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HINDMAN’S THEOREM

THEOREM (NEIL HINDMAN, 1974)
If the positive integers are colored with finitely many colors, there is an
infinite set X of positive integers such that all finite nonempty sums of
distinct elements of X have the same color.

This result will be denoted HT throughout this talk.



NOTATION

Let N = {1,2, . . . } .

For k ∈ N, identify k and {0,1, . . . , k − 1}.

A k -coloring c of N is a function c : N→ k .

A set H ⊆ N is monochromatic for a k -coloring c of N if c is constant
on H.

For X ⊆ N, FS(X ) = {Σ(F ) : F ⊆ X & 0 < |F | <∞}, where Σ(F ) is
the sum of all the elements of F .

Thus HT asserts that for every k ∈ N and every k -coloring c of N there
is an infinite set X ⊆ N such that FS(X ) is monochromatic.

Let HTk be the restriction of HT to k -colorings.



PROOFS OF HT

Hindman’s original proof of HT was a complicated combinatorial
argument.

Baumgartner (1974) and Towsner (2012) found simpler combinatorial
arguments.

Furstenberg and Weiss (1978) proved HT using topological dynamics.

A very short "soft" proof was discovered by Galvin and Glazer (1977)
using ultrafilters, specifically an idempotent ultrafilter under a certain
binary operation which makes the set of ultrafilters on N a semigroup.

The book Ramsey Theory by Graham, Rothschild, and Spencer
contains expositions of the Baumgartner, Furstenberg-Weiss, and
Galvin-Glazer proofs.



REVERSE MATHEMATICS

Reverse Mathematics studies implications between sentences of
second-order arithmetic over the base theory RCA0.

The theory RCA0 corresponds roughly to computable mathematics.

The theory WKL0 is RCA0 together with the statement that every
infinite tree of finite binary strings has a path.

The theory ACA0 is RCA0 together with the arithmetic comprehension
scheme.

The theory ACA+
0 is RCA0 together with the statement

(∀X )[X (ω) exists ]. One could think of X (ω) as the collection of all
arithmetical statements true of X .

In terms of logical strength, we have RCA0 < WKL0 < ACA0 < ACA+
0 .



AN UPPER BOUND ON THE STRENGTH OF HT
A k -coloring c of N is called an instance of HT and an infinite set X
such that FS(X ) is monochromatic for c is called a solution for c. So
HT is the statement that each instance c of HT has a solution X .

THEOREM (BLASS, HIRST, AND SIMPSON, 1987)
If c is a computable instance of HT, then c has a solution X with
X ≤T 0(ω+1). (Here ≤T denotes Turing reduciblity, and 0(ω+1) is the
Turing jump of 0(ω).)

The proof of this result was based on Hindman’s original proof of HT.

COROLLARY (BLASS, HIRST, AND SIMPSON)

Hindman’s Theorem is provable in ACA+
0 .

The shorter proofs of HT do not appear to yield this corollary.



LOWER BOUNDS ON HT

THEOREM (BLASS, HIRST, AND SIMPSON)
There is a computable instance c of HT such that all solutions X
compute 0′.

Their proof was an extremely ingenious parity argument.

COROLLARY (BLASS, HIRST, AND SIMPSON)
HT implies ACA0 in RCA0.

THEOREM (BLASS, HIRST, AND SIMPSON)

There is a computable instance of HT with no Σ0
2 solution.



OPEN QUESTIONS ABOUT HINDMAN’S THEOREM

(Q1) Is there a fixed n ∈ ω such that every computable instance of HT
has a solution X ≤T 0(n) ?

(Q1′) Is HT provable in ACA0?

Note: A positive answer to (Q1′) implies a positive answer to (Q1).

A positive answer to (Q1) would likely lead to a positive answer to
(Q1′’) as a corollary to the proof.

(Q2) Is there a computable instance c of HT such that every solution
computes 0(ω)?

(Q2′) Is HT equivalent to ACA+
0 over RCA0?



BOUNDED VERSIONS OF HINDMAN’S THEOREM

Hindman, Leader, and Strauss have asked:

Does every proof of Hindman’s Theorem for sums of length at most 2
actually prove full Hindman’s Theorem?

Reverse Mathematics suggests a formal analog of this question.
For X ⊆ ω, n ∈ N, define

FS≤n(X ) = {Σ(F ) : F ⊆ X & 0 < |F | ≤ n}

Let HT≤n
k be the assertion that for every k -coloring c of N there is an

infinite set X such that FS≤n(X ) is monochromatic. Let HT≤n be the
statement (∀k)HT≤n

k .

A possible formalization of the informal question above is:

Does HT≤2 imply HT in RCA0?



LOWER BOUNDS ON BOUNDED VERSIONS OF HT

THEOREM (DZHAFAROV, JOCKUSCH, SOLOMON, AND WESTRICK)

There is a computable instance c of HT≤3
3 such that every solution X

for c computes 0′.

This extends the corresponding result of Blass, Hirst, and Simpson for
full HT. Our proof uses their very ingenious parity trick and has further
ideas to bound the length of the relevant sums. In our coloring, the
color of a number depends (among other things) on its expansion in
base 7 .

COROLLARY (DJSW)

HT≤3
3 implies ACA0 in RCA0.



Carlucci, Kołodzieczyk, Lepore, and Zdanowski studied modified
versions of Hindman’s Theorem in which the solution sets are required
to meet certain natural sparseness conditions. Let Dn be the finite set
with canonical index n, so n =

∑
i∈Dn

2i . A set S ⊆ N satisfies the
apartness condition if when i , j ∈ S and i < j we have
max(Di) < min(Dj).

Carlucci et al showed that HT≤2
2 with the added condition that the

solution must satisfy the apartness condition implies ACA0 in RCA0.
From this they deduce:

THEOREM

(Carlucci, Kołodzieczyk, Lepore, and Zdanowski) HT≤2
4 implies ACA0 in

RCA0.



SUMS OF LENGTH AT MOST 2 WITH 2 COLORS

We know that HT≤2
4 and HT≤3

3 each imply ACA0 over RCA0. What if we
use sums of length at most 2 and only 2 colors?

THEOREM (DJSW)

Let A be a ∆0
2 set. Then there is a computable instance c of HT≤2

2
such that every solution X for c computes an infinite subset of A or A.

COROLLARY

There is a computable instance of HT≤2
2 with no computable solution,

and hence HT≤2
2 is not provable in RCA0.



RAMSEY’S THEOREM AND STABILITY

Let [A]n be the set of n-element subsets of A.

Let RTn
k be Ramsey’s Theorem for k -colorings of n-element subsets of

N.

Thus RTn
k asserts that for every coloring c : [N]n → k there is an infinite

set A ⊆ N such that c is constant on [A]n.

A coloring c : [N]2 → k is stable if for every a, limb c(a,b) exists.

Let SRT2
2 be the restriction of RT2

2 to stable colorings c : [N]2 → 2.

In 2014, Chong, Slaman, and Yang proved that SRT2
2 is strictly weaker

than RT2
2 over RCA0. It remains open whether every ω-model of

RCA0+ SRT2
2 is a model of RT2

2.



Let BΣ0
2 be the Σ0

2 bounding principle.

COROLLARY (DJSW)

In RCA0+ BΣ0
2, HT≤2

2 implies SRT2
2.

The following questions are open. All implications considered are in
RCA0.

QUESTION

Does HT≤2
2 imply ACA0?

QUESTION

Does ACA0 imply HT≤2
2 ?



SUMS OF LENGTH EXACTLY n
For X ⊆ N and n ≥ 1 define:

FS=n(X ) = {Σ(F ) : F ⊆ X & |F | = n}

So FS=n(X ) is the set of numbers of the form x1 + x2 + · · ·+ xn with
x1, x2, . . . , xn distinct elements of X .
Let HT=n

k be the assertion that for every k -coloring c of N there is an
infinite set X such that FS=n(X ) is monochromatic.

HT=n
k is simply the restriction of RTn

k to instances c where c(F )
depends only on Σ(F ) for F ∈ [N]n. Thus

RCA0 ` (∀n)(∀k)[RTn
k −→ HT=n

k ]

It follows that HT=n
k is provable in ACA0 for each fixed n and k .

Also, every computable instance of HT=n
k has a Π0

n solution, by the
corresponding result for Ramsey’s Theorem.



HT=2
2

We will focus on the most basic version of HT, namely HT=2
2 . Since

RT2
2 does not imply ACA0 by a result of Seetapun, it follows that HT=2

2
is strictly weaker than ACA0 over RCA0.

QUESTION:
Is HT=2

2 computably true? That is, does every computable instance
have a computable solution?

This question remained open for several years. A positive result
seemed hopeless, and attempted proofs of a negative result seemed
to lead to a combinatorial swamp.



HT=2
2 IS NOT COMPUTABLY TRUE

THEOREM (CSIMA, DZHAFAROV, HIRSCHFELDT, J., SOLOMON,
AND WESTRICK)

There is a computable instance of HT=2
2 with no computable solution.

Hence HT=2
2 is not provable in RCA0.

Define a computable coloring c : N→ 2 meeting each requirement Ri ,
where Ri asserts that the i th c.e. set Wi is not a solution for c.

Strategy for Ri : Choose a suitably large number ki , and, if |Wi | ≥ ki ,
let Ei consist of the first ki numbers enumerated in Wi .

Ensure that for all sufficiently large s, Ei + s is not monochromatic,
where Ei + s = {k + s : k ∈ Ei}. (Note that Ei + s ⊆ FS=2(Ei ∪ {s}) if
s /∈ Ei .)

This can be easily done for each fixed i , with ki = 2. But even for two
requirements significant conflicts arise.



PROBABILISTIC METHODS

Try a probabilistic approach. Think of the values of c(n) as mutually
independent random variables. The probability that Ei + s is
monochromatic is small, namely 2−ki+1.

A naive argument breaks down because
∑

s 2−ki+1 =∞.

Instead, note that if Ei + s and Ej + t are disjoint, the events that these
sets are monochromatic are independent. Furthermore, this happens
“frequently".

We need a result that if A0,A1, . . . are “effectively given" events of
“small probability" which are “frequently independent", there is a
computable outcome c in which no Ai occurs.

Enter the Lovász Local Lemma and its effective version!



THE LOVÁSZ LOCAL LEMMA

First consider the finite form. Let [n] = {1,2, . . . ,n}.

Let A1,A2, . . . ,An be events in a probability space. Suppose that for
each j ∈ [n] the set Nj ⊆ [n] is such that Aj is independent of any
intersection of events Ai for i ∈ [n] \ Nj . Suppose there are reals
r1, r2, . . . , rn in the interval (0,1) such that for all j ≤ n

Pr(Aj) ≤ rj Πi∈Nj ,i 6=j(1− ri)

Then
Pr(A1 A2 . . .An) > 0



THE INFINITE FORM OF THE LLL

This is similar to the finite form but applies to an infinite sequence of
events, and concludes only that the intersection of their complements
is nonempty. We assume that we have a topology on the space of
outcomes.

Infinite form of LLL

Let A1,A2, . . . be compact events in a probability space. Suppose that
for each j the finite set Nj ⊆ N is such that Aj is independent of any
intersection of events Ai for i ∈ N \ Nj . Suppose there are reals
r1, r2, . . . in the interval (0,1) such that for all j

Pr(Aj) ≤ rj Πi∈Nj ,i 6=j(1− ri)

Then
A1 A2 . . . 6= ∅

The infinite form follows immediately from the finite form by
compactness.



THE SETTING FOR THE RUMYANTSEV-SHEN THEOREM

Suppose that x1, x2, . . . are mutually independent {0,1}–valued
random variables. Further, the probability that xn = k is a rational
number effectively computable from n and k .

A1,A2, . . . are events such that each Aj is a finite Boolean combination
of statements of the form xn = k . Further, this Boolean combination is
effectively computable from j .

For each j , N(j) is finite, where N(j) is the set of i such that the events
Ai and Aj share at least one variable xn in their definition. Further, a
canonical index of N(j) is effectively computable from j .

Note that each event Aj is independent of any Boolean combination of
events Ai for i /∈ N(j).



THE RUMYANTSEV-SHEN THEOREM

This is an effective version of the infinite version of the Lovász Local
Lemma. Note that the hypothesis of the effective LLL is strengthened
because the upper bound on Pr(Aj) is multiplied by a constant q < 1.

THEOREM (A. RUMYANTSEV AND A. SHEN)
Suppose there is a real number q ∈ (0,1) and a computable sequence
of rational numbers q1,q2, . . . in (0,1) such that for all j ,

Pr [Aj ] ≤ q qj Πi∈Nj ,i 6=j(1− qi)

Then there is a computable function c : N→ 2 such that no event Aj
occurs when xn = c(n) for all n.

The proof is partly based on an efficient probabilistic algorithm due to
Moser and Tardos for finding solutions to the finite version of the LLL.
The use of this algorithm to prove an effective version of the LLL was
suggested by Lance Fortnow.



A COROLLARY OF THE RUMYANTSEV-SHEN THEOREM

Rumyantsev and Shen proved a corollary to their result which is easily
applicable and quickly yields the following result:

COROLLARY

For each rational number r ∈ (0,1) there is an integer b such that the
following holds. Let F0,F1, . . . be a computable sequence of finite sets,
each of size at least b. Suppose that for each m ≥ b and n, there are
at most 2rm many j such that |Fj | = m and n ∈ Fj , and we can
computably determine a canonical index for the set of all such j given
m and n. Then there is a computable c : N→ 2 such that for each j the
set Fj is not monochromatic for c.



THE PROOF THAT HT=2
2 IS NOT COMPUTABLY

SATISFIABLE

Let b be as in the last corollary for r = 1/2 and assume also that
m ≤ 2m/2 for all m ≥ b. Let ki = i + b. If |Wi | ≥ ki , let Ei consist of the
first ki numbers enumerated in Wi . It suffices to show the existence of
a computable coloring c : N→ 2 such that, for all i , if |Wi | ≥ ki , then for
all sufficiently large s, Ei + s is not monochromatic.

Let F0,F1, . . . be a computable enumeration without repetition of all
sets of the form Ei + s where Wi has at least ki elements at stage s (so
Ei is known at stage s).

Apply the previous corollary to the sequence F0,F1, . . . to obtain a
computable coloring c : N→ 2 with no Fj monochromatic. To check
the hypotheses, note that all sets in the sequence F0,F1, . . . of a given
size m are translates of the fixed set Ei , where ki = m, and n belongs
to at most |Ei | = m translates of Ei .

Then if Wi is infinite, then some Fj has the form Ei + s with s ∈Wi \ Ei ,
so Wi is not a solution for c.



AN EXTENSION

THEOREM

There is a computable instance c of HT=2
2 with no Σ0

2 solution.

The proof is similar to the Σ0
1 case, except that Wi is replaced

everywhere by W K
i . Also, a K -oracle is needed to compute Ei when it

exists. By the Limit Lemma, Ei can be computably approximated. Let
Ei,s be the approximation at stage s to Ei . Thus, if Ei exists, we have
Ei,s = Ei for all sufficiently large s. Without loss of generality, assume
that |Ei,s| = ki for all i and s.

Make the sequence F0,F1, . . . much as before, but ensure that if
Ei,s + s is put into the sequence, then it is disjoint from all sets in the
sequence of the form Ei,t + t for t < s with Ei,t 6= Ei,s. Then, for any
numbers n and m, the all sets in the sequence of size m which contain
n are translates of a fixed set, and the counting argument works as
before.



HT=2
2 AND WKL0

COROLLARY

Neither of HT=2
2 and WKL0 implies the other over RCA0.

HT=2
2 does not imply WKL0 by Liu’s remarkable theorem that RT2

2 does
not imply WKL0.

WKL0 does not imply HT=2
2 because WKL0 has an ω-model containing

only low sets, but RCA0+ HT=2
2 does not, by the Σ0

2 theorem.



HT=2
2 AND THE RAINBOW RAMSEY THEOREM

Let RRT2
2 be the assertion that if c : [N]2 → N and |c(−1)(n)| ≤ 2 for all

n ∈ N, there is an infinite set X such that the restriction of c to [X ]2 is
injective. This is a special case of the Rainbow Ramsey Theorem.
Csima and Mileti showed that RRT2

2 is strictly weaker than RT2
2 over

RCA0.

THEOREM (CDHJSW)

HT=2
2 implies RRT2

2 over RCA0.

A function f is DNC relative to a set X if (∀e)[f (e) 6= Φx
e(e)]. The

principle 2-DNC asserts that for every X there is a function which is
DNC relative to X ′. It follows easily from the proof of the Σ0

2 theorem
that there is a computable instance of HT=2

2 such that all solutions
compute functions which are DNC relative to 0′. A careful analysis of
this proof shows that HT=2

2 implies 2-DNC. Joe Miller has shown that
2-DNC is equivalent to RRT2

2, so the theorem follows.



SOME OPEN QUESTIONS

All implications considered are over RCA0.

QUESTION

Does HT=2
2 imply RT2

2 ?

QUESTION

Does RRT2
2 imply HT=2

2 ?

QUESTION

For n ≥ 3, is there a computable instance of HT=n
2 with no Σ0

n solution?

QUESTION

For which n and k does HT=n
k imply ACA0?


