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Ramsey for pairs and proof size

The result

Theorem (Patey-Yokoyama 18)
Ramsey’s theorem for pairs and two colours, RT2

2,
is ∀Σ0

2-conservative over recursive comprehension, RCA0.

Question (Patey-Yokoyama)
Does RT2

2 have significant proof speedup over RCA0
w.r.t. ∀Σ0
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No.
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Ramsey for pairs and proof size

Glossary (1)

Language of second-order arithmetic has two sorts of variables:
▸ first-order sort x, y, z, . . . , i, j, k . . . for natural numbers,
▸ second-order sort X,Y,Z, . . . for subsets of N,
▸ extra-logical symbols: +, ⋅,≤,0,1; ∈.

Σ0
n: class of formulas with n first-order quantifier blocks,

beginning with ∃, then only bounded quantifiers ∃x≤ t, ∀x≤ t.
Π0

n: dual class, beginning with ∀.
∀Σ0

n: formulas with arbitrary ∀ quantifiers followed by Σ0
n.

Example: ∀X ∃x ∃y∀z [(z ∈ X ⇒ ∃w≤ x (z = w + y)] is ∀Σ0
2.

(But so are e.g. P ≠ NP, Riemann’s hypothesis, twin prime conjecture...)
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Ramsey for pairs and proof size

Glossary (2)
RCA0 is an axiomatic theory with the following axioms:

▸ +, ⋅,≤,0,1 on first-order sort form non-negative part of
discrete ordered ring,

▸ recursive comprehension: “for any Turing machine m and set X ,
if mX halts on all inputs, then {i ∈ N ∶ mX(i) = yes} exists”.

▸ induction: ∀X [0 ∈ X ∧ ∀k (k ∈ X ⇒ k+1 ∈ X)⇒ ∀k (k ∈ X)].
▸ Σ0

1 induction: “for any X and k, if X is infinite (i.e. has arbitrarily
large elements), then X has a finite subset with k elements”.

RCA0 embodies “computable mathematics”.

RT2
2 is just a natural formulation of Ramsey’s theorem

for pairs and two colours in this language.
(Using pairing to represent a 2-colouring of [N]2 as a subset of N.)
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Ramsey for pairs and proof size

Context: proof speedup for axiomatic theories
If T ⊆ T+, then T+ is Γ-conservative over T for class of sentences Γ
if all ϕ ∈ Γ provable in T+ are provable in T .
Then we can ask if the proofs in T+ can be much shorter than in T .

For reasonably strong theories one of two things usually happens:
▸ T+ has at least iterated exponential speedup over T (w.r.t. Γ).
(E.g. GB over ZFC, ACA0 over PA, RCA0 over PRA.)

▸ T+ is polynomially simulated by T : each proof (of ϕ ∈ Γ)
in T+ can be translated into T with at most polynomial blowup.
(E.g. WKL0 over RCA0, RCA0 over IΣ1.)

Work in the area done (80’s/90’s) e.g. by Pudlák, Avigad, Ignjatović...
Small revival taking place in recent years.
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Ramsey for pairs and proof size

The result, once more

Theorem (Patey-Yokoyama 18)
RT2

2 is ∀Σ
0
2-conservative over RCA0.

Question (Patey-Yokoyama)
Does RT2

2 have significant proof speedup over RCA0
w.r.t. ∀Σ0

2 statements?

Our theorem
RT2

2 is polynomially simulated by RCA0
w.r.t. proofs of ∀Σ0

2 statements.
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Ramsey for pairs and proof size

Plan for rest of talk

▸ State the combinatorial result at the heart of the proof: bound on
“ordinal-valued Ramsey numbers” for colourings of finite sets.

▸ Explain the logic: how this combinatorial result implies
the polynomial simulation.

▸ (As much as possible) Explain how the combinatorial result
is proved.

▸ (If time permits) Say what happens without Σ0
1 induction.
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Ramsey for pairs and proof size
The combinatorial result

Measuring finite sets by ordinals: α-largeness

Ketonen-Solovay devised a way of using small countable ordinals to
measure „size” of finite subsets of N. For α < ωω it works like this:

▸ any finite subset of N is 0-large,
▸ X is (α + 1)-large if X ∖ {min X} is α-large,
▸ X is (α +ωn)-large iff X ∖ {min X} is (α +ωn−1 ⋅min X)-large.
(Where (each exponent in α) ≥ n ≥ 1.)

Examples:
▸ X is k-large iff ∣X ∣ ≥ k, for k ∈ N.
▸ X is ω-large iff ∣X ∣ > min X .
▸ continued on next slide...
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Ramsey for pairs and proof size
The combinatorial result

α-largeness: examples, cont’d

▸ X is ω + 2-large, X = {x0 < x1 < x2 < . . . < xk},
iff {x2, . . . , xk} is ω-large, thus iff k−1 > x2,

▸ X is ω +ω-large
iff X = X1 ∪ X2 with X1 < X2 and both Xi are ω-large,

▸ X is ω2-large
iff X = {min X} ∪ X1 . . . ∪ XminX with Xi < Xi+1, all Xi ω-large.

⋯

2 3 4 5 23 100 101 200
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Ramsey for pairs and proof size
The combinatorial result

What is needed to prove non-speedup

Known from prior work:

▸ (Ketonen-Solovay 1981) ω6-large→ (ω-large)2
2

▸ (Bigorajska-Kotlarski 2002) ωωn ⋅2-large→ (ωn-large)2
2

Combinatorial core of Patey-Yokoyama
For every n there exists m such that RCA0 ⊢ ω

m-large→ (ωn-large)2
2

Combinatorial core of our result
RCA0 ⊢ ∀n [ω300n-large→ (ωn-large)2

2].

▸ m ∶= n2 or even m ∶= nlog n would suffice for non-speedup.
▸ m cannot be smaller than 2n (Kotlarski et al. 2007).
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Ramsey for pairs and proof size
The logic

Finite consistency statements

Con(T) ∶= there is no proof of contradiction in T .
Conn(T) ∶= there is no proof of contradiction of size ≤ n in T .

▸ T /⊢ Con(T),
▸ but T ⊢ Conn(T) with poly(n)-size proofs,
▸ moreover, for each fixed k,

T ⊢ Conn(T+∃Π0
k-truth) with poly(n)-size proofs.

Fact
T+ is polynomially simulated by T w.r.t. ∀Σ0

k sentences ⇐⇒

T ⊢ Conn(T++∃Π0
k-truth) with poly(n)-size proofs.
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Ramsey for pairs and proof size
The logic

α-largeness and consistency statements

Fact
For each fixed n, RCA0 ⊢ “every infinite set has an ωn-large subset”.

Fact
RCA0 ⊢ “for every x, if every infinite set has an ωx-large subset,
then Conlog∗(x)(RCA0+∃Π

0
2-truth).”

↝ Proved by interpreting terms in size-x cut-free proof from RCA0
as some subsets of the large set A resp. elements bounded by min A.
↝ Σ0

1-induction dealt with using: if A is ωx-large and ∣B∣ < min A,
then there is ωx−1-large A1 ⊆ A such that B ∩ [min A1,max A1] = ∅.
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Ramsey for pairs and proof size
The logic

α-largeness and consistency statements (cont’d)

Our combinatorial bound gives:

Lemma
RCA0 ⊢ “for every x, if every infinite set has an ω300x -large subset,
then Conlog∗(x)(RT2

2+∃Π
0
2-truth).”

But we get the following by standard arguments:

Fact
RCA0 ⊢ “every infinite set has an ω22⋰

2

-large subset”
(stack of n exponents) with poly(n)-size proofs.

Theorem
RCA0 ⊢ Conn(RT2

2+∃Π
0
2-truth) with poly(n)-size proofs.
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Ramsey for pairs and proof size
Doing the combinatorics

Splitting Ramsey

RT2
2 splits into EM + ADS, where:

EM:= Every f ∶ [N]2 → 2 is transitive on some infinite set.
ADS:=Every transitive f ∶ [N]2 → 2 has an infinite homogeneous set.

( f is transitive if i < j < k and f (i, j) = f ( j, k) implies f (i, k) = f (i, j).)

▸ Already in P-Y (implicitly): If A is ω4n+4-large,
every transitive f ∶ [A]2 → 2 has an ωn-large homogeneous set.

▸ Our new result: If A is ω36n+3-large,
every f ∶ [A]2 → 2 is transitive on some ωn-large set.
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Ramsey for pairs and proof size
Doing the combinatorics

Reduction to groupings

To be proved: if A is ω36n+3-large,
then every f ∶ [A]2 → 2 is transitive on some ωn-large set.

Also in P-Y: this reduces to a statement about groupings.

Definition
An (α, β)-grouping w.r.t. f is a family of sets G1 < . . . < G` such that:

▸ each Gi is α-large,
▸ {max G1, . . . ,max G`} is β-large ,
▸ f ↾Gi×G j

is constant for each pair i ≠ j.

Main lemma
If A is ωn+39-large, then every f ∶ [A]2 → 2 has an (ωn,ω6)-grouping.
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Doing the combinatorics

Main lemma, pictured

ωn+39

⇓

ωn ωn ωn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ω6
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Ramsey for pairs and proof size
Doing the combinatorics

Proof of simple case

We sketch a proof of: if A is ωn+6-large and min A ≥ d,
then every f ∶ [A]2 → 2 has an (ωn,d)-grouping.

▸ First thin out A so that it is ωn+3-large but exp-sparse:
for x, y ∈ A, if x < y then 4x < y.

▸ Split A into {min A} < A1 < . . . < Ad with each Ai ω
n+2-large.

▸ General fact (∗): if you divide ωm ⋅ 4k-large set into k pieces,
at least one of them will be ωm-large.

▸ Using (∗), take ωn+1-large B1 ⊆ A1, . . . ,Bd ⊆ Ad

so that f ↾{x}×B j
constant for each x ∈ Ai, i < j.

▸ Using (∗), take ωn-large Cd ⊆ Bd, . . . ,C1 ⊆ B1
so that f ↾Ci×{max B j} constant for each i < j. �
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Ramsey for pairs and proof size
Without Σ0

1 induction

The theory RCA∗
0

It makes perfect sense to consider: RCA∗0 ∶= RCA0 ∖ {Σ0
1-induction}.

One just has to add the axiom “2k exists for every k”.

RT2
2 remains ∀Σ0

2-conservative over RCA∗0 (Yokoyama 2013).

Fact
For each fixed n, RCA∗0 ⊢ “every infinite set has an n-element subset”.
RCA∗0 ⊢ “for every x, if every infinite set has an x-element subset,
then Conlog∗(x)(RCA∗0+∃Π

0
2-truth).”

18 / 20



Ramsey for pairs and proof size
Without Σ0

1 induction

The theory RCA∗
0

Using the exponential lower bounds on R(n,n) we get:

Lemma
RCA∗0+RT2

2 ⊢ “for every x, if every infinite set has an x-element
subset, then every infinite set has a 2x-element subset”.
This gives short proofs that infinite sets contain very large finite
subsets. Combining this with the implication to consistency, we get:

Lemma
For m = 22⋰

2
(stack of n exponents), RCA∗0+RT2

2 proves Conm(RCA∗0)
with proofs of size poly(n).

Theorem
RCA∗0+RT2

2 has iterated exponential speedup over RCA∗0
w.r.t. proofs of Π0

1 sentences.
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Ramsey for pairs and proof size
Without Σ0

1 induction
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