \in \mathbb{A}$, let $\tau(u)=$ $\sum_{i=1}^{m} l_{i}$. Let $\psi=\varphi \circ \tau$. Then ψ is a finite coloring of S_{0}.

Pick $w \in S_{1}$ such that ψ is constant on $\{w(a): a \in \mathbb{A}\}$ and $\mu(w) \in B$. Let $b=\tau(w(0))$ and let $d=\mu(w)$. Then for $a \in$ $\mathbb{A}, b+a d=\tau(w(a))$ so $\varphi(b+a d)=\varphi(\tau(w(a)))=\psi(w(a))$.

The extensions of the Hales-Jewett Theorem from the title involve multiple variables.

Notation. Let $n \in \mathbb{N}$. Then T_{n} is the free semigroup over $\mathbb{A} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where $v_{1}, v_{2}, \ldots, v_{n}$ are distinct variables that are not members of \mathbb{A} and $S_{n}=\left\{w \in T_{n}\right.$: for each $i \in\{1,2, \ldots, n\}, v_{i}$ occurs in $\left.w\right\}$.

The following corollary is known to be a consequence of the Central Sets Theorem.

Corollary. Let $k \in \mathbb{N}$, let B be an IP-set in \mathbb{N}, and let \mathbb{N} be finitely colored. There exist $b \in \mathbb{N}$ and $d \in B$ such that $\{b, b+d, b+2 d, \ldots, b+k d\}$ is monochromatic.

Proof. Assume that φ is a finite coloring of \mathbb{N}. Let $\mathbb{A}=$ $\{0,1, \ldots, k\}$. For $u=l_{1} l_{2} \cdots l_{m}$ where each $l_{i} \in \mathbb{A}$, let $\tau(u)=$ $\sum_{i=1}^{m} l_{i}$. Let $\psi=\varphi \circ \tau$. Then ψ is a finite coloring of S_{0}.

Pick $w \in S_{1}$ such that ψ is constant on $\{w(a): a \in \mathbb{A}\}$ and $\mu(w) \in B$. Let $b=\tau(w(0))$ and let $d=\mu(w)$. Then for $a \in$ $\mathbb{A}, b+a d=\tau(w(a))$ so $\varphi(b+a d)=\varphi(\tau(w(a)))=\psi(w(a))$.

The extensions of the Hales-Jewett Theorem from the title involve multiple variables.

Notation. Let $n \in \mathbb{N}$. Then T_{n} is the free semigroup over $\mathbb{A} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where $v_{1}, v_{2}, \ldots, v_{n}$ are distinct variables that are not members of \mathbb{A} and $S_{n}=\left\{w \in T_{n}\right.$: for each $i \in\{1,2, \ldots, n\}, v_{i}$ occurs in $\left.w\right\}$.

If $\vec{x} \in \mathbb{A}^{n}$ and $w \in S_{n}$, then $w(\vec{x})$ is the result of replacing each occurrence of v_{i} by x_{i} for $i \in\{1,2, \ldots, n\}$. Given $i \in$ $\{1,2, \ldots, n\}$, and $w \in S_{n}, \mu_{i}(w)$ is the number of occurrences of v_{i} in w.

The full generality of the following theorem has M as an $m \times m$ upper triangular matrix with positive diagonal entries and entries below the diagonal less than or equal to 0 and $w \in S_{n}$ for $n \geq m$. I present it with $m=n=2$.

The full generality of the following theorem has M as an $m \times m$ upper triangular matrix with positive diagonal entries and entries below the diagonal less than or equal to 0 and $w \in S_{n}$ for $n \geq m$. I present it with $m=n=2$.

Theorem A. Assume that M is a 2×2 lower triangular matrix with rational entries, positive diagonal entries, and the entry below the diagonal is at most 0 . Assume that $\tau_{1}=\alpha_{1,1} \mu_{1}+\alpha_{1,2} \mu_{2}$ and $\tau_{2}=\alpha_{2,1} \mu_{1}+\alpha_{2,2} \mu_{2}$ where $\left(\begin{array}{ll}\alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2}\end{array}\right)$ is of the form $\left(\begin{array}{cc}+ & 0 \\ \leq 0 & +\end{array}\right)$ or $\left(\begin{array}{cc}0 & + \\ + & \leq 0\end{array}\right)$.

The full generality of the following theorem has M as an $m \times m$ upper triangular matrix with positive diagonal entries and entries below the diagonal less than or equal to 0 and $w \in S_{n}$ for $n \geq m$. I present it with $m=n=2$.

Theorem A. Assume that M is a 2×2 lower triangular matrix with rational entries, positive diagonal entries, and the entry below the diagonal is at most 0 . Assume that $\tau_{1}=\alpha_{1,1} \mu_{1}+\alpha_{1,2} \mu_{2}$ and $\tau_{2}=\alpha_{2,1} \mu_{1}+\alpha_{2,2} \mu_{2}$ where $\left(\begin{array}{cc}\alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2}\end{array}\right)$ is of the form $\left(\begin{array}{cc}+ & 0 \\ \leq 0 & +\end{array}\right)$ or $\left(\begin{array}{cc}0 & + \\ + & \leq 0\end{array}\right)$.
If S_{0} is finitely colored and B_{1} and B_{2} are IP-sets in \mathbb{N}, then there exists $w \in S_{2}$ such that $\left\{w(\vec{x}): \vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\tau_{1}(w)}{\tau_{2}(w)} \in B_{1} \times B_{2}$.

The full generality of the following theorem has M as an $m \times m$ upper triangular matrix with positive diagonal entries and entries below the diagonal less than or equal to 0 and $w \in S_{n}$ for $n \geq m$. I present it with $m=n=2$.

Theorem A. Assume that M is a 2×2 lower triangular matrix with rational entries, positive diagonal entries, and the entry below the diagonal is at most 0 . Assume that $\tau_{1}=\alpha_{1,1} \mu_{1}+\alpha_{1,2} \mu_{2}$ and $\tau_{2}=\alpha_{2,1} \mu_{1}+\alpha_{2,2} \mu_{2}$ where
$\left(\begin{array}{cc}\alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2}\end{array}\right)$ is of the form $\left(\begin{array}{cc}+ & 0 \\ \leq 0 & +\end{array}\right)$ or $\left(\begin{array}{cc}0 & + \\ + & \leq 0\end{array}\right)$.
If S_{0} is finitely colored and B_{1} and B_{2} are IP-sets in \mathbb{N}, then there exists $w \in S_{2}$ such that $\left\{w(\vec{x}): \vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{c_{1}(w)}{\tau_{2}(w)} \in B_{1} \times B_{2}$.
For example, assume $M=\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right), \tau_{1}=\mu_{2}$,
$\tau_{2}=\mu_{1}-\mu_{2}, B_{1}=F S\left(\left\langle 4^{n}\right\rangle_{n=1}^{\infty}\right)$, and $B_{2}=F S\left(\left\langle 7^{n}\right\rangle_{n=1}^{\infty}\right)$. If S_{0} is finitely colored, then there exists $w \in S_{2}$ such that $\left\{w(\vec{x}): \vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and

$$
\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)\binom{\mu_{2}(w)}{\mu_{1}(w)-\mu_{2}(w)} \in B_{1} \times B_{2} .
$$

The full generality of the following theorem has M as an $m \times m$ upper triangular matrix with positive diagonal entries and entries below the diagonal less than or equal to 0 and $w \in S_{n}$ for $n \geq m$. I present it with $m=n=2$.

Theorem A. Assume that M is a 2×2 lower triangular matrix with rational entries, positive diagonal entries, and the entry below the diagonal is at most 0 . Assume that $\tau_{1}=\alpha_{1,1} \mu_{1}+\alpha_{1,2} \mu_{2}$ and $\tau_{2}=\alpha_{2,1} \mu_{1}+\alpha_{2,2} \mu_{2}$ where
$\left(\begin{array}{cc}\alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2}\end{array}\right)$ is of the form $\left(\begin{array}{cc}+ & 0 \\ \leq 0 & +\end{array}\right)$ or $\left(\begin{array}{cc}0 & + \\ + & \leq 0\end{array}\right)$.
If S_{0} is finitely colored and B_{1} and B_{2} are IP-sets in \mathbb{N}, then there exists $w \in S_{2}$ such that $\left\{w(\vec{x}): \vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\tau_{1}(w)}{\tau_{2}(w)} \in B_{1} \times B_{2}$.

For example, assume $M=\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right), \tau_{1}=\mu_{2}$,
$\tau_{2}=\mu_{1}-\mu_{2}, B_{1}=F S\left(\left\langle 4^{n}\right\rangle_{n=1}^{\infty}\right)$, and $B_{2}=F S\left(\left\langle 7^{n}\right\rangle_{n=1}^{\infty}\right)$. If S_{0} is finitely colored, then there exists $w \in S_{2}$ such that $\left\{w(\vec{x}): \vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and

$$
\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)\binom{\mu_{2}(w)}{\mu_{1}(w)-\mu_{2}(w)} \in B_{1} \times B_{2} .
$$

That is, there exist F and H in $\mathcal{P}_{f}(\mathbb{N})$ such that

$$
\begin{gathered}
\mu_{2}(w)=\sum_{n \in F} 4^{n} \text { and } \\
-\mu_{2}(w)+2\left(\mu_{1}(w)-\mu_{2}(w)\right)=\sum_{n \in H} 7^{n} .
\end{gathered}
$$

The full generality of the following theorem has M as an $m \times m$ upper triangular matrix with positive diagonal entries and entries below the diagonal less than or equal to 0 and $w \in S_{n}$ for $n \geq m$. I present it with $m=n=2$.

Theorem A. Assume that M is a 2×2 lower triangular matrix with rational entries, positive diagonal entries, and the entry below the diagonal is at most 0 . Assume that $\tau_{1}=\alpha_{1,1} \mu_{1}+\alpha_{1,2} \mu_{2}$ and $\tau_{2}=\alpha_{2,1} \mu_{1}+\alpha_{2,2} \mu_{2}$ where
$\left(\begin{array}{ll}\alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2}\end{array}\right)$ is of the form $\left(\begin{array}{cc}+ & 0 \\ \leq 0 & +\end{array}\right)$ or $\left(\begin{array}{cc}0 & + \\ + & \leq 0\end{array}\right)$.
If S_{0} is finitely colored and B_{1} and B_{2} are IP-sets in \mathbb{N}, then there exists $w \in S_{2}$ such that $\left\{w(\vec{x}): \vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\tau_{1}(w)}{\tau_{2}(w)} \in B_{1} \times B_{2}$.
For example, assume $M=\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right), \tau_{1}=\mu_{2}$,
$\tau_{2}=\mu_{1}-\mu_{2}, B_{1}=F S\left(\left\langle 4^{n}\right\rangle_{n=1}^{\infty}\right)$, and $B_{2}=F S\left(\left\langle 7^{n}\right\rangle_{n=1}^{\infty}\right)$. If S_{0} is finitely colored, then there exists $w \in S_{2}$ such that $\left\{w(\vec{x}): \vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and

$$
\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)\binom{\mu_{2}(w)}{\mu_{1}(w)-\mu_{2}(w)} \in B_{1} \times B_{2} .
$$

That is, there exist F and H in $\mathcal{P}_{f}(\mathbb{N})$ such that

$$
\begin{gathered}
\mu_{2}(w)=\sum_{n \in F} 4^{n} \text { and } \\
-\mu_{2}(w)+2\left(\mu_{1}(w)-\mu_{2}(w)\right)=\sum_{n \in H} 7^{n} .
\end{gathered}
$$

That is, there exist F and H in $\mathcal{P}_{f}(\mathbb{N})$ such that $\mu_{2}(w)=\sum_{n \in F} 4^{n}$ and $\mu_{1}(w)=\frac{1}{2}\left(\sum_{n \in H} 7^{n}-3 \sum_{n \in F} 4^{n}\right)$.

The full generality of the following theorem has $k, m, n \in \mathbb{N}$ with $m \leq n, M$ a $k \times m$ image partition regular matrix, and $w \in S_{n}$. I present it with $k=m=n=2$.

The full generality of the following theorem has $k, m, n \in \mathbb{N}$ with $m \leq n, M$ a $k \times m$ image partition regular matrix, and $w \in S_{n}$. I present it with $k=m=n=2$.

Theorem B. Let M be a 2×2 image partition regular matrix with rational entries. If S_{0} is finitely colored and B is a central set in \mathbb{N}, then there exists $w \in S_{2}$ such that $\{w(\vec{x})$: $\left.\vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\mu_{1}(w)}{\mu_{2}(w)} \in B \times B$.

The full generality of the following theorem has $k, m, n \in \mathbb{N}$ with $m \leq n, M$ a $k \times m$ image partition regular matrix, and $w \in S_{n}$. I present it with $k=m=n=2$.

Theorem B. Let M be a 2×2 image partition regular matrix with rational entries. If S_{0} is finitely colored and B is a central set in \mathbb{N}, then there exists $w \in S_{2}$ such that $\{w(\vec{x})$: $\left.\vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\mu_{1}(w)}{\mu_{2}(w)} \in B \times B$.

Theorem B applies to many more matrices than does Theorem A, especially in its full generality, since the class of image partition regular matrices is much wider than the class of upper triangular matrices with positive diagonal entries.

The full generality of the following theorem has $k, m, n \in \mathbb{N}$ with $m \leq n, M$ a $k \times m$ image partition regular matrix, and $w \in S_{n}$. I present it with $k=m=n=2$.

Theorem B. Let M be a 2×2 image partition regular matrix with rational entries. If S_{0} is finitely colored and B is a central set in \mathbb{N}, then there exists $w \in S_{2}$ such that $\{w(\vec{x})$: $\left.\vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\mu_{1}(w)}{\mu_{2}(w)} \in B \times B$.

Theorem B applies to many more matrices than does Theorem A, especially in its full generality, since the class of image partition regular matrices is much wider than the class of upper triangular matrices with positive diagonal entries.

But we pay two prices for this greater generality. First, we have the same central set B on both coordinates.

The full generality of the following theorem has $k, m, n \in \mathbb{N}$ with $m \leq n, M$ a $k \times m$ image partition regular matrix, and $w \in S_{n}$. I present it with $k=m=n=2$.

Theorem B. Let M be a 2×2 image partition regular matrix with rational entries. If S_{0} is finitely colored and B is a central set in \mathbb{N}, then there exists $w \in S_{2}$ such that $\{w(\vec{x})$: $\left.\vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\mu_{1}(w)}{\mu_{2}(w)} \in B \times B$.

Theorem B applies to many more matrices than does Theorem A, especially in its full generality, since the class of image partition regular matrices is much wider than the class of upper triangular matrices with positive diagonal entries.

But we pay two prices for this greater generality. First, we have the same central set B on both coordinates.
Example. Let $M=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Then M is image partition regular and there exist central sets B_{1} and B_{2} in \mathbb{N} such that there do not exist $x, y \in \mathbb{N}$ such that $M\binom{x}{y} \in B_{1} \times B_{2}$.

The full generality of the following theorem has $k, m, n \in \mathbb{N}$ with $m \leq n, M$ a $k \times m$ image partition regular matrix, and $w \in S_{n}$. I present it with $k=m=n=2$.

Theorem B. Let M be a 2×2 image partition regular matrix with rational entries. If S_{0} is finitely colored and B is a central set in \mathbb{N}, then there exists $w \in S_{2}$ such that $\{w(\vec{x})$: $\left.\vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\mu_{1}(w)}{\mu_{2}(w)} \in B \times B$.

Theorem B applies to many more matrices than does Theorem A, especially in its full generality, since the class of image partition regular matrices is much wider than the class of upper triangular matrices with positive diagonal entries.

But we pay two prices for this greater generality. First, we have the same central set B on both coordinates.
Example. Let $M=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Then M is image partition regular and there exist central sets B_{1} and B_{2} in \mathbb{N} such that there do not exist $x, y \in \mathbb{N}$ such that $M\binom{x}{y} \in B_{1} \times B_{2}$.

The second price is that B must be a central set, rather than just an IP-set.

The full generality of the following theorem has $k, m, n \in \mathbb{N}$ with $m \leq n, M$ a $k \times m$ image partition regular matrix, and $w \in S_{n}$. I present it with $k=m=n=2$.

Theorem B. Let M be a 2×2 image partition regular matrix with rational entries. If S_{0} is finitely colored and B is a central set in \mathbb{N}, then there exists $w \in S_{2}$ such that $\{w(\vec{x})$: $\left.\vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\mu_{1}(w)}{\mu_{2}(w)} \in B \times B$.

Theorem B applies to many more matrices than does Theorem A, especially in its full generality, since the class of image partition regular matrices is much wider than the class of upper triangular matrices with positive diagonal entries.

But we pay two prices for this greater generality. First, we have the same central set B on both coordinates.
Example. Let $M=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Then M is image partition regular and there exist central sets B_{1} and B_{2} in \mathbb{N} such that there do not exist $x, y \in \mathbb{N}$ such that $M\binom{x}{y} \in B_{1} \times B_{2}$.

The second price is that B must be a central set, rather than just an IP-set.
Example. Let $M=\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right)$ and let $B=F S\left(\left\langle 2^{2 n}\right\rangle_{n=1}^{\infty}\right)$.
Then M is image partition regular and there do not exist $x, y \in \mathbb{N}$ such that $M\binom{x}{y} \in B \times B \times B$.

The audience member who has managed to stay awake during this presentation probably noticed that I stated Theorem B for 2×2 matrices, and gave an example showing that the central set B cannot be replaced by an arbitrary IP-set B using a 3×2 matrix. There is a reason.

The audience member who has managed to stay awake during this presentation probably noticed that I stated Theorem B for 2×2 matrices, and gave an example showing that the central set B cannot be replaced by an arbitrary IP-set B using a 3×2 matrix. There is a reason.

Theorem B*. Let M be a 2×2 image partition regular matrix with rational entries. If S_{0} is finitely colored and B is an IP-set set in \mathbb{N}, then there exists $w \in S_{2}$ such that $\left\{w(\vec{x}): \vec{x} \in \mathbb{A}^{2}\right\}$ is monochromatic and $M\binom{\mu_{1}(w)}{\mu_{2}(w)} \in B \times B$.

