Ramsey's theorem for pairs and proof size

Leszek Kołodziejczyk
University of Warsaw
(joint work with Tin Lok Wong and Keita Yokoyama)

RaTLoCC
Bertinoro, July 2018

The result

Theorem (Patey-Yokoyama 18)
Ramsey's theorem for pairs and two colours, RT_{2}^{2}, is $\forall \Sigma_{2}^{0}$-conservative over recursive comprehension, RCA_{0}.

Question (Patey-Yokoyama)
Does RT_{2}^{2} have significant proof speedup over RCA_{0} w.r.t. $\forall \Sigma_{2}^{0}$ statements?

The result

Theorem (Patey-Yokoyama 18)
Ramsey's theorem for pairs and two colours, RT_{2}^{2}, is $\forall \Sigma_{2}^{0}$-conservative over recursive comprehension, RCA_{0}.

Question (Patey-Yokoyama)
Does RT_{2}^{2} have significant proof speedup over RCA_{0} w.r.t. $\forall \Sigma_{2}^{0}$ statements?

Our theorem
No.

Glossary (1)

Language of second-order arithmetic has two sorts of variables:

- first-order sort $x, y, z, \ldots, i, j, k \ldots$ for natural numbers,
- second-order sort X, Y, Z, \ldots for subsets of \mathbb{N},
- extra-logical symbols: $+, \cdot, \leq, 0,1 ; \epsilon$.
Σ_{n}^{0} : class of formulas with n first-order quantifier blocks, beginning with \exists, then only bounded quantifiers $\exists x \leq t, \forall x \leq t$.
Π_{n}^{0} : dual class, beginning with \forall.
$\forall \Sigma_{n}^{0}$: formulas with arbitrary \forall quantifiers followed by Σ_{n}^{0}.
Example: $\forall X \exists x \exists y \forall z\left[(z \in X \Rightarrow \exists w \leq x(z=w+y)]\right.$ is $\forall \Sigma_{2}^{0}$.
(But so are e.g. $\mathrm{P} \neq \mathrm{NP}$, Riemann's hypothesis, twin prime conjecture...)

Glossary (2)

$R C A_{0}$ is an axiomatic theory with the following axioms:

- $+, \cdot, \leq, 0,1$ on first-order sort form non-negative part of discrete ordered ring,
- recursive comprehension: "for any Turing machine m and set X, if m^{X} halts on all inputs, then $\left\{i \in \mathbb{N}: m^{X}(i)=y e s\right\}$ exists".
- induction: $\forall X[0 \in X \wedge \forall k(k \in X \Rightarrow k+1 \in X) \Rightarrow \forall k(k \in X)]$.
- Σ_{1}^{0} induction: "for any X and k, if X is infinite (i.e. has arbitrarily large elements), then X has a finite subset with k elements".
$R^{R C A} A_{0}$ embodies "computable mathematics".
$R T_{2}^{2}$ is just a natural formulation of Ramsey's theorem for pairs and two colours in this language.
(Using pairing to represent a 2 -colouring of $[\mathbb{N}]^{2}$ as a subset of \mathbb{N}.)

Context: proof speedup for axiomatic theories

If $T \subseteq T^{+}$, then T^{+}is Γ-conservative over T for class of sentences Γ if all $\varphi \in \Gamma$ provable in T^{+}are provable in T.
Then we can ask if the proofs in T^{+}can be much shorter than in T.
For reasonably strong theories one of two things usually happens:

- T^{+}has at least iterated exponential speedup over T (w.r.t. Γ). (E.g. GB over ZFC, ACA_{0} over PA, RCA ${ }_{0}$ over PRA.)
- T^{+}is polynomially simulated by T : each proof (of $\varphi \in \Gamma$) in T^{+}can be translated into T with at most polynomial blowup. (E.g. WKL_{0} over $\mathrm{RCA}_{0}, \mathrm{RCA}_{0}$ over $I \Sigma_{1}$.)

Work in the area done (80 's/90's) e.g. by Pudlák, Avigad, Ignjatović... Small revival taking place in recent years.

The result, once more

Theorem (Patey-Yokoyama 18)
RT_{2}^{2} is $\forall \Sigma_{2}^{0}$-conservative over RCA_{0}.
Question (Patey-Yokoyama)
Does RT_{2}^{2} have significant proof speedup over RCA_{0} w.r.t. $\forall \Sigma_{2}^{0}$ statements?

Our theorem
RT_{2}^{2} is polynomially simulated by RCA_{0}
w.r.t. proofs of $\forall \Sigma_{2}^{0}$ statements.

Plan for rest of talk

- State the combinatorial result at the heart of the proof: bound on "ordinal-valued Ramsey numbers" for colourings of finite sets.
- Explain the logic: how this combinatorial result implies the polynomial simulation.
- (As much as possible) Explain how the combinatorial result is proved.
- (If time permits) Say what happens without Σ_{1}^{0} induction.

Measuring finite sets by ordinals: α-largeness

Ketonen-Solovay devised a way of using small countable ordinals to measure „size" of finite subsets of \mathbb{N}. For $\alpha<\omega^{\omega}$ it works like this:

- any finite subset of \mathbb{N} is 0-large,
- X is $(\alpha+1)$-large if $X \backslash\{\min X\}$ is α-large,
- X is $\left(\alpha+\omega^{n}\right)$-large iff $X \backslash\{\min X\}$ is $\left(\alpha+\omega^{n-1} \cdot \min X\right)$-large. (Where (each exponent in $\alpha) \geq n \geq 1$.)

Examples:

- X is k-large iff $|X| \geq k$, for $k \in \mathbb{N}$.
- X is ω-large iff $|X|>\min X$.
- continued on next slide...

α-largeness: examples, cont'd

- X is $\omega+2$-large, $X=\left\{x_{0}<x_{1}<x_{2}<\ldots<x_{k}\right\}$, iff $\left\{x_{2}, \ldots, x_{k}\right\}$ is ω-large, thus iff $k-1>x_{2}$,
- X is $\omega+\omega$-large
iff $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ and both X_{i} are ω-large,
- X is ω^{2}-large iff $X=\{\min X\} \cup X_{1} \ldots \cup X_{\min X}$ with $X_{i}<X_{i+1}$, all $X_{i} \omega$-large.

α-largeness: examples, cont'd

- X is $\omega+2$-large, $X=\left\{x_{0}<x_{1}<x_{2}<\ldots<x_{k}\right\}$, iff $\left\{x_{2}, \ldots, x_{k}\right\}$ is ω-large, thus iff $k-1>x_{2}$,
- X is $\omega+\omega$-large
iff $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ and both X_{i} are ω-large,
- X is ω^{2}-large iff $X=\{\min X\} \cup X_{1} \ldots \cup X_{\min X}$ with $X_{i}<X_{i+1}$, all $X_{i} \omega$-large.
2
3
4
5
23
$\stackrel{\bullet}{\bullet} \quad \stackrel{ }{100} 10$
200

α-largeness: examples, cont'd

- X is $\omega+2$-large, $X=\left\{x_{0}<x_{1}<x_{2}<\ldots<x_{k}\right\}$, iff $\left\{x_{2}, \ldots, x_{k}\right\}$ is ω-large, thus iff $k-1>x_{2}$,
- X is $\omega+\omega$-large
iff $X=X_{1} \cup X_{2}$ with $X_{1}<X_{2}$ and both X_{i} are ω-large,
- X is ω^{2}-large iff $X=\{\min X\} \cup X_{1} \ldots \cup X_{\min X}$ with $X_{i}<X_{i+1}$, all $X_{i} \omega$-large.

What is needed to prove non-speedup

Known from prior work:

- (Ketonen-Solovay 1981) ω^{6}-large $\rightarrow(\omega \text {-large })_{2}^{2}$
- (Bigorajska-Kotlarski 2002) $\omega^{\omega^{n} \cdot 2}$-large $\rightarrow\left(\omega^{n} \text {-large }\right)_{2}^{2}$

Combinatorial core of Patey-Yokoyama
For every n there exists m such that $\mathrm{RCA}_{0} \vdash \omega^{m}$-large $\rightarrow\left(\omega^{n} \text {-large }\right)_{2}^{2}$
Combinatorial core of our result
$\mathrm{RCA}_{0} \vdash \forall n\left[\omega^{300 n}\right.$-large $\left.\rightarrow\left(\omega^{n} \text {-large }\right)_{2}^{2}\right]$.

- $m:=n^{2}$ or even $m:=n^{\log n}$ would suffice for non-speedup.
- m cannot be smaller than $2 n$ (Kotlarski et al. 2007).

Finite consistency statements

$\operatorname{Con}(T):=$ there is no proof of contradiction in T.
$\operatorname{Con}_{n}(T):=$ there is no proof of contradiction of size $\leq n$ in T.

- $T \nvdash \operatorname{Con}(T)$,
- but $T \vdash \operatorname{Con}_{n}(T)$ with poly (n)-size proofs,
- moreover, for each fixed k, $T \vdash \operatorname{Con}_{n}\left(T+\exists \Pi_{k}^{0}\right.$-truth $)$ with poly (n)-size proofs.

Fact
T^{+}is polynomially simulated by T w.r.t. $\forall \Sigma_{k}^{0}$ sentences

$T \vdash \operatorname{Con}_{n}\left(T^{+}+\exists \Pi_{k}^{0}\right.$-truth $)$ with $\operatorname{poly}(n)$-size proofs.

α-largeness and consistency statements

Fact
For each fixed $n, \mathrm{RCA}_{0} \vdash$ "every infinite set has an ω^{n}-large subset".
Fact
$\mathrm{RCA}_{0} \vdash$ "for every x, if every infinite set has an ω^{x}-large subset, then $\mathrm{Con}_{\log ^{*}(x)}\left(\mathrm{RCA}_{0}+\exists \Pi_{2}^{0}\right.$-truth $)$."
\leadsto Proved by interpreting terms in size-x cut-free proof from RCA $_{0}$ as some subsets of the large set A resp. elements bounded by min A.
$\leadsto \Sigma_{1}^{0}$-induction dealt with using: if A is ω^{x}-large and $|B|<\min A$, then there is ω^{x-1}-large $A_{1} \subseteq A$ such that $B \cap\left[\min A_{1}, \max A_{1}\right]=\varnothing$.

α-largeness and consistency statements (cont'd)

Our combinatorial bound gives:
Lemma
$\mathrm{RCA}_{0} \vdash$ "for every x, if every infinite set has an $\omega^{300^{x}}$-large subset, then $\mathrm{Con}_{\log ^{*}(x)}\left(\mathrm{RT}_{2}^{2}+\exists \Pi_{2}^{0}\right.$-truth $)$."

But we get the following by standard arguments:
Fact
$\mathrm{RCA}_{0} \vdash$ "every infinite set has an $\omega^{2^{2^{2 \cdot 2}}}$-large subset"
(stack of n exponents) with poly (n)-size proofs.
Theorem
$\mathrm{RCA}_{0} \vdash \mathrm{Con}_{n}\left(\mathrm{RT}_{2}^{2}+\exists \Pi_{2}^{0}\right.$-truth $)$ with poly (n)-size proofs.

Splitting Ramsey

RT_{2}^{2} splits into EM + ADS, where:
$\mathrm{EM}:=$ Every $f:[\mathbb{N}]^{2} \rightarrow 2$ is transitive on some infinite set.
ADS:=Every transitive $f:[\mathbb{N}]^{2} \rightarrow 2$ has an infinite homogeneous set.
(f is transitive if $i<j<k$ and $f(i, j)=f(j, k)$ implies $f(i, k)=f(i, j)$.)

- Already in P-Y (implicitly): If A is $\omega^{4 n+4}$-large, every transitive $f:[A]^{2} \rightarrow 2$ has an ω^{n}-large homogeneous set.
- Our new result: If A is $\omega^{36 n+3}$-large, every $f:[A]^{2} \rightarrow 2$ is transitive on some ω^{n}-large set.

Reduction to groupings

To be proved: if A is $\omega^{36 n+3}$-large, then every $f:[A]^{2} \rightarrow 2$ is transitive on some ω^{n}-large set.

Also in P-Y: this reduces to a statement about groupings.
Definition
An (α, β)-grouping w.r.t. f is a family of sets $G_{1}<\ldots<G_{\ell}$ such that:

- each G_{i} is α-large,
- $\left\{\max G_{1}, \ldots, \max G_{\ell}\right\}$ is β-large ,
- $f \upharpoonright_{G_{i} \times G_{j}}$ is constant for each pair $i \neq j$.

Main lemma
If A is $\omega^{n+39-l a r g e, ~ t h e n ~ e v e r y ~} f:[A]^{2} \rightarrow 2$ has an $\left(\omega^{n}, \omega^{6}\right)$-grouping.

Ramsey for pairs and proof size
$\left\llcorner_{\text {Doing the combinatorics }}\right.$

Main lemma, pictured

Main lemma, pictured

$$
\downarrow
$$

Proof of simple case

We sketch a proof of: if A is ω^{n+6}-large and $\min A \geq d$, then every $f:[A]^{2} \rightarrow 2$ has an $\left(\omega^{n}, d\right)$-grouping.

- First thin out A so that it is ω^{n+3}-large but exp-sparse: for $x, y \in A$, if $x<y$ then $4^{x}<y$.
- Split A into $\{\min A\}<A_{1}<\ldots<A_{d}$ with each $A_{i} \omega^{n+2}$-large.
- General fact ($*$): if you divide $\omega^{m} \cdot 4 k$-large set into k pieces, at least one of them will be ω^{m}-large.
- Using ($*$), take ω^{n+1}-large $B_{1} \subseteq A_{1}, \ldots, B_{d} \subseteq A_{d}$ so that $f \upharpoonright_{\{x\} \times B_{j}}$ constant for each $x \in A_{i}, i<j$.
- Using ($*$), take ω^{n}-large $C_{d} \subseteq B_{d}, \ldots, C_{1} \subseteq B_{1}$ so that $f \upharpoonright_{C_{i} \times\left\{\max B_{j}\right\}}$ constant for each $i<j$.

The theory RCA_{0}^{*}

It makes perfect sense to consider: $\mathrm{RCA}_{0}^{*}:=\mathrm{RCA}_{0} \backslash\left\{\Sigma_{1}^{0}\right.$-induction $\}$. One just has to add the axiom " $2 k$ exists for every k ".
RT_{2}^{2} remains $\forall \Sigma_{2}^{0}$-conservative over RCA_{0}^{*} (Yokoyama 2013).
Fact
For each fixed $n, \mathrm{RCA}_{0}^{*} \vdash$ "every infinite set has an n-element subset". $\mathrm{RCA}_{0}^{*} \vdash$ "for every x, if every infinite set has an x-element subset, then $\mathrm{Con}_{\log ^{*}(x)}\left(\mathrm{RCA}_{0}^{*}+\exists \Pi_{2}^{0}\right.$-truth $)$."

The theory RCA_{0}^{*}

Using the exponential lower bounds on $R(n, n)$ we get:

Lemma

$\mathrm{RCA}_{0}^{*}+\mathrm{RT}_{2}^{2} \vdash$ "for every x, if every infinite set has an x-element subset, then every infinite set has a 2^{x}-element subset".

This gives short proofs that infinite sets contain very large finite subsets. Combining this with the implication to consistency, we get:

Lemma

For $m=2^{2^{\cdot 2}}$ (stack of n exponents), $\mathrm{RCA}_{0}^{*}+\mathrm{RT}_{2}^{2}$ proves $\operatorname{Con}_{m}\left(\mathrm{RCA}_{0}^{*}\right)$ with proofs of size poly (n).

Theorem
$\mathrm{RCA}_{0}^{*}+\mathrm{RT}_{2}^{2}$ has iterated exponential speedup over RCA_{0}^{*}
w.r.t. proofs of Π_{1}^{0} sentences.

References

Patey, Yokoyama, The proof-theoretic strength of Ramsey's theorem for pairs and two colors, Adv. Math. 330(2018), 1034-1070.

K, Yokoyama, Some upper bounds on ordinal-valued Ramsey numbers for colourings of pairs, arXiv:1807.00616.

K, Wong, Yokoyama, Ramsey's theorem for pairs, collection, and proof size, in preparation.

