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Notation

The complete graph on k vertices will be denoted by K.

Ramsey’s Theorem: The minimal integer n such that any 2-coloring of the edges
of K,, admits a monochromatic K} subgraph will be denoted R(k).

So, R(3) = 6; R(4) = 18; 43 < R(5) < 48, etc.

Also,

2
R(k) > kg_ L ok /2

is the best-known general lower bound.
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A Different Approach

Since these Ramsey numbers are notoriously difficult to compute, perhaps instead
of requiring all 2-colored complete graphs to contain a monochromatic subgraphs,
we just require almost all.

Define the random variable over the equally likely sample space of all 2-color
complete graphs on n vertices

Xk (n) = number of monochromatic K}, subgraphs.

Then we can define the “almost-all’ number, for 0 < o < 1, as

Ri(a) = fenzri{n : P(Xg(n) > 0) > a}.

In order to determine these numbers, we need to know (if possible) the distribution
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A Different Approach

Godbole, Skipper, and Sunley investigated the distribution of X (n).

In particular, they proved — (with conditions on n) — that
Me™A (n)
P(Xr(n)=7)~ — where = Kk
(Len) = J) J! 9(3)—1

In other words, they showed that

Xi(n) ~ Poisson (2(5)1> :

This is an asymptotic result.
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The Poisson Paradigm

The Poisson Paradigm is that Ramsey object counts tend to be (asymptotically)
well-approximated by a Poisson distribution.

What is the motivation behind this?

Let {Y;}_; be a sequence of indicator random variables each with the same small
probability of being 1.

Let Y = ZYZ with n large.
i=1
If the Y, are independent, then Y follows a Binomial distribution.

Since P(Y; = 1) = p for all 7 with p small, we know that the Poisson distribution
well-approximates the Binomial (even for relatively small n).

Why does the Poisson distribution make sense for Xy (n)?
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Is not met.
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The Poisson Paradigm for X (n)

Consider a randomly edge-colored K,, and define the indicator random variables
Y; with Y; = 1 precisely when the i** K} is monochromatic, fori =1,2,..., (n)

k
Then

We know that Y; [/ Y; if the i*" and j*® Kjs share at least one edge (or,
equivalently, at least two vertices) so the assumption that the Y; are independent
Is not met.

However, for n > k this is unlikely:

o DY) ek
PO LY;) < 25 T(n) 0.

Stirling
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The Poisson Paradigm for X (n)

Hence, “almost all” of the Y; are independent.

Similar analyses work for other Ramsey object, e.g., arithmetic progressions, many
systems of equations, general graphs (vs. complete graphs), etc. Hence, the
paradigm.

Our focus here is on the classical numbers R(k) and the distribution of the
respective random variable

X (n) = number of monochromatic K}, subgraphs.

Because of this paradigm, we should investigate the Poisson distribution first.
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Xr(n) ~ Poisson?
We know that some asymptotic results are actually very good for small values.

For example, we know that Binomial(n,p) ~ Normal(np, np(1 — p)) for large n
(typical requirement: min(np,n(1 —p)) > 30).

Let's take p = .25, so that, based on our rule of thumb, we shouldn’t use the
Normal approximation unless n > 120.

Binomial(5,.25)

0.4
0.35
0.2
0.25

=>=hinomial

0.2 ==normal

0.05

n—5 | o 1 z 3 4 5 6
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Xr(n) ~ Poisson?
We know that some asymptotic results are actually very good for small values.

For example, we know that Binomial(n,p) ~ Normal(np, np(1 — p)) for large n
(typical requirement: min(np,n(1 —p)) > 30).

Let's take p = .25, so that, based on our rule of thumb, we shouldn’t use the

Normal approximation unless n > 120.

Binomial(10,.25)

0.35

0.3

0.2
==hinomial

016 =&=normal

01

0.05

0
n i— 10 o 2 4 ] ! 10 12
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Xr(n) ~ Poisson?
We know that some asymptotic results are actually very good for small values.

For example, we know that Binomial(n,p) ~ Normal(np, np(1 — p)) for large n
(typical requirement: min(np,n(1 —p)) > 30).

Let's take p = .25, so that, based on our rule of thumb, we shouldn’t use the
Normal approximation unless n > 120.

Binomial(15,.25)

=>hinomial

=E=normal

n: 15 Uu 2 L 6 & 10 E_J_E_E 16
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Xr(n) ~ Poisson?
We know that some asymptotic results are actually very good for small values.

For example, we know that Binomial(n,p) ~ Normal(np, np(1 — p)) for large n
(typical requirement: min(np,n(1 —p)) > 30).

Let's take p = .25, so that, based on our rule of thumb, we shouldn’t use the
Normal approximation unless n > 120.

Binomial(20,.25)

=¥=hinomial

=@normal

n = 20
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Xr(n) ~ Poisson?

Back to our question: Is
Xk(n) = number of monochromatic K}, subgraphs

approximately Poisson?

First, we need something to compare the Poisson distribution against.

Maria (the undergrad) created an efficient code to generate random 2-colorings
on a given number of vertices and count the resulting number of monochromatic
complete graphs on k vertices for given k.
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Empirical Histograms

Here is an empirical histogram for k = 4 with n = 17 based on a million random
graphs (i.e., an empirical pmf of X4(17)):

Empirical PMF with k=4 n=17
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Empirical Histograms

Here is an empirical histogram for k = 4 with n = 17 based on a million random
graphs (i.e., an empirical pmf of X4(17)):

Empirical PMF with k=4 n=17

50 100 150 200 250 300
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Is the Poisson close?
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Empirical Histograms ~ Poisson?

Empirical PMF with k=4 n=17 with Poisson fit
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Empirical Histograms ~ Poisson?

Empirical PMF with k=4 n=17 with Poisson fit

é m + Poisson
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Empirical Histograms ~ Poisson?

NOT a fluke:

Empirical PMF with k=4 n=19 with Poisson fit Empirical PMF with k=4 n=20 with Poisson fit
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If Not Poisson, Then What?

We know that its distribution must be asymptotically Poisson.

So, we turn to compound distributions by letting the Poisson parameter be a
random variable itself.

Consider T' ~ Poisson(\) where A is a random variable.

A common choice is for A ~ Gamma to correct for the overdispersion of the
empirical pmf (Poisson has mean equal to variance and this is too restrictive).

In this situation, the result is that 1" ~ Negative Binomial.

How does this do?
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If Not Poisson, Then What?

It's closer, but not great:

Percentage of graphs

1000000 2-color, 15—v;arte.x complete graphs
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If Not Negative Binomial, Then What?

Next, we try A ~ Poisson. This leads to the Generalized Poisson distribution.

Do we have a winner?

1000000 2-color, 15-vertex complete graphs
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If Not Negative Binomial, Then What?

Looks pretty good, but

1000000 2-color, 15-vertex complete graphs
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If Not Negative Binomial, Then What?

Looks pretty good, but we’'re mathematicians not statisticians!

1000000 2-color, 15-vertex complete graphs
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company. This won't happen often, but has a non-zero probability. So, most, but
not all, cars will have accidents independent of other cars from the same small
company.
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What's left?

Let's think about the Poisson paradigm.

Most — but not all — of the random variables indicating whether or not the ¢*"
K. i1s monochromatic are independent.

So “most” of the random variable should be Poisson.
How do we account for the dependent parts?
Let's ask the obvious question: Can we take a cue from car insurance?

Consider a small company who wants the distribution of accidents of cars they
insure. Most accidents will be with cars insured by a different company, but
sometimes the accident will occur between cars insured by the same small
company. This won't happen often, but has a non-zero probability. So, most, but
not all, cars will have accidents independent of other cars from the same small
company.

How does this translate into a compound distribution?
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What's left?

We let A = ¢+ Y where c is constant (accounting for the independence) and Y
is a random variable (accounting for the dependence).

We can think of Y as a contagion driver (if one K} is monochromatic, then other
Kys that share vertices are more likely to be monochromatic; monochromaticity
is contagious).

Polya's Urn model was devised to model disease contagion.

In Limit Distributions for Large Polyd Urns by Chauvin, Pouyanne, and Sahnoun
(2011) we see that the associated martingale (a stochastic process where the
expected value of the next random variable given the current state is equal to
the value of the current random variable — requires large urns) follows a Gamma
distribution.

So, let’s investigate A = ¢ + G, where c is constant and G is a Gamma random
variable.

So, we are considering a Poisson(A) random variable where A = ¢+ G where ¢ is
a parameter and G is a Gamma random variable.
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S Em =

a convolution of a Negative Binomial random variable and a Poisson random
variable.
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The Delaporte Distribution

The resulting distribution is . ..

ronn = =S (75) (i) G

a convolution of a Negative Binomial random variable and a Poisson random
variable.

This relatively obscure distribution is called the Delaporte distribution, whose
name comes from Delaporte (1959) who used it to model car accidents.
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It does have (under certain conditions) the asymptotic Poisson property that is
needed:

Theorem. Let n,k € Z* with k > 3. Define D ~ Delaporte(\, o, 3), and P ~
Poisson(A + o). Then the mgf(D) — mgf(P) as k — oo under the following

assumptions:
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e n=0 (ka : 2%) (so that a8 — 0)
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The Delaporte Distribution

It does have (under certain conditions) the asymptotic Poisson property that is
needed:

Theorem. Let n,k € Z* with k > 3. Define D ~ Delaporte(\, a, 8), and P ~
Poisson(A + o). Then the mgf(D) — mgf(P) as k — oo under the following
assumptions:

(&)
* nkk—l
> We'll attempt to justify before presenting the proof.
nk—2
O 2(3) J

e n=0o0 (ka : 2%) (so that a8 — 0)
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SMCramsey that accompanies his article Symbolic moment calculus II: why s

Using Zeilberger's Maple package

Ramsey theory sooooo eeeenormously hard? we find the leading terms for the
second and third moments about the mean for X} for small k:
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We know that u = E(Xg(n)) = % Using Zeilberger's Maple package
2(2)-

SMCramsey that accompanies his article Symbolic moment calculus II: why s

Ramsey theory sooooo eeeenormously hard? we find the leading terms for the
second and third moments about the mean for X} for small k:

k| E(Xe — 1)) | E((Xe — p)?)
o o
24 26
A (n> 12n (n> 24n3
4 210 4 215
. (n> 15n° (’n> 15n°
5 218 5 227
6 (n> 10n° (’n> 10n°
6 228 6 3. 242
. (n> 35n? (TL) 35n”
7 2 . 242 7/ 6 .264
n 84n° n 42ntt
8 (8> 15 . 256 (8> 255 . 284
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3 o (745) (755) 75

1=0

2( -1
kK | E((X —w)*) | E(X = w)°)
n 3 n 6M
> 3) 24 3> 26
n 12n n 24n°
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3 o (745) (755) 75

1=0

-1 M:E(D):A—l—aﬁ
E((D — u)*) = XA+ aB(1+ B)

B ) [E(X ) B — o = 4 o1 138 + 26,
n 3 n oM
3 <3) o4 <3> 26
3
GE NG
2 5
| )
3 7
o | (5) 5 | (5) 59m
4 9
! <T7L) '23.5;42 <:> °63.5;L64
4 5 4 11
| <g) ' 12 -7;56 <g) °25§?-1284
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3 o (745) (755) 75

1=0

2( 1 /LZE(D)Z)\—I—(XB
E((D — p)?) = A+ aB(1+6)
K[ E(X =) [ E(X =) BUD — %) = A+ 0B+ 35 1 25)
n 3 n oM
3 <3) Y <3> 56 We have E((D — p)?) = E(D) + a2, so
3
THE I e (1)
n 15n° n 15n° 22(2)_2
51 () 5 | (5) o
3 7
o | (5) o | () 5o3m
4 9
(D) s | (D)
4 5 49 11
| <g) ' 12 -7;56 <g) 2557284
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3 o (745) (755) 75

1=0

—1 p=E(D) =X+ ap
E((D — p)?) = A+ aB(1 + )

k | E((X — p)? E(X — p)’
n 3 n on , ,
3 (3)'? (3>'¥ We have E((D — p)*) = E(D) + aB*, so
n 12n n 24n3 k—3
() e | () e (M) "
4 210 4 215 af” ~ < > - .
2 5 k/ 92(3)-2
5 (n) 15n (’I’L) 15n
5 218 5 227 Looking at the third moments, we have evidence
6 ny  10n° n 10n° to suggest that
(6) 2% (6> 3. 242 _
n 35n? n 35n” 2aﬁ3 ~ (n> - pra
! (7) 9. 942 (7) 6. 264 k/ 93(3)-3
q (n) 84n° (’I’L) 42n 1t
8 15 . 256 8 255 . 284
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3 o (745) (755) 75

1=0

2(5)-1 p=ED)=A+af
E((D — u)*) = XA+ aB(1+ B)

k | E(X — p)? E((X — p)°
n 3 n 6Mm , ,
3 <3)'§ <3>'§ We have E((D — u)°) = E(D) + af°, so
n 12n n 24n3 k—3
4 i . 5 ny n
<4) 210 <4> 215 af” ~ ( ) .
2 5 k 22(15)_2
. <n) 15n <n> 15n
5 218 5 227 Looking at the third moments, we have evidence
6 n 10n° n 1017 to suggest that
<6) - 2% <6) ' 3.242 _
ny n
ny 350 | my 35n° 208° ~ () ——
! <7) 9. 042 <7) 6. 264 k7 93(3)-3
3 <n) . 84n” <n) . 42n" Taking the ratio of these last two expressions
8 15 - 256 8 255 - 284 yields
n k—2
(k) n
a ~ and [ ~ :
nk—1 2(l2c)
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Proof. Since D is a convolution of a Negative Binomial random variable with
success probability % and mean a3 and a Poisson random variable with mean
A, using the moment generating functions of these, we easily have

e)x(et—l)

et = e )




Ramsey Objects and Delaporte Aaron Robertson

Proof. Since D is a convolution of a Negative Binomial random variable with
success probability % and mean a3 and a Poisson random variable with mean
A, using the moment generating functions of these, we easily have

e)x(et—l)

et = e )

Isolating the denominator, we have

- g -y = (1- A=)

0%
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Proof. Since D is a convolution of a Negative Binomial random variable with

success probability % and mean a3 and a Poisson random variable with mean

A, using the moment generating functions of these, we easily have

e)x(et—l)

(1—p8(e" = 1))

mgf(D) =

Isolating the denominator, we have

af(e’ — 1))a |

0%

(1= 1) = (1-

Under the given assumptions, for large k£ (and n) we have

t (83
(1 . O‘ﬁ(e - 1)) ~ e—aﬁ(et—l), ‘t‘ <

8%

nk—2
so that mgf(D) ~ e(AFap)(e'~1) =mgf(P) on an interval including ¢ = 0. O
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The Delaporte Distribution

Does it do better than Poisson?
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The Delaporte Distribution

Does it do better than Poisson?
Empirical PMF with k=4 n=17 with Delaporte and Poisson Fits
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The Delaporte Distribution

Lest you think that was a fluke:
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The Delaporte Distribution

Lest you think that was a fluke:

Empirical PMF with k=4 n=18 with Delaporte Fit Empirical PMF with k=4 n=19 with Delaporte Fit
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The Delaporte Distribution

Three flukes?
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The Delaporte Distribution

Three flukes?

Empirical PMF with k=5 n=45 with Delaporte Fit
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Consequences

Assume that the distribution of X (n) is Delaporte (BIG Assumption) so that

P(Xe(n) = 0) = =7 1+ e
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Consequences

Assume that the distribution of X (n) is Delaporte (BIG Assumption) so that

P(Xe(n) = 0) = =7 1+ e

We had defined: Rj(7) = min {n : P(X(n) > 0) > 7}.

neZ*
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Consequences

Assume that the distribution of X (n) is Delaporte (BIG Assumption) so that

P(Xe(n) = 0) = =7 1+ e

We had defined: Rj(7) = min {n : P(X(n) > 0) > 7}.

neZ*

It would be nice to let 7 =1 — so that we want P(Xx(n) =0) <

1
2 (%) 9(%)
But this doesn’'t occur for any calculated parameters and values of n that are
computationally feasible (and can’t happen asymptotically).
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Consequences

Assume that the distribution of X (n) is Delaporte (BIG Assumption) so that

P(Xe(n) = 0) = =7 1+ e

We had defined: Rj(7) = min {n : P(X(n) > 0) > 7}.

neZ*

It would be nice to let 7 =1 — so that we want P(Xx(n) =0) <

2 (%) 9(%)

But this doesn’'t occur for any calculated parameters and values of n that are

computationally feasible (and can’t happen asymptotically).

Using Zeilberger's package and setting Delaporte moments equal to Ramsey graph

moments and letting 7 ~ 27%"" (and using o ~ 7) gets you in roughly the area

of R(k) values and bounds for small k. Unfortunately, unless making assumptions

about one of A, «, 3, the calculation time is too much for k& > 6.
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Consequences

We do have a very interesting by-product of our proof that mgf(D) — mgf(P):
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Consequences

We do have a very interesting by-product of our proof that mgf(D) — mgf(P):
We know that

el —
mgf(D) = ete D and mgf(P) = e t+ap)(e'=1)
(1 —pB(et — 1))«

so that we need (1 — (e’ — 1))* — e—oB(e 1),
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Consequences

We do have a very interesting by-product of our proof that mgf(D) — mgf(P):
We know that
pA(ef=1)

f(D) = £(P) — o aB)(ef=1)
mgf (D) -G -1 and  mgf(P)=e

so that we need (1 — (e’ — 1))* — e—oB(e 1),

Hence, we need a3 — 0.
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Consequences

We do have a very interesting by-product of our proof that mgf(D) — mgf(P):
We know that
pA(ef=1)

f(D) = £(P) — o aB)(ef=1)
mgf (D) -G -1 and  mgf(P)=e

so that we need (1 — (e’ — 1))* — e—oB(e 1),
Hence, we need a3 — 0.

Based on our evidence-based assumptions for o and (3, we require

n =o (l{jl—l-ﬁ . 2%)
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Consequences

We do have a very interesting by-product of our proof that mgf(D) — mgf(P):
We know that
pA(ef=1)

f(D) = £(P) — o aB)(ef=1)
mgf (D) -G -1 and  mgf(P)=e

so that we need (1 — (e’ — 1))* — e—aB(e'~1)
Hence, we need a3 — 0.

Based on our evidence-based assumptions for o and (3, we require
1k
n=o (k1+k—1 . 22)

so that if n > k%7 . 25 then mgf(Delaporte) 4 mgf(Poisson).



Ramsey Objects and Delaporte Aaron Robertson

Consequences

We do have a very interesting by-product of our proof that mgf(D) — mgf(P):
We know that

pA(ef=1)

f(D) = d F(P) = e(ATaB)(e'~1)
mg ( ) (1 L /6(6t L 1))a an mg ( ) =

so that we need (1 — (e’ — 1))* — e—aB(e'~1)
Hence, we need a3 — 0.

Based on our evidence-based assumptions for o and (3, we require

n =o (kl-l-ﬁ . 2%)

so that if n > k%7 . 25 then mgf(Delaporte) 4 mgf(Poisson).

But we know that, asymptotically, we have a Poisson distribution and the
Delaporte sure appears to be a fantastic fit.
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Arithmetic Progressions

Maria was very quick at programming, so after she finished with the graphs, she
coded the similar problem for arithmetic progressions.

She counted the number of monochromatic k-term arithmetic progressions in
2-colorings of {1,2,...,n} and produced the resulting sample histograms.
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Arithmetic Progressions

Looks like they also follow a formula.

Empirical PMF with k=5 n=178
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Arithmetic Progressions

After much less searching we again found a very good fit:

Empirical PMF with k=5 n=176
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|

EMPpmf
0.010
|

k=5n=176
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0.000
|

I I I I I
200 300 400 500 600

where the overlay uses MLEs.
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Arithmetic Progressions

We again found a very good fit:
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Arithmetic Progressions

We again found a very good fit: the Delaporte distribution.

Empirical PMF with k=6 n=1131 with Delaporte Fit Empirical PMF with k=6 n=1132 with Delaporte Fit
<
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Is there a Delaporte paradigm for Ramsey objects?

Thank You!

WWW.aaronrobertson.org



