Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

On existence of Ramsey expansions

Jan Hubička

Department of Applied Mathematics Charles University Prague

Joint work with David Evans, Matěj Konečný and Jaroslav Nešetřil

Ramsey Theory in Logic, Combinatorics and Complexity 2018

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	00000000	00	0000	00	00000	000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Ramsey theorem for finite relational structures

Relational structures are graphs, digraphs, posets, ... Structures may also have functions (operations) in addition to relations (boolean algebras, groups,...)

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
•0000000	000000000	00	0000	00	00000	000000

Ramsey theorem for finite relational structures

Relational structures are graphs, digraphs, posets, ...

Structures may also have functions (operations) in addition to relations (boolean algebras, groups,...)

Ordered structures are having relation \leq which is a linear order on vertices.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Relational structures are graphs, digraphs, posets, ...

Structures may also have functions (operations) in addition to relations (boolean algebras, groups,...)

Ordered structures are having relation \leq which is a linear order on vertices.

 $\frac{Rel}{L}$ is a class of all finite ordered relational structures in given language L.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{\textit{Rel}}(L)}\exists_{\mathbf{C}\in\overrightarrow{\textit{Rel}}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Relational structures are graphs, digraphs, posets, ...

Structures may also have functions (operations) in addition to relations (boolean algebras, groups,...)

Ordered structures are having relation \leq which is a linear order on vertices.

 $\overrightarrow{Rel}(L)$ is a class of all finite ordered relational structures in given language L.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{Rel}(L)}\exists_{\mathbf{C}\in\overrightarrow{Rel}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}.$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all substructures of **B** isomorphic to **A**.

 ${\color{black}C}\longrightarrow (B)^A_2 :$ For every 2-colouring of $\binom{C}{A}$ there exists $\widetilde{B}\in \binom{C}{B}$ such that $\binom{B}{A}$ is monochromatic.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Relational structures are graphs, digraphs, posets, ...

Structures may also have functions (operations) in addition to relations (boolean algebras, groups,...)

Ordered structures are having relation \leq which is a linear order on vertices.

 $\overrightarrow{Rel}(L)$ is a class of all finite ordered relational structures in given language L.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{Rel}(L)}\exists_{\mathbf{C}\in\overrightarrow{Rel}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}.$$

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all substructures of **B** isomorphic to **A**.

 ${\color{black}C}\longrightarrow (B)^A_2 :$ For every 2-colouring of ${\binom{C}{A}}$ there exists $\widetilde{B}\in {\binom{C}{B}}$ such that ${\binom{\bar{B}}{A}}$ is monochromatic.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Relational structures are graphs, digraphs, posets, ...

Structures may also have functions (operations) in addition to relations (boolean algebras, groups,...)

Ordered structures are having relation \leq which is a linear order on vertices.

 $\overrightarrow{Rel}(L)$ is a class of all finite ordered relational structures in given language L.

Theorem (Nešetřil-Rödl, 1977; Abramson-Harrington, 1978)

$$\forall_{\mathbf{A},\mathbf{B}\in\overrightarrow{Rel}(L)}\exists_{\mathbf{C}\in\overrightarrow{Rel}(L)}:\mathbf{C}\longrightarrow(\mathbf{B})_{2}^{\mathbf{A}}$$

 $\begin{pmatrix} B \\ A \end{pmatrix}$ is the set of all substructures of **B** isomorphic to **A**.

 ${\color{black}C}\longrightarrow (B)^A_2 :$ For every 2-colouring of ${\binom{C}{A}}$ there exists $\widetilde{B}\in {\binom{C}{B}}$ such that ${\binom{\bar{B}}{A}}$ is monochromatic.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F		
0000000	000000000	00	0000	00	00000	000000		

Order is necessary

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
Order is n	ecessary					

Vertices of C can be linearly ordered and edges coloured accordingly:

- If edge is goes forward in linear order it is red
- blue otherwise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
_						

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ramsey classes

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{\mathbf{A},\mathbf{B}\in C} \exists_{\mathbf{C}\in C} : \mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Ramsey classes

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_2^A$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Ramsey classes

Definition

A class C of finite *L*-structures is Ramsey iff $\forall_{A,B\in C} \exists_{C\in C} : C \longrightarrow (B)_2^A$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Ramsey classes

Definition

A class C of finite L-structures is Ramsey iff $\forall_{\mathbf{A},\mathbf{B}\in C} \exists_{\mathbf{C}\in C} : \mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Example (Partial orders - Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The class of all finite partial orders with linear extension is Ramsey.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Ramsey classes

Definition

A class C of finite L-structures is Ramsey iff $\forall_{\mathbf{A},\mathbf{B}\in C} \exists_{\mathbf{C}\in C} : \mathbf{C} \longrightarrow (\mathbf{B})_2^{\mathbf{A}}$.

Example (Linear orders — Ramsey Theorem, 1930)

The class of all finite linear orders is a Ramsey class.

Example (Structures — Nešetřil-Rödl, 76; Abramson-Harrington, 78)

For every relational language L, $\overrightarrow{Rel}(L)$ is a Ramsey class.

Example (Partial orders — Nešetřil-Rödl, 84; Paoli-Trotter-Walker, 85)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The class of all finite partial orders with linear extension is Ramsey.

Example (Structures with functions — H.-Nešetřil, 2016)

For every language L, $\overrightarrow{Str}(L)$ is a Ramsey class.

 $\overrightarrow{Str}(L)$ = structures with functions and relations

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Ramsey classes are amalgamation classes

Nešetřil, 80's: Under mild assumptions Ramsey classes have amalgamation property.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Kechris, Pestov, Todorčevič: Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups (2005)

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Kechris, Pestov, Todorčevič: Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups (2005)

Definition

Let *L'* be language containing language *L*. A expansion (or lift) of *L*-structure **A** is *L'*-structure **A'** on the same vertex set such that all relations/functions in $L \cap L'$ are identical.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Kechris, Pestov, Todorčevič: Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups (2005)

Definition

Let *L'* be language containing language *L*. A expansion (or lift) of *L*-structure **A** is *L'*-structure **A'** on the same vertex set such that all relations/functions in $L \cap L'$ are identical.

Theorem (Nešetřil, 1989)

All (countably infinite) homogeneous graphs have Ramsey expansion.

Proved using Lachlan—Woodrow catalogue of homogeneous graphs

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words

Milliken tree theorem: C-relations

Ramsey's theorem: rationals

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gower's Ramsey Theorem

Graham Rotschild Theorem: Parametric words

Product arguments

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Gower's Ramsey Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Milliken tree theorem: C-relations

Product arguments Interpretations

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Gower's Ramsey Theorem

< ロ > < 同 > < 三 > < 三 > 、 三 の Q (?)

Milliken tree theorem: C-relations

Product arguments Interpretations Adding unary functions

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Gower's Ramsey Theorem

Milliken tree theorem: C-relations

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Question (Bodirsky, Nešetřil, Nguyen Van Thé, Pinsker, Tsankov cca 2011)

Is there a Ramsey expansion for every amalgamation class?

Yes: extend language by infinitely many unary relations; assign every vertex to unique relation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Question (Bodirsky, Nešetřil, Nguyen Van Thé, Pinsker, Tsankov cca 2011)

Is there a Ramsey expansion for every amalgamation class?

Yes: extend language by infinitely many unary relations; assign every vertex to unique relation.

Definition (Nguyen Van Thé)

Let \mathcal{K} be class of *L*-structures and \mathcal{K}' be class of expansions of \mathcal{K} .

• \mathcal{K} is precompact if for every $\mathbf{A} \in \mathcal{K}$ there are only finitely many expansions of \mathbf{A} in \mathcal{K}' .

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Question (Bodirsky, Nešetřil, Nguyen Van Thé, Pinsker, Tsankov cca 2011)

Is there a Ramsey expansion for every amalgamation class?

Yes: extend language by infinitely many unary relations; assign every vertex to unique relation.

Definition (Nguyen Van Thé)

Let \mathcal{K} be class of *L*-structures and \mathcal{K}' be class of expansions of \mathcal{K} .

- \mathcal{K} is precompact if for every $\mathbf{A} \in \mathcal{K}$ there are only finitely many expansions of \mathbf{A} in \mathcal{K}' .
- *K'* has expansion property if for every A ∈ *K* there exists B ∈ *K* such that every expansion of B in *K'* contains every expansion of A in *K'*.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
00000000	000000000	00	0000	00	00000	000000

Question (Bodirsky, Nešetřil, Nguyen Van Thé, Pinsker, Tsankov cca 2011)

Is there a Ramsey expansion for every amalgamation class?

Yes: extend language by infinitely many unary relations; assign every vertex to unique relation.

Definition (Nguyen Van Thé)

Let \mathcal{K} be class of *L*-structures and \mathcal{K}' be class of expansions of \mathcal{K} .

- \mathcal{K} is precompact if for every $\mathbf{A} \in \mathcal{K}$ there are only finitely many expansions of \mathbf{A} in \mathcal{K}' .
- *K'* has expansion property if for every A ∈ *K* there exists B ∈ *K* such that every expansion of B in *K'* contains every expansion of A in *K'*.

Theorem (Kechris, Pestov, Todorčevič 2005, Nguyen Van Thé 2012)

For every amalgamation class \mathcal{K} there exists, up to bi-definability, at most one Ramsey class \mathcal{K}' of expansions of \mathcal{K} with expansion property.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Original class

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	С _F 000000
	Original c Prec	lass	Expansion property KPT	Ext	remely amenable	

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Structural Ramsey Positive results Negative results Hrushovski construction Ramsey property Expansion pro 0000000€ 00000000 0000 0000 000 00000000	erty C _F 000000
Original class Precompact	le

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Theorem (Jasiński, Laflamme, Nguyen Van Thé, Woodrow, 2014)

All homogeneous digraphs have precompact Ramsey lift with expansion property.

Proved case by case using Cherlin's catalogue

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	С _F 000000
Structural	condition					

Theorem (H.-Nešetřil, 2016)

Let L be language with relations and (partial) functions. Let \mathcal{R} be a Ramsey class of irreducible finite structures and let \mathcal{K} be a strong amalgamation subclass of \mathcal{R} . If \mathcal{K} is locally finite subclass of \mathcal{R} then \mathcal{K} is Ramsey.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000

Structural condition

Theorem (H.-Nešetřil, 2016)

Let L be language with relations and (partial) functions. Let \mathcal{R} be a Ramsey class of irreducible finite structures and let \mathcal{K} be a strong amalgamation subclass of \mathcal{R} . If \mathcal{K} is locally finite subclass of \mathcal{R} then \mathcal{K} is Ramsey.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000

Structural condition

Theorem (H.-Nešetřil, 2016)

Let L be language with relations and (partial) functions. Let \mathcal{R} be a Ramsey class of irreducible finite structures and let \mathcal{K} be a strong amalgamation subclass of \mathcal{R} . If \mathcal{K} is locally finite subclass of \mathcal{R} then \mathcal{K} is Ramsey.

Schema	tically					
	Ramsey classes	\Rightarrow	amalgamation classes			
Recall:	1		- ↓			
	expansions of homogeneous	\Leftarrow	homogeneous structures			
We get:						
strong amalgamation + order + local finiteness \implies Ramsey						

What is local finiteness?

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Multiamalgams as structures with holes

Representing multiamalgams as "completion of structures with holes":

An *L*-structure **A** is irreducible if it can not be created as a free amalgamation of its two proper substructures.

Amalgamation of irreducible structures is

free amalgamation,

completion.

Definition

Irreducible structure C' is a completion of C if it has the same vertex set and every irreducible substructure of C is also (induced) substructure of C'.

Multiamalgams as structures with holes

Representing multiamalgams as "completion of structures with holes":

An *L*-structure **A** is irreducible if it can not be created as a free amalgamation of its two proper substructures.

Amalgamation of irreducible structures is

free amalgamation,

2 completion.

Definition

Irreducible structure C' is a completion of C if it has the same vertex set and every irreducible substructure of C is also (induced) substructure of C'.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Multiamalgams as structures with holes

Representing multiamalgams as "completion of structures with holes":

An *L*-structure **A** is irreducible if it can not be created as a free amalgamation of its two proper substructures.

Amalgamation of irreducible structures is

free amalgamation,

completion.

Definition

Irreducible structure C' is a completion of C if it has the same vertex set and every irreducible substructure of C is also (induced) substructure of C'.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Intuition

 \mathcal{K} is locally finite subclass of (Ramsey class) \mathcal{R} if for every \mathbf{C}_0 in \mathcal{R} there exists a finite bound on size of minimal obstacles which prevents a structure with homomorphism to \mathbf{C}_0 from being completed to \mathcal{K} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Intuition

 \mathcal{K} is locally finite subclass of (Ramsey class) \mathcal{R} if for every \mathbf{C}_0 in \mathcal{R} there exists a finite bound on size of minimal obstacles which prevents a structure with homomorphism to \mathbf{C}_0 from being completed to \mathcal{K} .

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Intuition

 \mathcal{K} is locally finite subclass of (Ramsey class) \mathcal{R} if for every \mathbf{C}_0 in \mathcal{R} there exists a finite bound on size of minimal obstacles which prevents a structure with homomorphism to \mathbf{C}_0 from being completed to \mathcal{K} .

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Intuition

 \mathcal{K} is locally finite subclass of (Ramsey class) \mathcal{R} if for every \mathbf{C}_0 in \mathcal{R} there exists a finite bound on size of minimal obstacles which prevents a structure with homomorphism to \mathbf{C}_0 from being completed to \mathcal{K} .

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Intuition

 \mathcal{K} is locally finite subclass of (Ramsey class) \mathcal{R} if for every \mathbf{C}_0 in \mathcal{R} there exists a finite bound on size of minimal obstacles which prevents a structure with homomorphism to \mathbf{C}_0 from being completed to \mathcal{K} .

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Intuition

 \mathcal{K} is locally finite subclass of (Ramsey class) \mathcal{R} if for every \mathbf{C}_0 in \mathcal{R} there exists a finite bound on size of minimal obstacles which prevents a structure with homomorphism to \mathbf{C}_0 from being completed to \mathcal{K} .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

Let \mathcal{R} be a class of finite irreducible structures and \mathcal{K} a subclass of \mathcal{R} . We say that the class \mathcal{K} is locally finite subclass of \mathcal{R} if for every $\mathbf{C}_0 \in \mathcal{R}$ there is $n = n(\mathbf{C}_0)$ such that every structure \mathbf{C} has completion in \mathcal{K} providing that it satisfies the following:

- 1 there is a homomorphism-embedding from C to C₀
- 2 every substructure of **C** with at most *n* vertices has a completion in \mathcal{K} .

homomorphism-embedding is a homomorphism which is an embedding on every irreducible substructure.

Locally finite subclass, an example

Example

Consider class of metric spaces with distances $\{1, 2, 3, 4\}$. Graph with edges labelled by $\{1, 2, 3, 4\}$ can be completed to a metric space if and only if it does not contain one of:

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Locally finite subclass, an example

Example

Consider class of metric spaces with distances $\{1, 2, 3, 4\}$. Graph with edges labelled by $\{1, 2, 3, 4\}$ can be completed to a metric space if and only if it does not contain one of:

The class $\overrightarrow{\mathcal{M}}_k$ of all ordered metric spaces with integer distances at most k is Ramsey.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト 二 ヨ

Sac

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Locally finite subclass, an example

Example

Consider class of metric spaces with distances $\{1, 2, 3, 4\}$. Graph with edges labelled by $\{1, 2, 3, 4\}$ can be completed to a metric space if and only if it does not contain one of:

The class $\overrightarrow{\mathcal{M}}_k$ of all ordered metric spaces with integer distances at most k is Ramsey.

ヘロン 人間 とくほど 人ほとし ほ

500

Theorem (Nešetřil, 2007)

The class $\overrightarrow{\mathcal{M}}_{\mathbb{O}}$ of all metric spaces with rational distances is Ramsey.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
Generalis	ations					

Theorem (Aranda, H., Hng, Karamanlis, Kompatscher, Konečný, Pawliuk, Bradley-Williams, 2017)

All known metrically homogeneous graphs have precompact Ramsey expansion with expansion property.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	0000000000	00	0000	00	00000	000000

Theorem (Aranda, H., Hng, Karamanlis, Kompatscher, Konečný, Pawliuk, Bradley-Williams, 2017)

All known metrically homogeneous graphs have precompact Ramsey expansion with expansion property.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
• •						

Theorem (Aranda, H., Hng, Karamanlis, Kompatscher, Konečný, Pawliuk, Bradley-Williams, 2017)

All known metrically homogeneous graphs have precompact Ramsey expansion with expansion property.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (H.,Konečný, Nešetřil, 2017)

Conant's generalized metric spaces have Ramsey expansion.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000

Theorem (Aranda, H., Hng, Karamanlis, Kompatscher, Konečný, Pawliuk, Bradley-Williams, 2017)

All known metrically homogeneous graphs have precompact Ramsey expansion with expansion property.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Theorem (H.,Konečný, Nešetřil, 2017)

Conant's generalized metric spaces have Ramsey expansion.

Theorem (Branunfeld, 2017)

 Λ -ultrametric spaces have Ramsey expansion.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000

Theorem (Aranda, H., Hng, Karamanlis, Kompatscher, Konečný, Pawliuk, Bradley-Williams, 2017)

All known metrically homogeneous graphs have precompact Ramsey expansion with expansion property.

Theorem (H.,Konečný, Nešetřil, 2017)

Conant's generalized metric spaces have Ramsey expansion.

Theorem (Branunfeld, 2017)

 Λ -ultrametric spaces have Ramsey expansion.

Theorem (H.,Konečný, Nešetřil, 2018+)

Semigroup-valued metric spaces omitting disobedient cycles have Ramsey expansion.

- Common generalisation of all known symmetric binary Ramsey classes with strong amalgamation
- 2 May cover all homogeneous symmetric binary structures in the finite language

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	00000000	00	0000	00	00000	000000

Open problems and future work

Amalgamation classes where Ramsey expansion is not known:

- 1 Graphs omitting (induced or non-induced) 4-cycles \implies Rank 3 matroids
- Steiner systems omitting short odd cycles and/or 4-cycle
- 3 Affinely independent Euclidian metric spaces
- "Dual-type" structures, such as finite measure algebras

Dual (projective) variant of our main theorem is work in progress.

Extension property for partial automorphisms is implied by local finiteness + automorphism preserving completion.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results ●O	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
Negative r	esult					

Theorem (Evans, 2015+)

There is a countable, ω -categorical structure **M**_F no precompact Ramsey expansion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Counter-example was given by Hrushovski construction.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	0●	0000	00	00000	000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Three variants of David's example

- C_0 : The easy example
- C1: The kindergarten example
- C_F : The actual counter-example

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	●000	00	00000	000000

• Predimension of a graph $\mathbf{G} = (V, E)$ is

$$\delta(G) = 2|V| - |E|.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example		
$\delta(K_1) = 2$ $\delta(K_4) = 8 - 6 = 2$	$\begin{array}{l} \delta(K_2) = 4 - 1 = 3 \\ \delta(K_5) = 10 - 10 = 0 \end{array}$	$\delta(K_3) = 6 - 3 = 3$ $\delta(K_6) = 12 - 30 = -18.$

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	●000	00	00000	000000

• Predimension of a graph $\mathbf{G} = (V, E)$ is

$$\delta(G) = 2|V| - |E|.$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Example		
$\delta(K_1) = 2$ $\delta(K_4) = 8 - 6 = 2$	$\begin{array}{l} \delta(K_2) = 4 - 1 = 3\\ \delta(K_5) = 10 - 10 = 0 \end{array}$	$\delta(K_3) = 6 - 3 = 3$ $\delta(K_6) = 12 - 30 = -18.$

• Finite graph **G** is in C_0 iff $\forall_{H \subseteq G} \delta(H) \ge 0$.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	●000	00	00000	000000

• Predimension of a graph $\mathbf{G} = (V, E)$ is

$$\delta(G) = 2|V| - |E|.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example		
$\delta(K_1) = 2$ $\delta(K_4) = 8 - 6 = 2$	$\begin{array}{l} \delta(K_2) = 4 - 1 = 3\\ \delta(K_5) = 10 - 10 = 0 \end{array}$	$\delta(K_3) = 6 - 3 = 3$ $\delta(K_6) = 12 - 30 = -18.$

- Finite graph **G** is in C_0 iff $\forall_{H \subseteq G} \delta(H) \ge 0$.
- $\mathbf{G} \subseteq \mathbf{H}$ is self-sufficient, $\mathbf{G} \leq_{s} \mathbf{H}$, iff $\forall_{\mathbf{G} \subseteq \mathbf{G}' \subseteq \mathbf{H}} \delta(\mathbf{G}) \leq \delta(\mathbf{G}')$.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

• Predimension of a graph $\mathbf{G} = (V, E)$ is

$$\delta(G) = 2|V| - |E|.$$

Example		
$\delta(K_1) = 2$ $\delta(K_4) = 8 - 6 = 2$	$\begin{array}{l} \delta(K_2) = 4 - 1 = 3\\ \delta(K_5) = 10 - 10 = 0 \end{array}$	$\delta(K_3) = 6 - 3 = 3$ $\delta(K_6) = 12 - 30 = -18.$

- Finite graph G is in C₀ iff ∀_{H⊆G}δ(H) ≥ 0.
- $\mathbf{G} \subseteq \mathbf{H}$ is self-sufficient, $\mathbf{G} \leq_{s} \mathbf{H}$, iff $\forall_{\mathbf{G} \subseteq \mathbf{G}' \subseteq \mathbf{H}} \delta(\mathbf{G}) \leq \delta(\mathbf{G}')$.

Lemma

 \mathcal{C}_{0} is closed for free amalgamation over self-sufficient substructures.

Proof.

$$\delta(\mathbf{C}) = \delta(\mathbf{B}) + \delta(\mathbf{B}') - \delta(\mathbf{A}).$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
Hrushovsk	ki class Co					

- Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| |E|$.
- Finite graph **G** is in C_0 iff $\forall_{\mathbf{H}\subseteq\mathbf{G}}\delta(\mathbf{H}) \geq 0$.

Lemma (By marriage theorem)

- $G \in C_0$ iff it has 2-orientation (out-degrees at most 2).
- $H \leq_s G$ iff G can be 2-oriented with no edge from H to $G \setminus H$.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
Hrushovsk	α class C_{α}					

- Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| |E|$.
- Finite graph **G** is in C_0 iff $\forall_{\mathbf{H}\subseteq\mathbf{G}}\delta(\mathbf{H}) \geq 0$.

Lemma (By marriage theorem)

- $G \in C_0$ iff it has 2-orientation (out-degrees at most 2).
- $H \leq_s G$ iff G can be 2-oriented with no edge from H to $G \setminus H$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
Hrushovsk	α class \mathcal{C}_{0}					

- Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| |E|$.
- Finite graph **G** is in C_0 iff $\forall_{\mathbf{H}\subseteq\mathbf{G}}\delta(\mathbf{H}) \geq 0$.

Lemma (By marriage theorem)

- $G \in C_0$ iff it has 2-orientation (out-degrees at most 2).
- $H \leq_s G$ iff G can be 2-oriented with no edge from H to $G \setminus H$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ
Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 000000
Hrushovsk	$\operatorname{ki} \operatorname{class} \mathcal{C}_{0}$					

- Predimension of a graph $\mathbf{G} = (V, E)$ is $\delta(\mathbf{G}) = 2|V| |E|$.
- Finite graph **G** is in C_0 iff $\forall_{\mathbf{H}\subseteq\mathbf{G}}\delta(\mathbf{H}) \geq 0$.

Lemma (By marriage theorem)

- $G \in C_0$ iff it has 2-orientation (out-degrees at most 2).
- $H \leq_s G$ iff G can be 2-oriented with no edge from H to $G \setminus H$.

Corollary

 \mathcal{C}_0 is a class of all finite 2-orientations \mathcal{D}_0 with directions forgotten.

 \mathcal{D}_0 is closed for free amalgamation over successor-closed substructures.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Ramsey expansions of C_0 and orientations

Theorem (Kechris, Pestov, Todorčević, 2005)

Let **F** be a Fraïssé limit, then the following are equivalent.

- Automorphism group of **F** is extremely amenable;
- Age(F) has the Ramsey property.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Ramsey expansions of C_0 and orientations

Theorem (Kechris, Pestov, Todorčević, 2005)

Let **F** be a Fraïssé limit, then the following are equivalent.

- Automorphism group of F is extremely amenable;
- Age(F) has the Ramsey property.

Denote by \mathbf{M}_0 the generalised Fraïssé limit of C_0 .

Theorem (Evans 2015)

If \mathbf{M}_0^+ is a Ramsey expansion of \mathbf{M}_0 , then $\operatorname{Aut}(\mathbf{M}_0^+)$ fixes a 2-orientation.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Ramsey expansions of C_0 and orientations

Theorem (Kechris, Pestov, Todorčević, 2005)

Let F be a Fraïssé limit, then the following are equivalent.

- Automorphism group of F is extremely amenable;
- Age(F) has the Ramsey property.

Denote by \mathbf{M}_0 the generalised Fraïssé limit of C_0 .

Theorem (Evans 2015)

If \mathbf{M}_0^+ is a Ramsey expansion of \mathbf{M}_0 , then $Aut(\mathbf{M}_0^+)$ fixes a 2-orientation.

Proof.

- Consider G acting on the space $X(M_0)$ of 2-orientations of \mathbf{M}_0 (a G-flow).
- As Aut($M_0^+)$ is extremely amenable, there is some $S \in X(M_0)$ which is fixed by Aut($M_0^+).$

うして 山田 マイボマ エリア しょう

• Aut(**M**⁺₀) is a subgroup of Aut(**S**).

0000000 00000000 00 000● 00 00000 00 00000	Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
	0000000	000000000	00	0000	00	00000	000000

Theorem (Evans 2016)

There is no precompact Ramsey expansion of $(C_0; \leq_s)$.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	000●	00	00000	000000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

No precompact Ramsey expansions of C_0

Theorem (Evans 2016)

There is no precompact Ramsey expansion of $(C_0; \leq_s)$.

 Let (C⁺₀, ⊑) be a Ramsey expansion of (C₀, ≤_s), then every A ∈ C₀ has infinitely many expansions in (C⁺₀; ⊑).

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Theorem (Evans 2016)

There is no precompact Ramsey expansion of $(C_0; \leq_s)$.

- Let (C⁺₀, ⊑) be a Ramsey expansion of (C₀, ≤_s), then every A ∈ C₀ has infinitely many expansions in (C⁺₀; ⊑).
- Given two 2-orientations A ⊆ B, we write
 A ⊆_s B if there is no edge from A to B \ A.
- \sqsubseteq is coarser than \sqsubseteq_s for 2-orientation fixed by $(\mathcal{C}_0^+, \sqsubseteq)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Theorem (Evans 2016)

There is no precompact Ramsey expansion of $(C_0; \leq_s)$.

- Let (C⁺₀, ⊑) be a Ramsey expansion of (C₀, ≤_s), then every A ∈ C₀ has infinitely many expansions in (C⁺₀; ⊑).
- Given two 2-orientations A ⊆ B, we write
 A ⊆_s B if there is no edge from A to B \ A.
- \sqsubseteq is coarser than \sqsubseteq_s for 2-orientation fixed by $(\mathcal{C}_0^+, \sqsubseteq)$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Theorem (Evans 2016)

There is no precompact Ramsey expansion of $(C_0; \leq_s)$.

- Let (C⁺₀, ⊑) be a Ramsey expansion of (C₀, ≤_s), then every A ∈ C₀ has infinitely many expansions in (C⁺₀; ⊑).
- Given two 2-orientations A ⊆ B, we write
 A ⊑_s B if there is no edge from A to B \ A.
- \sqsubseteq is coarser than \sqsubseteq_s for 2-orientation fixed by $(\mathcal{C}_0^+, \sqsubseteq)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

- Every vertex $v \in \mathbf{M}_0^+$ has out-degree at most 2, but infinite in-degree.
- Oriented path $v_1 \rightarrow v_2 \rightarrow v_2 \dots v_n$ always extends by a vertex v_0 to $v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow v_2 \dots v_n$.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property ●O	Expansion property	C _F 000000
\mathcal{D}_0^\prec is Ran	nsey					

Denote by \mathcal{D}_0^\prec the class of all finite ordered 2-orientations.

Theorem (Evans, H., Nešetřil, 2018)

 \mathcal{D}_0^{\prec} is a Ramsey class.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property ●O	Expansion property	C _F 000000
\mathcal{D}_0^{\prec} is Ran	nsey					

Denote by \mathcal{D}_0^{\prec} the class of all finite ordered 2-orientations.

Theorem (Evans, H., Nešetřil, 2018)

 \mathcal{D}_0^{\prec} is a Ramsey class.

Proof.

- Given $\mathbf{A}, \mathbf{B} \in \mathcal{D}_0^{\prec}$ put $N \longrightarrow (|B|)_2^{|A|}$.
- Extend language by unary predicates $R_1, R_2, \ldots R_N$.
- Given |B| tuple \$\vec{b}\$ = (b_1, b_2, \ldots b_{|B|}\$), denote by \$\mathbf{B}\$ expansion of \$\mathbf{B}\$ where \$\vec{i}\$-th vertex is in relation \$R_{b_i}\$.

うして 山田 マイボマ エリア しょう

- \mathbf{P}_0 is a disjoint union of $\mathbf{B}_{\vec{v}}$, $v \in \binom{n}{|B|}$.
- Put $u \sim v$ if successor-closure of u is isomorphic to v.
- $C = P_0 / \sim . C \longrightarrow (B)_2^A$.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F
0000000	000000000	00	0000	00	00000	000000

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

 $6 \longrightarrow (|B|)_2^{|A|}$

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

< 注→

Ð.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

토 > 토

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

토 > 토

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

ł

≣⇒

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Optimality of Ramsey expansion

Question: (Tsankov)

Is $(\mathcal{D}_0^{\prec}; \sqsubseteq_s)$ any better than the trivial Ramsey expansion?

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	00000000	00	0000	00	00000	000000

Optimality of Ramsey expansion

Question: (Tsankov)

Is $(\mathcal{D}_0^{\prec}; \sqsubseteq_s)$ any better than the trivial Ramsey expansion?

Theorem (Evans, H., Nešetřil, 2018)

There exists $\mathcal{G}_0 \subset \mathcal{D}_0^{\prec}$ such that

- $(\mathcal{G}_0; \sqsubseteq_s)$ is strong expansion of $(\mathcal{C}_0; \leq_s)$,
- $(\mathcal{G}_0; \sqsubseteq_s)$ is Ramsey classes,
- N_{G₀}, the group of automorphisms of Fraïssé limit of (G₀; ⊑_s) is maximal amongst extremely amenable subgroups of Aut(**M**₀).

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

 Class of all self-sufficient substructures of G₀ has an Expansion Property with respect to C₀ and thus give a minimal Aut(M₀) flow.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	0000	000000

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Definition

 \mathcal{K}' has expansion property wrt \mathcal{K} if for every $\mathbf{A} \in \mathcal{K}$ there exists $\mathbf{B} \in \mathcal{K}$ such that every expansion of \mathbf{B} in \mathcal{K}' contains every expansion of \mathbf{A} in \mathcal{K}' .

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Definition

 \mathcal{K}' has expansion property wrt \mathcal{K} if for every $\mathbf{A} \in \mathcal{K}$ there exists $\mathbf{B} \in \mathcal{K}$ such that every expansion of \mathbf{B} in \mathcal{K}' contains every expansion of \mathbf{A} in \mathcal{K}' .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Denote by $(\mathcal{D}_1; \sqsubseteq_s)$ the class of all finite acyclic orientations. Denote by $(\mathcal{C}_1; \sqsubseteq_s)$ unoriented reduct of $(\mathcal{D}_1; \sqsubseteq_s)$. (Kindergarten example)

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Definition

 \mathcal{K}' has expansion property wrt \mathcal{K} if for every $\mathbf{A} \in \mathcal{K}$ there exists $\mathbf{B} \in \mathcal{K}$ such that every expansion of \mathbf{B} in \mathcal{K}' contains every expansion of \mathbf{A} in \mathcal{K}' .

Denote by $(\mathcal{D}_1; \sqsubseteq_s)$ the class of all finite acyclic orientations. Denote by $(\mathcal{C}_1; \sqsubseteq_s)$ unoriented reduct of $(\mathcal{D}_1; \sqsubseteq_s)$. (Kindergarten example)

Theorem (Evans, H., Nešetřil, 2018)

For every $\mathbf{A}^+ \in \mathcal{D}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{D}_1$ contains \mathbf{A}^+ as a self-sufficient substructure.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Definition

 \mathcal{K}' has expansion property wrt \mathcal{K} if for every $\mathbf{A} \in \mathcal{K}$ there exists $\mathbf{B} \in \mathcal{K}$ such that every expansion of \mathbf{B} in \mathcal{K}' contains every expansion of \mathbf{A} in \mathcal{K}' .

Denote by $(\mathcal{D}_1; \sqsubseteq_s)$ the class of all finite acyclic orientations. Denote by $(\mathcal{C}_1; \sqsubseteq_s)$ unoriented reduct of $(\mathcal{D}_1; \sqsubseteq_s)$. (Kindergarten example)

Theorem (Evans, H., Nešetřil, 2018)

For every $\mathbf{A}^+ \in \mathcal{D}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{D}_1$ contains \mathbf{A}^+ as a self-sufficient substructure.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Definition

 \mathcal{K}' has expansion property wrt \mathcal{K} if for every $\mathbf{A} \in \mathcal{K}$ there exists $\mathbf{B} \in \mathcal{K}$ such that every expansion of \mathbf{B} in \mathcal{K}' contains every expansion of \mathbf{A} in \mathcal{K}' .

Denote by $(\mathcal{D}_1; \sqsubseteq_s)$ the class of all finite acyclic orientations. Denote by $(\mathcal{C}_1; \sqsubseteq_s)$ unoriented reduct of $(\mathcal{D}_1; \sqsubseteq_s)$. (Kindergarten example)

Theorem (Evans, H., Nešetřil, 2018)

For every $\mathbf{A}^+ \in \mathcal{D}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{D}_1$ contains \mathbf{A}^+ as a self-sufficient substructure.

Proof by induction on $|A^+|$.

• Every $\mathbf{A} \in \mathcal{D}_1$ has vertex v of in-degree 0.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Sac

•
$$\mathbf{A}^0 = \mathbf{A} \setminus \{\mathbf{v}\}$$

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Definition

 \mathcal{K}' has expansion property wrt \mathcal{K} if for every $\mathbf{A} \in \mathcal{K}$ there exists $\mathbf{B} \in \mathcal{K}$ such that every expansion of \mathbf{B} in \mathcal{K}' contains every expansion of \mathbf{A} in \mathcal{K}' .

Denote by $(\mathcal{D}_1; \sqsubseteq_s)$ the class of all finite acyclic orientations. Denote by $(\mathcal{C}_1; \sqsubseteq_s)$ unoriented reduct of $(\mathcal{D}_1; \sqsubseteq_s)$. (Kindergarten example)

Theorem (Evans, H., Nešetřil, 2018)

For every $\mathbf{A}^+ \in \mathcal{D}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{D}_1$ contains \mathbf{A}^+ as a self-sufficient substructure.

Proof by induction on $|A^+|$.

•
$$\mathbf{A}^0 = \mathbf{A} \setminus \{ \mathbf{v} \}$$

- Construct **B**⁰ by induction hypothesis.
- Extend every copy of **A**⁰ in **B**⁰ to **A** by 5 copies of *v*.

・ロト ・ 雪 ト ・ ヨ ト ・ 日 ト

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

Definition

- Suppose $\mathbf{A} \in \mathcal{D}_1$ we put $\mathbf{A} \in \mathcal{E}_1$ iff:
 - 1 If $l(a) \prec l(b)$.
 - **2** If I(a) = I(b) then order is defined lexicographically by descending chains of their successors
- l(a) denote the level of vertex a.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Definition

Suppose $\mathbf{A} \in \mathcal{D}_1$ we put $\mathbf{A} \in \mathcal{E}_1$ iff:

1 If $l(a) \prec l(b)$.

If *I*(*a*) = *I*(*b*) then order is defined lexicographically by descending chains of their successors

Theorem (Evans, H., Nešetřil, 2018)

For every $\mathbf{A}^+ \in \mathcal{E}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{E}_1$ contains \mathbf{A} as self-sufficient substructure.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	0000	000000

For every $\mathbf{A}^+ \in \mathcal{E}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{E}_1$ contains \mathbf{A} as self-sufficient substructure.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

For every $\mathbf{A}^+ \in \mathcal{E}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{E}_1$ contains \mathbf{A} as self-sufficient substructure.

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへで

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

For every $\mathbf{A}^+ \in \mathcal{E}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{E}_1$ contains \mathbf{A} as self-sufficient substructure.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C_F
0000000	000000000	00	0000	00	00000	000000

For every $\mathbf{A}^+ \in \mathcal{E}_1$ there exists $\mathbf{B} \in \mathcal{C}_1$ such that every expansion $\mathbf{B}^+ \in \mathcal{E}_1$ contains \mathbf{A} as self-sufficient substructure.

▲□▶▲□▶▲目▶▲目▶ 目 のへで
Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	00000

The ω -categorical case

• $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	00000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The ω -categorical case

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	С _F •00000

The ω -categorical case

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$
- $A \leq_s B$ iff $\delta(A) \leq \delta(B')$ for all finite B' with $A \subset B' \subseteq B$. $A \leq_d B$ iff $\delta(A) < \delta(B')$ for all finite B' with $A \subset B' \subseteq B$.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	00000

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

The ω -categorical case

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$
- $\mathbf{A} \leq_s \mathbf{B}$ iff $\delta(\mathbf{A}) \leq \delta(\mathbf{B}')$ for all finite \mathbf{B}' with $\mathbf{A} \subset \mathbf{B}' \subseteq \mathbf{B}$. $\mathbf{A} \leq_d \mathbf{B}$ iff $\delta(\mathbf{A}) < \delta(\mathbf{B}')$ for all finite \mathbf{B}' with $\mathbf{A} \subset \mathbf{B}' \subseteq \mathbf{B}$.

Lemma

Put
$$F(x) = \ln(x)$$
. Then $(C_F; \leq_d)$ is a free amalgamation class.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	00000

The ω -categorical case

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$
- $A \leq_s B$ iff $\delta(A) \leq \delta(B')$ for all finite B' with $A \subset B' \subseteq B$. $A \leq_d B$ iff $\delta(A) < \delta(B')$ for all finite B' with $A \subset B' \subseteq B$.

Lemma

Put
$$F(x) = \ln(x)$$
. Then $(C_F; \leq_d)$ is a free amalgamation class.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	00000

The ω -categorical case

- $F: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$
- $C_0 = \{ \mathbf{B} : \delta(\mathbf{A}) \ge 0 \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$ $C_F = \{ \mathbf{B} : \delta(\mathbf{A}) \ge F(|\mathbf{A}|) \text{ for all } \mathbf{A} \subseteq \mathbf{B} \}.$
- $A \leq_s B$ iff $\delta(A) \leq \delta(B')$ for all finite B' with $A \subset B' \subseteq B$. $A \leq_d B$ iff $\delta(A) < \delta(B')$ for all finite B' with $A \subset B' \subseteq B$.

Lemma

Put
$$F(x) = \ln(x)$$
. Then $(C_F; \leq_d)$ is a free amalgamation class.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 0●0000

Successor-*d*-closure

 $roots_A(B)$ is set of all roots of A reachable from $B \subseteq A$

Lemma (Evans, H., Nešetřil, 2018)

Let $B \subseteq A$ be an 2-orientations. Then B is both d-closed and successor-closed in A iff

 $\mathbf{B} = \{ v : \operatorname{roots}_{\mathbf{A}}(v) \subseteq \operatorname{roots}_{\mathbf{A}}(\mathbf{B}) \}.$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

Recall: **B** is d-closed in **A** iff $\delta(\mathbf{B}) < \delta(\mathbf{B}')$ for all **B**' s.t. **B** \subset **B**' \subseteq **A**.

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Successor-*d*-closure

 $roots_A(B)$ is set of all roots of A reachable from $B \subseteq A$

```
Lemma (Evans, H., Nešetřil, 2018)
```

Let $\mathbf{B} \subseteq \mathbf{A}$ be an 2-orientations. Then \mathbf{B} is both d-closed and successor-closed in \mathbf{A} iff

 $\mathbf{B} = \{ v : \operatorname{roots}_{\mathbf{A}}(v) \subseteq \operatorname{roots}_{\mathbf{A}}(\mathbf{B}) \}.$

Recall: **B** is d-closed in **A** iff $\delta(\mathbf{B}) < \delta(\mathbf{B}')$ for all **B**' s.t. **B** \subset **B**' \subseteq **A**.

Proof.

- Given B ⊑_s A, δ(B) is the number of roots of out-degree 1 + twice number of roots of out-degree 0.
- Extending B by all vertices v such that roots_A(v) ⊆ roots_A(B) keeps δ.
- Extending **B** by any other vertex increases δ .

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 00●000
C_F is hard	er					

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 00●000		
C_{-} is harder								

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• $(C_F; \leq_d)$ contains subclass interpreting undirected graphs

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 00●000
C_{r} is hard	er					

- (C_F; ≤_d) contains subclass interpreting undirected graphs
- successor-d-closure is not unary: it is not true that successor-d-closure of a set is union of successor-d-closures of its vertices.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 00●000
C_{r} is hard	er					

- (C_F; ≤_d) contains subclass interpreting undirected graphs
- successor-d-closure is not unary: it is not true that successor-d-closure of a set is union of successor-d-closures of its vertices.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- C_F is harder but partly solved by big hammers (for specific choices of F)
 - Ramsey property of $(\mathcal{D}_F^{\prec}; \sqsubseteq_d)$ as locally finite subclass.
 - Expansion property is a combination of expansion property for (C₀; ≤s) and ordering property for graphs (via Ramsey property).

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	C _F 00●000
C_{r} is hard	er					

- (C_F; ≤_d) contains subclass interpreting undirected graphs
- successor-d-closure is not unary: it is not true that successor-d-closure of a set is union of successor-d-closures of its vertices.
- C_F is harder but partly solved by big hammers (for specific choices of F)
 - Ramsey property of $(\mathcal{D}_F^{\prec}; \sqsubseteq_d)$ as locally finite subclass.
 - Expansion property is a combination of expansion property for (C₀; ≤_s) and ordering property for graphs (via Ramsey property).

EPPA and big Ramsey degree currently open (WIP).

In ω -categorical case Ramsey argument is difficult. EPPA is work in progress.

We know the maximal extremely amenable subgroup. We conjecture what the maximal amenable subgroup is.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Structural Ramsey	Positive results	Negative results	Hrushovski construction	Ramsey property	Expansion property	CF
0000000	000000000	00	0000	00	00000	000000

Thank you for the attention

- J.H., J. Nešetřil: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms). Submitted (arXiv:1606.07979), 2016, 59 pages.
- D. Evans, J. H., J. Nešetřil: Ramsey properties and extending partial automorphisms for classes of finite structures. Submitted (arXiv:1705.02379), 2017, 33 pages.
- D. Evans, J.H., J. Nešetřil: Automorphism groups and Ramsey properties of sparse graphs. Submitted (arXiv:1801.01165), 2018, 47 pages.
- J.H., J. Nešetřil: Bowtie-free graphs have a Ramsey lift. Advances in Applied Mathematics 96 (2018), 286–311.
- J.H., M. Konečný, J. Nešetřil: Conant's generalised metric spaces are Ramsey. To appear in Contributions to Discrete Mathematics (arXiv:1710.04690), 20 pages.
- J.H., J. Nešetřil: Ramsey Classes with Closure Operations (Selected Combinatorial Applications). Connections in Discrete Mathematics: A Celebration of the Work of Ron Graham, 240–258.
- A. Aranda, J. H., M. Karamanlis, M. Kompatscher, M. Konečný, M. Pawliuk, D. Bradley-Williams: Ramsey expansions of metrically homogeneous graphs. Submitted (arXiv:1706.00295), 57 pages.
- A. Aranda, K. E. Hng, J. H., M. Karamanlis, M. Kompatscher, M. Konečný, M. Pawliuk, D. Bradley-Williams: Completing graphs to metric spaces, Submitted (arXiv:1707.02612), 19 pages.

- M. Konečný: Combinatorial Properties of Metrically Homogeneous Graphs, Bachelor thesis
- J.H., M. Konečný, J. Nešetřil: Semigroup-valued metric spaces. To appear.
- . M. Konečný: Semigroup-valued metric spaces, Master thesis to appear
- R. Coulson, J. H., M. Kompatcher, M. Konečný: Forbidden cycles in metrically homogeneous graphs. To appear.