# Canonization on product and iterated perfect and large perfect sets

# Vladimir Kanovei

## IITP and RUT-MIIT, Moscow.

#### Ramsey Theory in Logic, Combinatorics and Complexity

#### Bertinoro, 15 - 20 July 2018



# The speaker thanks **the organizers** for the opportunity to present this talk



Some canonization results, related to Borel equivalence relations modulo restriction to various categories of perfect sets, will be presented and commented.



#### 1 Canonization problem

- **2** Canonization: examples
- **3** Application: degrees of equivalence classes
- 4 Canonization on products
- 5 Canonization on perfect iterations
- 6 Canonization on Vitali-large iterations
  - 7 Acknowledgements





# Section 1. The canonization problem





The canonization problem is broadly formulated as follows. Given

(back)

- $\bullet$  a class  ${\mathscr E}$  of mathematical structures E, and
- a collection  $\mathscr{P}$  of sets P considered as large, or essential,

ТОС

The canonization problem is broadly formulated as follows. Given

(back)

- a class  $\mathscr{E}$  of mathematical structures E, and
- a collection  $\mathscr{P}$  of sets P considered as large, or essential,
- find : a smaller and better shaped subcollection  $\mathscr{E}' \subseteq \mathscr{E}$ , (the spectrum of  $\mathscr{E}$  mod  $\mathscr{P}$ ), satisfying the following:

TOC

The canonization problem is broadly formulated as follows. Given • a class  $\mathscr{E}$  of mathematical structures E, and

• a collection  $\mathscr{P}$  of sets P considered as large, or essential,

(back)

find : a smaller and better shaped subcollection  $\mathscr{E}' \subseteq \mathscr{E}$ , (the spectrum of  $\mathscr{E}$  mod  $\mathscr{P}$ ), satisfying the following:

for any structure  $E \in \mathscr{E}$  with a domain P there is a smaller set  $P' \in \mathscr{P}$ ,  $P' \subseteq P$ ,

TOC

The canonization problem is broadly formulated as follows. Given • a class  $\mathscr{E}$  of mathematical structures E, and

(back)

• a collection  $\mathscr{P}$  of sets P considered as large, or essential,

find : a smaller and better shaped subcollection  $\mathscr{E}' \subseteq \mathscr{E}$ , (the spectrum of  $\mathscr{E}$  mod  $\mathscr{P}$ ), satisfying the following:

> for any structure  $E \in \mathscr{E}$  with a domain Pthere is a smaller set  $P' \in \mathscr{P}$ ,  $P' \subseteq P$ , such that the substructure  $E \upharpoonright P'$  belongs to  $\mathscr{E}'$ .

I()()

The canonization problem is broadly formulated as follows. Given • a class  $\mathscr{E}$  of mathematical structures E, and

back

• a collection  $\mathscr{P}$  of sets P considered as large, or essential,

find : a smaller and better shaped subcollection  $\mathscr{E}' \subseteq \mathscr{E}$ , (the spectrum of  $\mathscr{E}$  mod  $\mathscr{P}$ ), satisfying the following:

> for any structure  $E \in \mathscr{E}$  with a domain Pthere is a smaller set  $P' \in \mathscr{P}$ ,  $P' \subseteq P$ , such that the substructure  $E \upharpoonright P'$  belongs to  $\mathscr{E}'$ .

For instance, the theorem saying that every Borel real map is either a bijection or a constant on a perfect set , can be viewed as a canonization theorem, with

$$\begin{split} \mathscr{E}' &= \{ \text{bijections and constants} \} \subseteq \mathscr{E} = \{ \text{Borel maps} \}, \\ \mathscr{P} &= \{ \text{perfect sets of reals} \}. \end{split}$$

ГОС





# V. Kanovei, M. Sabok, J. Zapletal, *Canonical Ramsey Theory on Polish Spaces*, Cambridge University Press, 2013.





# V. Kanovei, M. Sabok, J. Zapletal, *Canonical Ramsey Theory on Polish Spaces*, Cambridge University Press, 2013.

All results below belong to this book unless otherwise stated





# Section 2. Canonization: examples

back



#### Theorem (a corollary of Silver 1980)

If **E** is a Borel equivalence relation on a perfect set  $P \subseteq \mathbb{R}$ , then there exists a perfect set  $Q \subseteq P$  such that  $\mathbf{E} \upharpoonright Q$  is: either **the equality**: so that Q is pairwise **E**-inequivalent;

or the total equivalence: so that Q is pairwise **E**-equivalent.

back



#### Theorem (a corollary of Silver 1980)

If **E** is a Borel equivalence relation on a perfect set  $P \subseteq \mathbb{R}$ , then there exists a perfect set  $Q \subseteq P$  such that  $\mathbf{E} \upharpoonright Q$  is: either the equality: so that Q is pairwise **E**-inequivalent; or the total equivalence: so that Q is pairwise **E**-equivalent.

In the general canonization scheme, this can be codified as follows:

$$\mathscr{E}' = \{ \Delta, \text{ total} \} \subseteq \mathscr{E} = \{ \text{all Borel equivalence relations} \},$$
  
 $\mathscr{P} = \{ \text{perfect sets of reals} \},$ 

where  $\Delta$  is the equality and **total** is the total equivalence (making all reals equivalent).



| Vitali-large trichotomy                                                                                                                 | back | TOC |
|-----------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| x vit y iff $x - y$ is rational, the Vitali equivalence relation.                                                                       |      |     |
| Definition                                                                                                                              |      |     |
| A Borel set $X \subseteq \mathbb{R}$ is Vitali-large, if it is not covered by countably many Borel 2wise <b>vit</b> -inequivalent sets. |      |     |





#### Definition

A Borel set  $X \subseteq \mathbb{R}$  is Vitali-large, if it is not covered by countably many Borel 2wise vit-inequivalent sets. [Equivalently: vit has no Borel transversal on X.]





#### Definition

A Borel set  $X \subseteq \mathbb{R}$  is Vitali-large, if it is not covered by countably many Borel 2wise **vit**-inequivalent sets. [Equivalently: **vit** has no Borel transversal on X.]

 $\mathbb{R}$  itself is Vitali-large.

# Theorem (K – Zapletal)

If **E** is a Borel equivalence relation on a Vitali-large Borel set  $P \subseteq \mathbb{R}$ , then there is a perfect Vitali-large set  $Q \subseteq P$  such that **E** is equal on Q to one of the following three relations:

10 / 37





### Definition

A Borel set  $X \subseteq \mathbb{R}$  is Vitali-large, if it is not covered by countably many Borel 2wise **vit**-inequivalent sets. [Equivalently: **vit** has no Borel transversal on X.]

 $\mathbb{R}$  itself is Vitali-large.

# Theorem (K – Zapletal)

If **E** is a Borel equivalence relation on a Vitali-large Borel set  $P \subseteq \mathbb{R}$ , then there is a perfect Vitali-large set  $Q \subseteq P$  such that **E** is equal on Q to one of the following three relations:

• the equality  $\Delta$ ,

10 / 37





### Definition

A Borel set  $X \subseteq \mathbb{R}$  is Vitali-large, if it is not covered by countably many Borel 2wise **vit**-inequivalent sets. [Equivalently: **vit** has no Borel transversal on X.]

 $\mathbb{R}$  itself is Vitali-large.

# Theorem (K – Zapletal)

If **E** is a Borel equivalence relation on a Vitali-large Borel set  $P \subseteq \mathbb{R}$ , then there is a perfect Vitali-large set  $Q \subseteq P$  such that **E** is equal on Q to one of the following three relations:

- the equality  $\Delta$ ,
- the Vitali equivalence vit,





## Definition

A Borel set  $X \subseteq \mathbb{R}$  is Vitali-large, if it is not covered by countably many Borel 2wise **vit**-inequivalent sets. [Equivalently: **vit** has no Borel transversal on X.]

 $\mathbb{R}$  itself is Vitali-large.

# Theorem (K – Zapletal)

If **E** is a Borel equivalence relation on a Vitali-large Borel set  $P \subseteq \mathbb{R}$ , then there is a perfect Vitali-large set  $Q \subseteq P$  such that **E** is equal on Q to one of the following three relations:

- the equality  $\Delta$ ,
- the Vitali equivalence vit,
- the total equivalence total.





## Definition

A Borel set  $X \subseteq \mathbb{R}$  is Vitali-large, if it is not covered by countably many Borel 2wise vit-inequivalent sets. [Equivalently: **vit** has no Borel transversal on X.]

 $\mathbb{R}$  itself is Vitali-large.

# Theorem (K – Zapletal)

If **E** is a Borel equivalence relation on a Vitali-large Borel set  $P \subseteq \mathbb{R}$ , then there is a perfect Vitali-large set  $Q \subseteq P$  such that **E** is equal on Q to one of the following three relations:

- the equality  $\Delta$ ,
- the Vitali equivalence vit,
- the total equivalence total.

10 / 37





#### Theorem (a corollary of Silver 1980)

If **E** is a Borel equivalence relation on a perfect set  $P \subseteq \mathbb{R}$ , then there exists a perfect set  $Q \subseteq P$  such that  $\mathbf{E} \upharpoonright Q$  is: either **the equality**  $\Delta$ : so that Q is pairwise **E**-inequivalent;

or the total equivalence: so that Q is pairwise E-equivalent.

back



x vit y iff x - y is rational, the Vitali equivalence relation.

# Definition

A Borel set  $X \subseteq \mathbb{R}$  is Vitali-large, if it is not covered by countably many Borel 2wise **vit**-inequivalent sets. [Equivalently: **vit** has no Borel transversal on X.]

 $\mathbb{R}$  itself is Vitali-large.

# Theorem (K – Zapletal)

If **E** is a Borel equivalence relation on a Vitali-large Borel set  $P \subseteq \mathbb{R}$ , then there is a perfect Vitali-large set  $Q \subseteq P$  such that **E** is equal on Q to one of the following three relations:

- the equality  $\Delta$ ,
- the Vitali equivalence vit,
- the total equivalence total.

Silver's option new option !! Silver's option





# Section 3. Application: degrees of equivalence classes

Let **F** be an equivalence relation on  $\mathbb{R}$ . If  $x \in \mathbb{R}$  then let

$$[x]_{\mathbf{F}} = \{y \in \mathbb{R} : x \mathbf{F} y\}, \text{ the } \mathbf{F}\text{-class of } x,$$

then  $\mathbb{R}/\mathbf{F} = \{[x]_{\mathbf{F}} : x \in X\}$  is the quotient.

Let **F** be an equivalence relation on  $\mathbb{R}$ . If  $x \in \mathbb{R}$  then let

$$[x]_{\mathbf{F}} = \{y \in \mathbb{R} : x \mathbf{F} y\}, \text{ the } \mathbf{F}\text{-class of } x,$$

then  $\mathbb{R}/\mathbf{F} = \{[x]_{\mathbf{F}} : x \in X\}$  is the quotient. Suppose that:

- $\mathbb{V}$  is the background set universe,
- **F** is a Borel equivalence relation on  $\mathbb{R}$ .
- $\ \mathbb{P} \in \mathbb{V}$  is a forcing notion,
- $\mathbb{V}^+$  is a  $\mathbb{P}$ -generic extension of  $\mathbb{V}$ .

Let **F** be an equivalence relation on  $\mathbb{R}$ . If  $x \in \mathbb{R}$  then let

$$[x]_{\mathbf{F}} = \{ y \in \mathbb{R} : x \mathbf{F} y \}, \text{ the } \mathbf{F}\text{-class of } x,$$

then  $\mathbb{R}/\mathbf{F} = \{[x]_{\mathbf{F}} : x \in X\}$  is the quotient. Suppose that:

- $\mathbb{V}$  is the background set universe,
- **F** is a Borel equivalence relation on  $\mathbb{R}$ .
- $\mathbb{P} \in \mathbb{V}$  is a forcing notion,
- $\mathbb{V}^+$  is a  $\mathbb{P}\text{-generic}$  extension of  $\mathbb{V}.$

#### **Definition (reducibility)**

In  $\mathbb{V}^+$ , if  $X, Y \in \mathbb{R}/\mathbb{F}$  then  $Y \leq_{\mathbb{V}} X$  ( $\mathbb{V}$ -reducibility) iff Y is reduced to X by an analytic graph  $\Gamma$  coded in  $\mathbb{V}$ .



#### Definition (reduction of Y to X)

Suppose that X, Y are non- $\emptyset$  sets of reals, and  $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$  is a planar set (call it a *graph*). Say that Y is reduced to X by  $\Gamma$ , if, symbolically,  $\emptyset \neq \Gamma[X] \subseteq Y$ ,

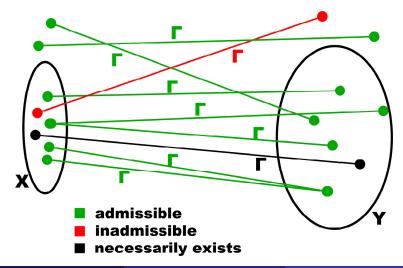


#### Definition (reduction of Y to X)

Suppose that X, Y are non- $\varnothing$  sets of reals, and  $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$  is a planar set (call it a graph). Say that Y is reduced to X by  $\Gamma$ , if, symbolically,  $\varnothing \neq \Gamma[X] \subseteq Y$ , so that, **1**  $X \cap \operatorname{dom} \Gamma \neq \varnothing$ , that is,  $\exists x \in X \exists y (x \Gamma y)$ ; **2**  $\Gamma[X] \subseteq Y$ , that is,  $\forall x \in X \forall y (x \Gamma y \Longrightarrow y \in Y)$ .

# Reduction by a graph, $\emptyset \neq \Gamma[X] \subseteq Y$ : picture (back) (TOC)

Reduction of Y to X by a graph  $\Gamma$ 





#### Definition (reduction of Y to X)

Suppose that X, Y are non- $\varnothing$  sets of reals, and  $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$  is a planar set (call it a graph). Say that Y is reduced to X by  $\Gamma$ , if, symbolically,  $\varnothing \neq \Gamma[X] \subseteq Y$ , so that, 1  $X \cap \operatorname{dom} \Gamma \neq \varnothing$ , that is,  $\exists x \in X \exists y (x \Gamma y)$ ; 2  $\Gamma[X] \subseteq Y$ , that is,  $\forall x \in X \forall y (x \Gamma y \Longrightarrow y \in Y)$ .



#### Definition (reduction of Y to X)

Suppose that X, Y are non- $\emptyset$  sets of reals, and  $\Gamma \subseteq \mathbb{R} \times \mathbb{R}$  is a planar set (call it a graph). Say that Y is reduced to X by  $\Gamma$ , if, symbolically,  $\emptyset \neq \Gamma[X] \subseteq Y$ , so that,

- 1  $X \cap \operatorname{dom} \Gamma \neq \emptyset$ , that is,  $\exists x \in X \exists y (x \Gamma y)$ ;
- 2  $\Gamma[X] \subseteq Y$ , that is,  $\forall x \in X \forall y (x \Gamma y \Longrightarrow y \in Y)$ .

#### Comment (reduction of Y to X)

In this case, if **F** is an equivalence relation, and X, Y are **F**-equivalence classes, then  $Y = [\Gamma[X]]_{F}$ , where

$$\Gamma[X] = \{ y : \exists x \in X (x \Gamma y) \}.$$

Thus if we know  $\Gamma$  and X then we know Y as well.

Let **F** be an equivalence relation on  $\mathbb{R}$ . If  $x \in \mathbb{R}$  then let

$$[x]_{\mathbf{F}} = \{y \in \mathbb{R} : x \mathbf{F} y\}, \text{ the } \mathbf{F}\text{-class of } x,$$

then  $\mathbb{R}/\mathbf{F} = \{[x]_{\mathbf{F}} : x \in X\}$  is the quotient. Suppose that:

- $\mathbb{V}$  is the background set universe,
- **F** is a Borel equivalence relation on  $\mathbb{R}$ .
- $\mathbb{P} \in \mathbb{V}$  is a forcing notion,
- $\mathbb{V}^+$  is a  $\mathbb{P}\text{-generic}$  extension of  $\mathbb{V}.$

#### **Definition (reducibility)**

In  $\mathbb{V}^+$ , if  $X, Y \in \mathbb{R}/\mathbf{F}$  then  $Y \leq_{\mathbb{V}} X$  ( $\mathbb{V}$ -reducibility) iff Y is reduced to X by an analytic graph  $\Gamma$  coded in  $\mathbb{V}$ .

# Application: degrees of equivalence classes **back TOC**

Let **F** be an equivalence relation on  $\mathbb{R}$ . If  $x \in \mathbb{R}$  then let

$$[x]_{\mathbf{F}} = \{y \in \mathbb{R} : x \mathbf{F} y\}, \text{ the } \mathbf{F}\text{-class of } x,$$

then  $\mathbb{R}/\mathbf{F} = \{[x]_{\mathbf{F}} : x \in X\}$  is the quotient. Suppose that:

- $\mathbb{V}$  is the background set universe,
- **F** is a Borel equivalence relation on  $\mathbb{R}$ .
- $\mathbb{P} \in \mathbb{V}$  is a forcing notion,
- $\mathbb{V}^+$  is a  $\mathbb{P}\text{-generic}$  extension of  $\mathbb{V}.$

#### **Definition (reducibility)**

In  $\mathbb{V}^+$ , if  $X, Y \in \mathbb{R}/\mathbf{F}$  then  $Y \leq_{\mathbb{V}} X$  ( $\mathbb{V}$ -reducibility) iff Y is reduced to X by an analytic graph  $\Gamma$  coded in  $\mathbb{V}$ .

**Goal:** In  $V^+$ , study the structure of  $\mathbb{R}/\mathbf{F}$ , under  $\leq_V$ .

back

In the background set universe V,

- let VL = all Vitali-large perfect sets  $P \subseteq \mathbb{R}$  (the forcing),
- let **F** be a Borel equivalence relation in  $\mathbb{V}$ .

#### Theorem

In any **VL**-generic extension  $\mathbb{V}^+$  of  $\mathbb{V}$ , there exist at most 3  $\leq_{\mathbb{V}}$ -degrees of **F**-equivalence classes.

()(

Any **VL**-generic extension of the background set universe  $\mathbb{V}$  has the form  $\mathbb{V}^+ = \mathbb{V}[\mathbf{r}]$ , where  $\mathbf{r} \in \mathbb{R}$  is the principal **P**-generic real.

(back)

(TOC)

Any **VL**-generic extension of the background set universe  $\mathbb{V}$  has the form  $\mathbb{V}^+ = \mathbb{V}[\mathbf{r}]$ , where  $\mathbf{r} \in \mathbb{R}$  is the principal **P**-generic real.

(back)

Let  $\mathbf{x}, \mathbf{y}$  are reals in  $\mathbb{V}^+$ . Consider the classes  $X = [\mathbf{x}]_{\mathbf{F}}$ ,  $Y = [\mathbf{y}]_{\mathbf{F}}$ .

(ТОС)

Any **VL**-generic extension of the background set universe  $\mathbb{V}$  has the form  $\mathbb{V}^+ = \mathbb{V}[\mathbf{r}]$ , where  $\mathbf{r} \in \mathbb{R}$  is the principal **P**-generic real.

(back)

Let  $\mathbf{x}, \mathbf{y}$  are reals in  $\mathbb{V}^+$ . Consider the classes  $X = [\mathbf{x}]_{\mathbf{F}}$ ,  $Y = [\mathbf{y}]_{\mathbf{F}}$ .

By **Borel reading of names**, we have:  $\mathbf{x} = f(\mathbf{r})$ ,  $\mathbf{y} = g(\mathbf{r})$ , where f, g are Borel maps coded in  $\mathbb{V}$ .

TOC

Any **VL**-generic extension of the background set universe  $\mathbb{V}$  has the form  $\mathbb{V}^+ = \mathbb{V}[\mathbf{r}]$ , where  $\mathbf{r} \in \mathbb{R}$  is the principal **P**-generic real.

(back)

Let  $\mathbf{x}, \mathbf{y}$  are reals in  $\mathbb{V}^+$ . Consider the classes  $X = [\mathbf{x}]_{\mathbf{F}}$ ,  $Y = [\mathbf{y}]_{\mathbf{F}}$ .

By **Borel reading of names**, we have:  $\mathbf{x} = f(\mathbf{r})$ ,  $\mathbf{y} = g(\mathbf{r})$ , where f, g are Borel maps coded in  $\mathbb{V}$ .

If  $a, b \in \mathbb{R}$ , let:  $a \mathbf{E}_f b$  iff  $f(a) \mathbf{F} f(b)$ ;  $a \mathbf{E}_g b$  iff  $g(a) \mathbf{F} g(b)$ 

(TOC)

Any **VL**-generic extension of the background set universe  $\mathbb{V}$  has the form  $\mathbb{V}^+ = \mathbb{V}[\mathbf{r}]$ , where  $\mathbf{r} \in \mathbb{R}$  is the principal **P**-generic real.

(back)

Let  $\mathbf{x}, \mathbf{y}$  are reals in  $\mathbb{V}^+$ . Consider the classes  $X = [\mathbf{x}]_{\mathbf{F}}$ ,  $Y = [\mathbf{y}]_{\mathbf{F}}$ .

By **Borel reading of names**, we have:  $\mathbf{x} = f(\mathbf{r})$ ,  $\mathbf{y} = g(\mathbf{r})$ , where f, g are Borel maps coded in  $\mathbb{V}$ .

If  $a, b \in \mathbb{R}$ , let:  $a \mathbf{E}_f b$  iff  $f(a) \mathbf{F} f(b)$ ;  $a \mathbf{E}_g b$  iff  $g(a) \mathbf{F} g(b)$ 

By the canonization trichotomy theorem there is a set  $P \in VL$ , such that  $\mathbf{r} \in P$  and  $\mathbf{E}_f, \mathbf{E}_g$  are canonized on P into one of  $\boldsymbol{\Delta}$ , vit, total.

TOC

Any **VL**-generic extension of the background set universe  $\mathbb{V}$  has the form  $\mathbb{V}^+ = \mathbb{V}[\mathbf{r}]$ , where  $\mathbf{r} \in \mathbb{R}$  is the principal **P**-generic real.

back

TOC

Let  $\mathbf{x}, \mathbf{y}$  are reals in  $\mathbb{V}^+$ . Consider the classes  $X = [\mathbf{x}]_{\mathbf{F}}$ ,  $Y = [\mathbf{y}]_{\mathbf{F}}$ .

By **Borel reading of names**, we have:  $\mathbf{x} = f(\mathbf{r})$ ,  $\mathbf{y} = g(\mathbf{r})$ , where f, g are Borel maps coded in  $\mathbb{V}$ .

If  $a, b \in \mathbb{R}$ , let:  $a \mathbf{E}_f b$  iff  $f(a) \mathbf{F} f(b)$ ;  $a \mathbf{E}_g b$  iff  $g(a) \mathbf{F} g(b)$ 

By the canonization trichotomy theorem there is a set  $P \in VL$ , such that  $\mathbf{r} \in P$  and  $\mathbf{E}_f, \mathbf{E}_g$  are canonized on P into one of  $\Delta$ , vit, total.

**Fact.** If  $\mathbf{E}_f$ ,  $\mathbf{E}_g$  are canonized on P into **the same** relation **C** in the list  $\{\mathbf{\Delta}, \mathbf{vit}, \mathbf{total}\}$ , then  $Y \leq_V X$  via the graph

$$\mathbf{\Gamma} = \{ \langle x, y \rangle : \exists a (x \mathbf{F} f(a) \land y \mathbf{F} g(a)) \},\$$

and similarly  $X \leq_{\mathbb{V}} Y$ .





# Section 4. Canonization on products

(back)

- ullet the equality  $oldsymbol{\Delta}$ , and
- the total equivalence total.

T()(

(back)

- the equality  $\Delta$ , and
- the total equivalence total.

This result naturally extends to finite products.

1()(

(back)

- the equality  $\Delta$ , and
- the total equivalence total.

This result naturally extends to finite products.

# Theorem (canonization on finite perfect products)

If **E** is a Borel equivalence relation on a finite perfect product  $P = P_1 \times \ldots \times P_n \subseteq \mathbb{R}^n$  (*n* factors), then there is a perfect product  $Q = Q_1 \times \ldots \times Q_n \subseteq P$ , such that **E** is equal on Q to a product of the form  $\mathbf{E}_1 \times \ldots \times \mathbf{E}_n$ , where each  $\mathbf{E}_k$  is  $\Delta$  or total.



(back)

- ${\scriptstyle \bullet}\,$  the equality  ${\scriptstyle \Delta}$  , and
- the total equivalence total.

This result naturally extends to finite products.

# Theorem (canonization on finite perfect products)

If **E** is a Borel equivalence relation on a finite perfect product  $P = P_1 \times \ldots \times P_n \subseteq \mathbb{R}^n$  (*n* factors), then there is a perfect product  $Q = Q_1 \times \ldots \times Q_n \subseteq P$ , such that **E** is equal on Q to a product of the form  $\mathbf{E}_1 \times \ldots \times \mathbf{E}_n$ , where each  $\mathbf{E}_k$  is  $\Delta$  or total.

No result like this is known for infinite products.

()(

back

TOC

Similarly, the **Vitali-large trichotomy canonization** naturally extends to finite products. Let a Vitali-large perfect product be a set of the form  $P = P_1 \times \ldots \times P_n$ , where each  $P_i \subseteq \mathbb{R}$  is a Vitali-large perfect set.

Similarly, the **Vitali-large trichotomy canonization** naturally extends to finite products. Let a Vitali-large perfect product be a set of the form  $P = P_1 \times \ldots \times P_n$ , where each  $P_i \subseteq \mathbb{R}$  is a Vitali-large perfect set.

back

Theorem (canonization on finite Vitali-large products)

If **E** is a Borel equivalence relation on a finite Vitali-large perfect product  $P = P_1 \times \ldots \times P_n \subseteq \mathbb{R}^n$ , then there is a perfect Vitali-large product  $Q = Q_1 \times \ldots \times Q_n \subseteq P$ , such that **E** is equal on Q to a product of the form  $\mathbf{E}_1 \times \ldots \times \mathbf{E}_n$ , where each  $\mathbf{E}_k$  is one of  $\boldsymbol{\Delta}$ , vit, total.

Similarly, the **Vitali-large trichotomy canonization** naturally extends to finite products. Let a Vitali-large perfect product be a set of the form  $P = P_1 \times \ldots \times P_n$ , where each  $P_i \subseteq \mathbb{R}$  is a Vitali-large perfect set.

back

Theorem (canonization on finite Vitali-large products)

If **E** is a Borel equivalence relation on a finite Vitali-large perfect product  $P = P_1 \times \ldots \times P_n \subseteq \mathbb{R}^n$ , then there is a perfect Vitali-large product  $Q = Q_1 \times \ldots \times Q_n \subseteq P$ , such that **E** is equal on Q to a product of the form  $\mathbf{E}_1 \times \ldots \times \mathbf{E}_n$ , where each  $\mathbf{E}_k$  is one of  $\boldsymbol{\Delta}$ , vit, total.

No result like this is known for infinite products.

1()()

A Borel equivalence relation **E** on a (Borel) set X is smooth, if there is a Borel map  $\vartheta : X \to \mathbb{R}$  such that  $x \in y \iff \vartheta(x) = \vartheta(y)$ .

A Borel equivalence relation **E** on a (Borel) set X is smooth, if there is a Borel map  $\vartheta : X \to \mathbb{R}$  such that  $x \in y \iff \vartheta(x) = \vartheta(y)$ .

Most equivalence relations are non-smooth. For instance the Vitali equivalence, x vit y iff x - y is rational, is non-smooth.

A Borel equivalence relation **E** on a (Borel) set X is smooth, if there is a Borel map  $\vartheta : X \to \mathbb{R}$  such that  $x \in y \iff \vartheta(x) = \vartheta(y)$ .

Most equivalence relations are non-smooth. For instance the Vitali equivalence, x vit y iff x - y is rational, is non-smooth.

#### Theorem (reduction to smooth)

If **E** is an equivalence relation of certain type, then for any infinite perfect product  $P = \prod_k P_k \subseteq \mathbb{R}^{\omega}$  there is an infinite perfect product  $Q \subseteq P$  such that  $\mathbf{E} \upharpoonright Q$  is smooth.

A Borel equivalence relation **E** on a (Borel) set X is smooth, if there is a Borel map  $\vartheta : X \to \mathbb{R}$  such that  $x \in y \iff \vartheta(x) = \vartheta(y)$ .

Most equivalence relations are non-smooth. For instance the Vitali equivalence, x vit y iff x - y is rational, is non-smooth.

#### Theorem (reduction to smooth)

If **E** is an equivalence relation of certain type, then for any infinite perfect product  $P = \prod_k P_k \subseteq \mathbb{R}^{\omega}$  there is an infinite perfect product  $Q \subseteq P$  such that  $\mathbf{E} \upharpoonright Q$  is smooth.

Here certain type = those classifiable by countable structures, and those Borel reducible to analytic P-ideals.



In view of the **finite-product canonization theorem**, one may want to consider the following conjecture:

back TOC

In view of the **finite-product canonization theorem**, one may want to consider the following conjecture:

#### Conjecture

If **E** is a smooth Borel equivalence relation on an infinite perfect product  $P = \prod_{k < \omega} P_k \subseteq \mathbb{R}^{\omega}$  (*n* factors), then there is a perfect product  $Q = \prod_{k < \omega} Q_k \subseteq P$ , such that **E** is equal on *Q* to a product of the form  $\prod_{k < \omega} \mathbf{E}_k$ , where each  $\mathbf{E}_k$  is  $\boldsymbol{\Delta}$  or **total**. In view of the **finite-product canonization theorem**, one may want to consider the following conjecture:

#### Conjecture

If **E** is a smooth Borel equivalence relation on an infinite perfect product  $P = \prod_{k < \omega} P_k \subseteq \mathbb{R}^{\omega}$  (*n* factors), then there is a perfect product  $Q = \prod_{k < \omega} Q_k \subseteq P$ , such that **E** is equal on *Q* to a product of the form  $\prod_{k < \omega} \mathbf{E}_k$ , where each  $\mathbf{E}_k$  is  $\Delta$  or **total**.

#### Unfortunately this fails:

one can easily define a Borel smooth equivalence relation **E** on  $\mathbb{R}^{\omega}$  arranged so that the interdependence of different co-ordinates in **E** is never fully resolved on a perfect product.

(back)

back TOC

In view of the **finite-product canonization theorem**, one may want to consider the following conjecture:

#### Conjecture

If **E** is a smooth Borel equivalence relation on an infinite perfect product  $P = \prod_{k < \omega} P_k \subseteq \mathbb{R}^{\omega}$  (*n* factors), then there is a perfect product  $Q = \prod_{k < \omega} Q_k \subseteq P$ , such that **E** is equal on *Q* to a product of the form  $\prod_{k < \omega} \mathbf{E}_k$ , where each  $\mathbf{E}_k$  is  $\Delta$  or **total**.

#### Unfortunately this fails:

one can easily define a Borel smooth equivalence relation **E** on  $\mathbb{R}^{\omega}$  arranged so that the interdependence of different co-ordinates in **E** is never fully resolved on a perfect product.

Still there is a partial result.

Suppose that **E** and **F** are smooth Borel equivalence relations on an infinite perfect product  $P = \prod_{k < \omega} P_k \subseteq \mathbb{R}^{\omega}$ . Then there is a perfect product  $Q = \prod_{k < \omega} Q_k \subseteq P$ , such that **either F**  $\subseteq$  **E** (that is, **F** is stronger) on Q, **OR** there is an index k which witnesses **F**  $\not\subset$  **E** 

Suppose that **E** and **F** are smooth Borel equivalence relations on an infinite perfect product  $P = \prod_{k \leq \omega} P_k \subseteq \mathbb{R}^{\omega}$ . Then there is a perfect product  $Q = \prod_{k \leq \omega} Q_k \subseteq P$ , such that either  $\mathbf{F} \subset \mathbf{E}$  (that is,  $\mathbf{F}$  is stronger) on Q,

**OR** there is an index k which witnesses  $\mathbf{F} \not\subset \mathbf{E}$  in the sense that

**1 F** is independent of the k-th co-ordinate on Q, so that if sequences  $\vec{x} = \{x_n\}_{n < \omega}$  and  $\vec{y} = \{y_n\}_{n < \omega}$  belong to Q and  $x_n = y_n$  for all  $n \neq k$ , then  $\vec{x} \mathbf{F} \vec{y}$ , but

- **2 E** decides the k-th co-ordinate on Q, so that if sequences  $\vec{x}$  and  $\vec{y}$  belong to Q then  $\vec{x} \in \vec{y}$  implies  $x_k = y_k$ .

Suppose that **E** and **F** are smooth Borel equivalence relations on an infinite perfect product  $P = \prod_{k < \omega} P_k \subseteq \mathbb{R}^{\omega}$ . Then there is a perfect product  $Q = \prod_{k < \omega} Q_k \subseteq P$ , such that

either  $\mathbf{F} \subseteq \mathbf{E}$  (that is,  $\mathbf{F}$  is stronger) on Q,

**OR** there is an index k which witnesses  $\mathbf{F} \not\subseteq \mathbf{E}$  in the sense that

**1 F** is independent of the k-th co-ordinate on Q, so that if sequences  $\vec{x} = \{x_n\}_{n < \omega}$  and  $\vec{y} = \{y_n\}_{n < \omega}$  belong to Q and  $x_n = y_n$  for all  $n \neq k$ , then  $\vec{x} \in \vec{y}$ , but

**2 E** decides the k-th co-ordinate on Q, so that if sequences  $\vec{x}$  and  $\vec{y}$  belong to Q then  $\vec{x} \in \vec{y}$  implies  $x_k = y_k$ .

If P is a **Vitali-large** product then Q can be chosen Vitali-large too.

Suppose that **E** and **F** are smooth Borel equivalence relations on an infinite perfect product  $P = \prod_{k < \omega} P_k \subseteq \mathbb{R}^{\omega}$ . Then there is a perfect product  $Q = \prod_{k < \omega} Q_k \subseteq P$ , such that

either  $\mathbf{F} \subseteq \mathbf{E}$  (that is,  $\mathbf{F}$  is stronger) on Q,

**OR** there is an index k which witnesses  $\mathbf{F} \not\subseteq \mathbf{E}$  in the sense that

**1 F** is independent of the k-th co-ordinate on Q, so that if sequences  $\vec{x} = \{x_n\}_{n < \omega}$  and  $\vec{y} = \{y_n\}_{n < \omega}$  belong to Q and  $x_n = y_n$  for all  $n \neq k$ , then  $\vec{x} \in \vec{y}$ , but

**2 E** decides the k-th co-ordinate on Q, so that if sequences  $\vec{x}$  and  $\vec{y}$  belong to Q then  $\vec{x} \in \vec{y}$  implies  $x_k = y_k$ .

If P is a **Vitali-large** product then Q can be chosen Vitali-large too.

1 + 2 imply that  $\mathbf{F} \not\subseteq \mathbf{E}$  on any smaller perfect product  $Q' \subseteq Q$ 





# Section 5. Canonization on perfect iterations





# The notion of perfect $\alpha\text{-iterations}$ is defined by induction on $1\leq\alpha<\omega_1;$









**1** A perfect 1-iteration is any perfect set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .





- **1** A perfect 1-iteration is any perfect set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .
- 2 A perfect  $(\alpha + 1)$ -iteration is any perfect set  $P \subseteq \mathbb{R}^{\alpha+1} = \mathbb{R}^{\alpha} \times \mathbb{R}$  such that





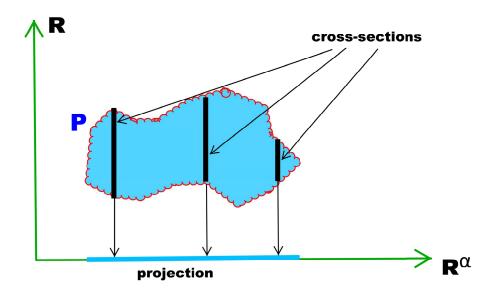
- **1** A perfect 1-iteration is any perfect set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .
- 2 A perfect  $(\alpha + 1)$ -iteration is any perfect set  $P \subseteq \mathbb{R}^{\alpha+1} = \mathbb{R}^{\alpha} \times \mathbb{R}$  such that
  - the projection  $\mathbf{pr}_{<\alpha}(P)$  of P to  $\mathbb{R}^{\alpha}$  is a perfect  $\alpha$ -iteration;





- **1** A perfect 1-iteration is any perfect set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .
- 2 A perfect  $(\alpha + 1)$ -iteration is any perfect set  $P \subseteq \mathbb{R}^{\alpha+1} = \mathbb{R}^{\alpha} \times \mathbb{R}$  such that
  - the projection  $\mathbf{pr}_{<\alpha}(P)$  of P to  $\mathbb{R}^{\alpha}$  is a perfect  $\alpha$ -iteration;
  - if  $\vec{x} \in \mathbf{pr}_{<\alpha}(P)$  then the cross-section  $P_{\vec{x}} = \{y \in \mathbb{R} : \langle \vec{x}, y \rangle \in P\}$  is a perfect set.

Perfect  $\alpha$  + 1-iteration: picture



TOC

back

Let  $1 \leq \alpha < \omega_1$ . The notion of perfect  $\alpha$ -iterations is defined by induction of  $\alpha$ ; any perfect  $\alpha$ -iteration will be a perfect subset of  $\mathbb{R}^{\alpha}$ .

T()(

(back)

- **1** A perfect 1-iteration is any perfect set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .
- 2 A perfect  $(\alpha + 1)$ -iteration is any perfect set  $P \subseteq \mathbb{R}^{\alpha+1} = \mathbb{R}^{\alpha} \times \mathbb{R}$  such that
  - the projection  $\mathbf{pr}_{<\alpha}(P)$  of P to  $\mathbb{R}^{\alpha}$  is a perfect  $\alpha$ -iteration;
  - if  $\vec{x} \in \mathbf{pr}_{<\alpha}(P)$  then the cross-section  $P_{\vec{x}} = \{y \in \mathbb{R} : \langle \vec{x}, y \rangle \in P\}$  is a perfect set.

Let  $1 \leq \alpha < \omega_1$ . The notion of perfect  $\alpha$ -iterations is defined by induction of  $\alpha$ ; any perfect  $\alpha$ -iteration will be a perfect subset of  $\mathbb{R}^{\alpha}$ .

1()(

(back)

- **1** A perfect 1-iteration is any perfect set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .
- 2 A perfect  $(\alpha + 1)$ -iteration is any perfect set  $P \subseteq \mathbb{R}^{\alpha+1} = \mathbb{R}^{\alpha} \times \mathbb{R}$  such that
  - the projection  $\mathbf{pr}_{<\alpha}(P)$  of P to  $\mathbb{R}^{\alpha}$  is a perfect  $\alpha$ -iteration;
  - if  $\vec{x} \in \mathbf{pr}_{<\alpha}(P)$  then the cross-section  $P_{\vec{x}} = \{y \in \mathbb{R} : \langle \vec{x}, y \rangle \in P\}$  is a perfect set.
- 3 A perfect λ-iteration (λ a limit ordinal) is any perfect set P ⊆ ℝ<sup>λ</sup> such that if α < λ then the projection pr<sub><α</sub>(P) of the set P ⊆ ℝ<sup>λ</sup> = ℝ<sup>α</sup> × ℝ<sup>λ∧α</sup> to ℝ<sup>α</sup> is a perfect α-iteration.





The set  $\mathbf{PI}(\alpha)$  of all perfect  $\alpha$ -iterations  $P \subseteq \mathbb{R}^{\alpha}$  represents the  $\alpha$ th iteration of the perfect set forcing.





The set  $\mathbf{PI}(\alpha)$  of all perfect  $\alpha$ -iterations  $P \subseteq \mathbb{R}^{\alpha}$  represents the  $\alpha$ th iteration of the perfect set forcing.

Perfect products in  $\mathbb{R}^{\alpha}$  belong to  $\mathbf{PI}(\alpha)$ , but sets in  $\mathbf{PI}(\alpha)$  are not necessarily products.



Let 
$$\xi \leq \alpha < \omega_1$$
, and  $\vec{x} = \{x_{\xi}\}, \ \vec{y} = \{y_{\xi}\} \in \mathbb{R}^{\alpha}$ . Define

 $ec{x} \Delta_{\xi} ec{y}$  iff  $\mathbf{pr}_{<\xi}(ec{x}) = \mathbf{pr}_{<\xi}(ec{y})$ , so that  $x_{\eta} = y_{\eta}$  for all  $\eta < \xi$ .

 $(\rightarrow)$ 

Canonization on perfect iterations back TOC  $\hookrightarrow$ Let  $\xi \le \alpha < \omega_1$ , and  $\vec{x} = \{x_{\xi}\}, \ \vec{y} = \{y_{\xi}\} \in \mathbb{R}^{\alpha}$ . Define

 $ec{x} \; oldsymbol{\Delta}_{\xi} \; ec{y} \quad ext{iff} \quad oldsymbol{pr}_{<\xi}(ec{x}) = oldsymbol{pr}_{<\xi}(ec{y}) \; ext{, so that} \; \; oldsymbol{x}_{\eta} = oldsymbol{y}_{\eta} \; ext{for all} \; \eta < \xi \; ext{.}$ 

Thus  $\Delta_{\xi}$  is the equality of the first  $\xi$  terms of  $\alpha$ -sequences.

Let 
$$\xi \leq \alpha < \omega_1$$
, and  $\vec{x} = \{x_{\xi}\}, \ \vec{y} = \{y_{\xi}\} \in \mathbb{R}^{\alpha}$ . Define

 $ec{x} \; oldsymbol{\Delta}_{\xi} \; ec{y} \quad ext{iff} \quad oldsymbol{pr}_{<\xi}(ec{x}) = oldsymbol{pr}_{<\xi}(ec{y}) \; ext{, so that} \; \; oldsymbol{x}_{\eta} = oldsymbol{y}_{\eta} \; ext{for all} \; \eta < \xi \; ext{.}$ 

(back)

ТОС

Thus  $\Delta_{\xi}$  is the equality of the first  $\xi$  terms of  $\alpha$ -sequences.

- $\mathbf{\Delta}_0$  is the total equivalence **total** on  $\mathbb{R}^{\alpha}$ ,
- $\mathbf{\Delta}_{\alpha}$  is the equality of  $\alpha$ -sequences.

Let 
$$\xi \leq lpha < \omega_1$$
, and  $ec{x} = \{x_{\xi}\}, \ ec{y} = \{y_{\xi}\} \in \mathbb{R}^{lpha}$ . Define

$$ec{x} \ oldsymbol{\Delta}_{\xi} \ ec{y} \quad ext{iff} \quad oldsymbol{\mathsf{pr}}_{<\xi}(ec{x}) = oldsymbol{\mathsf{pr}}_{<\xi}(ec{y}) \ , \ ext{so that} \ \ oldsymbol{x}_{\eta} = oldsymbol{y}_{\eta} \ ext{for all} \ \eta < \xi$$

(back)

Thus  $\Delta_{\xi}$  is the equality of the first  $\xi$  terms of  $\alpha$ -sequences.  $\Delta_{0}$  is the total equivalence **total** on  $\mathbb{R}^{\alpha}$ ,

 $\Delta_{\alpha}$  is the equality of  $\alpha$ -sequences.

#### Theorem (canonization on perfect iterations)

Let  $\alpha < \omega_1$ . If **E** is a Borel equivalence relation on a perfect  $\alpha$ -iteration  $P \subseteq \mathbb{R}^{\alpha}$ , then there is a perfect  $\alpha$ -iteration  $Q \subseteq P$ , such that **E** is equal on Q to one of  $\Delta_{\xi}$ ,  $\xi \leq \alpha$ .

Let 
$$\xi \leq \alpha < \omega_1$$
, and  $\vec{x} = \{x_{\xi}\}, \ \vec{y} = \{y_{\xi}\} \in \mathbb{R}^{\alpha}$ . Define

$$ec{x} \ oldsymbol{\Delta}_{\xi} \ ec{y} \quad ext{iff} \quad oldsymbol{\mathsf{pr}}_{<\xi}(ec{x}) = oldsymbol{\mathsf{pr}}_{<\xi}(ec{y}) \ , \ ext{so that} \ \ oldsymbol{x}_{\eta} = oldsymbol{y}_{\eta} \ ext{for all} \ \eta < \xi$$

(back)

Thus  $\Delta_{\xi}$  is the equality of the first  $\xi$  terms of  $\alpha$ -sequences.  $\Delta_{0}$  is the total equivalence **total** on  $\mathbb{R}^{\alpha}$ ,

 $\Delta_{\alpha}$  is the equality of  $\alpha$ -sequences.

#### Theorem (canonization on perfect iterations)

Let  $\alpha < \omega_1$ . If **E** is a Borel equivalence relation on a perfect  $\alpha$ -iteration  $P \subseteq \mathbb{R}^{\alpha}$ , then there is a perfect  $\alpha$ -iteration  $Q \subseteq P$ , such that **E** is equal on Q to one of  $\Delta_{\xi}$ ,  $\xi \leq \alpha$ .

Comparing to the canonization on perfect products theorem, one may ask why there is no arbitrary products of coordinate-wise equivalence relations in the canonization scheme here?

back

**Answer:**  $\alpha$ -products of the form  $\mathbf{E} = \prod_{\xi < \alpha} \mathbf{E}_{\xi}$ , where each  $\mathbf{E}_{\xi}$  is **total** or the equality, admit further canonization on perfect  $\alpha$ -iterations, according to the following:

 $\mathbf{I}$ 

**Answer:**  $\alpha$ -products of the form  $\mathbf{E} = \prod_{\xi < \alpha} \mathbf{E}_{\xi}$ , where each  $\mathbf{E}_{\xi}$  is **total** or the equality, admit further canonization on perfect  $\alpha$ -iterations, according to the following:

(back)

#### Proposition

If  $\alpha < \omega_1$ , and  $P \subseteq \mathbb{R}^{\alpha}$  is a perfect  $\alpha$ -iteration, then there is a perfect  $\alpha$ -iteration  $Q \subseteq P$ , such that for all  $\alpha$ -strings  $\vec{x} = \{x_{\xi}\}, \vec{y} = \{y_{\xi}\} \in Q$ , and all indices  $\eta < \xi < \alpha$ , we have:

 $x_{\xi} = y_{\xi} \implies x_{\eta} = y_{\eta}$ ,

1()()

**Answer:**  $\alpha$ -products of the form  $\mathbf{E} = \prod_{\xi < \alpha} \mathbf{E}_{\xi}$ , where each  $\mathbf{E}_{\xi}$  is **total** or the equality, admit further canonization on perfect  $\alpha$ -iterations, according to the following:

back

#### Proposition

If  $\alpha < \omega_1$ , and  $P \subseteq \mathbb{R}^{\alpha}$  is a perfect  $\alpha$ -iteration, then there is a perfect  $\alpha$ -iteration  $Q \subseteq P$ , such that for all  $\alpha$ -strings  $\vec{x} = \{x_{\xi}\}, \vec{y} = \{y_{\xi}\} \in Q$ , and all indices  $\eta < \xi < \alpha$ , we have:

 $x_{\xi} = y_{\xi} \implies x_{\eta} = y_{\eta}$ , hence  $x_{\xi} = y_{\xi} \implies \vec{x} \Delta_{\xi+1} \vec{y}$ .

1()()

**Answer:**  $\alpha$ -products of the form  $\mathbf{E} = \prod_{\xi < \alpha} \mathbf{E}_{\xi}$ , where each  $\mathbf{E}_{\xi}$  is **total** or the equality, admit further canonization on perfect  $\alpha$ -iterations, according to the following:

(back)

#### Proposition

If  $\alpha < \omega_1$ , and  $P \subseteq \mathbb{R}^{\alpha}$  is a perfect  $\alpha$ -iteration, then there is a perfect  $\alpha$ -iteration  $Q \subseteq P$ , such that for all  $\alpha$ -strings  $\vec{x} = \{x_{\xi}\}, \vec{y} = \{y_{\xi}\} \in Q$ , and all indices  $\eta < \xi < \alpha$ , we have:

 $x_{\xi} = y_{\xi} \implies x_{\eta} = y_{\eta}$ , hence  $x_{\xi} = y_{\xi} \implies \vec{x} \Delta_{\xi+1} \vec{y}$ .

In other words, the coordinate equalities,  $\vec{x} \mathbf{E}_{\xi} \vec{y}$  iff  $x_{\xi} = y_{\xi}$ , are not necessarily independent on perfect  $\alpha$ -iterations. (As they are on perfect products.)

1()()

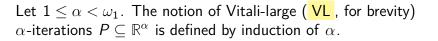




## Section 6. Canonization on Vitali-large iterations







• A VL 1-iteration is any perfect Vitali-large set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .

(back)

• A VL 1-iteration is any perfect Vitali-large set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .

(back)

A VL (α+1)-iteration is any perfect set P ⊆ ℝ<sup>α+1</sup> = ℝ<sup>α</sup> × ℝ such that

• A VL 1-iteration is any perfect Vitali-large set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .

(back)

- A VL (α+1)-iteration is any perfect set P ⊆ ℝ<sup>α+1</sup> = ℝ<sup>α</sup> × ℝ such that
  - the projection  $\mathbf{pr}_{<\alpha}(P)$  of P to  $\mathbb{R}^{\alpha}$  is a VL  $\alpha$ -iteration;

• A VL 1-iteration is any perfect Vitali-large set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .

(back)

- A VL (α+1)-iteration is any perfect set P ⊆ ℝ<sup>α+1</sup> = ℝ<sup>α</sup> × ℝ such that
  - the projection  $\mathbf{pr}_{<\alpha}(P)$  of P to  $\mathbb{R}^{\alpha}$  is a VL  $\alpha$ -iteration;
  - if  $\vec{x} \in \mathbf{pr}_{<\alpha}(P)$  then the cross-section  $P_{\vec{x}}$  is a perfect Vitali-large set.

• A VL 1-iteration is any perfect Vitali-large set  $X \subseteq \mathbb{R} = \mathbb{R}^1$ .

(back)

- A VL (α+1)-iteration is any perfect set P ⊆ ℝ<sup>α+1</sup> = ℝ<sup>α</sup> × ℝ such that
  - the projection  $\mathbf{pr}_{<\alpha}(P)$  of P to  $\mathbb{R}^{\alpha}$  is a VL  $\alpha$ -iteration;
  - if  $\vec{x} \in \mathbf{pr}_{<\alpha}(P)$  then the cross-section  $P_{\vec{x}}$  is a perfect Vitali-large set.

A VL λ-iteration (λ a limit ordinal) is any perfect set P ⊆ R<sup>λ</sup> such that if α < λ then the projection pr<sub><α</sub>(P) of P to R<sup>α</sup> is a VL α-iteration.



back TOC

Let  $\xi \leq \alpha < \omega_1$ , and  $\vec{x} = \{x_{\xi}\}, \ \vec{y} = \{y_{\xi}\} \in \mathbb{R}^{\alpha}$ . Define

 $ec{x} \; oldsymbol{\Delta}_{\xi} \; ec{y} \;$  iff  $\mathbf{pr}_{<\xi}(ec{x}) = \mathbf{pr}_{<\xi}(ec{y})$ , that is,  $x_{\eta} = y_{\eta}$  for all  $\eta < \xi$ ;

Let 
$$\xi \leq \alpha < \omega_1$$
, and  $\vec{x} = \{x_{\xi}\}, \ \vec{y} = \{y_{\xi}\} \in \mathbb{R}^{\alpha}$ . Define

 $\vec{x} \Delta_{\xi} \vec{y}$  iff  $\mathbf{pr}_{<\xi}(\vec{x}) = \mathbf{pr}_{<\xi}(\vec{y})$ , that is,  $x_{\eta} = y_{\eta}$  for all  $\eta < \xi$ ;

(back)

 $\vec{x} \Delta_{\xi}^* \vec{y}$  iff  $\vec{x} \Delta_{\xi} \vec{y}$  and  $x_{\xi}$  vit  $y_{\xi}$  (assuming  $\xi < \alpha$  strictly).

(ТОС)

Let  $\xi \leq \alpha < \omega_1$ , and  $\vec{x} = \{x_{\xi}\}, \ \vec{y} = \{y_{\xi}\} \in \mathbb{R}^{\alpha}$ . Define

$$\vec{x} \Delta_{\xi} \vec{y}$$
 iff  $\mathbf{pr}_{<\xi}(\vec{x}) = \mathbf{pr}_{<\xi}(\vec{y})$ , that is,  $x_{\eta} = y_{\eta}$  for all  $\eta < \xi$ ;  
 $\vec{x} \Delta_{\xi}^* \vec{y}$  iff  $\vec{x} \Delta_{\xi} \vec{y}$  and  $x_{\xi}$  vit  $y_{\xi}$  (assuming  $\xi < \alpha$  strictly).

(back)

•  $\Delta_{\xi}$  is the equality of all terms of  $\alpha$ -sequences below  $\xi$ ,

•  $\Delta_{\xi}^{*}$  requires in addition that  $\xi$ th terms are Vitali-equivalent.

Let  $\xi \leq \alpha < \omega_1$ , and  $\vec{x} = \{x_{\xi}\}, \ \vec{y} = \{y_{\xi}\} \in \mathbb{R}^{\alpha}$ . Define

$$\vec{x} \Delta_{\xi} \vec{y}$$
 iff  $\mathbf{pr}_{<\xi}(\vec{x}) = \mathbf{pr}_{<\xi}(\vec{y})$ , that is,  $x_{\eta} = y_{\eta}$  for all  $\eta < \xi$ ;  
 $\vec{x} \Delta_{\xi}^* \vec{y}$  iff  $\vec{x} \Delta_{\xi} \vec{y}$  and  $x_{\xi}$  vit  $y_{\xi}$  (assuming  $\xi < \alpha$  strictly).

(back)

•  $\Delta_{\xi}$  is the equality of all terms of  $\alpha$ -sequences below  $\xi$ ,

•  $\Delta_{\xi}^{*}$  requires in addition that  $\xi$  th terms are Vitali-equivalent.

#### Theorem (canonization on perfect iterations)

Let  $\alpha < \omega_1$ . If **E** is a Borel equivalence relation on a perfect  $\alpha$ -iteration  $P \subseteq \mathbb{R}^{\alpha}$ , then there is a perfect  $\alpha$ -iteration  $Q \subseteq P$ , such that **E** is equal on Q to one of  $\Delta_{\xi}$ ,  $\xi \leq \alpha$ , or one of  $\Delta_{\xi}^*$ ,  $\xi < \alpha$ .



# The speaker thanks **the organizers** for the opportunity to present this talk

### The speaker thanks everybody for patience