Ramsey's theorem for pairs and proof size

Leszek Kołodziejczyk University of Warsaw

(joint work with Tin Lok Wong and Keita Yokoyama)

RaTLoCC Bertinoro, July 2018

The result

Theorem (Patey-Yokoyama 18)

Ramsey's theorem for pairs and two colours, RT_2^2 , *is* $\forall \Sigma_2^0$ *-conservative over recursive comprehension*, RCA_0 .

Question (Patey-Yokoyama)

Does RT_2^2 have significant proof speedup over RCA_0 w.r.t. $\forall \Sigma_2^0$ statements?

The result

Theorem (Patey-Yokoyama 18)

Ramsey's theorem for pairs and two colours, RT_2^2 , *is* $\forall \Sigma_2^0$ *-conservative over recursive comprehension*, RCA_0 .

Question (Patey-Yokoyama)

Does RT_2^2 have significant proof speedup over RCA_0 w.r.t. $\forall \Sigma_2^0$ statements?

Our theorem

No.

Glossary (1)

Language of second-order arithmetic has two sorts of variables:

- first-order sort $x, y, z, \dots, i, j, k \dots$ for natural numbers,
- second-order sort X, Y, Z, \ldots for subsets of \mathbb{N} ,
- extra-logical symbols: $+, \cdot, \leq, 0, 1; \in$.

 Σ_n^0 : class of formulas with *n* first-order quantifier blocks, beginning with \exists , then only bounded quantifiers $\exists x \le t, \forall x \le t$. Π_n^0 : dual class, beginning with \forall .

 $\forall \Sigma_n^0$: formulas with arbitrary \forall quantifiers followed by Σ_n^0 .

Example: $\forall X \exists x \exists y \forall z [(z \in X \Rightarrow \exists w \le x (z = w + y)] \text{ is } \forall \Sigma_2^0.$ (But so are e.g. $P \neq NP$, Riemann's hypothesis, twin prime conjecture...)

Glossary (2)

RCA₀ is an axiomatic theory with the following axioms:

- +, ·, ≤, 0, 1 on first-order sort form non-negative part of discrete ordered ring,
- ▶ recursive comprehension: "for any Turing machine *m* and set *X*, if m^X halts on all inputs, then $\{i \in \mathbb{N} : m^X(i) = yes\}$ exists".
- induction: $\forall X [0 \in X \land \forall k (k \in X \Rightarrow k+1 \in X) \Rightarrow \forall k (k \in X)].$
- Σ_1^0 induction: "for any *X* and *k*, if *X* is infinite (i.e. has arbitrarily large elements), then *X* has a finite subset with *k* elements".

RCA₀ embodies "computable mathematics".

 RT_2^2 is just a natural formulation of Ramsey's theorem for pairs and two colours in this language. (Using pairing to represent a 2-colouring of $[\mathbb{N}]^2$ as a subset of \mathbb{N} .)

Context: proof speedup for axiomatic theories

If $T \subseteq T^+$, then T^+ is Γ -conservative over T for class of sentences Γ if all $\varphi \in \Gamma$ provable in T^+ are provable in T. Then we can ask if the proofs in T^+ can be much shorter than in T.

For reasonably strong theories one of two things usually happens:

- T^+ has at least iterated exponential speedup over T (w.r.t. Γ). (E.g. GB over ZFC, ACA₀ over PA, RCA₀ over PRA.)
- ► T^+ is polynomially simulated by T: each proof (of $\varphi \in \Gamma$) in T^+ can be translated into T with at most polynomial blowup. (E.g. WKL₀ over RCA₀, RCA₀ over I Σ_1 .)

Work in the area done (80's/90's) e.g. by Pudlák, Avigad, Ignjatović... Small revival taking place in recent years.

The result, once more

Theorem (Patey-Yokoyama 18) RT_2^2 is $\forall \Sigma_2^0$ -conservative over RCA₀.

Question (Patey-Yokoyama)

Does RT_2^2 have significant proof speedup over RCA_0 w.r.t. $\forall \Sigma_2^0$ statements?

Our theorem RT_2^2 is polynomially simulated by RCA_0 w.r.t. proofs of $\forall \Sigma_2^0$ statements.

Plan for rest of talk

- State the combinatorial result at the heart of the proof: bound on "ordinal-valued Ramsey numbers" for colourings of *finite* sets.
- Explain the logic: how this combinatorial result implies the polynomial simulation.
- (As much as possible) Explain how the combinatorial result is proved.
- (If time permits) Say what happens without Σ_1^0 induction.

Measuring finite sets by ordinals: α -largeness

Ketonen-Solovay devised a way of using small countable ordinals to measure "size" of finite subsets of \mathbb{N} . For $\alpha < \omega^{\omega}$ it works like this:

- any finite subset of \mathbb{N} is 0-large,
- X is $(\alpha + 1)$ -large if $X \setminus \{\min X\}$ is α -large,
- ► X is $(\alpha + \omega^n)$ -large iff $X \setminus \{\min X\}$ is $(\alpha + \omega^{n-1} \cdot \min X)$ -large. (Where (each exponent in α) $\ge n \ge 1$.)

Examples:

- *X* is *k*-large iff $|X| \ge k$, for $k \in \mathbb{N}$.
- *X* is ω -large iff $|X| > \min X$.
- continued on next slide...

α -largeness: examples, cont'd

- X is $\omega + 2$ -large, $X = \{x_0 < x_1 < x_2 < ... < x_k\},$ iff $\{x_2, ..., x_k\}$ is ω -large, thus iff $k-1 > x_2$,
- *X* is $\omega + \omega$ -large iff $X = X_1 \cup X_2$ with $X_1 < X_2$ and both X_i are ω -large,
- *X* is ω^2 -large iff $X = \{\min X\} \cup X_1 \ldots \cup X_{\min X}$ with $X_i < X_{i+1}$, all $X_i \omega$ -large.

α -largeness: examples, cont'd

- X is $\omega + 2$ -large, $X = \{x_0 < x_1 < x_2 < ... < x_k\},$ iff $\{x_2, ..., x_k\}$ is ω -large, thus iff $k-1 > x_2$,
- *X* is $\omega + \omega$ -large iff $X = X_1 \cup X_2$ with $X_1 < X_2$ and both X_i are ω -large,
- X is ω^2 -large iff $X = \{\min X\} \cup X_1 \ldots \cup X_{\min X}$ with $X_i < X_{i+1}$, all X_i ω -large.

α -largeness: examples, cont'd

- X is $\omega + 2$ -large, $X = \{x_0 < x_1 < x_2 < ... < x_k\},$ iff $\{x_2, ..., x_k\}$ is ω -large, thus iff $k-1 > x_2$,
- *X* is $\omega + \omega$ -large iff $X = X_1 \cup X_2$ with $X_1 < X_2$ and both X_i are ω -large,
- X is ω^2 -large iff $X = \{\min X\} \cup X_1 \ldots \cup X_{\min X}$ with $X_i < X_{i+1}$, all $X_i \omega$ -large.

What is needed to prove non-speedup

Known from prior work:

- (Ketonen-Solovay 1981) ω^6 -large $\rightarrow (\omega$ -large)_2^2
- ► (Bigorajska-Kotlarski 2002) $\omega^{\omega^{n}\cdot 2}$ -large $\rightarrow (\omega^{n}$ -large)_{2}^{2}

Combinatorial core of Patey-Yokoyama For every *n* there exists *m* such that $\text{RCA}_0 \vdash \omega^m$ -large $\rightarrow (\omega^n$ -large)_2^2

Combinatorial core of our result $\mathsf{RCA}_0 \vdash \forall n \left[\omega^{300n} \text{-large} \rightarrow (\omega^n \text{-large})_2^2 \right].$

- $m := n^2$ or even $m := n^{\log n}$ would suffice for non-speedup.
- m cannot be smaller than 2n (Kotlarski et al. 2007).

Finite consistency statements

Con(T) := there is no proof of contradiction in *T*. $Con_n(T) :=$ there is no proof of contradiction of size $\le n$ in *T*.

- $T \not\models \operatorname{Con}(T)$,
- but $T \vdash \operatorname{Con}_n(T)$ with $\operatorname{poly}(n)$ -size proofs,
- moreover, for each fixed k, $T \vdash \operatorname{Con}_n(T + \exists \Pi_k^0 \operatorname{-truth})$ with $\operatorname{poly}(n)$ -size proofs.

Fact

 T^+ is polynomially simulated by T w.r.t. $\forall \Sigma_k^0$ sentences \iff $T \vdash \operatorname{Con}_n(T^+ + \exists \Pi_k^0 \operatorname{-truth})$ with $\operatorname{poly}(n)$ -size proofs.

α -largeness and consistency statements

Fact

For each fixed n, $\mathsf{RCA}_0 \vdash$ "every infinite set has an ω^n -large subset".

Fact

 $\mathsf{RCA}_0 \vdash$ "for every x, if every infinite set has an ω^x -large subset, then $\mathsf{Con}_{\log^*(x)}(\mathsf{RCA}_0 + \exists \Pi_2^0$ -truth)."

→ Proved by interpreting terms in size-*x* cut-free proof from RCA₀ as some subsets of the large set *A* resp. elements bounded by min *A*. → Σ₁⁰-induction dealt with using: if *A* is ω^x -large and $|B| < \min A$, then there is ω^{x-1} -large $A_1 \subseteq A$ such that $B \cap [\min A_1, \max A_1] = \emptyset$.

α -largeness and consistency statements (cont'd)

Our combinatorial bound gives:

Lemma

 $\mathsf{RCA}_0 \vdash$ "for every x, if every infinite set has an ω^{300^x} -large subset, then $\mathsf{Con}_{\log^*(x)}(\mathsf{RT}_2^2 + \exists \Pi_2^0$ -truth)."

But we get the following by standard arguments:

Fact

 $\mathsf{RCA}_0 \vdash$ "every infinite set has an $\omega^{2^{2^{*^2}}}$ -large subset" (stack of *n* exponents) with poly(*n*)-size proofs.

Theorem

 $\mathsf{RCA}_0 \vdash \mathrm{Con}_n(\mathsf{RT}_2^2 + \exists \Pi_2^0 \text{-truth}) \text{ with } \mathrm{poly}(n) \text{-size proofs.}$

Splitting Ramsey

 RT_2^2 splits into EM + ADS, where: EM:= Every $f: [\mathbb{N}]^2 \to 2$ is transitive on some infinite set. ADS:=Every transitive $f: [\mathbb{N}]^2 \to 2$ has an infinite homogeneous set.

(*f* is transitive if i < j < k and f(i, j) = f(j, k) implies f(i, k) = f(i, j).)

- Already in P-Y (implicitly): If A is ω^{4n+4} -large, every transitive $f: [A]^2 \to 2$ has an ω^n -large homogeneous set.
- Our new result: If A is ω^{36n+3} -large, every $f: [A]^2 \to 2$ is transitive on some ω^n -large set.

Reduction to groupings

To be proved: if A is ω^{36n+3} -large, then every $f: [A]^2 \to 2$ is transitive on some ω^n -large set.

Also in P-Y: this reduces to a statement about groupings.

Definition

An (α, β) -grouping w.r.t. f is a family of sets $G_1 < \ldots < G_\ell$ such that:

- each G_i is α -large,
- {max $G_1, \ldots, \max G_\ell$ } is β -large,
- $f \upharpoonright_{G_i \times G_j}$ is constant for each pair $i \neq j$.

Main lemma

If A is ω^{n+39} -large, then every $f: [A]^2 \to 2$ has an (ω^n, ω^6) -grouping.

Main lemma, pictured

Main lemma, pictured

Proof of simple case

We sketch a proof of: if *A* is ω^{n+6} -large and min $A \ge d$, then every $f: [A]^2 \to 2$ has an (ω^n, d) -grouping.

- First thin out A so that it is ωⁿ⁺³-large but *exp-sparse*: for x, y ∈ A, if x < y then 4^x < y.
- Split A into $\{\min A\} < A_1 < \ldots < A_d$ with each $A_i \omega^{n+2}$ -large.
- General fact (*): if you divide $\omega^m \cdot 4k$ -large set into k pieces, at least one of them will be ω^m -large.
- ► Using (*), take ω^{n+1} -large $B_1 \subseteq A_1, \ldots, B_d \subseteq A_d$ so that $f \upharpoonright_{\{x\} \times B_j}$ constant for each $x \in A_i, i < j$.
- ► Using (*), take ω^n -large $C_d \subseteq B_d, \ldots, C_1 \subseteq B_1$ so that $f \upharpoonright_{C_i \times \{\max B_j\}}$ constant for each i < j. \Box

The theory RCA_0^*

It makes perfect sense to consider: $\mathsf{RCA}_0^* := \mathsf{RCA}_0 \setminus \{\Sigma_1^0 \text{-induction}\}$. One just has to add the axiom "2^k exists for every k".

 RT_2^2 remains $\forall \Sigma_2^0$ -conservative over RCA_0^* (Yokoyama 2013).

Fact

For each fixed n, $\mathsf{RCA}_0^* \vdash$ "every infinite set has an n-element subset". $\mathsf{RCA}_0^* \vdash$ "for every x, if every infinite set has an x-element subset, then $\mathsf{Con}_{\log^*(x)}(\mathsf{RCA}_0^* + \exists \Pi_2^0 \text{-truth})$."

The theory RCA^*_0

Using the exponential lower bounds on R(n,n) we get:

Lemma

 $RCA_0^* + RT_2^2 \vdash$ "for every x, if every infinite set has an x-element subset, then every infinite set has a 2^x -element subset".

This gives short proofs that infinite sets contain very large finite subsets. Combining this with the implication to consistency, we get:

Lemma

For $m = 2^{2^{n^2}}$ (stack of *n* exponents), $\text{RCA}_0^* + \text{RT}_2^2$ proves $\text{Con}_m(\text{RCA}_0^*)$ with proofs of size poly(*n*).

Theorem

 $\mathsf{RCA}_0^* + \mathsf{RT}_2^2$ has iterated exponential speedup over RCA_0^* w.r.t. proofs of Π_1^0 sentences.

References

Patey, Yokoyama, *The proof-theoretic strength of Ramsey's theorem for pairs and two colors*, Adv. Math. 330(2018), 1034-1070.

K, Yokoyama, *Some upper bounds on ordinal-valued Ramsey numbers for colourings of pairs*, arXiv:1807.00616.

K, Wong, Yokoyama, *Ramsey's theorem for pairs, collection, and proof size*, in preparation.