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Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

Definition

Let P(x1,...,2p) € Z|x1,...,2,]. We say that the equation
P(z1,...,2,) =0 is (weakly) partition reqular (PR) on N if it has a
monochromatic solution in every finite coloring of N, i.e.
VEkeN,VYN=Aj u---U A Ji <k Jxq,...,2, € A; s.t.
P(z1,...,2,) =0.

Example
Trivially, for every n € N, the polynomial x — n is PR.
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Rado’s theorem

Theorem (Schur)
The polynomial v +y — z 1s PR. J
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Theorem (Rado)

A linear Diophantine equation with no constant term
1Ty + -+ cepzy =0

18 PR on N if and only if the following condition is satisfied:
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Nonlinear results/1

Theorem (Multiplicative Rado)
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A nonlinear Diophantine equation || ;' =1 is PR on N if and only if
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Nonlinear results,/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let P(z) € Z|z] be such that P(0) = 0. Then the equation v —y = P(z)
is PR.
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Nonlinear results,/2

Theorem (Bergelson, Furstenberg, McCutcheon)

Let P(z) € Z|z] be such that P(0) = 0. Then the equation v —y = P(z)
is PR.

Idea: use ergodic methods (recurrence sets).

Theorem (Csikvari, Gyarmati and Sarkézy)

2

The equation x +y = 2 is not partition regular.

They asked the following question: is z + y = tz PR?

In 2010, by using algebra in the space of ultrafilters SN, Bergelson
solved the problem in the positive.
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Noulinear results/3

Independently, Hindman proved a more general version of Bergelson’s
result:
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Noulinear results/3

Independently, Hindman proved a more general version of Bergelson’s
result:

Theorem (Hindman)
All Diophantine equations of the form > x; = [[i~, y; are PR. J

Idea: use the algebra of SN, in particular the existence of a ultrafilter U
such that every set A € U is additively and multiplicatively IP.

Theorem (Luperi Baglini)

Let n,m > 0. For every choice of sets F; € {1,...,m}, the equation
D @ xi(HjeFi yj) = 0 is partition regular whenever ) . ;c; =0 for
some nonempty J < {1,...,m}. (It is agreed that [ [,y = 1.)

Idea: use the existence of a multiplicatively idempotent ultrafilter U
with good linear properties; study the ultrafilter using nonstandard
analysis.
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Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let k,n,m € N be such that k ¢ {n,m}. Then the equation
™ 4+ y" = 2* is not PR.
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Nonlinear results/4

Theorem (Di Nasso, Riggio)

Let k,n,m € N be such that k ¢ {n,m}. Then the equation
™ 4+ y" = 2* is not PR.

Idea: use nonstandard analysis, write numbers in base p for a
sufficiently large prime number p.

Theorem (Moreira)
Let 3" 1 ¢; = 0. Then Y- c;z? =y is PR.

Idea: use ergodic methods involving the set of affinities {z — ax + b};
alternatively, use an embeddability property of piecewise syndetic sets
w.r.t. arithmetic progressions.
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The algebra of SN

Definition
U < p(N) is an ultrafilter if:

Lorenzo Luperi Baglini University of Vienna



The algebra of SN

Definition
U < p(N) is an ultrafilter if:
°o J¢U;

Lorenzo Luperi Baglini University of Vienna



The algebra of SN

Definition

U < p(N) is an ultrafilter if:
°o J¢U;
e AcU, A B=Bel;

Lorenzo Luperi Baglini University of Vienna



The algebra of SN

Definition

U < p(N) is an ultrafilter if:
o J¢U,;
e AcU, A B=Bel;
e ABeU=AnBel;

Lorenzo Luperi Baglini University of Vienna



The algebra of SN

Definition
U < p(N) is an ultrafilter if:
o J¢U,;
e AcU, A B=Bel;
e ABeU=AnBel;
o VAe p(N) AcUU & A°¢ UL.

Lorenzo Luperi Baglini University of Vienna 8 / 32



The algebra of SN

Definition
U < p(N) is an ultrafilter if:
o J¢U,;
e AcU, A B=Bel;
e ABeU=AnBel;
o VAe p(N) AcUU & A°¢ UL.
We let BN denote the set of ultrafilters on N.

Lorenzo Luperi Baglini University of Vienna 8 / 32



The algebra of SN

Definition
U < p(N) is an ultrafilter if:
o J¢U,;
e AcU, A B=Bel;
e ABeU=AnBel;
o VAe p(N) AcUU & A°¢ UL.
We let BN denote the set of ultrafilters on N.

Topology: for every A€ p(N) let ©4 = {U/ € N | A e U}.

Lorenzo Luperi Baglini

University of Vienna

8 / 32



The algebra of SN

Definition
U < p(N) is an ultrafilter if:
o J¢U,;
e AcU, A B=Bel;
e ABeU=AnBel;
o VAe p(N) AcUU & A°¢ UL.
We let BN denote the set of ultrafilters on N.

Topology: for every A€ p(N) let ©4 = {U/ € N | A e U}.

IfU,VepNand A< N, we let

AeUdV < {n|A—neV}el,

Lorenzo Luperi Baglini University of Vienna

8 / 32




The algebra of SN

Definition
U < p(N) is an ultrafilter if:
o J¢U,;
e AcU, A B=Bel;
e ABeU=AnBel;
o VAe p(N) AcUU & A°¢ UL.
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Topology: for every A€ p(N) let ©4 = {U/ € N | A e U}.
IfU,VepNand A< N, we let
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The algebra of SN

Definition
U < p(N) is an ultrafilter if:
o J¢U,;
e AcU, A B=Bel;
e ABeU=AnBel;
o VAe p(N) AcUU & A°¢ UL.
We let BN denote the set of ultrafilters on N.

Topology: for every A€ p(N) let ©4 = {U/ € N | A e U}.
IfU,VepNand A< N, we let

AeUdV < {n|A—neV}el,

where A —n = {meN|m+ne A}. Similarly one can define Y ® V.

Lorenzo Luperi Baglini University of Vienna 16 July 2018 8 / 32



Partition regularity as a ultrafilters problem
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exists U € BN such that for every A € U there exists ai,...,a, € A with
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Partition regularity as a ultrafilters problem

BN turns out to be a natural setting where to study PR problems
because of the following characterization (which is here given for
equations, but holds in a way more general fashion):

Proposition

A Diophantine equation P (z1,...,x,) = 0 is PR if and only if there
exists U € BN such that for every A € U there exists ai,...,a, € A with
P(ai,...,a,) =0.

In this case, we say that U witnesses the PR of the equation (notation:
UkEPla,...,ay) =0).
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Banach density and IP-sets

Definition

Let A € N. The upper Banach density of A is
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Banach density and IP-sets

Definition

Let A € N. The upper Banach density of A is

BD(A) = lirnn—>+00 SUPyeN %

Definition
Let G = (g;)ien be an increasing sequence of natural numbers. The

IP-set generated by G is the set of finite sums

k

FS(G) = FS(gi)ien = {Z i

=1

i1<i2<---<ik}.

A set A € N is called IP-large if it contains an IP-set. Multiplicative
IP-sets and multiplicative IP-large sets are defined similarly.
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Special ultrafilters

Various kind of ultrafilters are important in this field.

1Well, as far as "simple" goes for the kind of ultrafilters used here.
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Special ultrafilters

Various kind of ultrafilters are important in this field. However, to keep

things simple', it sufficies to know that

K(©)nl(®) nBD # &.
Indeed, it contains all combinatorially rich ultrafilters.

Idea to keep in mind for what follows: there exist some super nice
ultrafilters, whose existence will be used in the following.

1Well, as far as "simple" goes for the kind of ultrafilters used here.
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A surprisingly simple key Lemma

Lemma

Let U be a common witness of the equations Py (x1,...,2,) =0 and
P2(y17"'7ym) = [,
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A surprisingly simple key Lemma

Lemma

Let U be a common witness of the equations Py (x1,...,2,) =0 and
Py (y1,...,ym) =0. Then U is also a PR-witness of the system:

Py (z1,...,2,) = 0;
Py (y1,--. Ym) = 0;
1 = Y1

Proof.

Let A € U be fixed. Let

A = {a€eAlJag,...,ap € Ast. Pi(a,ag,...,a,) =0},

Ay = {b€A|E|b2,...,bm€AS.t. Pg(b,bg,...,bm)ZO}.

Notice that Aj, Ag € U, as otherwise = (U = P, = 0). Take A1 n As.
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Some examples

Example
Take U = u—v = t2.
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Some examples

Example
Take U = u—v = t2.
Then U witnesses also of the PR of the system

u —y = a%
U2_2=t2;
y =t.

It is readily seen that this is equivalent to the PR of the configuration

{z,y, 2,y + % 2z +y?} (which had already been proven by ergodic
methods).
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Homogeneous equations

Theorem
Let P(x1,...,2z,) be a homogeneous PR polynomial.
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Homogeneous equations

Theorem

Let P(x1,...,2z,) be a homogeneous PR polynomial. Then the set of its
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Homogeneous equations

Theorem

Let P(x1,...,2z,) be a homogeneous PR polynomial. Then the set of its
PR-witnesses

mPZ{UEIBN|U)=P(:L‘1’"'7:L‘H)=O}

18 a closed multiplicative two sided ideal.

Corollary

Let P(x1,...,x,) be a homogeneous PR polynomial. Then

Uk P(x1,...,2,) =0 for every U € K(BN, ®).
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The first generalization result

Theorem

Let ¢ (1 — x2) = P(y1,-..,yx) be a Diophantine equation where the
polynomial P has no constant term and ¢ # 0. If the set A € N is
IP-large and has positive Banach density then there exist &1, € A and
mutually distinct n,...,nx € A such that c (&1 — &) = P(n1, ..., Mk).
Moreover, if k = 1 then one can take & # &o.
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The first generalization result

Theorem

Let ¢ (1 — x2) = P(y1,-..,yx) be a Diophantine equation where the
polynomial P has no constant term and ¢ # 0. If the set A € N is
IP-large and has positive Banach density then there exist &1, € A and
mutually distinct n,...,nx € A such that c (&1 — &) = P(n1, ..., Mk).
Moreover, if k = 1 then one can take & # &o.

Definition

A polynomial with integer coefficients is called a Rado polynomial if it
can be written in the form

c1x1 + o+ cnn + Plyr, .- o, yk)

where n = 2, P has no constant term, and there exists a nonempty

subset J < {1,...,n} such that },;c;c; = 0.
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Generalized Rado

Theorem

Let

R(xi,. .. Zny Y1y Yk) = C1Z1 + ... + CnZn + P(y1, ..., yk)

be a Rado polynomial. Then every ultrafilter U € K(®) nI(®) n BD is
a PR-witness of R = 0.
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Generalized Rado

Theorem

Let

R(xi,. .. Zny Y1y Yk) = C1Z1 + ... + CnZn + P(y1, ..., yk)

be a Rado polynomial. Then every ultrafilter U € K(®) nI(®) n BD is
a PR-witness of R = 0.

Proof.

Consider the following system:

c1z + coxo + ... + cpxy, = 0;

Cl(’LU —1'1) = P(yla’yk)7
Z = W.
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Main positive result/1
Theorem

Let § be the family of polynomials whose PR on N is witnessed by at
least an ultrafilter U € I(®) N K(®) n (@) n BD. Then § includes:
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n
Z Ci Ty (H Z/j)
=1 JEF;

where " | ¢; x; is a Rado polynomial and sets F; < {1,...,m};

Lorenzo Luperi Baglini

University of Vienna

16 July 2018 17 / 32




Main positive result/1
Theorem

Let § be the family of polynomials whose PR on N is witnessed by at

least an ultrafilter U € I(®) N K(®) n (@) n BD. Then § includes:
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e Fwery polynomial of the form
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=1 JEF;

where " | ¢; x; is a Rado polynomial and sets F; < {1,...,m};
o Fuvery polynomial

k
P(%?Jl’---,yk) :w_l_[yi;
=1

Lorenzo Luperi Baglini

University of Vienna

16 July 2018 17 / 32




Main positive result/1
Theorem

Let § be the family of polynomials whose PR on N is witnessed by at

least an ultrafilter U € I(®) N K(®) n (@) n BD. Then § includes:
o Fvery Rado polynomial;

e Fwery polynomial of the form
n
2 Ci Ty (H yj)
=1 JEF;

where " | ¢; x; is a Rado polynomial and sets F; < {1,...,m};
o Fuvery polynomial

k
P(%?Jl’---,yk) :w_l_[yi;
=1

Lorenzo Luperi Baglini

University of Vienna

16 July 2018 17 / 32




Main positive result/2

Theorem

o Fuvery polynomial

k
P(x7y17"'7yk) = x_Hygia
i=1

whenever the exponents a; € Z satisfy > ;1 a; = 1.
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Theorem

o Fuvery polynomial

k
P(%?Jl;--w?ﬂc) = x_Hy?i;
i=1

whenever the exponents a; € Z satisfy > ;1 a; = 1.

Moreover, the family § satisfies the following closure properties:

(i) If P(z,y1,--.,yk) €S and z — g(x1,...,2,) €T, then
P(g(xlw"al‘n)?ylv"'?yk) ES':.
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Main positive result/2

Theorem

o Fuvery polynomial

k
P(%?Jl;--w?ﬂc) = m_Hygia
i=1

whenever the exponents a; € Z satisfy > ;1 a; = 1.

Moreover, the family § satisfies the following closure properties:
(1) [fP(Zaylw-'ayk) ES and z —g(xl,...,mn) ES; then
P(g(.’Ifl,- oo al‘n)?ylv ° o0 7yk') € 3':.
(i1) if P(x1,...,2n) € F is homogeneous, then P (i, el i) €F.
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Example
Let n,m € N and assume that, for every ¢ < n, j < m, the equations

T3 )
Ti1 = D) CinTin, Yi1 = Y, diklik
h=1 k=1

are PR.
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Some examples

Example

Let n,m € N and assume that, for every ¢ < n, j < m, the equations

Ti Sj
Tl = Z CihTihy Yj,1 = Z dj kYj k
h=1 —

are PR.
Let ai,...,an,b1,...,by, be such that Z?:l a; = 2.5, bj and consider

the homogeneous PR equation [ [[_, ¢ = [[/L, z?j.
All these equations are PR and homogeneous and therefore, by the
closure property (i), also

n

T3 @ m Sj bj
11 (2 Ci,hTi h) = 11 (2 d',k%‘,k)
j=1 \k—1

i=1
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Some examples
Example

For every n € N, the polynomial v — v — 2" is in §; moreover, for every
k = 2 the function x = ]_[?:1 x; is in §. Therefore, for every h,k > 2 we
can apply the closure property (i) of § to the system

h
L= ijlxj’
k
y =115
rT=1y="
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Some examples
Example

For every n € N, the polynomial v — v — 2" is in §; moreover, for every

k = 2 the function x = ]_[?:1 x; is in §. Therefore, for every h,k > 2 we

can apply the closure property (i) of § to the system

u—v=2z"
h

x—l_[jfl%
k

y =115

rT=1y="

Hence ]_[?:1 iy = ]_[?:1 y; = 2" is in §. In particular, 2129 — y1y2 = 2>
is PR.
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Some examples

Example

For every n € N, the polynomial v — v — 2" is in §; moreover, for every
k = 2 the function x = ]_[?:1 x; is in §. Therefore, for every h,k > 2 we
can apply the closure property (i) of § to the system

u—v=2z"%
h

x—l_[jfl%
k

y =115

rT=1y="

Hence ]_[?:1 iy = ]_[?:1 y; = 2" is in §. In particular, 2129 — y1y2 = 2>
is PR.

Example

P(x1,x9,x3) = x129 — 223 is PR but it does not belong to §.
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A property is elementary if it talks about elements of X (it is not
elementary when talks about subsets or functions).
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Nonstandard analysis: basic idea

Nonstandard analysis essentially consists of two properties:

O Every mathematical object X is extended to an object *X, called
its hyper-extension or nonstandard extension.

© *X is a sort of weakly isomorphic copy of X, in the sense that it
satisfies the same elementary properties as X.

A property is elementary if it talks about elements of X (it is not
elementary when talks about subsets or functions).

The preservation of elementary properties when taking
hyper-extensions is called transfer principle.
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u-equivalence and partition regularity

*N is the hyper-extension of N.
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u-equivalence and partition regularity

*N is the hyper-extension of N. Its elements have the same elementary
properties of natural numbers:

e addition can be extended so to make *N a semigroup;
o the same with multiplication;

o the linear order of N can be extended to a linear order of *N;
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*N is the hyper-extension of N. Its elements have the same elementary
properties of natural numbers:

addition can be extended so to make *N a semigroup;

the same with multiplication;

the linear order of N can be extended to a linear order of *N;

@ and so on.
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u-equivalence and partition regularity

*N is the hyper-extension of N. Its elements have the same elementary
properties of natural numbers:

addition can be extended so to make *N a semigroup;

the same with multiplication;

the linear order of N can be extended to a linear order of *N;

@ and so on.

In *N we have infinite numbers, e.g. elements o € *N such that a > n
for every n e N.
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u-equivalence and partition regularity

*N is the hyper-extension of N. Its elements have the same elementary
properties of natural numbers:

addition can be extended so to make *N a semigroup;

the same with multiplication;

the linear order of N can be extended to a linear order of *N;

@ and so on.

In *N we have infinite numbers, e.g. elements o € *N such that a > n
for every n e N.

Example of non-elementary property: the well-order. In fact, the set of
infinite elements does not have a minimum.
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u-equivalence and partition regularity

Definition

Two hypernatural numbers &,&' € *N are u-equivalent if they cannot be

distinguished by any hyper-extension, i.e. if for every A € N one has
either £, € *A or £, ¢ *A.
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u-equivalence and partition regularity

Definition

Two hypernatural numbers &,&' € *N are u-equivalent if they cannot be
distinguished by any hyper-extension, i.e. if for every A € N one has
either £, € *A or £, ¢ *A.

Ultrafilters and hypernaturals can be identified:
o a—->Uy,={Aep(N)|aec*A};
o U — puUU) ={ae*N|U =U,}.

Proposition
A Diophantine equation P(x1,...,x,) =0 is PR if and only if there
exist u-equivalent hypernatural numbers &1, ..., &, with

*P(§17"'7§n) = 0.
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Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;
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Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;
@ a < f means that a; < §; foralli =1,...,n;

@ o < S means that < S and o # 3

o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [, 5" is denoted by x“

Lorenzo Luperi Baglini University of Vienna 16 July 2018 24 / 32



Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;

o a < P means that o < B; foralli=1,...,n;

@ a <  means that o < § and o # 3

o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [ ;" 2 is denoted by x;

o The length of a multi-index o = (a1,..., o) is |a] = D" | a;;

Lorenzo Luperi Baglini University of Vienna 16 July 2018 24 / 32



Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;

o a < P means that o < B; foralli=1,...,n;

@ a <  means that o < § and o # 3

o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [ ;" 2 is denoted by x;

o The length of a multi-index o = (a1,..., o) is |a] = D" | a;;

@ A set I of n-dimensional multi-indexes having all the same length

is called homogeneous;

Lorenzo Luperi Baglini University of Vienna 16 July 2018 24 / 32



Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;

o a < P means that o < B; foralli=1,...,n;

@ a <  means that o < § and o # 3

o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [ ;" 2 is denoted by x;
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is called homogeneous;

e Polynomials P € Z|x1,...,z,| are written in the form
P(x) = >, cax® where o are multi-indexes;
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o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [ ;" 2 is denoted by x;
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Multi-index notations

e An n-dimensional multi-index is an n-tuple o = (aq, ..., a,) € NiJ;

o a < P means that o < B; foralli=1,...,n;

@ a <  means that o < § and o # 3

o If x = (x1,...,2,) is vector and a = (a1, ..., ) is a multi-index,
the product [ ;" 2 is denoted by x;

o The length of a multi-index o = (a1,..., o) is |a] = D" | a;;

@ A set I of n-dimensional multi-indexes having all the same length
is called homogeneous;

e Polynomials P € Z|x1,...,z,| are written in the form
P(x) = >, cax® where o are multi-indexes;

e The support of P is the finite set supp(P) = {«a | co # 0};

e A polynomial P(x) = ., cax® is homogeneous if supp(P) is a
homogeneous set of indexes.
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Minimal and maximal indeces

Definition

Let P(x) = Y, cax® € Zlx1,...,xpn]. We say that a multi-index
a € supp(P) is minimal if there are no B € supp(P) with 8 < «. The
notion of maximal multi-index is defined similarly.
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Let P(x) = Y, cax® € Zlx1,...,xpn]. We say that a multi-index

a € supp(P) is minimal if there are no B € supp(P) with 8 < «. The
notion of mazximal multi-index is defined similarly. A nonempty set
J € supp(P) is called a Rado set of indexes if for every o, 8 € J there
exists a nonempty A S {1,...,n} with Y ,p 0 = > Bi
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notion of mazximal multi-index is defined similarly. A nonempty set

J € supp(P) is called a Rado set of indexes if for every o, 8 € J there
exists a nonempty A S {1,...,n} with Y ,p 0 = > Bi

For linear polynomials, every nonempty
J € Supp(P) = {a(1),...,a(n)} is a Rado set of both minimal and
maximal indexes.
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Minimal and maximal indeces

Definition

Let P(x) = Y, cax® € Zlx1,...,xpn]. We say that a multi-index

a € supp(P) is minimal if there are no B € supp(P) with 8 < «. The
notion of mazximal multi-index is defined similarly. A nonempty set

J € supp(P) is called a Rado set of indexes if for every o, 8 € J there
exists a nonempty A S {1,...,n} with Y ,p 0 = > Bi

For linear polynomials, every nonempty
J € Supp(P) = {a(1),...,a(n)} is a Rado set of both minimal and
maximal indexes.

Example

In c1722073 + coz1z3al + csx?r3adxy, the set J = {1,2} is a Rado set
of minimal (but not maximal) indeces.
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General necessary condition

Theorem

Let P(x) = >, cax® € Z]x, ..

., Tp| be a polynomial with no constant
term.
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General necessary condition

Theorem
Let P(x) = Y, caX® € Z|x1, ..., zp] be a polynomial with no constant
term. Suppose there exists a prime p such that:

9>, caz'® =0 mod p has no solutions z % 0 ;

@ For every Rado set J of minimal indexes, Y . ; ca?zl® =0 mod p
has no solutions z # 0.

Then P(x) is not PR, except possibly for constant solutions
Bl = o000 = e

Proof.
Pick infinite &; » ... + &, such that P(§) = >, ca§“ =0
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General necessary condition

Theorem
Let P(x) = Y, caX® € Z|x1, ..., zp] be a polynomial with no constant
term. Suppose there exists a prime p such that:

9>, caz'® =0 mod p has no solutions z % 0 ;

@ For every Rado set J of minimal indexes, Y . ; ca?zl® =0 mod p
has no solutions z # 0.

Then P(x) is not PR, except possibly for constant solutions
Bl = o000 = e

Proof.
Pick infinite &1 » ... + &, such that P(§) = >, ca€® = 0. Write & in

u

base p.
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General necessary condition

Theorem

Let P(x) = Y, caX® € Z|x1, ..., zp] be a polynomial with no constant
term. Suppose there exists a prime p such that:
9>, caz'® =0 mod p has no solutions z % 0 ;
@ For every Rado set J of minimal indexes, Y . ; ca?zl® =0 mod p
has no solutions z # 0.

Then P(x) is not PR, except possibly for constant solutions
Bl = o000 = e

Proof.

Pick infinite &1 » ... + &, such that P(§) = >, ca€® = 0. Write & in
base p. Find the absurd playing with the exponents and the coefficients
in this expansion. [

v
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Example

Let P(x1,22,73) = 2329 — 223. Pick any prime number p with p = 3 or
p =5 mod 8§, so that 2 is not a quadratic residue modulo p.
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Examples

Example

Let P(x1,22,73) = 2329 — 223. Pick any prime number p with p = 3 or
p =5 mod §, so that 2 is not a quadratic residue modulo p. Then
condition (1) is satisfied because z3 — 2z = 0 iff z = 0,and also
condition (2) is easily verified.
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Example

Let P(x1,22,73) = 2329 — 223. Pick any prime number p with p = 3 or
p =5 mod §, so that 2 is not a quadratic residue modulo p. Then
condition (1) is satisfied because z3 — 2z = 0 iff z = 0,and also
condition (2) is easily verified.Since it has no constant solutions

x1 = x9 = x3, we can conclude that P(xzq,z9,x3) is not PR.
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Examples

Example

Let P(x1,22,73) = 2329 — 223. Pick any prime number p with p = 3 or
p =5 mod §, so that 2 is not a quadratic residue modulo p. Then
condition (1) is satisfied because 2% — 2z = 0 iff z = 0,and also
condition (2) is easily verified.Since it has no constant solutions

x1 = x9 = x3, we can conclude that P(xzq,z9,x3) is not PR.

Notice that, by Multiplicative Rado’s Theorem, the seemingly similar
equation z3zy = x3 is PR.

Corollary

Let P(x) =Y., caX® € Z|x1, ...,y be an homogeneous polynomial. If
for every nonempty J < supp(P) one has Y c;ca # 0, then P(x) is
not PR.
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Necessary condition for sums of polynomials in one
variable

Theorem

For everyi=1,...,n let Pj(x;) = Zg;l cisx; be a polynomial of degree
d; in the variable x; with no constant term.
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Theorem

For everyi=1,...,n let Pj(x;) = Zg;l cisx; be a polynomial of degree
d; in the variable x; with no constant term. If the Diophantine equation

Z Pi(xz;) =0
i=1

1s PR then the following “Rado’s condition” is satisfied:
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Theorem

For everyi=1,...,n let Pj(x;) = Zg;l cisx; be a polynomial of degree
d; in the variable x; with no constant term. If the Diophantine equation

n
Z Pi(xz;) =0
i=1
1s PR then the following “Rado’s condition” is satisfied:

o “There erxists a nonempty set J < {1,...,n} such that d; = d; for
every i,j € J, and 3 ;c; ¢ja; = 0.7
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Necessary condition for sums of polynomials in one
variable

Theorem

For everyi=1,...,n let Pj(x;) = Zg;l cisx; be a polynomial of degree
d; in the variable x; with no constant term. If the Diophantine equation

Z Pz(-'l:z) =
=1

1s PR then the following “Rado’s condition” is satisfied:
o “There erxists a nonempty set J < {1,...,n} such that d; = d; for

every i,j € J, and 3 ;c; ¢ja; = 0.7

Idea of the proof: by contradition using p-expansions of hypernatural
numbers; some refined nonstandard wizardry (overspilling principles,
saturation) is used.
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Corollary

A polynomial of the form Y | c;x; + P(y), where P is a nonlinear
polynomial with no constant term, is PR if and only if it is a Rado
polynomial.
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Corollary

A polynomial of the form Y | c;x; + P(y), where P is a nonlinear
polynomial with no constant term, is PR if and only if it is a Rado
polynomial.

Example
The polynomial
P(z,y) = 23+ 2z+9> -2y

is not PR (even if it contains a partial sum of coefficients that equals
7€ero).
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Examples

Corollary

A polynomial of the form Y | c;x; + P(y), where P is a nonlinear
polynomial with no constant term, is PR if and only if it is a Rado
polynomial.

Example
The polynomial
P(z,y) = 23+ 2z+9> -2y

is not PR (even if it contains a partial sum of coefficients that equals
7€ero).

Example

The polynomials 2" + y™ = z* are not PR for k ¢ {n,m}.
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Open Problem 1. Is 22 + 32 = 22 PR?
Recently, Heule, Kullmann and Marek have proven the PR of the
Pythagorean equation for 2-colorings.
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Theorem

For every k € N there exists so(k) such that for every s > so(k) and
1, ... ,cs € Z\{0} the following equivalence holds:
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theoretical methods Chow, Lindqvist and Prendiville have proven the
following;:

Theorem

For every k € N there exists so(k) such that for every s > so(k) and
1, ... ,cs € Z\{0} the following equivalence holds:

o The equation Y.;_, c;x¥ is PR;

o there exists a nonempty set J S {1,...,s} s.t. Di;e;¢ =0,
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Pythagorean equation for 2-colorings. Moreover, using number
theoretical methods Chow, Lindqvist and Prendiville have proven the
following;:

Theorem

For every k € N there exists so(k) such that for every s > so(k) and
1, ... ,cs € Z\{0} the following equivalence holds:

o The equation Y.;_, c;x¥ is PR;

o there exists a nonempty set J S {1,...,s} s.t. Di;e;¢ =0,

so(k) is of the order klog k.
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Open Problem 1. Is 22 + 32 = 22 PR?

Recently, Heule, Kullmann and Marek have proven the PR of the
Pythagorean equation for 2-colorings. Moreover, using number
theoretical methods Chow, Lindqvist and Prendiville have proven the
following;:

Theorem

For every k € N there exists so(k) such that for every s > so(k) and
1, ... ,cs € Z\{0} the following equivalence holds:

o The equation Y.;_, c;x¥ is PR;

o there exists a nonempty set J S {1,...,s} s.t. Di;e;¢ =0,

so(k) is of the order klog k.

Open Problem 2. Are there simple decidable conditions under which
a given (non-homogeneous) Diophantine equation with no constant
term is PR on N if and only if it is PR on Z if and only if it is PR on Q7
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Open Problem 3. Are there simple “Rado-like” necessary and
sufficient conditions under which a given Diophantine equation with no
constant term is PR on sufficiently large finite fields F,?
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Open Problem 3. Are there simple “Rado-like” necessary and
sufficient conditions under which a given Diophantine equation with no
constant term is PR on sufficiently large finite fields F,?

Open Problem 4 Is there a characterization of PR infinite systems of
Diophantine equations in terms of u-equivalence? (Or, equivalently, by
means of ultrafilters?)
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