Partition regularity of nonlinear Diophantine equations

Lorenzo Luperi Baglini

University of Vienna

RaTLoCC 2018: Ramsey Theory in Logic, Combinatorics and Complexity - Bertinoro

In this talk, we will repeatedly talk about the following property:

In this talk, we will repeatedly talk about the following property:

Definition Let $P(x_1, ..., x_n) \in \mathbb{Z}[x_1, ..., x_n].$

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that the equation $P(x_1, \ldots, x_n) = 0$ is (weakly) partition regular (PR) on \mathbb{N} if

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that the equation $P(x_1, \ldots, x_n) = 0$ is (weakly) partition regular (PR) on \mathbb{N} if it has a monochromatic solution in every finite coloring of \mathbb{N} , i.e. $\forall k \in \mathbb{N}, \forall \mathbb{N} = A_1 \cup \cdots \cup A_k \exists i \leq k \exists x_1, \ldots, x_n \in A_i \text{ s.t.}$ $P(x_1, \ldots, x_n) = 0.$

In this talk, we will repeatedly talk about the following property:

Definition

Let $P(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that the equation $P(x_1, \ldots, x_n) = 0$ is (weakly) partition regular (PR) on \mathbb{N} if it has a monochromatic solution in every finite coloring of \mathbb{N} , i.e. $\forall k \in \mathbb{N}, \forall \mathbb{N} = A_1 \cup \cdots \cup A_k \exists i \leq k \exists x_1, \ldots, x_n \in A_i \text{ s.t.}$ $P(x_1, \ldots, x_n) = 0.$

Example

Trivially, for every $n \in \mathbb{N}$, the polynomial x - n is PR.

Rado's theorem

Theorem (Schur)

The polynomial x + y - z is PR.

Rado's theorem

Theorem (Schur)

The polynomial x + y - z is PR.

Theorem (Rado)

A linear Diophantine equation with no constant term

 $c_1x_1 + \dots + c_nx_n = 0$

is PR on \mathbb{N} if and only if the following condition is satisfied:

Rado's theorem

Theorem (Schur)

The polynomial x + y - z is PR.

Theorem (Rado)

A linear Diophantine equation with no constant term

 $c_1 x_1 + \dots + c_n x_n = 0$

is PR on \mathbb{N} if and only if the following condition is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in J} c_i = 0$."

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on N if and only if the following condition is satisfied:

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} c_j = 0$."

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in J} c_j = 0$."

Idea: $n \to 2^n$.

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in J} c_j = 0$."

Idea: $n \to 2^n$.

Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_1 x_1^{1/k} + \cdots + c_n x_n^{1/k} = 0$ is PR on \mathbb{N} if and only if the following condition is satisfied:

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in J} c_j = 0$."

Idea: $n \to 2^n$.

Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_1 x_1^{1/k} + \cdots + c_n x_n^{1/k} = 0$ is PR on \mathbb{N} if and only if the following condition is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} c_j = 0$."

Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_i^{c_i} = 1$ is PR on \mathbb{N} if and only if the following condition is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{i \in J} c_j = 0$."

Idea: $n \to 2^n$.

Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_1 x_1^{1/k} + \cdots + c_n x_n^{1/k} = 0$ is PR on \mathbb{N} if and only if the following condition is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} c_j = 0$."

Idea: $n \to n^k$.

Theorem (Bergelson, Furstenberg, McCutcheon) Let $P(z) \in \mathbb{Z}[z]$ be such that P(0) = 0. Then the equation x - y = P(z) is PR.

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that P(0) = 0. Then the equation x - y = P(z) is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that P(0) = 0. Then the equation x - y = P(z) is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation $x + y = z^2$ is not partition regular.

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that P(0) = 0. Then the equation x - y = P(z) is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation $x + y = z^2$ is not partition regular.

They asked the following question: is x + y = tz PR?

Theorem (Bergelson, Furstenberg, McCutcheon)

Let $P(z) \in \mathbb{Z}[z]$ be such that P(0) = 0. Then the equation x - y = P(z) is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvári, Gyarmati and Sárkőzy)

The equation $x + y = z^2$ is not partition regular.

They asked the following question: is x + y = tz PR?

In 2010, by using algebra in the space of ultrafilters $\beta \mathbb{N}$, Bergelson solved the problem in the positive.

Independently, Hindman proved a more general version of Bergelson's result:

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^{n} x_i = \prod_{i=1}^{m} y_i$ are PR.

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^{n} x_i = \prod_{i=1}^{m} y_i$ are PR.

Idea: use the algebra of $\beta \mathbb{N}$, in particular the existence of a ultrafilter \mathcal{U} such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^{n} x_i = \prod_{i=1}^{m} y_i$ are PR.

Idea: use the algebra of $\beta \mathbb{N}$, in particular the existence of a ultrafilter \mathcal{U} such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let n, m > 0. For every choice of sets $F_i \subseteq \{1, \ldots, m\}$, the equation $\sum_{i=1}^n c_i x_i (\prod_{j \in F_i} y_j) = 0$ is partition regular whenever $\sum_{i \in J} c_j = 0$ for some nonempty $J \subseteq \{1, \ldots, m\}$. (It is agreed that $\prod_{j \in \emptyset} y_j = 1$.)

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^{n} x_i = \prod_{i=1}^{m} y_i$ are PR.

Idea: use the algebra of $\beta \mathbb{N}$, in particular the existence of a ultrafilter \mathcal{U} such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let n, m > 0. For every choice of sets $F_i \subseteq \{1, \ldots, m\}$, the equation $\sum_{i=1}^n c_i x_i (\prod_{j \in F_i} y_j) = 0$ is partition regular whenever $\sum_{i \in J} c_j = 0$ for some nonempty $J \subseteq \{1, \ldots, m\}$. (It is agreed that $\prod_{j \in \emptyset} y_j = 1$.)

Idea: use the existence of a multiplicatively idempotent ultrafilter \mathcal{U} with good linear properties; study the ultrafilter using nonstandard analysis.

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Idea: use nonstandard analysis, write numbers in base p for a sufficiently large prime number p.

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Idea: use nonstandard analysis, write numbers in base p for a sufficiently large prime number p.

Theorem (Moreira)

Let $\sum_{i=1}^{n} c_i = 0$. Then $\sum_{i=1}^{n} c_i x_i^2 = y$ is *PR*.

Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin \{n, m\}$. Then the equation $x^m + y^n = z^k$ is not PR.

Idea: use nonstandard analysis, write numbers in base p for a sufficiently large prime number p.

Theorem (Moreira)

Let
$$\sum_{i=1}^{n} c_i = 0$$
. Then $\sum_{i=1}^{n} c_i x_i^2 = y$ is *PR*.

Idea: use ergodic methods involving the set of affinities $\{x \rightarrow ax + b\}$; alternatively, use an embeddability property of piecewise syndetic sets w.r.t. arithmetic progressions.

Definition

 $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$
 - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U};$

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$
 - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U};$
 - $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U};$

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$
 - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U};$
 - $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U};$
 - $\forall A \in \wp(\mathbb{N}) \ A \in \mathcal{U} \Leftrightarrow A^c \notin \mathcal{U}.$

Definition

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$
 - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U};$
 - $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U};$
 - $\forall A \in \wp(\mathbb{N}) \ A \in \mathcal{U} \Leftrightarrow A^c \notin \mathcal{U}.$

We let $\beta \mathbb{N}$ denote the set of ultrafilters on \mathbb{N} .

Definition

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$
 - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U};$
 - $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U};$
 - $\forall A \in \wp(\mathbb{N}) \ A \in \mathcal{U} \Leftrightarrow A^c \notin \mathcal{U}.$

We let $\beta \mathbb{N}$ denote the set of ultrafilters on \mathbb{N} .

Topology: for every $A \in \wp(\mathbb{N})$ let $\Theta_A = \{ \mathcal{U} \in \beta \mathbb{N} \mid A \in \mathcal{U} \}.$
The algebra of $\beta \mathbb{N}$

Definition

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$
 - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U};$
 - $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U};$
 - $\forall A \in \wp(\mathbb{N}) \ A \in \mathcal{U} \Leftrightarrow A^c \notin \mathcal{U}.$

We let $\beta \mathbb{N}$ denote the set of ultrafilters on \mathbb{N} .

Topology: for every $A \in \wp(\mathbb{N})$ let $\Theta_A = \{\mathcal{U} \in \beta \mathbb{N} \mid A \in \mathcal{U}\}.$ If $\mathcal{U}, \mathcal{V} \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, we let

$$A \in \mathcal{U} \oplus \mathcal{V} \Leftrightarrow \{n \mid A - n \in \mathcal{V}\} \in \mathcal{U},$$

The algebra of $\beta \mathbb{N}$

Definition

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$
 - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U};$
 - $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U};$
 - $\forall A \in \wp(\mathbb{N}) \ A \in \mathcal{U} \Leftrightarrow A^c \notin \mathcal{U}.$

We let $\beta \mathbb{N}$ denote the set of ultrafilters on \mathbb{N} .

Topology: for every $A \in \wp(\mathbb{N})$ let $\Theta_A = \{\mathcal{U} \in \beta \mathbb{N} \mid A \in \mathcal{U}\}.$ If $\mathcal{U}, \mathcal{V} \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, we let

$$A \in \mathcal{U} \oplus \mathcal{V} \Leftrightarrow \{n \mid A - n \in \mathcal{V}\} \in \mathcal{U},$$

where $A - n = \{m \in \mathbb{N} \mid m + n \in A\}.$

The algebra of $\beta \mathbb{N}$

Definition

- $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:
 - $\emptyset \notin \mathcal{U};$
 - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U};$
 - $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U};$
 - $\forall A \in \wp(\mathbb{N}) \ A \in \mathcal{U} \Leftrightarrow A^c \notin \mathcal{U}.$

We let $\beta \mathbb{N}$ denote the set of ultrafilters on \mathbb{N} .

Topology: for every $A \in \wp(\mathbb{N})$ let $\Theta_A = \{\mathcal{U} \in \beta \mathbb{N} \mid A \in \mathcal{U}\}.$ If $\mathcal{U}, \mathcal{V} \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, we let

$$A \in \mathcal{U} \oplus \mathcal{V} \Leftrightarrow \{n \mid A - n \in \mathcal{V}\} \in \mathcal{U},$$

where $A - n = \{m \in \mathbb{N} \mid m + n \in A\}$. Similarly one can define $\mathcal{U} \odot \mathcal{V}$.

Partition regularity as a ultrafilters problem

 $\beta \mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is here given for equations, but holds in a way more general fashion):

Partition regularity as a ultrafilters problem

 $\beta \mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is here given for equations, but holds in a way more general fashion):

Proposition

A Diophantine equation $P(x_1, \ldots, x_n) = 0$ is PR if and only if there exists $\mathcal{U} \in \beta \mathbb{N}$ such that for every $A \in \mathcal{U}$ there exists $a_1, \ldots, a_n \in A$ with $P(a_1, \ldots, a_n) = 0$.

Partition regularity as a ultrafilters problem

 $\beta \mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is here given for equations, but holds in a way more general fashion):

Proposition

A Diophantine equation $P(x_1, \ldots, x_n) = 0$ is PR if and only if there exists $\mathcal{U} \in \beta \mathbb{N}$ such that for every $A \in \mathcal{U}$ there exists $a_1, \ldots, a_n \in A$ with $P(a_1, \ldots, a_n) = 0$.

In this case, we say that \mathcal{U} witnesses the PR of the equation (notation: $\mathcal{U} \models P(a_1, \ldots, a_n) = 0$). Banach density and IP-sets

Definition Let $A \subseteq \mathbb{N}$. The upper Banach density of A is $BD(A) = \lim_{n \to +\infty} \sup_{m \in \mathbb{N}} \frac{|A \cap [m, m+n]|}{n+1}.$

Banach density and IP-sets

Definition

Let $A \subseteq \mathbb{N}$. The upper Banach density of A is $BD(A) = \lim_{n \to +\infty} \sup_{m \in \mathbb{N}} \frac{|A \cap [m, m+n]|}{n+1}.$

Definition

Let $G = (g_i)_{i \in \mathbb{N}}$ be an increasing sequence of natural numbers. The *IP*-set generated by G is the set of finite sums

$$FS(G) = FS(g_i)_{i \in \mathbb{N}} = \left\{ \sum_{j=1}^k g_{i_j} \, \Big| \, i_1 < i_2 < \dots < i_k \right\}.$$

A set $A \subseteq \mathbb{N}$ is called IP-large if it contains an IP-set. Multiplicative IP-sets and multiplicative IP-large sets are defined similarly.

Special ultrafilters

Various kind of ultrafilters are important in this field.

¹Well, as far as "simple" goes for the kind of ultrafilters used here.

Various kind of ultrafilters are important in this field. However, to keep

things simple¹, it sufficies to know that

 $\overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD} \neq \emptyset.$

Indeed, it contains all combinatorially rich ultrafilters.

¹Well, as far as "simple" goes for the kind of ultrafilters used here.

Various kind of ultrafilters are important in this field. However, to keep

things simple¹, it sufficies to know that

 $\overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD} \neq \emptyset.$

Indeed, it contains all combinatorially rich ultrafilters.

Idea to keep in mind for what follows: there exist some super nice ultrafilters, whose existence will be used in the following.

¹Well, as far as "simple" goes for the kind of ultrafilters used here.

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \ldots, x_n) = 0$ and $P_2(y_1, \ldots, y_m) = 0$.

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \ldots, x_n) = 0$ and $P_2(y_1, \ldots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

$$\begin{cases} P_1(x_1, \dots, x_n) = 0; \\ P_2(y_1, \dots, y_m) = 0; \\ x_1 = y_1. \end{cases}$$

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \ldots, x_n) = 0$ and $P_2(y_1, \ldots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

$$\begin{cases} P_1(x_1, \dots, x_n) = 0; \\ P_2(y_1, \dots, y_m) = 0; \\ x_1 = y_1. \end{cases}$$

Proof.

Let $A \in \mathcal{U}$ be fixed. Let $\Lambda_1 = \{ a \in A \mid \exists a_2, \dots, a_n \in A \text{ s.t. } P_1(a, a_2, \dots, a_n) = 0 \},$ $\Lambda_2 = \{ b \in A \mid \exists b_2, \dots, b_m \in A \text{ s.t. } P_2(b, b_2, \dots, b_m) = 0 \}.$

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \ldots, x_n) = 0$ and $P_2(y_1, \ldots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

$$\begin{cases} P_1(x_1, \dots, x_n) = 0; \\ P_2(y_1, \dots, y_m) = 0; \\ x_1 = y_1. \end{cases}$$

Proof.

Let $A \in \mathcal{U}$ be fixed. Let $\Lambda_1 = \{ a \in A \mid \exists a_2, \dots, a_n \in A \text{ s.t. } P_1(a, a_2, \dots, a_n) = 0 \},$ $\Lambda_2 = \{ b \in A \mid \exists b_2, \dots, b_m \in A \text{ s.t. } P_2(b, b_2, \dots, b_m) = 0 \}.$ Notice that $\Lambda_1, \Lambda_2 \in \mathcal{U}$, as otherwise $\neg (\mathcal{U} \models P_i = 0).$

Lemma

Let \mathcal{U} be a common witness of the equations $P_1(x_1, \ldots, x_n) = 0$ and $P_2(y_1, \ldots, y_m) = 0$. Then \mathcal{U} is also a PR-witness of the system:

$$\begin{cases} P_1(x_1, \dots, x_n) = 0; \\ P_2(y_1, \dots, y_m) = 0; \\ x_1 = y_1. \end{cases}$$

Proof.

Let $A \in \mathcal{U}$ be fixed. Let $\Lambda_1 = \{a \in A \mid \exists a_2, \dots, a_n \in A \text{ s.t. } P_1(a, a_2, \dots, a_n) = 0\},\$ $\Lambda_2 = \{b \in A \mid \exists b_2, \dots, b_m \in A \text{ s.t. } P_2(b, b_2, \dots, b_m) = 0\}.$ Notice that $\Lambda_1, \Lambda_2 \in \mathcal{U}$, as otherwise $\neg (\mathcal{U} \models P_i = 0)$. Take $\Lambda_1 \cap \Lambda_2$. \Box

Example

Take $\mathcal{U} \models u - v = t^2$.

Example

Take
$$\mathcal{U} \models u - v = t^2$$
.
Then \mathcal{U} witnesses also of the PR of the system

$$\begin{cases} u_1 - y = x^2; \\ u_2 - z = t^2; \\ y = t. \end{cases}$$

Example

Take $\mathcal{U} \models u - v = t^2$. Then \mathcal{U} witnesses also of the PR of the system

$$\begin{cases} u_1 - y = x^2; \\ u_2 - z = t^2; \\ y = t. \end{cases}$$

It is readily seen that this is equivalent to the PR of the configuration $\{x, y, z, y + x^2, z + y^2\}$ (which had already been proven by ergodic methods).

Homogeneous equations

Theorem

Let $P(x_1, \ldots, x_n)$ be a homogeneous PR polynomial.

Homogeneous equations

Theorem

Let $P(x_1, \ldots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathfrak{W}_{P} = \{ \mathcal{U} \in \beta \mathbb{N} \mid \mathcal{U} \models P(x_{1}, \dots, x_{n}) = 0 \}$$

is a closed multiplicative two sided ideal.

Homogeneous equations

Theorem

Let $P(x_1, \ldots, x_n)$ be a homogeneous PR polynomial. Then the set of its PR-witnesses

$$\mathfrak{W}_{P} = \{ \mathcal{U} \in \beta \mathbb{N} \mid \mathcal{U} \models P(x_{1}, \dots, x_{n}) = 0 \}$$

is a closed multiplicative two sided ideal.

Corollary

Let $P(x_1, \ldots, x_n)$ be a homogeneous PR polynomial. Then $\mathcal{U} \models P(x_1, \ldots, x_n) = 0$ for every $\mathcal{U} \in \overline{K(\beta \mathbb{N}, \odot)}$.

The first generalization result

Theorem

Let $c(x_1 - x_2) = P(y_1, \ldots, y_k)$ be a Diophantine equation where the polynomial P has no constant term and $c \neq 0$. If the set $A \subseteq \mathbb{N}$ is IP-large and has positive Banach density then there exist $\xi_1, \xi_2 \in A$ and mutually distinct $\eta_1, \ldots, \eta_k \in A$ such that $c(\xi_1 - \xi_2) = P(\eta_1, \ldots, \eta_k)$. Moreover, if k = 1 then one can take $\xi_1 \neq \xi_2$.

The first generalization result

Theorem

Let $c(x_1 - x_2) = P(y_1, \ldots, y_k)$ be a Diophantine equation where the polynomial P has no constant term and $c \neq 0$. If the set $A \subseteq \mathbb{N}$ is IP-large and has positive Banach density then there exist $\xi_1, \xi_2 \in A$ and mutually distinct $\eta_1, \ldots, \eta_k \in A$ such that $c(\xi_1 - \xi_2) = P(\eta_1, \ldots, \eta_k)$. Moreover, if k = 1 then one can take $\xi_1 \neq \xi_2$.

Definition

A polynomial with integer coefficients is called a Rado polynomial if it can be written in the form

$$c_1x_1 + \dots + c_nx_n + P(y_1, \dots, y_k)$$

where $n \ge 2$, P has no constant term, and there exists a nonempty subset $J \subseteq \{1, \ldots, n\}$ such that $\sum_{j \in J} c_j = 0$.

Generalized Rado

Theorem

Let

$$R(x_1, \dots, x_n, y_1, \dots, y_k) = c_1 x_1 + \dots + c_n x_n + P(y_1, \dots, y_k)$$

be a Rado polynomial. Then every ultrafilter $\mathcal{U} \in \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$ is a PR-witness of R = 0.

Generalized Rado

Theorem

Let

$$R(x_1, \dots, x_n, y_1, \dots, y_k) = c_1 x_1 + \dots + c_n x_n + P(y_1, \dots, y_k)$$

be a Rado polynomial. Then every ultrafilter $\mathcal{U} \in \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$ is a PR-witness of R = 0.

Proof.

Consider the following system:

$$\begin{cases} c_1 z + c_2 x_2 + \ldots + c_n x_n = 0; \\ c_1 (w - x_1) = P(y_1, \ldots, y_k); \\ z = w. \end{cases}$$

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\bigcirc) \cap \overline{K(\bigcirc)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$. Then \mathfrak{F} includes:

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$. Then \mathfrak{F} includes:

• Every Rado polynomial;

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$. Then \mathfrak{F} includes:

- Every Rado polynomial;
- Every polynomial of the form

$$\sum_{i=1}^{n} c_i \, x_i \left(\prod_{j \in F_i} y_j \right)$$

where $\sum_{i=1}^{n} c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \ldots, m\}$;

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$. Then \mathfrak{F} includes:

- Every Rado polynomial;
- Every polynomial of the form

$$\sum_{i=1}^{n} c_i \, x_i \left(\prod_{j \in F_i} y_j \right)$$

where $\sum_{i=1}^{n} c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \ldots, m\}$; • Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i;$$

Theorem

Let \mathfrak{F} be the family of polynomials whose PR on \mathbb{N} is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{BD}$. Then \mathfrak{F} includes:

- Every Rado polynomial;
- Every polynomial of the form

$$\sum_{i=1}^{n} c_i \, x_i \left(\prod_{j \in F_i} y_j \right)$$

where $\sum_{i=1}^{n} c_i x_i$ is a Rado polynomial and sets $F_i \subseteq \{1, \ldots, m\}$; • Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i;$$

Theorem

• Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i},$$

whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Theorem

• Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i},$$

whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Moreover, the family \mathfrak{F} satisfies the following closure properties:

Theorem

• Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i},$$

whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Moreover, the family \mathfrak{F} satisfies the following closure properties:

(i) If
$$P(z, y_1, \ldots, y_k) \in \mathfrak{F}$$
 and $z - g(x_1, \ldots, x_n) \in \mathfrak{F}$, then
 $P(g(x_1, \ldots, x_n), y_1, \ldots, y_k) \in \mathfrak{F};$

Theorem

• Every polynomial

$$P(x, y_1, \dots, y_k) = x - \prod_{i=1}^k y_i^{a_i},$$

whenever the exponents $a_i \in \mathbb{Z}$ satisfy $\sum_{i=1}^n a_i = 1$.

Moreover, the family $\mathfrak F$ satisfies the following closure properties:

Lorenzo Luperi Baglini
Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n, j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \ y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n, j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \ y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Let $a_1, \ldots, a_n, b_1, \ldots, b_m$ be such that $\sum_{i=1}^n a_i = \sum_{j=1}^m b_j$ and consider the homogeneous PR equation $\prod_{i=1}^n t_i^{a_i} = \prod_{j=1}^m z_j^{b_j}$.

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n, j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \ y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Let $a_1, \ldots, a_n, b_1, \ldots, b_m$ be such that $\sum_{i=1}^n a_i = \sum_{j=1}^m b_j$ and consider the homogeneous PR equation $\prod_{i=1}^n t_i^{a_i} = \prod_{j=1}^m z_j^{b_j}$. All these equations are PR and homogeneous and therefore, by the closure property (i), also

$$\prod_{i=1}^{n} \left(\sum_{h=1}^{r_i} c_{i,h} x_{i,h} \right)^{a_i} = \prod_{j=1}^{m} \left(\sum_{k=1}^{s_j} d_{j,k} y_{j,k} \right)^{b_j}$$

is PR.

Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leq n, j \leq m$, the equations

$$x_{i,1} = \sum_{h=1}^{r_i} c_{i,h} x_{i,h}, \ y_{j,1} = \sum_{k=1}^{s_j} d_{j,k} y_{j,k}$$

are PR.

Let $a_1, \ldots, a_n, b_1, \ldots, b_m$ be such that $\sum_{i=1}^n a_i = \sum_{j=1}^m b_j$ and consider the homogeneous PR equation $\prod_{i=1}^n t_i^{a_i} = \prod_{j=1}^m z_j^{b_j}$. All these equations are PR and homogeneous and therefore, by the closure property (i), also

$$\prod_{i=1}^{n} \left(\sum_{h=1}^{r_i} c_{i,h} x_{i,h} \right)^{a_i} = \prod_{j=1}^{m} \left(\sum_{k=1}^{s_j} d_{j,k} y_{j,k} \right)^{b_j}$$

is PR.

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ;

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ; moreover, for every $k \ge 2$ the function $x = \prod_{j=1}^k x_j$ is in \mathfrak{F} .

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ; moreover, for every $k \ge 2$ the function $x = \prod_{j=1}^k x_j$ is in \mathfrak{F} . Therefore, for every $h, k \ge 2$ we can apply the closure property (i) of \mathfrak{F} to the system

$$\begin{cases} u - v = z^{n}; \\ x = \prod_{j=1}^{h} x_{j}; \\ y = \prod_{j=1}^{k} y_{j}; \\ x = t, y = v. \end{cases}$$

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ; moreover, for every $k \ge 2$ the function $x = \prod_{j=1}^k x_j$ is in \mathfrak{F} . Therefore, for every $h, k \ge 2$ we can apply the closure property (i) of \mathfrak{F} to the system

$$\begin{cases} u - v = z^n; \\ x = \prod_{j=1}^h x_j; \\ y = \prod_{j=1}^k y_j; \\ x = t, y = v. \end{cases}$$

Hence $\prod_{j=1}^{h} x_j - \prod_{j=1}^{k} y_j = z^n$ is in \mathfrak{F} . In particular, $x_1 x_2 - y_1 y_2 = z^2$ is PR.

Example

For every $n \in \mathbb{N}$, the polynomial $u - v - z^n$ is in \mathfrak{F} ; moreover, for every $k \ge 2$ the function $x = \prod_{j=1}^k x_j$ is in \mathfrak{F} . Therefore, for every $h, k \ge 2$ we can apply the closure property (i) of \mathfrak{F} to the system

$$\begin{cases} u - v = z^n; \\ x = \prod_{j=1}^h x_j; \\ y = \prod_{j=1}^k y_j; \\ x = t, y = v. \end{cases}$$

Hence $\prod_{j=1}^{h} x_j - \prod_{j=1}^{k} y_j = z^n$ is in \mathfrak{F} . In particular, $x_1 x_2 - y_1 y_2 = z^2$ is PR.

Example

 $P(x_1, x_2, x_3) = x_1 x_2 - 2x_3$ is PR but it does not belong to \mathfrak{F} .

Nonstandard analysis essentially consists of two properties:

Nonstandard analysis essentially consists of two properties:

• Every mathematical object X is extended to an object *X, called its hyper-extension or nonstandard extension.

Nonstandard analysis essentially consists of two properties:

- Every mathematical object X is extended to an object *X, called its hyper-extension or nonstandard extension.
- **2** *X is a sort of weakly isomorphic copy of X, in the sense that it satisfies the same elementary properties as X.

Nonstandard analysis essentially consists of two properties:

- Every mathematical object X is extended to an object *X, called its hyper-extension or nonstandard extension.
- **2** *X is a sort of weakly isomorphic copy of X, in the sense that it satisfies the same elementary properties as X.

A property is elementary if it talks about elements of X (it is not elementary when talks about subsets or functions).

Nonstandard analysis essentially consists of two properties:

- Every mathematical object X is extended to an object *X, called its hyper-extension or nonstandard extension.
- **2** *X is a sort of weakly isomorphic copy of X, in the sense that it satisfies the same elementary properties as X.

A property is elementary if it talks about elements of X (it is not elementary when talks about subsets or functions). The preservation of elementary properties when taking hyper-extensions is called transfer principle.

* \mathbb{N} is the hyper-extension of \mathbb{N} .

 \mathbb{N} is the hyper-extension of \mathbb{N} . Its elements have the same elementary properties of natural numbers:

N is the hyper-extension of \mathbb{N} . Its elements have the same elementary properties of natural numbers:

• addition can be extended so to make $*\mathbb{N}$ a semigroup;

N is the hyper-extension of N. Its elements have the same elementary properties of natural numbers:

- addition can be extended so to make $*\mathbb{N}$ a semigroup;
- the same with multiplication;

N is the hyper-extension of \mathbb{N} . Its elements have the same elementary properties of natural numbers:

- addition can be extended so to make $*\mathbb{N}$ a semigroup;
- the same with multiplication;
- the linear order of \mathbb{N} can be extended to a linear order of $*\mathbb{N}$;

N is the hyper-extension of \mathbb{N} . Its elements have the same elementary properties of natural numbers:

- addition can be extended so to make $*\mathbb{N}$ a semigroup;
- the same with multiplication;
- the linear order of \mathbb{N} can be extended to a linear order of $*\mathbb{N}$;
- and so on.

N is the hyper-extension of \mathbb{N} . Its elements have the same elementary properties of natural numbers:

- addition can be extended so to make $*\mathbb{N}$ a semigroup;
- the same with multiplication;
- the linear order of \mathbb{N} can be extended to a linear order of \mathbb{N} ;
- and so on.

In *N we have infinite numbers, e.g. elements $\alpha \in \mathbb{N}$ such that $\alpha > n$ for every $n \in \mathbb{N}$.

N is the hyper-extension of \mathbb{N} . Its elements have the same elementary properties of natural numbers:

- addition can be extended so to make $*\mathbb{N}$ a semigroup;
- the same with multiplication;
- the linear order of \mathbb{N} can be extended to a linear order of \mathbb{N} ;
- and so on.

In *N we have infinite numbers, e.g. elements $\alpha \in \mathbb{N}$ such that $\alpha > n$ for every $n \in \mathbb{N}$.

Example of non-elementary property: the well-order. In fact, the set of infinite elements does not have a minimum.

Definition

Two hypernatural numbers $\xi, \xi' \in \mathbb{N}$ are *u*-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in A$ or $\xi, \xi' \notin A$.

Definition

Two hypernatural numbers $\xi, \xi' \in \mathbb{N}$ are *u*-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in A$ or $\xi, \xi' \notin A$.

Ultrafilters and hypernaturals can be identified:

Definition

Two hypernatural numbers $\xi, \xi' \in \mathbb{N}$ are *u*-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in A$ or $\xi, \xi' \notin A$.

Ultrafilters and hypernaturals can be identified:

•
$$\alpha \to \mathcal{U}_{\alpha} = \{A \in \wp(\mathbb{N}) \mid \alpha \in {}^{*}A\};$$

Definition

Two hypernatural numbers $\xi, \xi' \in \mathbb{N}$ are *u*-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in A$ or $\xi, \xi' \notin A$.

Ultrafilters and hypernaturals can be identified:

•
$$\alpha \to \mathcal{U}_{\alpha} = \{A \in \wp(\mathbb{N}) \mid \alpha \in {}^{*}A\};$$

•
$$\mathcal{U} \to \mu(\mathcal{U}) = \{ \alpha \in *\mathbb{N} \mid \mathcal{U} = \mathcal{U}_{\alpha} \}.$$

Definition

Two hypernatural numbers $\xi, \xi' \in \mathbb{N}$ are *u*-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi' \in A$ or $\xi, \xi' \notin A$.

Ultrafilters and hypernaturals can be identified:

•
$$\alpha \to \mathcal{U}_{\alpha} = \{A \in \wp(\mathbb{N}) \mid \alpha \in {}^{*}A\};$$

•
$$\mathcal{U} \to \mu(\mathcal{U}) = \{ \alpha \in *\mathbb{N} \mid \mathcal{U} = \mathcal{U}_{\alpha} \}.$$

Proposition

A Diophantine equation $P(x_1, \ldots, x_n) = 0$ is PR if and only if there exist u-equivalent hypernatural numbers ξ_1, \ldots, ξ_n with $*P(\xi_1, \ldots, \xi_n) = 0.$

• An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;

- An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all i = 1, ..., n;

- An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;

- An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^{α} ;

- An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^{α} ;
- The length of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;

- An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^{α} ;
- The length of a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;
- A set *I* of *n*-dimensional multi-indexes having all the same length is called *homogeneous*;

- An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^{α} ;
- The length of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;
- A set *I* of *n*-dimensional multi-indexes having all the same length is called *homogeneous*;
- Polynomials $P \in \mathbb{Z}[x_1, \ldots, x_n]$ are written in the form $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where α are multi-indexes;

- An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \ldots, n$;
- $\alpha < \beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^{α} ;
- The length of a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;
- A set *I* of *n*-dimensional multi-indexes having all the same length is called *homogeneous*;
- Polynomials $P \in \mathbb{Z}[x_1, \ldots, x_n]$ are written in the form $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where α are multi-indexes;
- The support of P is the finite set $\operatorname{supp}(P) = \{ \alpha \mid c_{\alpha} \neq 0 \};$

- An *n*-dimensional multi-index is an *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$;
- $\alpha \leq \beta$ means that $\alpha_i \leq \beta_i$ for all $i = 1, \dots, n$;
- $\alpha < \beta$ means that $\alpha \leq \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x} = (x_1, \dots, x_n)$ is vector and $\alpha = (\alpha_1, \dots, \alpha_n)$ is a multi-index, the product $\prod_{i=1}^n x_i^{\alpha_i}$ is denoted by \mathbf{x}^{α} ;
- The length of a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$ is $|\alpha| = \sum_{i=1}^n \alpha_i$;
- A set *I* of *n*-dimensional multi-indexes having all the same length is called *homogeneous*;
- Polynomials $P \in \mathbb{Z}[x_1, \ldots, x_n]$ are written in the form $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where α are multi-indexes;
- The support of P is the finite set $\operatorname{supp}(P) = \{ \alpha \mid c_{\alpha} \neq 0 \};$
- A polynomial $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ is homogeneous if $\operatorname{supp}(P)$ is a homogeneous set of indexes.
Definition

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that a multi-index $\alpha \in supp(P)$ is minimal if there are no $\beta \in supp(P)$ with $\beta < \alpha$. The notion of maximal multi-index is defined similarly.

Definition

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that a multi-index $\alpha \in supp(P)$ is minimal if there are no $\beta \in supp(P)$ with $\beta < \alpha$. The notion of maximal multi-index is defined similarly. A nonempty set $J \subseteq supp(P)$ is called a Rado set of indexes if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

Definition

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that a multi-index $\alpha \in supp(P)$ is minimal if there are no $\beta \in supp(P)$ with $\beta < \alpha$. The notion of maximal multi-index is defined similarly. A nonempty set $J \subseteq supp(P)$ is called a Rado set of indexes if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

For linear polynomials, every nonempty $J \subseteq \text{Supp}(P) = \{\alpha(1), \ldots, \alpha(n)\}$ is a Rado set of both minimal and maximal indexes.

Definition

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n]$. We say that a multi-index $\alpha \in supp(P)$ is minimal if there are no $\beta \in supp(P)$ with $\beta < \alpha$. The notion of maximal multi-index is defined similarly. A nonempty set $J \subseteq supp(P)$ is called a Rado set of indexes if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq \{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_i = \sum_{i \in \Lambda} \beta_i$.

For linear polynomials, every nonempty $J \subseteq \text{Supp}(P) = \{\alpha(1), \ldots, \alpha(n)\}$ is a Rado set of both minimal and maximal indexes.

Example

In $c_1x_1^2x_2x_3 + c_2x_1x_2^2x_3^7 + c_3x_1^2x_2^2x_3^2x_4$, the set $J = \{1, 2\}$ is a Rado set of minimal (but not maximal) indeces.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

• $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \mod p \text{ has no solutions } z \neq 0;$

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

For every Rado set J of minimal indexes, ∑_{α∈J} c_αz^{|α|} ≡ 0 mod p has no solutions z ≠ 0.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- O For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_\alpha z^{|\alpha|} \equiv 0 \mod p$ has no solutions z ≠ 0.

Then $P(\mathbf{x})$ is not PR, except possibly for constant solutions $x_1 = \ldots = x_n$.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

O For every Rado set J of minimal indexes, $\sum_{\alpha \in J} c_\alpha z^{|\alpha|} \equiv 0 \mod p$ has no solutions z ≠ 0.

Then $P(\mathbf{x})$ is not PR, except possibly for constant solutions $x_1 = \ldots = x_n$.

Proof.

Pick infinite
$$\xi_1 \underset{u}{\sim} \ldots \underset{u}{\sim} \xi_n$$
 such that $P(\boldsymbol{\xi}) = \sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha} = 0$.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \mod p \text{ has no solutions } z \neq 0;$
- For every Rado set J of minimal indexes, ∑_{α∈J} c_αz^{|α|} ≡ 0 mod p has no solutions z ≠ 0.

Then $P(\mathbf{x})$ is not PR, except possibly for constant solutions $x_1 = \ldots = x_n$.

Proof.

Pick infinite $\xi_1 \simeq \ldots \simeq \xi_n$ such that $P(\boldsymbol{\xi}) = \sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha} = 0$. Write ξ_i in base p.

Theorem

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \dots, x_n]$ be a polynomial with no constant term. Suppose there exists a prime p such that:

- $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \mod p \text{ has no solutions } z \neq 0;$
- For every Rado set J of minimal indexes, ∑_{α∈J} c_αz^{|α|} ≡ 0 mod p has no solutions z ≠ 0.

Then $P(\mathbf{x})$ is not PR, except possibly for constant solutions $x_1 = \ldots = x_n$.

Proof.

Pick infinite $\xi_1 \simeq \ldots \simeq \xi_n$ such that $P(\boldsymbol{\xi}) = \sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha} = 0$. Write ξ_i in base p. Find the absurd playing with the exponents and the coefficients in this expansion.

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p.

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p. Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$,

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p. Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified.

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p. Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified. Since it has no constant solutions $x_1 = x_2 = x_3$, we can conclude that $P(x_1, x_2, x_3)$ is not PR.

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p. Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified. Since it has no constant solutions $x_1 = x_2 = x_3$, we can conclude that $P(x_1, x_2, x_3)$ is not PR.

Notice that, by Multiplicative Rado's Theorem, the seemingly similar equation $x_1^2 x_2 = x_3$ is PR.

Example

Let $P(x_1, x_2, x_3) = x_1^2 x_2 - 2x_3$. Pick any prime number p with $p \equiv 3$ or $p \equiv 5 \mod 8$, so that 2 is not a quadratic residue modulo p. Then condition (1) is satisfied because $z^3 - 2z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified. Since it has no constant solutions $x_1 = x_2 = x_3$, we can conclude that $P(x_1, x_2, x_3)$ is not PR.

Notice that, by Multiplicative Rado's Theorem, the seemingly similar equation $x_1^2 x_2 = x_3$ is PR.

Corollary

Let $P(\mathbf{x}) = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}[x_1, \ldots, x_n]$ be an homogeneous polynomial. If for every nonempty $J \subseteq supp(P)$ one has $\sum_{\alpha \in J} c_{\alpha} \neq 0$, then $P(\mathbf{x})$ is not PR.

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term.

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following "Rado's condition" is satisfied:

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following "Rado's condition" is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $d_i = d_j$ for every $i, j \in J$, and $\sum_{j \in J} c_{j,d_j} = 0$."

Theorem

For every i = 1, ..., n let $P_i(x_i) = \sum_{s=1}^{d_i} c_{i,s} x_i^s$ be a polynomial of degree d_i in the variable x_i with no constant term. If the Diophantine equation

$$\sum_{i=1}^{n} P_i(x_i) = 0$$

is PR then the following "Rado's condition" is satisfied:

• "There exists a nonempty set $J \subseteq \{1, \ldots, n\}$ such that $d_i = d_j$ for every $i, j \in J$, and $\sum_{j \in J} c_{j,d_j} = 0$."

Idea of the proof: by contradition using p-expansions of hypernatural numbers; some refined nonstandard wizardry (overspilling principles, saturation) is used.

Corollary

A polynomial of the form $\sum_{i=1}^{n} c_i x_i + P(y)$, where P is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Corollary

A polynomial of the form $\sum_{i=1}^{n} c_i x_i + P(y)$, where P is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Example

The polynomial

$$P(x,y) = x^3 + 2x + y^3 - 2y$$

is not PR (even if it contains a partial sum of coefficients that equals zero).

$\operatorname{Corollary}$

A polynomial of the form $\sum_{i=1}^{n} c_i x_i + P(y)$, where P is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Example

The polynomial

$$P(x,y) = x^3 + 2x + y^3 - 2y$$

is not PR (even if it contains a partial sum of coefficients that equals zero).

Example

The polynomials $x^n + y^m = z^k$ are not PR for $k \notin \{n, m\}$.

Open Problems/1 Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings.

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

• The equation
$$\sum_{i=1}^{s} c_i x_i^k$$
 is PR;

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \ldots, s\}$ s.t. $\sum_{i \in J} c_i = 0$.

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \ldots, s\}$ s.t. $\sum_{i \in J} c_i = 0$.

 $s_0(k)$ is of the order $k \log k$.

Open Problem 1. Is $x^2 + y^2 = z^2$ PR?

Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

Theorem

For every $k \in \mathbb{N}$ there exists $s_0(k)$ such that for every $s > s_0(k)$ and $c_1, \ldots, c_s \in \mathbb{Z} \setminus \{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_i x_i^k$ is PR;
- there exists a nonempty set $J \subseteq \{1, \ldots, s\}$ s.t. $\sum_{i \in J} c_i = 0$.

 $s_0(k)$ is of the order $k \log k$.

Open Problem 2. Are there simple decidable conditions under which a given (non-homogeneous) Diophantine equation with no constant term is PR on \mathbb{N} if and only if it is PR on \mathbb{Z} if and only if it is PR on \mathbb{Q} ?
Open Problems/2

Open Problem 3. Are there simple "Rado-like" necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields \mathbb{F}_p ?

Open Problem 3. Are there simple "Rado-like" necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields \mathbb{F}_p ?

Open Problem 4 Is there a characterization of PR infinite systems of Diophantine equations in terms of u-equivalence? (Or, equivalently, by means of ultrafilters?)

Thank You!

 $email:\ lorenzo.luperi.baglini@univie.ac.at$