# Partition regularity of nonlinear Diophantine equations 

Lorenzo Luperi Baglini

University of Vienna
RaTLoCC 2018: Ramsey Theory in Logic, Combinatorics and Complexity - Bertinoro

## Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

## Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

## Definition <br> Let $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.

## Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

## Definition

Let $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. We say that the equation $P\left(x_{1}, \ldots, x_{n}\right)=0$ is (weakly) partition regular (PR) on $\mathbb{N}$ if

## Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

## Definition

Let $P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. We say that the equation $P\left(x_{1}, \ldots, x_{n}\right)=0$ is (weakly) partition regular ( $P R$ ) on $\mathbb{N}$ if it has a monochromatic solution in every finite coloring of $\mathbb{N}$, i.e.
$\forall k \in \mathbb{N}, \forall \mathbb{N}=A_{1} \cup \cdots \cup A_{k} \exists i \leqslant k \exists x_{1}, \ldots, x_{n} \in A_{i}$ s.t.
$P\left(x_{1}, \ldots, x_{n}\right)=0$.

## Partition regularity of polynomials/equations

In this talk, we will repeatedly talk about the following property:

$$
\begin{aligned}
& \text { Definition } \\
& \text { Let } P\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \text {. We say that the equation } \\
& P\left(x_{1}, \ldots, x_{n}\right)=0 \text { is (weakly) partition regular }(P R) \text { on } \mathbb{N} \text { if it has a } \\
& \text { monochromatic solution in every finite coloring of } \mathbb{N} \text {, i.e. } \\
& \forall k \in \mathbb{N}, \forall \mathbb{N}=A_{1} \cup \cdots \cup A_{k} \exists i \leqslant k \exists x_{1}, \ldots, x_{n} \in A_{i} \text { s.t. } \\
& P\left(x_{1}, \ldots, x_{n}\right)=0 .
\end{aligned}
$$

## Example

Trivially, for every $n \in \mathbb{N}$, the polynomial $x-n$ is PR .

## Rado's theorem

Theorem (Schur)
The polynomial $x+y-z$ is $P R$.

## Rado's theorem

## Theorem (Schur)

The polynomial $x+y-z$ is $P R$.

Theorem (Rado)
A linear Diophantine equation with no constant term

$$
c_{1} x_{1}+\cdots+c_{n} x_{n}=0
$$

is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

## Rado's theorem

## Theorem (Schur)

The polynomial $x+y-z$ is $P R$.

Theorem (Rado)
A linear Diophantine equation with no constant term

$$
c_{1} x_{1}+\cdots+c_{n} x_{n}=0
$$

is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$."


## Nonlinear results/1

Theorem (Multiplicative Rado)
A nonlinear Diophantine equation $\prod_{i=1}^{n} x_{i}^{c_{i}}=1$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

## Nonlinear results/1

Theorem (Multiplicative Rado)
A nonlinear Diophantine equation $\prod_{i=1}^{n} x_{i}^{c_{i}}=1$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$."


## Nonlinear results/1

Theorem (Multiplicative Rado)
A nonlinear Diophantine equation $\prod_{i=1}^{n} x_{i}^{c_{i}}=1$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$."

Idea: $n \rightarrow 2^{n}$.

## Nonlinear results/1

## Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_{i}^{c_{i}}=1$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$."

Idea: $n \rightarrow 2^{n}$.

## Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_{1} x_{1}^{1 / k}+\cdots+c_{n} x_{n}^{1 / k}=0$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

## Nonlinear results/1

## Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_{i}^{c_{i}}=1$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$."

Idea: $n \rightarrow 2^{n}$.

## Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_{1} x_{1}^{1 / k}+\cdots+c_{n} x_{n}^{1 / k}=0$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$."


## Nonlinear results/1

## Theorem (Multiplicative Rado)

A nonlinear Diophantine equation $\prod_{i=1}^{n} x_{i}^{c_{i}}=1$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$."

Idea: $n \rightarrow 2^{n}$.

## Theorem (Lefmann)

Let $k \in \mathbb{N}$. A Diophantine equation of the form $c_{1} x_{1}^{1 / k}+\cdots+c_{n} x_{n}^{1 / k}=0$ is $P R$ on $\mathbb{N}$ if and only if the following condition is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$."

Idea: $n \rightarrow n^{k}$.

## Nonlinear results/2

Theorem (Bergelson, Furstenberg, McCutcheon)
Let $P(z) \in \mathbb{Z}[z]$ be such that $P(0)=0$. Then the equation $x-y=P(z)$ is PR.

## Nonlinear results/2

```
Theorem (Bergelson, Furstenberg, McCutcheon)
Let P(z)\in\mathbb{Z}[z] be such that P(0)=0. Then the equation }x-y=P(z is PR.
```

Idea: use ergodic methods (recurrence sets).

## Nonlinear results/2

```
Theorem (Bergelson, Furstenberg, McCutcheon)
Let P(z)\in\mathbb{Z}[z] be such that P(0)=0. Then the equation }x-y=P(z is \(P R\).
```

Idea: use ergodic methods (recurrence sets).
Theorem (Csikvári, Gyarmati and Sárkőzy)
The equation $x+y=z^{2}$ is not partition regular.

## Nonlinear results/2

```
Theorem (Bergelson, Furstenberg, McCutcheon)
Let P(z)\in\mathbb{Z}[z] be such that P(0)=0. Then the equation }x-y=P(z is \(P R\).
```

Idea: use ergodic methods (recurrence sets).
Theorem (Csikvári, Gyarmati and Sárkőzy)
The equation $x+y=z^{2}$ is not partition regular.
They asked the following question: is $x+y=t z \mathrm{PR}$ ?

## Nonlinear results/2

```
Theorem (Bergelson, Furstenberg, McCutcheon)
Let P(z)\in\mathbb{Z}[z] be such that P(0)=0. Then the equation }x-y=P(z is PR.
```

Idea: use ergodic methods (recurrence sets).
Theorem (Csikvári, Gyarmati and Sárkőzy)
The equation $x+y=z^{2}$ is not partition regular.
They asked the following question: is $x+y=t z$ PR?

In 2010 , by using algebra in the space of ultrafilters $\beta \mathbb{N}$, Bergelson solved the problem in the positive.

## Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson's result:

## Nonlinear results $/ 3$

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)
All Diophantine equations of the form $\sum_{i=1}^{n} x_{i}=\prod_{i=1}^{m} y_{i}$ are PR.

## Nonlinear results $/ 3$

Independently, Hindman proved a more general version of Bergelson's result:

Theorem (Hindman)
All Diophantine equations of the form $\sum_{i=1}^{n} x_{i}=\prod_{i=1}^{m} y_{i}$ are PR.
Idea: use the algebra of $\beta \mathbb{N}$, in particular the existence of a ultrafilter $\mathcal{U}$ such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

## Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson's result:

## Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^{n} x_{i}=\prod_{i=1}^{m} y_{i}$ are PR.
Idea: use the algebra of $\beta \mathbb{N}$, in particular the existence of a ultrafilter $\mathcal{U}$ such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Theorem (Luperi Baglini)
Let $n, m>0$. For every choice of sets $F_{i} \subseteq\{1, \ldots, m\}$, the equation $\sum_{i=1}^{n} c_{i} x_{i}\left(\prod_{j \in F_{i}} y_{j}\right)=0$ is partition regular whenever $\sum_{i \in J} c_{j}=0$ for some nonempty $J \subseteq\{1, \ldots, m\}$. (It is agreed that $\prod_{j \in \varnothing} y_{j}=1$.)

## Nonlinear results/3

Independently, Hindman proved a more general version of Bergelson's result:

## Theorem (Hindman)

All Diophantine equations of the form $\sum_{i=1}^{n} x_{i}=\prod_{i=1}^{m} y_{i}$ are PR.
Idea: use the algebra of $\beta \mathbb{N}$, in particular the existence of a ultrafilter $\mathcal{U}$ such that every set $A \in \mathcal{U}$ is additively and multiplicatively IP.

Theorem (Luperi Baglini)
Let $n, m>0$. For every choice of sets $F_{i} \subseteq\{1, \ldots, m\}$, the equation $\sum_{i=1}^{n} c_{i} x_{i}\left(\prod_{j \in F_{i}} y_{j}\right)=0$ is partition regular whenever $\sum_{i \in J} c_{j}=0$ for some nonempty $J \subseteq\{1, \ldots, m\}$. (It is agreed that $\prod_{j \in \varnothing} y_{j}=1$.)

Idea: use the existence of a multiplicatively idempotent ultrafilter $\mathcal{U}$ with good linear properties; study the ultrafilter using nonstandard analysis.

## Nonlinear results/4

## Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin\{n, m\}$. Then the equation $x^{m}+y^{n}=z^{k}$ is not $P R$.

## Nonlinear results/4

## Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin\{n, m\}$. Then the equation $x^{m}+y^{n}=z^{k}$ is not $P R$.

Idea: use nonstandard analysis, write numbers in base $p$ for a sufficiently large prime number $p$.

## Nonlinear results/4

## Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin\{n, m\}$. Then the equation $x^{m}+y^{n}=z^{k}$ is not $P R$.

Idea: use nonstandard analysis, write numbers in base $p$ for a sufficiently large prime number $p$.

Theorem (Moreira)
Let $\sum_{i=1}^{n} c_{i}=0$. Then $\sum_{i=1}^{n} c_{i} x_{i}^{2}=y$ is PR.

## Nonlinear results/4

## Theorem (Di Nasso, Riggio)

Let $k, n, m \in \mathbb{N}$ be such that $k \notin\{n, m\}$. Then the equation $x^{m}+y^{n}=z^{k}$ is not $P R$.

Idea: use nonstandard analysis, write numbers in base $p$ for a sufficiently large prime number $p$.

Theorem (Moreira)
Let $\sum_{i=1}^{n} c_{i}=0$. Then $\sum_{i=1}^{n} c_{i} x_{i}^{2}=y$ is PR.
Idea: use ergodic methods involving the set of affinities $\{x \rightarrow a x+b\}$; alternatively, use an embeddability property of piecewise syndetic sets w.r.t. arithmetic progressions.

## The algebra of $\beta \mathbb{N}$

## Definition <br> $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

## The algebra of $\beta \mathbb{N}$

Definition<br>$\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:<br>- $\varnothing \notin \mathcal{U}$;

## The algebra of $\beta \mathbb{N}$

## Definition <br> $\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if: <br> - $\varnothing \notin \mathcal{U}$; <br> - $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U}$;

## The algebra of $\beta \mathbb{N}$

## Definition

$\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

- $\varnothing \notin \mathcal{U}$;
- $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U}$;
- $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$;


## The algebra of $\beta \mathbb{N}$

## Definition

$\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

- $\varnothing \notin \mathcal{U}$;
- $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U}$;
- $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$;
- $\forall A \in \wp(\mathbb{N}) A \in \mathcal{U} \Leftrightarrow A^{c} \notin \mathcal{U}$.


## The algebra of $\beta \mathbb{N}$

## Definition

$\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

- $\varnothing \notin \mathcal{U}$;
- $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U}$;
- $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$;
- $\forall A \in \wp(\mathbb{N}) A \in \mathcal{U} \Leftrightarrow A^{c} \notin \mathcal{U}$.

We let $\beta \mathbb{N}$ denote the set of ultrafilters on $\mathbb{N}$.

## The algebra of $\beta \mathbb{N}$

## Definition

$\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

- $\varnothing \notin \mathcal{U}$;
- $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U}$;
- $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$;
- $\forall A \in \wp(\mathbb{N}) A \in \mathcal{U} \Leftrightarrow A^{c} \notin \mathcal{U}$.

We let $\beta \mathbb{N}$ denote the set of ultrafilters on $\mathbb{N}$.
Topology: for every $A \in \wp(\mathbb{N})$ let $\Theta_{A}=\{\mathcal{U} \in \beta \mathbb{N} \mid A \in \mathcal{U}\}$.

## The algebra of $\beta \mathbb{N}$

## Definition

$\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

- $\varnothing \notin \mathcal{U}$;
- $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U}$;
- $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$;
- $\forall A \in \wp(\mathbb{N}) A \in \mathcal{U} \Leftrightarrow A^{c} \notin \mathcal{U}$.

We let $\beta \mathbb{N}$ denote the set of ultrafilters on $\mathbb{N}$.
Topology: for every $A \in \wp(\mathbb{N})$ let $\Theta_{A}=\{\mathcal{U} \in \beta \mathbb{N} \mid A \in \mathcal{U}\}$. If $\mathcal{U}, \mathcal{V} \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, we let

$$
A \in \mathcal{U} \oplus \mathcal{V} \Leftrightarrow\{n \mid A-n \in \mathcal{V}\} \in \mathcal{U},
$$

## The algebra of $\beta \mathbb{N}$

## Definition

$\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

- $\varnothing \notin \mathcal{U}$;
- $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U}$;
- $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$;
- $\forall A \in \wp(\mathbb{N}) A \in \mathcal{U} \Leftrightarrow A^{c} \notin \mathcal{U}$.

We let $\beta \mathbb{N}$ denote the set of ultrafilters on $\mathbb{N}$.
Topology: for every $A \in \wp(\mathbb{N})$ let $\Theta_{A}=\{\mathcal{U} \in \beta \mathbb{N} \mid A \in \mathcal{U}\}$. If $\mathcal{U}, \mathcal{V} \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, we let

$$
A \in \mathcal{U} \oplus \mathcal{V} \Leftrightarrow\{n \mid A-n \in \mathcal{V}\} \in \mathcal{U},
$$

where $A-n=\{m \in \mathbb{N} \mid m+n \in A\}$.

## The algebra of $\beta \mathbb{N}$

## Definition

$\mathcal{U} \subseteq \wp(\mathbb{N})$ is an ultrafilter if:

- $\varnothing \notin \mathcal{U}$;
- $A \in \mathcal{U}, A \subseteq B \Rightarrow B \in \mathcal{U}$;
- $A, B \in \mathcal{U} \Rightarrow A \cap B \in \mathcal{U}$;
- $\forall A \in \wp(\mathbb{N}) A \in \mathcal{U} \Leftrightarrow A^{c} \notin \mathcal{U}$.

We let $\beta \mathbb{N}$ denote the set of ultrafilters on $\mathbb{N}$.
Topology: for every $A \in \wp(\mathbb{N})$ let $\Theta_{A}=\{\mathcal{U} \in \beta \mathbb{N} \mid A \in \mathcal{U}\}$. If $\mathcal{U}, \mathcal{V} \in \beta \mathbb{N}$ and $A \subseteq \mathbb{N}$, we let

$$
A \in \mathcal{U} \oplus \mathcal{V} \Leftrightarrow\{n \mid A-n \in \mathcal{V}\} \in \mathcal{U}
$$

where $A-n=\{m \in \mathbb{N} \mid m+n \in A\}$. Similarly one can define $\mathcal{U} \odot \mathcal{V}$.

## Partition regularity as a ultrafilters problem

$\beta \mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is here given for equations, but holds in a way more general fashion):

## Partition regularity as a ultrafilters problem

$\beta \mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is here given for equations, but holds in a way more general fashion):

## Proposition

A Diophantine equation $P\left(x_{1}, \ldots, x_{n}\right)=0$ is $P R$ if and only if there exists $\mathcal{U} \in \beta \mathbb{N}$ such that for every $A \in \mathcal{U}$ there exists $a_{1}, \ldots, a_{n} \in A$ with $P\left(a_{1}, \ldots, a_{n}\right)=0$.

## Partition regularity as a ultrafilters problem

$\beta \mathbb{N}$ turns out to be a natural setting where to study PR problems because of the following characterization (which is here given for equations, but holds in a way more general fashion):

## Proposition

A Diophantine equation $P\left(x_{1}, \ldots, x_{n}\right)=0$ is $P R$ if and only if there exists $\mathcal{U} \in \beta \mathbb{N}$ such that for every $A \in \mathcal{U}$ there exists $a_{1}, \ldots, a_{n} \in A$ with $P\left(a_{1}, \ldots, a_{n}\right)=0$.

In this case, we say that $\mathcal{U}$ witnesses the PR of the equation (notation: $\left.\mathcal{U}=P\left(a_{1}, \ldots, a_{n}\right)=0\right)$.

## Banach density and IP-sets

## Definition

Let $A \subseteq \mathbb{N}$. The upper Banach density of $A$ is $B D(A)=\lim _{n \rightarrow+\infty} \sup _{m \in \mathbb{N}} \frac{|A \cap[m, m+n]|}{n+1}$.

## Banach density and IP-sets

## Definition

Let $A \subseteq \mathbb{N}$. The upper Banach density of $A$ is
$B D(A)=\lim _{n \rightarrow+\infty} \sup _{m \in \mathbb{N}} \frac{|A \cap[m, m+n]|}{n+1}$.

## Definition

Let $G=\left(g_{i}\right)_{i \in \mathbb{N}}$ be an increasing sequence of natural numbers. The $I P$-set generated by $G$ is the set of finite sums

$$
F S(G)=F S\left(g_{i}\right)_{i \in \mathbb{N}}=\left\{\sum_{j=1}^{k} g_{i_{j}} \mid i_{1}<i_{2}<\cdots<i_{k}\right\} .
$$

A set $A \subseteq \mathbb{N}$ is called IP-large if it contains an IP-set. Multiplicative $I P$-sets and multiplicative IP-large sets are defined similarly.

## Special ultrafilters

Various kind of ultrafilters are important in this field.
${ }^{1}$ Well, as far as "simple" goes for the kind of ultrafilters used here.

## Special ultrafilters

Various kind of ultrafilters are important in this field. However, to keep
things simple ${ }^{1}$, it sufficies to know that

$$
\overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{B D} \neq \varnothing
$$

Indeed, it contains all combinatorially rich ultrafilters.
${ }^{1}$ Well, as far as "simple" goes for the kind of ultrafilters used here.

## Special ultrafilters

Various kind of ultrafilters are important in this field. However, to keep
things simple ${ }^{1}$, it sufficies to know that

$$
\overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{B D} \neq \varnothing
$$

Indeed, it contains all combinatorially rich ultrafilters.
Idea to keep in mind for what follows: there exist some super nice ultrafilters, whose existence will be used in the following.

[^0]
## A surprisingly simple key Lemma

## Lemma

Let $\mathcal{U}$ be a common witness of the equations $P_{1}\left(x_{1}, \ldots, x_{n}\right)=0$ and $P_{2}\left(y_{1}, \ldots, y_{m}\right)=0$.

## A surprisingly simple key Lemma

## Lemma

Let $\mathcal{U}$ be a common witness of the equations $P_{1}\left(x_{1}, \ldots, x_{n}\right)=0$ and $P_{2}\left(y_{1}, \ldots, y_{m}\right)=0$. Then $\mathcal{U}$ is also a PR-witness of the system:

$$
\left\{\begin{array}{l}
P_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
P_{2}\left(y_{1}, \ldots, y_{m}\right)=0 \\
x_{1}=y_{1} .
\end{array}\right.
$$

## A surprisingly simple key Lemma

## Lemma

Let $\mathcal{U}$ be a common witness of the equations $P_{1}\left(x_{1}, \ldots, x_{n}\right)=0$ and $P_{2}\left(y_{1}, \ldots, y_{m}\right)=0$. Then $\mathcal{U}$ is also a PR-witness of the system:

$$
\left\{\begin{array}{l}
P_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
P_{2}\left(y_{1}, \ldots, y_{m}\right)=0 \\
x_{1}=y_{1} .
\end{array}\right.
$$

## Proof.

Let $A \in \mathcal{U}$ be fixed. Let
$\Lambda_{1}=\left\{a \in A \mid \exists a_{2}, \ldots, a_{n} \in A\right.$ s.t. $\left.P_{1}\left(a, a_{2}, \ldots, a_{n}\right)=0\right\}$,
$\Lambda_{2}=\left\{b \in A \mid \exists b_{2}, \ldots, b_{m} \in A\right.$ s.t. $\left.P_{2}\left(b, b_{2}, \ldots, b_{m}\right)=0\right\}$.

## A surprisingly simple key Lemma

## Lemma

Let $\mathcal{U}$ be a common witness of the equations $P_{1}\left(x_{1}, \ldots, x_{n}\right)=0$ and $P_{2}\left(y_{1}, \ldots, y_{m}\right)=0$. Then $\mathcal{U}$ is also a PR-witness of the system:

$$
\left\{\begin{array}{l}
P_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
P_{2}\left(y_{1}, \ldots, y_{m}\right)=0 \\
x_{1}=y_{1}
\end{array}\right.
$$

## Proof.

Let $A \in \mathcal{U}$ be fixed. Let
$\Lambda_{1}=\left\{a \in A \mid \exists a_{2}, \ldots, a_{n} \in A\right.$ s.t. $\left.P_{1}\left(a, a_{2}, \ldots, a_{n}\right)=0\right\}$,
$\Lambda_{2}=\left\{b \in A \mid \exists b_{2}, \ldots, b_{m} \in A\right.$ s.t. $\left.P_{2}\left(b, b_{2}, \ldots, b_{m}\right)=0\right\}$.
Notice that $\Lambda_{1}, \Lambda_{2} \in \mathcal{U}$, as otherwise $\neg\left(\mathcal{U} \models P_{i}=0\right)$.

## A surprisingly simple key Lemma

## Lemma

Let $\mathcal{U}$ be a common witness of the equations $P_{1}\left(x_{1}, \ldots, x_{n}\right)=0$ and $P_{2}\left(y_{1}, \ldots, y_{m}\right)=0$. Then $\mathcal{U}$ is also a PR-witness of the system:

$$
\left\{\begin{array}{l}
P_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
P_{2}\left(y_{1}, \ldots, y_{m}\right)=0 \\
x_{1}=y_{1}
\end{array}\right.
$$

## Proof.

Let $A \in \mathcal{U}$ be fixed. Let
$\Lambda_{1}=\left\{a \in A \mid \exists a_{2}, \ldots, a_{n} \in A\right.$ s.t. $\left.P_{1}\left(a, a_{2}, \ldots, a_{n}\right)=0\right\}$,
$\Lambda_{2}=\left\{b \in A \mid \exists b_{2}, \ldots, b_{m} \in A\right.$ s.t. $\left.P_{2}\left(b, b_{2}, \ldots, b_{m}\right)=0\right\}$.
Notice that $\Lambda_{1}, \Lambda_{2} \in \mathcal{U}$, as otherwise $\neg\left(\mathcal{U} \models P_{i}=0\right)$. Take $\Lambda_{1} \cap \Lambda_{2}$. $\square$

## Some examples

## Example

Take $\mathcal{U} \models u-v=t^{2}$.

## Some examples

## Example

Take $\mathcal{U}=u-v=t^{2}$.
Then $\mathcal{U}$ witnesses also of the PR of the system

$$
\left\{\begin{array}{l}
u_{1}-y=x^{2} \\
u_{2}-z=t^{2} \\
y=t
\end{array}\right.
$$

## Some examples

## Example

Take $\mathcal{U}=u-v=t^{2}$.
Then $\mathcal{U}$ witnesses also of the PR of the system

$$
\left\{\begin{array}{l}
u_{1}-y=x^{2} ; \\
u_{2}-z=t^{2} ; \\
y=t .
\end{array}\right.
$$

It is readily seen that this is equivalent to the PR of the configuration $\left\{x, y, z, y+x^{2}, z+y^{2}\right\}$ (which had already been proven by ergodic methods).

## Homogeneous equations

Theorem
Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a homogeneous $P R$ polynomial.

## Homogeneous equations

## Theorem

Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a homogeneous $P R$ polynomial. Then the set of its $P R$-witnesses

$$
\mathfrak{W}_{P}=\left\{\mathcal{U} \in \beta \mathbb{N} \mid \mathcal{U} \models P\left(x_{1}, \ldots, x_{n}\right)=0\right\}
$$

is a closed multiplicative two sided ideal.

## Homogeneous equations

## Theorem

Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a homogeneous $P R$ polynomial. Then the set of its $P R$-witnesses

$$
\mathfrak{W}_{P}=\left\{\mathcal{U} \in \beta \mathbb{N} \mid \mathcal{U} \models P\left(x_{1}, \ldots, x_{n}\right)=0\right\}
$$

is a closed multiplicative two sided ideal.

## Corollary

Let $P\left(x_{1}, \ldots, x_{n}\right)$ be a homogeneous PR polynomial. Then $\mathcal{U}=P\left(x_{1}, \ldots, x_{n}\right)=0$ for every $\mathcal{U} \in \overline{K(\beta \mathbb{N}, \odot)}$.

## The first generalization result

## Theorem

Let $c\left(x_{1}-x_{2}\right)=P\left(y_{1}, \ldots, y_{k}\right)$ be a Diophantine equation where the polynomial $P$ has no constant term and $c \neq 0$. If the set $A \subseteq \mathbb{N}$ is IP-large and has positive Banach density then there exist $\xi_{1}, \xi_{2} \in A$ and mutually distinct $\eta_{1}, \ldots, \eta_{k} \in A$ such that $c\left(\xi_{1}-\xi_{2}\right)=P\left(\eta_{1}, \ldots, \eta_{k}\right)$. Moreover, if $k=1$ then one can take $\xi_{1} \neq \xi_{2}$.

## The first generalization result

## Theorem

Let $c\left(x_{1}-x_{2}\right)=P\left(y_{1}, \ldots, y_{k}\right)$ be a Diophantine equation where the polynomial $P$ has no constant term and $c \neq 0$. If the set $A \subseteq \mathbb{N}$ is IP-large and has positive Banach density then there exist $\xi_{1}, \xi_{2} \in A$ and mutually distinct $\eta_{1}, \ldots, \eta_{k} \in A$ such that $c\left(\xi_{1}-\xi_{2}\right)=P\left(\eta_{1}, \ldots, \eta_{k}\right)$. Moreover, if $k=1$ then one can take $\xi_{1} \neq \xi_{2}$.

## Definition

A polynomial with integer coefficients is called a Rado polynomial if it can be written in the form

$$
c_{1} x_{1}+\cdots+c_{n} x_{n}+P\left(y_{1}, \ldots, y_{k}\right)
$$

where $n \geqslant 2, P$ has no constant term, and there exists a nonempty subset $J \subseteq\{1, \ldots, n\}$ such that $\sum_{j \in J} c_{j}=0$.

## Generalized Rado

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Let } \\
& \qquad R\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)=c_{1} x_{1}+\ldots+c_{n} x_{n}+P\left(y_{1}, \ldots, y_{k}\right)
\end{aligned}
$$

$$
\text { be a Rado polynomial. Then every ultrafilter } \mathcal{U} \in \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{B D} \text { is }
$$ a PR-witness of $R=0$.

## Generalized Rado

## Theorem

Let

$$
R\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{k}\right)=c_{1} x_{1}+\ldots+c_{n} x_{n}+P\left(y_{1}, \ldots, y_{k}\right)
$$

be a Rado polynomial. Then every ultrafilter $\mathcal{U} \in \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{B D}$ is a PR-witness of $R=0$.

## Proof.

Consider the following system:

$$
\left\{\begin{array}{l}
c_{1} z+c_{2} x_{2}+\ldots+c_{n} x_{n}=0 \\
c_{1}\left(w-x_{1}\right)=P\left(y_{1}, \ldots, y_{k}\right) \\
z=w
\end{array}\right.
$$

## Main positive result/1

## Theorem

Let $\mathfrak{F}$ be the family of polynomials whose $P R$ on $\mathbb{N}$ is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap K(\odot) \cap \mathbb{I}(\oplus) \cap \mathcal{B D}$. Then $\mathfrak{F}$ includes:

## Main positive result/1

## Theorem

Let $\mathfrak{F}$ be the family of polynomials whose $P R$ on $\mathbb{N}$ is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}}(\oplus) \cap \mathcal{B D}$. Then $\mathfrak{F}$ includes:

- Every Rado polynomial;


## Main positive result/1

## Theorem

Let $\mathfrak{F}$ be the family of polynomials whose $P R$ on $\mathbb{N}$ is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{B D}$. Then $\mathfrak{F}$ includes:

- Every Rado polynomial;
- Every polynomial of the form

$$
\sum_{i=1}^{n} c_{i} x_{i}\left(\prod_{j \in F_{i}} y_{j}\right)
$$

where $\sum_{i=1}^{n} c_{i} x_{i}$ is a Rado polynomial and sets $F_{i} \subseteq\{1, \ldots, m\}$;

## Main positive result/1

## Theorem

Let $\mathfrak{F}$ be the family of polynomials whose $P R$ on $\mathbb{N}$ is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{B D}$. Then $\mathfrak{F}$ includes:

- Every Rado polynomial;
- Every polynomial of the form

$$
\sum_{i=1}^{n} c_{i} x_{i}\left(\prod_{j \in F_{i}} y_{j}\right)
$$

where $\sum_{i=1}^{n} c_{i} x_{i}$ is a Rado polynomial and sets $F_{i} \subseteq\{1, \ldots, m\}$;

- Every polynomial

$$
P\left(x, y_{1}, \ldots, y_{k}\right)=x-\prod_{i=1}^{k} y_{i}
$$

## Main positive result/1

## Theorem

Let $\mathfrak{F}$ be the family of polynomials whose $P R$ on $\mathbb{N}$ is witnessed by at least an ultrafilter $\mathcal{U} \in \mathbb{I}(\odot) \cap \overline{K(\odot)} \cap \overline{\mathbb{I}(\oplus)} \cap \mathcal{B D}$. Then $\mathfrak{F}$ includes:

- Every Rado polynomial;
- Every polynomial of the form

$$
\sum_{i=1}^{n} c_{i} x_{i}\left(\prod_{j \in F_{i}} y_{j}\right)
$$

where $\sum_{i=1}^{n} c_{i} x_{i}$ is a Rado polynomial and sets $F_{i} \subseteq\{1, \ldots, m\}$;

- Every polynomial

$$
P\left(x, y_{1}, \ldots, y_{k}\right)=x-\prod_{i=1}^{k} y_{i}
$$

## Main positive result/2

## Theorem

- Every polynomial

$$
P\left(x, y_{1}, \ldots, y_{k}\right)=x-\prod_{i=1}^{k} y_{i}^{a_{i}}
$$

whenever the exponents $a_{i} \in \mathbb{Z}$ satisfy $\sum_{i=1}^{n} a_{i}=1$.

## Main positive result/2

## Theorem

- Every polynomial

$$
P\left(x, y_{1}, \ldots, y_{k}\right)=x-\prod_{i=1}^{k} y_{i}^{a_{i}},
$$

whenever the exponents $a_{i} \in \mathbb{Z}$ satisfy $\sum_{i=1}^{n} a_{i}=1$.
Moreover, the family $\mathfrak{F}$ satisfies the following closure properties:

## Main positive result/2

## Theorem

- Every polynomial

$$
P\left(x, y_{1}, \ldots, y_{k}\right)=x-\prod_{i=1}^{k} y_{i}^{a_{i}},
$$

whenever the exponents $a_{i} \in \mathbb{Z}$ satisfy $\sum_{i=1}^{n} a_{i}=1$.
Moreover, the family $\mathfrak{F}$ satisfies the following closure properties:
(i) If $P\left(z, y_{1}, \ldots, y_{k}\right) \in \mathfrak{F}$ and $z-g\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{F}$, then $P\left(g\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{k}\right) \in \mathfrak{F}$;

## Main positive result/2

## Theorem

- Every polynomial

$$
P\left(x, y_{1}, \ldots, y_{k}\right)=x-\prod_{i=1}^{k} y_{i}^{a_{i}},
$$

whenever the exponents $a_{i} \in \mathbb{Z}$ satisfy $\sum_{i=1}^{n} a_{i}=1$.
Moreover, the family $\mathfrak{F}$ satisfies the following closure properties:
(i) If $P\left(z, y_{1}, \ldots, y_{k}\right) \in \mathfrak{F}$ and $z-g\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{F}$, then $P\left(g\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{k}\right) \in \mathfrak{F} ;$
(ii) if $P\left(x_{1}, \ldots, x_{n}\right) \in \mathfrak{F}$ is homogeneous, then $P\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right) \in \mathfrak{F}$.

## Some examples

## Some examples

Example
Let $n, m \in \mathbb{N}$ and assume that, for every $i \leqslant n, j \leqslant m$, the equations

$$
x_{i, 1}=\sum_{h=1}^{r_{i}} c_{i, h} x_{i, h}, y_{j, 1}=\sum_{k=1}^{s_{j}} d_{j, k} y_{j, k}
$$

are PR .

## Some examples

## Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leqslant n, j \leqslant m$, the equations

$$
x_{i, 1}=\sum_{h=1}^{r_{i}} c_{i, h} x_{i, h}, y_{j, 1}=\sum_{k=1}^{s_{j}} d_{j, k} y_{j, k}
$$

are PR.
Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}$ be such that $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}$ and consider the homogeneous PR equation $\prod_{i=1}^{n} t_{i}^{a_{i}}=\prod_{j=1}^{m} z_{j}^{b_{j}}$.

## Some examples

## Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leqslant n, j \leqslant m$, the equations

$$
x_{i, 1}=\sum_{h=1}^{r_{i}} c_{i, h} x_{i, h}, y_{j, 1}=\sum_{k=1}^{s_{j}} d_{j, k} y_{j, k}
$$

## are PR .

Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}$ be such that $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}$ and consider the homogeneous PR equation $\prod_{i=1}^{n} t_{i}^{a_{i}}=\prod_{j=1}^{m} z_{j}^{b_{j}}$.
All these equations are PR and homogeneous and therefore, by the closure property (i), also

$$
\prod_{i=1}^{n}\left(\sum_{h=1}^{r_{i}} c_{i, h} x_{i, h}\right)^{a_{i}}=\prod_{j=1}^{m}\left(\sum_{k=1}^{s_{j}} d_{j, k} y_{j, k}\right)^{b_{j}}
$$

is PR .

## Some examples

## Example

Let $n, m \in \mathbb{N}$ and assume that, for every $i \leqslant n, j \leqslant m$, the equations

$$
x_{i, 1}=\sum_{h=1}^{r_{i}} c_{i, h} x_{i, h}, y_{j, 1}=\sum_{k=1}^{s_{j}} d_{j, k} y_{j, k}
$$

## are PR .

Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}$ be such that $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j}$ and consider the homogeneous PR equation $\prod_{i=1}^{n} t_{i}^{a_{i}}=\prod_{j=1}^{m} z_{j}^{b_{j}}$.
All these equations are PR and homogeneous and therefore, by the closure property (i), also

$$
\prod_{i=1}^{n}\left(\sum_{h=1}^{r_{i}} c_{i, h} x_{i, h}\right)^{a_{i}}=\prod_{j=1}^{m}\left(\sum_{k=1}^{s_{j}} d_{j, k} y_{j, k}\right)^{b_{j}}
$$

is PR .

## Some examples

## Example

For every $n \in \mathbb{N}$, the polynomial $u-v-z^{n}$ is in $\mathfrak{F}$;

## Some examples

## Example

For every $n \in \mathbb{N}$, the polynomial $u-v-z^{n}$ is in $\mathfrak{F}$; moreover, for every $k \geqslant 2$ the function $x=\prod_{j=1}^{k} x_{j}$ is in $\mathfrak{F}$.

## Some examples

## Example

For every $n \in \mathbb{N}$, the polynomial $u-v-z^{n}$ is in $\mathfrak{F}$; moreover, for every $k \geqslant 2$ the function $x=\prod_{j=1}^{k} x_{j}$ is in $\mathfrak{F}$. Therefore, for every $h, k \geqslant 2$ we can apply the closure property (i) of $\mathfrak{F}$ to the system

$$
\left\{\begin{array}{l}
u-v=z^{n} \\
x=\prod_{j=1}^{h} x_{j} \\
y=\prod_{j=1}^{k} y_{j} \\
x=t, y=v
\end{array}\right.
$$

## Some examples

## Example

For every $n \in \mathbb{N}$, the polynomial $u-v-z^{n}$ is in $\mathfrak{F}$; moreover, for every $k \geqslant 2$ the function $x=\prod_{j=1}^{k} x_{j}$ is in $\mathfrak{F}$. Therefore, for every $h, k \geqslant 2$ we can apply the closure property (i) of $\mathfrak{F}$ to the system

$$
\left\{\begin{array}{l}
u-v=z^{n} ; \\
x=\prod_{j=1}^{h} x_{j} ; \\
y=\prod_{j=1}^{k} y_{j} ; \\
x=t, y=v .
\end{array}\right.
$$

Hence $\prod_{j=1}^{h} x_{j}-\prod_{j=1}^{k} y_{j}=z^{n}$ is in $\mathfrak{F}$. In particular, $x_{1} x_{2}-y_{1} y_{2}=z^{2}$ is PR .

## Some examples

## Example

For every $n \in \mathbb{N}$, the polynomial $u-v-z^{n}$ is in $\mathfrak{F}$; moreover, for every $k \geqslant 2$ the function $x=\prod_{j=1}^{k} x_{j}$ is in $\mathfrak{F}$. Therefore, for every $h, k \geqslant 2$ we can apply the closure property (i) of $\mathfrak{F}$ to the system

$$
\left\{\begin{array}{l}
u-v=z^{n} ; \\
x=\prod_{j=1}^{h} x_{j} ; \\
y=\prod_{j=1}^{k} y_{j} ; \\
x=t, y=v .
\end{array}\right.
$$

Hence $\prod_{j=1}^{h} x_{j}-\prod_{j=1}^{k} y_{j}=z^{n}$ is in $\mathfrak{F}$. In particular, $x_{1} x_{2}-y_{1} y_{2}=z^{2}$ is PR .

## Example

$P\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}-2 x_{3}$ is PR but it does not belong to $\mathfrak{F}$.

## Nonstandard analysis: basic idea

Nonstandard analysis essentially consists of two properties:

## Nonstandard analysis: basic idea

Nonstandard analysis essentially consists of two properties:
(1) Every mathematical object $X$ is extended to an object * $X$, called its hyper-extension or nonstandard extension.

## Nonstandard analysis: basic idea

Nonstandard analysis essentially consists of two properties:
(1) Every mathematical object $X$ is extended to an object * $X$, called its hyper-extension or nonstandard extension.
(2) * $X$ is a sort of weakly isomorphic copy of $X$, in the sense that it satisfies the same elementary properties as $X$.

## Nonstandard analysis: basic idea

Nonstandard analysis essentially consists of two properties:
(1) Every mathematical object $X$ is extended to an object * $X$, called its hyper-extension or nonstandard extension.
(2) * $X$ is a sort of weakly isomorphic copy of $X$, in the sense that it satisfies the same elementary properties as $X$.

A property is elementary if it talks about elements of $X$ (it is not elementary when talks about subsets or functions).

## Nonstandard analysis: basic idea

Nonstandard analysis essentially consists of two properties:
(1) Every mathematical object $X$ is extended to an object * $X$, called its hyper-extension or nonstandard extension.
(2) * $X$ is a sort of weakly isomorphic copy of $X$, in the sense that it satisfies the same elementary properties as $X$.

A property is elementary if it talks about elements of $X$ (it is not elementary when talks about subsets or functions).
The preservation of elementary properties when taking hyper-extensions is called transfer principle.

## $u$-equivalence and partition regularity

* $\mathbb{N}$ is the hyper-extension of $\mathbb{N}$.


## $u$-equivalence and partition regularity

* $\mathbb{N}$ is the hyper-extension of $\mathbb{N}$. Its elements have the same elementary properties of natural numbers:


## $u$-equivalence and partition regularity

* $\mathbb{N}$ is the hyper-extension of $\mathbb{N}$. Its elements have the same elementary properties of natural numbers:
- addition can be extended so to make $* \mathbb{N}$ a semigroup;


## $u$-equivalence and partition regularity

* $\mathbb{N}$ is the hyper-extension of $\mathbb{N}$. Its elements have the same elementary properties of natural numbers:
- addition can be extended so to make ${ }^{*} \mathbb{N}$ a semigroup;
- the same with multiplication;


## $u$-equivalence and partition regularity

* $\mathbb{N}$ is the hyper-extension of $\mathbb{N}$. Its elements have the same elementary properties of natural numbers:
- addition can be extended so to make ${ }^{*} \mathbb{N}$ a semigroup;
- the same with multiplication;
- the linear order of $\mathbb{N}$ can be extended to a linear order of $* \mathbb{N}$;


## $u$-equivalence and partition regularity

* $\mathbb{N}$ is the hyper-extension of $\mathbb{N}$. Its elements have the same elementary properties of natural numbers:
- addition can be extended so to make ${ }^{*} \mathbb{N}$ a semigroup;
- the same with multiplication;
- the linear order of $\mathbb{N}$ can be extended to a linear order of $* \mathbb{N}$;
- and so on.


## $u$-equivalence and partition regularity

* $\mathbb{N}$ is the hyper-extension of $\mathbb{N}$. Its elements have the same elementary properties of natural numbers:
- addition can be extended so to make *N a semigroup;
- the same with multiplication;
- the linear order of $\mathbb{N}$ can be extended to a linear order of $* \mathbb{N}$;
- and so on.

In ${ }^{*} \mathbb{N}$ we have infinite numbers, e.g. elements $\alpha \in{ }^{*} \mathbb{N}$ such that $\alpha>n$ for every $n \in \mathbb{N}$.

## $u$-equivalence and partition regularity

* $\mathbb{N}$ is the hyper-extension of $\mathbb{N}$. Its elements have the same elementary properties of natural numbers:
- addition can be extended so to make $* \mathbb{N}$ a semigroup;
- the same with multiplication;
- the linear order of $\mathbb{N}$ can be extended to a linear order of $* \mathbb{N}$;
- and so on.

In ${ }^{*} \mathbb{N}$ we have infinite numbers, e.g. elements $\alpha \in{ }^{*} \mathbb{N}$ such that $\alpha>n$ for every $n \in \mathbb{N}$.

Example of non-elementary property: the well-order. In fact, the set of infinite elements does not have a minimum.

## $u$-equivalence and partition regularity

## Definition

Two hypernatural numbers $\xi, \xi^{\prime} \in * \mathbb{N}$ are u-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi^{\prime} \in^{*} A$ or $\xi, \xi^{\prime} \not{ }^{*} A$.

## $u$-equivalence and partition regularity

## Definition <br> Two hypernatural numbers $\xi, \xi^{\prime} \in * \mathbb{N}$ are $u$-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi^{\prime} \in{ }^{*} A$ or $\xi, \xi^{\prime} \not{ }^{*} A$.

Ultrafilters and hypernaturals can be identified:

## $u$-equivalence and partition regularity

## Definition

Two hypernatural numbers $\xi, \xi^{\prime} \in * \mathbb{N}$ are $u$-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi^{\prime} \in{ }^{*} A$ or $\xi, \xi^{\prime} \not{ }^{*} A$.

Ultrafilters and hypernaturals can be identified:

- $\alpha \rightarrow \mathcal{U}_{\alpha}=\left\{A \in \wp(\mathbb{N}) \mid \alpha \in{ }^{*} A\right\} ;$


## $u$-equivalence and partition regularity

## Definition

Two hypernatural numbers $\xi, \xi^{\prime} \in * \mathbb{N}$ are $u$-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi^{\prime} \in{ }^{*} A$ or $\xi, \xi^{\prime} \not{ }^{*} A$.

Ultrafilters and hypernaturals can be identified:

- $\alpha \rightarrow \mathcal{U}_{\alpha}=\left\{A \in \wp(\mathbb{N}) \mid \alpha \in{ }^{*} A\right\} ;$
- $\mathcal{U} \rightarrow \mu(\mathcal{U})=\left\{\alpha \in{ }^{*} \mathbb{N} \mid \mathcal{U}=\mathcal{U}_{\alpha}\right\}$.


## $u$-equivalence and partition regularity

## Definition

Two hypernatural numbers $\xi, \xi^{\prime} \in * \mathbb{N}$ are $u$-equivalent if they cannot be distinguished by any hyper-extension, i.e. if for every $A \subseteq \mathbb{N}$ one has either $\xi, \xi^{\prime} \in{ }^{*} A$ or $\xi, \xi^{\prime} \not{ }^{*} A$.

Ultrafilters and hypernaturals can be identified:

- $\alpha \rightarrow \mathcal{U}_{\alpha}=\left\{A \in \wp(\mathbb{N}) \mid \alpha \in{ }^{*} A\right\} ;$
- $\mathcal{U} \rightarrow \mu(\mathcal{U})=\left\{\alpha \in{ }^{*} \mathbb{N} \mid \mathcal{U}=\mathcal{U}_{\alpha}\right\}$.


## Proposition

A Diophantine equation $P\left(x_{1}, \ldots, x_{n}\right)=0$ is $P R$ if and only if there exist u-equivalent hypernatural numbers $\xi_{1}, \ldots, \xi_{n}$ with ${ }^{*} P\left(\xi_{1}, \ldots, \xi_{n}\right)=0$.

## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;


## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;
- $\alpha \leqslant \beta$ means that $\alpha_{i} \leqslant \beta_{i}$ for all $i=1, \ldots, n$;


## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;
- $\alpha \leqslant \beta$ means that $\alpha_{i} \leqslant \beta_{i}$ for all $i=1, \ldots, n$;
- $\alpha<\beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;


## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;
- $\alpha \leqslant \beta$ means that $\alpha_{i} \leqslant \beta_{i}$ for all $i=1, \ldots, n$;
- $\alpha<\beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is vector and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index, the product $\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$ is denoted by $\mathbf{x}^{\alpha}$;


## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;
- $\alpha \leqslant \beta$ means that $\alpha_{i} \leqslant \beta_{i}$ for all $i=1, \ldots, n$;
- $\alpha<\beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is vector and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index, the product $\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$ is denoted by $\mathbf{x}^{\alpha}$;
- The length of a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$;


## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;
- $\alpha \leqslant \beta$ means that $\alpha_{i} \leqslant \beta_{i}$ for all $i=1, \ldots, n$;
- $\alpha<\beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is vector and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index, the product $\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$ is denoted by $\mathbf{x}^{\alpha}$;
- The length of a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$;
- A set $I$ of $n$-dimensional multi-indexes having all the same length is called homogeneous;


## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;
- $\alpha \leqslant \beta$ means that $\alpha_{i} \leqslant \beta_{i}$ for all $i=1, \ldots, n$;
- $\alpha<\beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is vector and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index, the product $\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$ is denoted by $\mathbf{x}^{\alpha}$;
- The length of a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$;
- A set $I$ of $n$-dimensional multi-indexes having all the same length is called homogeneous;
- Polynomials $P \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ are written in the form $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where $\alpha$ are multi-indexes;


## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;
- $\alpha \leqslant \beta$ means that $\alpha_{i} \leqslant \beta_{i}$ for all $i=1, \ldots, n$;
- $\alpha<\beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is vector and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index, the product $\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$ is denoted by $\mathbf{x}^{\alpha}$;
- The length of a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$;
- A set $I$ of $n$-dimensional multi-indexes having all the same length is called homogeneous;
- Polynomials $P \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ are written in the form $P(\mathrm{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where $\alpha$ are multi-indexes;
- The support of $P$ is the finite set $\operatorname{supp}(P)=\left\{\alpha \mid c_{\alpha} \neq 0\right\}$;


## Multi-index notations

- An $n$-dimensional multi-index is an $n$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$;
- $\alpha \leqslant \beta$ means that $\alpha_{i} \leqslant \beta_{i}$ for all $i=1, \ldots, n$;
- $\alpha<\beta$ means that $\alpha \leqslant \beta$ and $\alpha \neq \beta$;
- If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is vector and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index, the product $\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$ is denoted by $\mathbf{x}^{\alpha}$;
- The length of a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$;
- A set $I$ of $n$-dimensional multi-indexes having all the same length is called homogeneous;
- Polynomials $P \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ are written in the form $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ where $\alpha$ are multi-indexes;
- The support of $P$ is the finite set $\operatorname{supp}(P)=\left\{\alpha \mid c_{\alpha} \neq 0\right\}$;
- A polynomial $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha}$ is homogeneous if $\operatorname{supp}(P)$ is a homogeneous set of indexes.


## Minimal and maximal indeces

## Definition

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. We say that a multi-index $\alpha \in \operatorname{supp}(P)$ is minimal if there are no $\beta \in \operatorname{supp}(P)$ with $\beta<\alpha$. The notion of maximal multi-index is defined similarly.

## Minimal and maximal indeces

## Definition

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. We say that a multi-index $\alpha \in \operatorname{supp}(P)$ is minimal if there are no $\beta \in \operatorname{supp}(P)$ with $\beta<\alpha$. The notion of maximal multi-index is defined similarly. A nonempty set $J \subseteq \operatorname{supp}(P)$ is called a Rado set of indexes if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq\{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_{i}=\sum_{i \in \Lambda} \beta_{i}$.

## Minimal and maximal indeces

## Definition

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. We say that a multi-index $\alpha \in \operatorname{supp}(P)$ is minimal if there are no $\beta \in \operatorname{supp}(P)$ with $\beta<\alpha$. The notion of maximal multi-index is defined similarly. A nonempty set $J \subseteq \operatorname{supp}(P)$ is called a Rado set of indexes if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq\{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_{i}=\sum_{i \in \Lambda} \beta_{i}$.

For linear polynomials, every nonempty $J \subseteq \operatorname{Supp}(P)=\{\alpha(1), \ldots, \alpha(n)\}$ is a Rado set of both minimal and maximal indexes.

## Minimal and maximal indeces

## Definition

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. We say that a multi-index $\alpha \in \operatorname{supp}(P)$ is minimal if there are no $\beta \in \operatorname{supp}(P)$ with $\beta<\alpha$. The notion of maximal multi-index is defined similarly. A nonempty set $J \subseteq \operatorname{supp}(P)$ is called a Rado set of indexes if for every $\alpha, \beta \in J$ there exists a nonempty $\Lambda \subseteq\{1, \ldots, n\}$ with $\sum_{i \in \Lambda} \alpha_{i}=\sum_{i \in \Lambda} \beta_{i}$.

For linear polynomials, every nonempty
$J \subseteq \operatorname{Supp}(P)=\{\alpha(1), \ldots, \alpha(n)\}$ is a Rado set of both minimal and maximal indexes.

## Example

In $c_{1} x_{1}^{2} x_{2} x_{3}+c_{2} x_{1} x_{2}^{2} x_{3}^{7}+c_{3} x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}$, the set $J=\{1,2\}$ is a Rado set of minimal (but not maximal) indeces.

## General necessary condition

Theorem
Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with no constant term.

## General necessary condition

Theorem
Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with no constant term. Suppose there exists a prime $p$ such that:

## General necessary condition

Theorem
Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with no constant term. Suppose there exists a prime $p$ such that:
(1) $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$;

## General necessary condition

## Theorem

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with no constant term. Suppose there exists a prime $p$ such that:
(1) $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$;
(2) For every Rado set $J$ of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$.

## General necessary condition

## Theorem

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with no constant term. Suppose there exists a prime $p$ such that:
(1) $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$;
(2) For every Rado set $J$ of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$.
Then $P(\mathbf{x})$ is not $P R$, except possibly for constant solutions $x_{1}=\ldots=x_{n}$.

## General necessary condition

## Theorem

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with no constant term. Suppose there exists a prime $p$ such that:
(1) $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$;
(2) For every Rado set $J$ of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$.
Then $P(\mathbf{x})$ is not $P R$, except possibly for constant solutions $x_{1}=\ldots=x_{n}$.

## Proof.

Pick infinite $\xi_{1} \widetilde{u} \cdots \widetilde{u} \xi_{n}$ such that $P(\boldsymbol{\xi})=\sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha}=0$.

## General necessary condition

## Theorem

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with no constant term. Suppose there exists a prime $p$ such that:
(1) $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$;
(2) For every Rado set $J$ of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$.
Then $P(\mathbf{x})$ is not $P R$, except possibly for constant solutions $x_{1}=\ldots=x_{n}$.

## Proof.

Pick infinite $\xi_{1} \widetilde{u} \ldots \widetilde{u} \xi_{n}$ such that $P(\boldsymbol{\xi})=\sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha}=0$. Write $\xi_{i}$ in base $p$.

## General necessary condition

## Theorem

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial with no constant term. Suppose there exists a prime $p$ such that:
(1) $\sum_{\alpha} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$;
(2) For every Rado set $J$ of minimal indexes, $\sum_{\alpha \in J} c_{\alpha} z^{|\alpha|} \equiv 0 \bmod p$ has no solutions $z \not \equiv 0$.
Then $P(\mathbf{x})$ is not $P R$, except possibly for constant solutions $x_{1}=\ldots=x_{n}$.

## Proof.

Pick infinite $\xi_{1} \widetilde{\sim} \cdots \widetilde{\sim} \xi_{n}$ such that $P(\boldsymbol{\xi})=\sum_{\alpha} c_{\alpha} \boldsymbol{\xi}^{\alpha}=0$. Write $\xi_{i}$ in base $p$. Find the absurd playing with the exponents and the coefficients in this expansion.

## Examples

## Examples

## Example

Let $P\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}-2 x_{3}$. Pick any prime number $p$ with $p \equiv 3$ or $p \equiv 5 \bmod 8$, so that 2 is not a quadratic residue modulo $p$.

## Examples

## Example

Let $P\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}-2 x_{3}$. Pick any prime number $p$ with $p \equiv 3$ or $p \equiv 5 \bmod 8$, so that 2 is not a quadratic residue modulo $p$. Then condition (1) is satisfied because $z^{3}-2 z \equiv 0$ iff $z \equiv 0$,

## Examples

## Example

Let $P\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}-2 x_{3}$. Pick any prime number $p$ with $p \equiv 3$ or $p \equiv 5 \bmod 8$, so that 2 is not a quadratic residue modulo $p$. Then condition (1) is satisfied because $z^{3}-2 z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified.

## Examples


#### Abstract

Example Let $P\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}-2 x_{3}$. Pick any prime number $p$ with $p \equiv 3$ or $p \equiv 5 \bmod 8$, so that 2 is not a quadratic residue modulo $p$. Then condition (1) is satisfied because $z^{3}-2 z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified.Since it has no constant solutions $x_{1}=x_{2}=x_{3}$, we can conclude that $P\left(x_{1}, x_{2}, x_{3}\right)$ is not PR.


## Examples


#### Abstract

Example Let $P\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}-2 x_{3}$. Pick any prime number $p$ with $p \equiv 3$ or $p \equiv 5 \bmod 8$, so that 2 is not a quadratic residue modulo $p$. Then condition (1) is satisfied because $z^{3}-2 z \equiv 0$ iff $z \equiv 0$, and also condition (2) is easily verified.Since it has no constant solutions $x_{1}=x_{2}=x_{3}$, we can conclude that $P\left(x_{1}, x_{2}, x_{3}\right)$ is not PR.


Notice that, by Multiplicative Rado's Theorem, the seemingly similar equation $x_{1}^{2} x_{2}=x_{3}$ is PR .

## Examples

## Example

Let $P\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}-2 x_{3}$. Pick any prime number $p$ with $p \equiv 3$ or $p \equiv 5 \bmod 8$, so that 2 is not a quadratic residue modulo $p$. Then condition (1) is satisfied because $z^{3}-2 z \equiv 0$ iff $z \equiv 0$,and also condition (2) is easily verified.Since it has no constant solutions $x_{1}=x_{2}=x_{3}$, we can conclude that $P\left(x_{1}, x_{2}, x_{3}\right)$ is not PR.

Notice that, by Multiplicative Rado's Theorem, the seemingly similar equation $x_{1}^{2} x_{2}=x_{3}$ is PR.

## Corollary

Let $P(\mathbf{x})=\sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ be an homogeneous polynomial. If for every nonempty $J \subseteq \operatorname{supp}(P)$ one has $\sum_{\alpha \in J} c_{\alpha} \neq 0$, then $P(\mathbf{x})$ is not $P R$.

Necessary condition for sums of polynomials in one variable

## Theorem

For every $i=1, \ldots$, n let $P_{i}\left(x_{i}\right)=\sum_{s=1}^{d_{i}} c_{i, s} x_{i}^{s}$ be a polynomial of degree $d_{i}$ in the variable $x_{i}$ with no constant term.

Necessary condition for sums of polynomials in one variable

## Theorem

For every $i=1, \ldots, n$ let $P_{i}\left(x_{i}\right)=\sum_{s=1}^{d_{i}} c_{i, s} x_{i}^{s}$ be a polynomial of degree $d_{i}$ in the variable $x_{i}$ with no constant term. If the Diophantine equation

$$
\sum_{i=1}^{n} P_{i}\left(x_{i}\right)=0
$$

is PR then the following "Rado's condition" is satisfied:

## Necessary condition for sums of polynomials in one

 variable
## Theorem

For every $i=1, \ldots, n$ let $P_{i}\left(x_{i}\right)=\sum_{s=1}^{d_{i}} c_{i, s} x_{i}^{s}$ be a polynomial of degree $d_{i}$ in the variable $x_{i}$ with no constant term. If the Diophantine equation

$$
\sum_{i=1}^{n} P_{i}\left(x_{i}\right)=0
$$

is PR then the following "Rado's condition" is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $d_{i}=d_{j}$ for every $i, j \in J$, and $\sum_{j \in J} c_{j, d_{j}}=0$."


## Necessary condition for sums of polynomials in one

 variable
## Theorem

For every $i=1, \ldots, n$ let $P_{i}\left(x_{i}\right)=\sum_{s=1}^{d_{i}} c_{i, s} x_{i}^{s}$ be a polynomial of degree $d_{i}$ in the variable $x_{i}$ with no constant term. If the Diophantine equation

$$
\sum_{i=1}^{n} P_{i}\left(x_{i}\right)=0
$$

is $P R$ then the following "Rado's condition" is satisfied:

- "There exists a nonempty set $J \subseteq\{1, \ldots, n\}$ such that $d_{i}=d_{j}$ for every $i, j \in J$, and $\sum_{j \in J} c_{j, d_{j}}=0$."

Idea of the proof: by contradition using $p$-expansions of hypernatural numbers; some refined nonstandard wizardry (overspilling principles, saturation) is used.

## Examples

## Examples

## Corollary

A polynomial of the form $\sum_{i=1}^{n} c_{i} x_{i}+P(y)$, where $P$ is a nonlinear polynomial with no constant term, is $P R$ if and only if it is a Rado polynomial.

## Examples

## Corollary

A polynomial of the form $\sum_{i=1}^{n} c_{i} x_{i}+P(y)$, where $P$ is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

## Example

The polynomial

$$
P(x, y)=x^{3}+2 x+y^{3}-2 y
$$

is not PR (even if it contains a partial sum of coefficients that equals zero).

## Examples

## Corollary

A polynomial of the form $\sum_{i=1}^{n} c_{i} x_{i}+P(y)$, where $P$ is a nonlinear polynomial with no constant term, is PR if and only if it is a Rado polynomial.

Example
The polynomial

$$
P(x, y)=x^{3}+2 x+y^{3}-2 y
$$

is not PR (even if it contains a partial sum of coefficients that equals zero).

## Example

The polynomials $x^{n}+y^{m}=z^{k}$ are not PR for $k \notin\{n, m\}$.

## Open Problems/1

## Open Problems/1 <br> Open Problem 1. Is $x^{2}+y^{2}=z^{2} \mathrm{PR}$ ?

[^1]
## Open Problems/1

Open Problem 1. Is $x^{2}+y^{2}=z^{2} \mathrm{PR}$ ?
Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2 -colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

## Open Problems/1

Open Problem 1. Is $x^{2}+y^{2}=z^{2} \mathrm{PR}$ ?
Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

## Theorem

For every $k \in \mathbb{N}$ there exists $s_{0}(k)$ such that for every $s>s_{0}(k)$ and $c_{1}, \ldots, c_{s} \in \mathbb{Z} \backslash\{0\}$ the following equivalence holds:

## Open Problems/1

Open Problem 1. Is $x^{2}+y^{2}=z^{2} \mathrm{PR}$ ?
Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

## Theorem

For every $k \in \mathbb{N}$ there exists $s_{0}(k)$ such that for every $s>s_{0}(k)$ and $c_{1}, \ldots, c_{s} \in \mathbb{Z} \backslash\{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_{i} x_{i}^{k}$ is $P R$;


## Open Problems/1

Open Problem 1. Is $x^{2}+y^{2}=z^{2} \mathrm{PR}$ ?
Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

## Theorem

For every $k \in \mathbb{N}$ there exists $s_{0}(k)$ such that for every $s>s_{0}(k)$ and $c_{1}, \ldots, c_{s} \in \mathbb{Z} \backslash\{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_{i} x_{i}^{k}$ is $P R$;
- there exists a nonempty set $J \subseteq\{1, \ldots, s\}$ s.t. $\sum_{j \in J} c_{j}=0$.


## Open Problems/1

Open Problem 1. Is $x^{2}+y^{2}=z^{2} \mathrm{PR}$ ?
Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

## Theorem

For every $k \in \mathbb{N}$ there exists $s_{0}(k)$ such that for every $s>s_{0}(k)$ and $c_{1}, \ldots, c_{s} \in \mathbb{Z} \backslash\{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_{i} x_{i}^{k}$ is $P R$;
- there exists a nonempty set $J \subseteq\{1, \ldots, s\}$ s.t. $\sum_{j \in J} c_{j}=0$.
$s_{0}(k)$ is of the order $k \log k$.


## Open Problems/1

Open Problem 1. Is $x^{2}+y^{2}=z^{2} \mathrm{PR}$ ?
Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings. Moreover, using number theoretical methods Chow, Lindqvist and Prendiville have proven the following:

## Theorem

For every $k \in \mathbb{N}$ there exists $s_{0}(k)$ such that for every $s>s_{0}(k)$ and $c_{1}, \ldots, c_{s} \in \mathbb{Z} \backslash\{0\}$ the following equivalence holds:

- The equation $\sum_{i=1}^{s} c_{i} x_{i}^{k}$ is $P R$;
- there exists a nonempty set $J \subseteq\{1, \ldots$, s $\}$ s.t. $\sum_{j \in J} c_{j}=0$.
$s_{0}(k)$ is of the order $k \log k$.

Open Problem 2. Are there simple decidable conditions under which a given (non-homogeneous) Diophantine equation with no constant term is PR on $\mathbb{N}$ if and only if it is PR on $\mathbb{Z}$ if and only if it is PR on $\mathbb{Q}$ ?

## Open Problems/2

## Open Problems/2

Open Problem 3. Are there simple "Rado-like" necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields $\mathbb{F}_{p}$ ?

## Open Problems/2

Open Problem 3. Are there simple "Rado-like" necessary and sufficient conditions under which a given Diophantine equation with no constant term is PR on sufficiently large finite fields $\mathbb{F}_{p}$ ?

Open Problem 4 Is there a characterization of PR infinite systems of Diophantine equations in terms of $u$-equivalence? (Or, equivalently, by means of ultrafilters?)

## Thank You!

email: lorenzo.luperi.baglini@univie.ac.at


[^0]:    ${ }^{1}$ Well, as far as "simple" goes for the kind of ultrafilters used here.

[^1]:    Open Problems/1
    Open Problem 1. Is $x^{2}+y^{2}=z^{2} \mathrm{PR}$ ?
    Recently, Heule, Kullmann and Marek have proven the PR of the Pythagorean equation for 2-colorings.

