The k-colour Ramsey number of odd cycles via non-linear optimisation

Jozef Skokan
London School of Economics

July 16, 2018
Joint work with Matthew Jenssen

Background

Definition

For a graph G and an integer $k \geq 2$, let $R_{k}(G)$ denote the smallest integer N for which any edge-coloring of the complete graph K_{N} by k colors contains a monochromatic copy of G.

Background

Definition

For a graph G and an integer $k \geq 2$, let $R_{k}(G)$ denote the smallest integer N for which any edge-coloring of the complete graph K_{N} by k colors contains a monochromatic copy of G.

Theorem (Ramsey, 1930)

For any graph $G, R_{k}(G)$ is finite.

Background

Theorem (Erdős, 1947; Erdős, Szekeres, 1935)

$$
2^{n / 2} \leq R_{2}\left(K_{n}\right) \leq 2^{2 n}
$$

Famous problem: improve these bounds

Background

Theorem (Erdős, 1947; Erdős, Szekeres, 1935)

$$
2^{n / 2} \leq R_{2}\left(K_{n}\right) \leq 2^{2 n}
$$

Famous problem: improve these bounds

Questions: (Erdős et al. 70's)

- What controls the growth of $R_{2}(G)$ as a function of $|G|$?
- Can we strengthen Ramsey's theorem to show that the monochromatic clique has some additional structure?
- How large monochromatic set exists in edge-colorings of K_{N} satisfying certain restrictions?

Background

The Ramsey properties of sparse graphs (of bounded maximum degree, bounded degeneracy, bounded average degree) have been extensively studied early on, for example:

Theorem (Gyarfás, Gerencsér, '67)

$$
R_{2}\left(P_{n}\right)=\left\lfloor\frac{3 n}{2}\right\rfloor-1
$$

Theorem (Bondy and Erdős, Faudree and Schelp, Rosta, '73)

$$
R_{2}\left(C_{n}\right)= \begin{cases}2 n-1, & \text { if } n \geq 5 \text { is odd } \\ \frac{3 n}{2}-1, & \text { if } n \geq 6 \text { is even }\end{cases}
$$

Background

The Ramsey properties of sparse graphs (of bounded maximum degree, bounded degeneracy, bounded average degree) have been extensively studied early on, for example:

Theorem (Gyarfás, Gerencsér, '67)

$$
R_{2}\left(P_{n}\right)=\left\lfloor\frac{3 n}{2}\right\rfloor-1
$$

Theorem (Bondy and Erdős, Faudree and Schelp, Rosta, '73)

$$
R_{2}\left(C_{n}\right)= \begin{cases}2 n-1, & \text { if } n \geq 5 \text { is odd } \\ \frac{3 n}{2}-1, & \text { if } n \geq 6 \text { is even }\end{cases}
$$

For more than two colors much less is known!

Problem History

For more than three colors much less is known:
Theorem (Cockayne, Lorimer, '75)
$R_{k}\left(n K_{2}\right)=n+1+k(n-1)$

Problem History

For more than three colors much less is known:
Theorem (Cockayne, Lorimer, '75)
$R_{k}\left(n K_{2}\right)=n+1+k(n-1)$

Conjecture (Bondy, Erdős, '73)

For all k and odd $n>3, R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1$.

4. Comments

We have not been able to evaluate $R\left(G_{1}, \ldots, G_{k}\right)$ for $k>2$ even in the case of cycles. It is easy to see that, when $G_{i} \cong C_{n}, 1 \leqslant i \leqslant k$, and n is odd,

$$
R\left(G_{1}, \ldots, G_{k}\right) \geqslant 2^{k-1}(n-1)+1
$$

On the other hand we can show that, in this case,

$$
R\left(G_{1}, \ldots, G_{k}\right) \leqslant(k+2)!n .
$$

Also of interest would be to find $R\left(C_{n}, C_{r}\right), R\left(C_{n}, K_{r}\right)$, and $R\left(C_{n}, K_{r}^{2}\right)$ for all values of n and r. Since, by [4], $R\left(C_{4}, K_{4}\right)=10$ it is possible that

A Lower Bound Construction

Conjecture (Bondy, Erdős, '73)

For all k and odd $n>3, R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1$.

A Lower Bound Construction

Conjecture (Bondy, Erdős, '73)

For all k and odd $n>3, R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1$.

$$
n-1
$$

A Lower Bound Construction

Conjecture (Bondy, Erdős, '73)

For all k and odd $n>3, R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1$.

A Lower Bound Construction

Conjecture (Bondy, Erdős, '73)

For all k and odd $n>3, R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1$.

A Lower Bound Construction

Conjecture (Bondy, Erdős, '73)

For all k and odd $n>3, R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1$.

A Lower Bound Construction

Conjecture (Bondy, Erdős, '73)

For all k and odd $n>3, R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1$.

Progress Toward Conjecture $(k=3)$

First breakthrough/ early use of the Regularity Method.
Theorem (Łuczak, '99)

$$
R_{3}\left(C_{n}\right)=4 n+o(n) \text { as } n \rightarrow \infty .
$$

Progress Toward Conjecture $(k=3)$

First breakthrough/ early use of the Regularity Method.

Theorem (Łuczak, '99)

$$
R_{3}\left(C_{n}\right)=4 n+o(n) \text { as } n \rightarrow \infty .
$$

Subsequently improved using stability-type arguments.

Theorem (Kohayakawa, Simonovits, Skokan, '05)

$$
R_{3}\left(C_{n}\right)=4 n-3 \text { for sufficiently large odd } n \text {. }
$$

Progress Toward Conjecture (general case)

Theorem (Erdős, Graham, '75)

For all k and odd $n, R_{k}\left(C_{n}\right) \leq 2(k+2)!n$.

Progress Toward Conjecture (general case)

Theorem (Erdős, Graham, '75)

For all k and odd $n, R_{k}\left(C_{n}\right) \leq 2(k+2)!n$.

Theorem (Łuczak, Simonovits, Skokan, '10)

For all k and odd $n, R_{k}\left(C_{n}\right) \leq k 2^{k} n+o(n)$ as $n \rightarrow \infty$.

Progress Toward Conjecture (general case)

Theorem (Erdős, Graham, '75)

For all k and odd $n, R_{k}\left(C_{n}\right) \leq 2(k+2)!n$.

Theorem (Łuczak, Simonovits, Skokan, '10)

For all k and odd $n, R_{k}\left(C_{n}\right) \leq k 2^{k} n+o(n)$ as $n \rightarrow \infty$.

Theorem (Jenssen, S. '16+)

For all k, if n is odd and sufficiently large then

$$
R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1
$$

Act 1: there are more extremal colourings than we imagined

Subcubes of Q_{k}

Think of an element of $\tau \in\{0,1, *\}^{k}$ as a subset of $\{0,1\}^{k}$ by considering a ' $*$ ' as a 'missing bit' and considering all possible ways of filling in the missing bits.

Example

We think of $\tau=(1,0, *)$ as the set

$$
Q_{\tau}=\{(1,0,0),(1,0,1)\}
$$

Example

$$
\begin{gathered}
\text { We think of } \tau=(0, *, *) \text { as the set } \\
Q_{\tau}=\{(0,0,0),(0,0,1),(0,1,0),(0,1,1)\} .
\end{gathered}
$$

Extremal Colorings from Matchings in Q_{3}

Extremal Colorings from Matchings in Q_{3}

Extremal Colorings from Matchings in Q_{3}

Sets $V_{(0, *, 0)}, V_{(1, *, 0)}, V_{(0, *, 1)}, V_{(1, *, 1)}$, have size $n-1$ each

Extremal Colorings from Matchings in Q_{3}

Sets $V_{(0, *, 0)}, V_{(1, *, 0)}, V_{(0, *, 1)}, V_{(1, *, 1)}$, have size $n-1$ each

We allow colour i between V_{τ} and V_{σ} iff $\tau_{i}=1-\sigma_{i}$.

Extremal Colorings from Matchings in Q_{3}

Sets $V_{(0, *, 0)}, V_{(1, *, 0)}, V_{(0, *, 1)}, V_{(1, *, 1)}$, have size $n-1$ each

We allow colour i between V_{τ} and V_{σ} iff $\tau_{i}=1-\sigma_{i}$.

Extremal Colorings from Matchings in Q_{3}

Sets $V_{(0, *, 0)}, V_{(1, *, 0)}, V_{(0, *, 1)}, V_{(1, *, 1)}$, have size $n-1$ each there is no monochromatic C_{n} if n is odd.

We allow colour i between V_{τ} and V_{σ} iff $\tau_{i}=1-\sigma_{i}$.

Extremal Colorings from Matchings in Q_{3}

Colouring of $K_{2^{2}(n-1)}$ without monochromatic C_{n}.

Extremal Colorings from Matchings in Q_{3}

We allow colour i between V_{τ} and V_{σ} iff $\tau_{i}=1-\sigma_{i}$.

Extremal Colorings from Matchings in Q_{3}

We allow colour i between V_{τ} and V_{σ} iff $\tau_{i}=1-\sigma_{i}$.

Extremal Colorings from Matchings in Q_{3}

We allow colour i between V_{τ} and V_{σ} iff $\tau_{i}=1-\sigma_{i}$.

Extremal Colorings from Matchings in Q_{3}

Another colouring of $K_{2^{2}(n-1)}$ without monochromatic C_{n}.

New Extremal Constructions

Act 2: how to exploit the characterization of (all) extremal colourings

An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and odd $n, R_{k}\left(C_{n}\right)=2^{k-1} n+o(n)$ as $n \rightarrow \infty$.

An Asymptotic Result First

Theorem (Asymptotic Version)
For all k and $\varepsilon>0$ there is an n_{0} such that, for any odd $n>n_{0}$, $R_{k}\left(C_{n}\right) \leq(1+\varepsilon) 2^{k-1} n$.

An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and $\varepsilon>0$ there is an n_{0} such that, for any odd $n>n_{0}$, $R_{k}\left(C_{n}\right) \leq(1+\varepsilon) 2^{k-1} n$.

By Łuczak's method of connected matchings it suffices to prove the following:

An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and $\varepsilon>0$ there is an n_{0} such that, for any odd $n>n_{0}$, $R_{k}\left(C_{n}\right) \leq(1+\varepsilon) 2^{k-1} n$.

By Łuczak's method of connected matchings it suffices to prove the following:

Proposition

For every $\varepsilon>0$ there exist a $\delta>0$ and an n_{0} such that the following holds:
If $n \geq n_{0}$ is odd and G is a graph with $N=(1+\varepsilon) 2^{k-1} n$ vertices and at least $(1-\delta)\binom{N}{2}$ edges, then each k-coloring of G contains a monochromatic odd connected matching of size $(n+1) / 2$.

Connected Matching

Odd Connected Matching

An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and $\varepsilon>0$ there is an n_{0} such that, for any odd $n>n_{0}$, $R_{k}\left(C_{n}\right) \leq(1+\varepsilon) 2^{k-1} n$.

By Łuczak's method of connected matchings it suffices to prove the following:

Proposition

For every $\varepsilon>0$ there exist a $\delta>0$ and an n_{0} such that the following holds:
If $n \geq n_{0}$ is odd and G is a graph with $N=(1+\varepsilon) 2^{k-1} n$ vertices and at least $(1-\delta)\binom{N}{2}$ edges, then each k-coloring of G contains a monochromatic odd connected matching of size $(n+1) / 2$.

Graph Decomposition

Let G be a k-colored graph and let $i \in[k]$ be any colour.

Graph Decomposition

Let G be a k-colored graph and let $i \in[k]$ be any colour.

- Let G_{i} denote the spanning subgraph of G induced by edges of color i.

Graph Decomposition

Let G be a k-colored graph and let $i \in[k]$ be any colour.

- Let G_{i} denote the spanning subgraph of G induced by edges of color i.
- Write $V(G)=V_{0}^{i} \cup V_{1}^{i} \cup V_{*}^{i}$ where $G_{i}\left[V_{0}^{i} \cup V_{1}^{i}\right]$ is bipartite and $G_{i}\left[V_{*}^{i}\right]$ is a collection of non-bipartite connected components.

Graph Decomposition

Let G be a k-colored graph and let $i \in[k]$ be any colour.

- Let G_{i} denote the spanning subgraph of G induced by edges of color i.
- Write $V(G)=V_{0}^{i} \cup V_{1}^{i} \cup V_{*}^{i}$ where $G_{i}\left[V_{0}^{i} \cup V_{1}^{i}\right]$ is bipartite and $G_{i}\left[V_{*}^{i}\right]$ is a collection of non-bipartite connected components.
- For $\tau=\left(\tau_{1}, \ldots, \tau_{k}\right) \in\{0,1, *\}^{k}$, let $V_{\tau}=\bigcap_{j=1}^{k} V_{\tau_{j}}^{j}$.

Graph Decomposition

Let G be a k-colored graph and let $i \in[k]$ be any colour.

- Let G_{i} denote the spanning subgraph of G induced by edges of color i.
- Write $V(G)=V_{0}^{i} \cup V_{1}^{i} \cup V_{*}^{i}$ where $G_{i}\left[V_{0}^{i} \cup V_{1}^{i}\right]$ is bipartite and $G_{i}\left[V_{*}^{i}\right]$ is a collection of non-bipartite connected components.
- For $\tau=\left(\tau_{1}, \ldots, \tau_{k}\right) \in\{0,1, *\}^{k}$, let $V_{\tau}=\bigcap_{j=1}^{k} V_{\tau_{j}}^{j}$.
- Define the dimension of τ as $\omega(\tau):=\left|\left\{j \in[k]: \tau_{j}=*\right\}\right|$.

Graph Decomposition

Let G be a k-colored graph and let $i \in[k]$ be any colour.

- Let G_{i} denote the spanning subgraph of G induced by edges of color i.
- Write $V(G)=V_{0}^{i} \cup V_{1}^{i} \cup V_{*}^{i}$ where $G_{i}\left[V_{0}^{i} \cup V_{1}^{i}\right]$ is bipartite and $G_{i}\left[V_{*}^{i}\right]$ is a collection of non-bipartite connected components.
- For $\tau=\left(\tau_{1}, \ldots, \tau_{k}\right) \in\{0,1, *\}^{k}$, let $V_{\tau}=\bigcap_{j=1}^{k} V_{\tau_{j}}^{j}$.
- Define the dimension of τ as $\omega(\tau):=\left|\left\{j \in[k]: \tau_{j}=*\right\}\right|$.
- $\omega(\tau)$ is the maximum number of colors possible on edges in V_{τ}.

Sketch Proof

Suppose that G is a k-colored graph with $N=(1+\varepsilon) 2^{k-1} n$ vertices, $(1-\delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of $(n+1) / 2$ edges.

Sketch Proof

Suppose that G is a k-colored graph with $N=(1+\varepsilon) 2^{k-1} n$ vertices, $(1-\delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of $(n+1) / 2$ edges.

We show that for δ small and n large we reach a contradiction.

Sketch Proof

Suppose that G is a k-colored graph with $N=(1+\varepsilon) 2^{k-1} n$ vertices, $(1-\delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of $(n+1) / 2$ edges.

We show that for δ small and n large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of G must be very sparse:

Sketch Proof

Suppose that G is a k-colored graph with $N=(1+\varepsilon) 2^{k-1} n$ vertices, $(1-\delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of $(n+1) / 2$ edges.

We show that for δ small and n large we reach a contradiction.
By the following theorem the monochromatic non-bipartite components of G must be very sparse:

Theorem (Erdős, Gallai, '59)

Let $m \geq 3$. If G has no cycle of length greater than m (a.k.a. connected matching of $(m+1) / 2$ edges), then $e(G) \leq(m-1)(v(G)-1) / 2$.

Sketch Proof

Suppose that G is a k-colored graph with $N=(1+\varepsilon) 2^{k-1} n$ vertices, $(1-\delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of $(n+1) / 2$ edges.

We show that for δ small and n large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of G must be very sparse:

Theorem (Erdős, Gallai, '59)

Let $m \geq 3$. If G has no cycle of length greater than m (a.k.a. connected matching of $(m+1) / 2$ edges), then $e(G) \leq(m-1)(v(G)-1) / 2$.

Decomposing G as before, it follows that $\left|V_{\tau}\right| \leq \omega(\tau) n+o(n)$ for all $\tau \in\{0,1, *\}^{k}$.

A Quadratic Constraint

For $\tau \in\{0,1, *\}^{k}$ let $v_{\tau}=\left|V_{\tau}\right| / n$ and let $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$.

A Quadratic Constraint

For $\tau \in\{0,1, *\}^{k}$ let $v_{\tau}=\left|V_{\tau}\right| / n$ and let $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$. Counting non-bipartite edges in two different ways we obtain

A Quadratic Constraint

For $\tau \in\{0,1, *\}^{k}$ let $v_{\tau}=\left|V_{\tau}\right| / n$ and let $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$.
Counting non-bipartite edges in two different ways we obtain

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 2^{3 k} \delta(1+\varepsilon)^{2}
$$

A Quadratic Constraint

For $\tau \in\{0,1, *\}^{k}$ let $v_{\tau}=\left|V_{\tau}\right| / n$ and let $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$.
Counting non-bipartite edges in two different ways we obtain

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 2^{3 k} \delta(1+\varepsilon)^{2}
$$

Consider this inequality as a constraint on the non-negative reals v_{τ} and try to maximize

$$
\|v\|_{1}=\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}
$$

A Quadratic Constraint

For $\tau \in\{0,1, *\}^{k}$ let $v_{\tau}=\left|V_{\tau}\right| / n$ and let $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$.
Counting non-bipartite edges in two different ways we obtain

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 2^{3 k} \delta(1+\varepsilon)^{2}
$$

Consider this inequality as a constraint on the non-negative reals v_{τ} and try to maximize

$$
\|v\|_{1}=\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}=\frac{N}{n} .
$$

A Quadratic Constraint

For $\tau \in\{0,1, *\}^{k}$ let $v_{\tau}=\left|V_{\tau}\right| / n$ and let $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$.
Counting non-bipartite edges in two different ways we obtain

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 2^{3 k} \delta(1+\varepsilon)^{2}
$$

Consider this inequality as a constraint on the non-negative reals v_{τ} and try to maximize

$$
\|v\|_{1}=\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}=\frac{N}{n} .
$$

We get the desired contradiction by showing that

$$
\|v\|_{1}<(1+\epsilon) 2^{k-1}=\frac{N}{n} .
$$

A Compression Argument

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

A Compression Argument

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Suppose that $Q_{\rho} \cap Q_{\pi} \neq \emptyset$ for some $\rho, \pi \in\{0,1, *\}^{k}$, then we may write the above as

$$
\left(A+v_{\rho}+v_{\pi}\right)^{2}-B v_{\rho}-C v_{\pi}-D \leq 0,
$$

where $A, B, C, D \geq 0$ do not depend on v_{ρ} or v_{π}.

A Compression Argument

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Suppose that $Q_{\rho} \cap Q_{\pi} \neq \emptyset$ for some $\rho, \pi \in\{0,1, *\}^{k}$, then we may write the above as

$$
\left(A+v_{\rho}+v_{\pi}\right)^{2}-B v_{\rho}-C v_{\pi}-D \leq 0,
$$

where $A, B, C, D \geq 0$ do not depend on v_{ρ} or v_{π}.
Wlog suppose $B \geq C$ and set $v_{\rho}^{\prime}=v_{\rho}+v_{\pi}$ and $v_{\pi}^{\prime}=0$.

A Compression Argument

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Suppose that $Q_{\rho} \cap Q_{\pi} \neq \emptyset$ for some $\rho, \pi \in\{0,1, *\}^{k}$, then we may write the above as

$$
\left(A+v_{\rho}+v_{\pi}\right)^{2}-B v_{\rho}-C v_{\pi}-D \leq 0
$$

where $A, B, C, D \geq 0$ do not depend on v_{ρ} or v_{π}.
Wlog suppose $B \geq C$ and set $v_{\rho}^{\prime}=v_{\rho}+v_{\pi}$ and $v_{\pi}^{\prime}=0$.
Call this the (π, ρ)-compression of $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$.

A Compression Argument

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Suppose that $Q_{\rho} \cap Q_{\pi} \neq \emptyset$ for some $\rho, \pi \in\{0,1, *\}^{k}$, then we may write the above as

$$
\left(A+v_{\rho}+v_{\pi}\right)^{2}-B v_{\rho}-C v_{\pi}-D \leq 0
$$

where $A, B, C, D \geq 0$ do not depend on v_{ρ} or v_{π}.
Wlog suppose $B \geq C$ and set $v_{\rho}^{\prime}=v_{\rho}+v_{\pi}$ and $v_{\pi}^{\prime}=0$.
Call this the (π, ρ)-compression of $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$.
Compressions preserve $\|v\|_{1}$ and keep v in the feasible region.

Compressing to a Spherical Constraint

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Compressing to a Spherical Constraint

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Applying a compression argument we may assume that $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_{k}.

Compressing to a Spherical Constraint

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Applying a compression argument we may assume that $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_{k}. This transforms the constraint equation to

$$
\sum_{\tau \in \mathcal{D}}\left(v_{\tau}^{2}-\omega(\tau) v_{\tau}\right) \leq 0
$$

Compressing to a Spherical Constraint

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Applying a compression argument we may assume that $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_{k}. This transforms the constraint equation to

$$
\sum_{\tau \in \mathcal{D}}\left(v_{\tau}^{2}-\omega(\tau) v_{\tau}\right) \leq 0
$$

- Much more amenable to analysis: the constraint is convex (Karush-Kuhn-Tucker conditions, Slater condition for strong duality).

Compressing to a Spherical Constraint

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Applying a compression argument we may assume that $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_{k}. This transforms the constraint equation to

$$
\sum_{\tau \in \mathcal{D}}\left(v_{\tau}^{2}-\omega(\tau) v_{\tau}\right) \leq 0
$$

- Much more amenable to analysis: the constraint is convex (Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
- It turns out that an optimal point v must be a $0-1$ vector supported on a perfect matching of Q_{k}.

Compressing to a Spherical Constraint

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq 0
$$

Applying a compression argument we may assume that $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_{k}. This transforms the constraint equation to

$$
\sum_{\tau \in \mathcal{D}}\left(v_{\tau}^{2}-\omega(\tau) v_{\tau}\right) \leq 0
$$

- Much more amenable to analysis: the constraint is convex (Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
- It turns out that an optimal point v must be a $0-1$ vector supported on a perfect matching of Q_{k}.
- For such a v we have $\|v\|_{1}=2^{k-1}$ and a compactness argument gives the desired contradiction.

Compressing to a Spherical Constraint

$$
\left(\sum_{\tau \in\{0,1, *\}^{k}} v_{\tau}\right)^{2}-2 \sum_{Q_{\sigma} \cap Q_{\tau}=\emptyset} v_{\sigma} v_{\tau}-\sum_{\tau \in\{0,1, *\}^{k}} \omega(\tau) v_{\tau} \leq o_{\delta}(1)
$$

Applying a compression argument we may assume that $v=\left(v_{\tau}: \tau \in\{0,1, *\}^{k}\right)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_{k}. This transforms the constraint equation to

$$
\sum_{\tau \in \mathcal{D}}\left(v_{\tau}^{2}-\omega(\tau) v_{\tau}\right) \leq o_{\delta}(1)
$$

- Much more amenable to analysis, the constraint is convex (Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
- It turns out that an optimal point v must be a 0-1 vector supported on a perfect matching of Q_{k}.
- For such a v we have $\|v\|_{1}=2^{k-1}+o_{\delta}(1)$, however $\|v\|_{1}=2^{k-1}+\varepsilon$, a contradiction.

Towards the Exact Result

Let \mathcal{S} be the set of complete graphs admitting a k-coloring with no monochromatic C_{n}.

Ramsey Theory	Analysis		
Maximize $v(G)$ subject to	Maximize $\\|x\\|_{1}$ subject to		
$G \in S \subseteq \mathcal{S}^{3^{k}}$.			

Towards the Exact Result

Let \mathcal{S} be the set of complete graphs admitting a k-coloring with no monochromatic C_{n}.

Ramsey Theory	Analysis		
Maximize $v(G)$ subject to	Maximize $\\|x\\|_{1}$ subject to $G \in S \subseteq \mathcal{S}$.		
Extremal construction	Optimal point		
An almost extremal construction must be 'close' to an extremal con- struction (hypercube coloring).	An almost optimal point must be close (in ℓ_{1}-norm) to an optimal point.		

607158046495120886820621 extremal constructions for $k=7$

Analytic and Combinatorial Stability

The key ingredient for analytic stability is that the optimal points are isolated.

Analytic and Combinatorial Stability

The key ingredient for analytic stability is that the optimal points are isolated.

Epilogue

Theorem (Jenssen, S. '16+)

For all k, if n is odd and sufficiently large, then

$$
R_{k}\left(C_{n}\right)=2^{k-1}(n-1)+1
$$

'sufficiently large' means huge

Theorem (Day, Johnson '17)

For all odd n, if k is sufficiently large, then

$$
R_{k}\left(C_{n}\right)>(2+c(n))^{k-1}(n-1)
$$

Final remarks

- The same proof gives $R\left(C_{n_{1}}, C_{n_{1}}, \ldots, C_{n_{k}}\right)=2^{k-1}\left(\max n_{i}-1\right)+1$, where n_{i} 's are large and odd.
- How about mixed parities?
- Possible application: finding monochromatic circumference of a k-edge coloured dense graphs.
- Does the analytic approach have wider applications in Ramsey theory?

Thank you for listening!

