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Background

Definition

For a graph G and an integer k > 2, let Rx(G) denote the smallest integer
N for which any edge-coloring of the complete graph Ky by k colors
contains a monochromatic copy of G.
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Background

Definition

For a graph G and an integer k > 2, let Rx(G) denote the smallest integer
N for which any edge-coloring of the complete graph Ky by k colors
contains a monochromatic copy of G.

Theorem (Ramsey, 1930)
For any graph G, Rx(G) is finite.
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Background

Theorem (Erdés, 1947; Erdés, Szekeres, 1935)

2n/2 < RQ(Kn) < 22n

Famous problem: improve these bounds
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Background

Theorem (Erdés, 1947; Erdés, Szekeres, 1935)

2n/2 < RZ(KH) < 22n

Famous problem: improve these bounds

Questions: (Erdés et al. 70's)
@ What controls the growth of Ry(G) as a function of |G| ?

@ Can we strengthen Ramsey’s theorem to show that the
monochromatic clique has some additional structure?

@ How large monochromatic set exists in edge-colorings of Ky satisfying
certain restrictions ?

v,
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Background

The Ramsey properties of sparse graphs (of bounded maximum degree,
bounded degeneracy, bounded average degree) have been extensively
studied early on, for example:

Theorem (Gyarféds, Gerencsér, '67)

Theorem (Bondy and Erdés, Faudree and Schelp, Rosta, '73)

2n—1, ifn>5 is odd,

R2(C”) = {3n

= —1, ifn>6iseven.
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Background

The Ramsey properties of sparse graphs (of bounded maximum degree,
bounded degeneracy, bounded average degree) have been extensively
studied early on, for example:

Theorem (Gyarféds, Gerencsér, '67)

Theorem (Bondy and Erdés, Faudree and Schelp, Rosta, '73)

2n—1, ifn>5 is odd,

R2(C”) = {3n

= —1, ifn>6iseven.

For more than two colors much less is known!

Jozef Skokan The k-colour Ramsey number of odd cycles via non-linear optimisation



Problem History

For more than three colors much less is known:

Theorem (Cockayne, Lorimer, '75)
Rk(nK2) =n+1+ k(n—1)
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Problem History

For more than three colors much less is known:

Theorem (Cockayne, Lorimer, '75)

Rk(nK2) =n+1+ k(n—1)

Conjecture (Bondy, Erdds, '73)

For all k and odd n > 3, R (C,) =2k} (n— 1)+ 1.

4. COMMENTS

We have not been able to evaluate R(G, ,..., G;) for k > 2 even in tl:!e
case of cycles. It is easy to see that, when G, =~ C,,, 1 <i < k, and n is

odd,
R(Gy oy Gi) = 2 Y — 1) + L.

On the other hand we can show that, in this case,

R(G, .y Gp) < (K +2'n.

Also of interest would be to find R(C,, Cy), R(C,, K;), and R(qn , KB
for all values of n and r. Since, by [4], R(C,, k) = 10 it is possible that
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A Lower Bound Construction

Conjecture (Bondy, Erdés, '73)

For all k and odd n > 3, Ri(C,) = 25"1(n — 1) + 1.
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A Lower Bound Construction

Conjecture (Bondy, Erdés, '73)

For all k and odd n > 3, Ri(C,) = 25"1(n — 1) + 1.
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A Lower Bound Construction

Conjecture (Bondy, Erdés, '73)

For all k and odd n > 3, Ri(C,) = 25"1(n — 1) + 1.
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A Lower Bound Construction

Conjecture (Bondy, Erdés, '73)
For all k and odd n > 3, Ri(C,) = 25"1(n — 1) + 1.

n—1
e — .
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Progress Toward Conjecture (k = 3)

First breakthrough/ early use of the Regularity Method.
Theorem (Luczak, '99)

R3(C,) = 4n+ o(n) as n — oo.
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Progress Toward Conjecture (k = 3)

First breakthrough/ early use of the Regularity Method.
Theorem (Luczak, '99)

R3(C,) = 4n+ o(n) as n — oo.

Subsequently improved using stability-type arguments.

Theorem (Kohayakawa, Simonovits, Skokan, '05)
R3(C,) = 4n — 3 for sufficiently large odd n.
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Progress Toward Conjecture (general case)

Theorem (Erdés, Graham, '75)

For all k and odd n, Ri(Cy) < 2(k +2)!n.
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Progress Toward Conjecture (general case)

Theorem (Erdés, Graham, '75)

For all k and odd n, Ri(Cy) < 2(k +2)!n.

Theorem (Luczak, Simonovits, Skokan, '10)

For all k and odd n, Ri(C,) < k2%n+ o(n) as n — oo.
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Progress Toward Conjecture (general case)

Theorem (Erdés, Graham, '75)

For all k and odd n, Ri(Cy) < 2(k +2)!n.

Theorem (Luczak, Simonovits, Skokan, '10)
For all k and odd n, Ri(C,) < k2%n+ o(n) as n — oo.

Theorem (Jenssen, S. '16+)
For all k, if n is odd and sufficiently large then

Re(Cp) =2KY(n—1)+1.
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Act 1: there are more extremal colourings
than we imagined
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Subcubes of Qx

Think of an element of 7 € {0, 1, *}* as a subset of {0, 1} by considering
a '« as a ‘missing bit’ and considering all possible ways of filling in the
missing bits.

We think of 7 = (1,0, %) as the set

Q, = {(1,0,0),(1,0,1)}.

We think of 7 = (0, %, %) as the set

Q- = {(0,0,0),(0,0,1),(0,1,0),(0,1,1)}.
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Extremal Colorings from Matchings in Q3

Sets V(0,+,0), V(1,50), Y(0,1), V(1,4,1), have size n — 1 each



Extremal Colorings from Matchings in Q3

Sets V(0,+,0), V(1,50), Y(0,1), V(1,4,1), have size n — 1 each

V(O,*,O) - - V(O *,1)

We allow colour i/ between V, and V, iff ; = 1 — o;.



Extremal Colorings from Matchings in Q3

Sets V(0,+,0), V(1,50), Y(0,1), V(1,4,1), have size n — 1 each

V(1,5,0) Vi1,5,0)

V(O,*,O) V(O,*,l)

We allow colour i/ between V, and V, iff ; = 1 — o;.



Extremal Colorings from Matchings in Q3

Sets V(0,+,0), V(1,50), Y(0s,1), V(1,4,1), have size n — 1 each there is no
monochromatic C,, if n is odd.

V(1,5,0) Vi1,5,0)

V(O,*,O) V(O,*,l)

We allow colour i/ between V, and V, iff ; = 1 — o;.
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Extremal Colorings from Matchings in Q3

Colouring of Ky(,_1) without monochromatic C,.
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Extremal Colorings from Matchings in Q3

V(1,4,0) L _ ﬂ Via,s1)

= Vo1,




Extremal Colorings from Matchings in Q3



Extremal Colorings from Matchings in Q3

V(l,*,O) V(l,*,l)

— Vo1

/ 1/

e a——

V(O,O,*)

We allow colour i between V, and V, iff ; = 1 — o;.



Extremal Colorings from Matchings in Q3

______ ' Ve

We allow colour i between V, and V, iff ; = 1 — o;.



Extremal Colorings from Matchings in Q3

V(1,51

We allow colour i between V, and V, iff ; = 1 — o;.
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Extremal Colorings from Matchings in Q3

Another colouring of K5 (,_1) without monochromatic C,.
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New Extremal Constructions

(*,0,0,0)

N W
\Z5

(1,1,0, %)
The k-

XN

(*7 17 17 1)




Act 2: how to exploit the characterization
of (all) extremal colourings
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An Asymptotic Result First

Theorem (Asymptotic Version)
For all k and odd n, Ri(C,) = 2K"1n + o(n) as n — oo.
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An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and € > 0 there is an ng such that, for any odd n > ng,
Re(Cn) < (1 + )2k 1n.
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An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and € > 0 there is an ng such that, for any odd n > ng,
Re(Cn) < (1 + )2k 1n.

By tuczak's method of connected matchings it suffices to prove the
following:
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An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and € > 0 there is an ng such that, for any odd n > ng,
Ri(Cn) < (14 )2k 1n.

By tuczak's method of connected matchings it suffices to prove the
following:

Proposition
For every € > 0 there exist a > 0 and an ng such that the following holds:

If n > ng is odd and G is a graph with N = (1 + £)2K~1n vertices and at
least (1 —6)(}) edges,

then each k-coloring of G contains a monochromatic odd connected
matching of size (n+1)/2.

v
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An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and € > 0 there is an ng such that, for any odd n > ng,
Ri(Cn) < (14 )2k 1n.

By tuczak's method of connected matchings it suffices to prove the
following:

Proposition
For every € > 0 there exist a > 0 and an ng such that the following holds:

If n > ng is odd and G is a graph with N = (1 + £)2K~1n vertices and at
least (1 —6)(}) edges,

then each k-coloring of G contains a monochromatic odd connected
matching of size (n+ 1)/2.

v
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Graph Decomposition

Let G be a k-colored graph and let i € [k] be any colour.
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Graph Decomposition

Let G be a k-colored graph and let i € [k] be any colour.
@ Let G; denote the spanning subgraph of G induced by edges of color i.
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Graph Decomposition

Let G be a k-colored graph and let i € [k] be any colour.

@ Let G; denote the spanning subgraph of G induced by edges of color i.
e Write V(G) = VyU V] U V| where G;[VjU V] is bipartite and G;[V/]
is a collection of non-bipartite connected components.
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Graph Decomposition

Let G be a k-colored graph and let i € [k] be any colour.

@ Let G; denote the spanning subgraph of G induced by edges of color i.

e Write V(G) = VJ U V{ U V! where G;[V{ U V/] is bipartite and G;[V/]
is a collection of non-bipartite connected components.

o For 7 =(r1,...,7) € {0,1,%}%, let V, = /", VL.
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Graph Decomposition

Let G be a k-colored graph and let i € [k] be any colour.

@ Let G; denote the spanning subgraph of G induced by edges of color i.

e Write V(G) = VJ U V{ U V! where G;[V{ U V/] is bipartite and G;[V/]
is a collection of non-bipartite connected components.

o For 7 =(r1,...,7) € {0,1,%}%, let V, = }_, Vi

o Define the dimension of 7 as w(7) 1= |{j € [k] : 7j = *}|.
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Graph Decomposition

Let G be a k-colored graph and let i € [k] be any colour.
@ Let G; denote the spanning subgraph of G induced by edges of color i.
e Write V(G) = VJ U V{ U V! where G;[V{ U V/] is bipartite and G;[V/]
is a collection of non-bipartite connected components.
o For 7 =(r1,...,7) € {0,1,%}%, let V, = }_, Vi
o Define the dimension of 7 as w(7) 1= |{j € [k] : 7j = *}|.

@ w(7) is the maximum number of colors possible on edges in V; .

( Vi1,1,%)
V(*’OV
O
3k parts <
O O O .
. O O O
O
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Sketch Proof

Suppose that G is a k-colored graph with N = (1 + ¢)2k~1n vertices,

(1 —6)(}) edges such that each monochromatic non-bipartite component
has no matching of (n+ 1)/2 edges.
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Sketch Proof

Suppose that G is a k-colored graph with N = (1 + ¢)2k~1n vertices,

(1 —6)(}) edges such that each monochromatic non-bipartite component
has no matching of (n+ 1)/2 edges.

We show that for § small and n large we reach a contradiction.
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Sketch Proof

Suppose that G is a k-colored graph with N = (1 + ¢)2k~1n vertices,
(1 —6)(}) edges such that each monochromatic non-bipartite component
has no matching of (n+ 1)/2 edges.

We show that for § small and n large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of
G must be very sparse:
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Sketch Proof

Suppose that G is a k-colored graph with N = (1 4 £)2%~1n vertices,
(1 —6)(}) edges such that each monochromatic non-bipartite component
has no matching of (n+ 1)/2 edges.

We show that for § small and n large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of
G must be very sparse:

Theorem (Erdés, Gallai, '59)

Let m > 3. If G has no cycle of length greater than m (a.k.a. connected
matching of (m+ 1)/2 edges), then e(G) < (m —1)(v(G) —1)/2.
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Sketch Proof

Suppose that G is a k-colored graph with N = (1 4 £)2%~1n vertices,
(1 —6)(}) edges such that each monochromatic non-bipartite component
has no matching of (n+ 1)/2 edges.

We show that for § small and n large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of
G must be very sparse:

Theorem (Erdés, Gallai, '59)

Let m > 3. If G has no cycle of length greater than m (a.k.a. connected
matching of (m+ 1)/2 edges), then e(G) < (m —1)(v(G) —1)/2.

Decomposing G as before, it follows that |V, | < w(7)n+ o(n) for all
7€ {0,1, %}k
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A Quadratic Constraint

For 7 € {0,1,%}* let v, = |V;|/nand let v = (v, : 7 € {0,1, %}K).
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A Quadratic Constraint

For 7 € {0,1,%}* let v, = |V;|/nand let v = (v, : 7 € {0,1, %}K).
Counting non-bipartite edges in two different ways we obtain
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A Quadratic Constraint

For 7 € {0,1,%}* let v, = |V;|/nand let v = (v, : 7 € {0,1, %}K).
Counting non-bipartite edges in two different ways we obtain

2

Z ve | —2 Z VoV — Z w(T)v, < 2365(1 +¢)2.

7€{0,1,%}¥ QsNQ-=0 7€{0,1,x}k
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A Quadratic Constraint

For 7 € {0,1,%}* let v, = |V;|/nand let v = (v, : 7 € {0,1, %}K).
Counting non-bipartite edges in two different ways we obtain

2

Z ve | —2 Z VoV — Z w(T)v, < 2365(1 +¢)2.

7€{0,1,%}¥ QsNQ-=0 7€{0,1,x}k

Consider this inequality as a constraint on the non-negative reals v, and

try to maximize
= > w
7€{0,1,%}k
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A Quadratic Constraint

For 7 € {0,1,%}* let v, = |V;|/nand let v = (v, : 7 € {0,1, %}K).
Counting non-bipartite edges in two different ways we obtain

2

Z ve | —2 Z VoV — Z w(T)v, < 2365(1 +¢)2.

7€{0,1,%}¥ QsNQ-=0 7€{0,1,x}k

Consider this inequality as a constraint on the non-negative reals v, and

try to maximize
N
= Y v
n
7€{0,1,%}k
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A Quadratic Constraint

For 7 € {0,1,%}* let v, = |V;|/nand let v = (v, : 7 € {0,1, %}K).
Counting non-bipartite edges in two different ways we obtain

2

Z ve | —2 Z VoV — Z w(T)v, < 2365(1 +¢)2.

7€{0,1,%}¥ QsNQ-=0 7€{0,1,x}k

Consider this inequality as a constraint on the non-negative reals v, and

try to maximize
N
= 3w
7€{0,1,%}k
We get the desired contradiction by showing that

N
vl < (1+e€)k 1= -
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A Compression Argument

Z v, | —2 Z VoV — Z w(T)v, <0.

7€{0,1,%}k QsNQr=0 7€{0,1,x}k
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A Compression Argument

2

Z v, | —2 Z VoV — Z w(T)v, <0.

7€{0,1,%}k QsNQr=0 7€{0,1,x}k

Suppose that Q, N Q, # 0 for some p, 7 € {0,1,+}%, then we may write
the above as
(A—I—vp+v7r)2—va— Cv, — D <0,

where A, B, C,D > 0 do not depend on v, or v,.

Jozef Skokan The k-colour Ramsey number of odd cycles via non-linear optimisation



A Compression Argument

2

Z v, | —2 Z VoV — Z w(T)v, <0.

7€{0,1,%}k QsNQr=0 7€{0,1,x}k

Suppose that Q, N Q, # 0 for some p, 7 € {0,1,+}%, then we may write
the above as
(A—I—vp+v7r)2—va— Cv, — D <0,

where A, B, C,D > 0 do not depend on v, or v,.

Wilog suppose B > C and set v;) =V, + v and v} = 0.
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A Compression Argument

2

Z v, | —2 Z VoV — Z w(T)v, <0.

7€{0,1,%}k QsNQr=0 7€{0,1,x}k

Suppose that Q, N Q, # 0 for some p, 7 € {0,1,+}%, then we may write

the above as
(A—I—vp+v7r)2—va— Cv, — D <0,

where A, B, C,D > 0 do not depend on v, or v,.

Wilog suppose B > C and set v;) =V, + v and v} = 0.
Call this the (m, p)-compression of v = (v, : 7 € {0,1,*}¥).
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A Compression Argument

2
Z v, | —2 Z VoV — Z w(T)v, <0.
7€{0,1,%}k QsNQr=0 7€{0,1,x}k

Suppose that Q, N Q, # 0 for some p, 7 € {0,1,+}%, then we may write
the above as

(A—l—vp+v7r)2—va—Cv7T—D§O,

where A, B, C,D > 0 do not depend on v, or v,.

Wilog suppose B > C and set v;) =V, + v and v} = 0.
Call this the (7, p)-compression of v = (v, : 7 € {0, 1, *}¥).
Compressions preserve ||v||; and keep v in the feasible region.

Jozef Skokan The k-colour Ramsey number of odd cycles via non-linear optimisation



Compressing to a Spherical Constraint

Z ve | —2 Z VUVT— Z w(T)v, <0.

7€{0,1,%}k QoNQr= 7€{0,1,%}k
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Compressing to a Spherical Constraint

2
Z ve | —2 Z vUvT — Z w(T)v, <0.
7€{0,1,%}k QoNQr= 7€{0,1,%}k

Applying a compression argument we may assume that

v =(v; : 7 € {0,1,%}¥) is supported on a collection D of disjoint
subcubes of Q.
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Compressing to a Spherical Constraint

2
Z ve | —2 Z vUvT — Z w(T)v, <0.
7€{0,1,%}k QoNQr= 7€{0,1,%}k

Applying a compression argument we may assume that

v =(v; : 7 € {0,1,%}¥) is supported on a collection D of disjoint
subcubes of Q.This transforms the constraint equation to

Z(VT2 —w(7)v;) <0.

T€D
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Compressing to a Spherical Constraint

2
Z ve | —2 Z vUvT — Z w(T)v, <0.
7€{0,1,%}k QoNQr= 7€{0,1,%}k

Applying a compression argument we may assume that

v =(v; : 7 € {0,1,%}¥) is supported on a collection D of disjoint
subcubes of Q.This transforms the constraint equation to

Z(VT2 —w(7)v;) <0.

T€D

@ Much more amenable to analysis: the constraint is convex
(Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
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Compressing to a Spherical Constraint

2

Z ve | —2 Z Vo Vy — Z w(T)v, <0.
7€{0,1,x}k QoNQr=0 7€{0,1,x}k

Applying a compression argument we may assume that

v =(v; : 7 € {0,1,%}¥) is supported on a collection D of disjoint
subcubes of Q.This transforms the constraint equation to

Z(VT2 —w(7)v;) <0.
T€D
@ Much more amenable to analysis: the constraint is convex
(Karush-Kuhn-Tucker conditions, Slater condition for strong duality).

@ It turns out that an optimal point v must be a 0-1 vector supported
on a perfect matching of Q.
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Compressing to a Spherical Constraint

2

Z ve | —2 Z Vo Vy — Z w(T)v, <0.

7€{0,1,%}k QsoNQr=0 7€{0,1,%}k

Applying a compression argument we may assume that
v =(v; : 7 € {0,1,%}¥) is supported on a collection D of disjoint
subcubes of Q.This transforms the constraint equation to

Z(v —w(7)v;) <0.

T€D

@ Much more amenable to analysis: the constraint is convex
(Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
@ It turns out that an optimal point v must be a 0-1 vector supported

on a perfect matching of Q.
@ For such a v we have |v|j; = 2! and a compactness argument gives

the desired contradiction.
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Compressing to a Spherical Constraint

2

Z ve | —2 Z v(,vT— Z w(T)vy < os5(1).

7€{0,1,%}k QeNQr= 7€{0,1,%}K
Applying a compression argument we may assume that
v =(v; : 7 € {0,1,%}¥) is supported on a collection D of disjoint
subcubes of Q. This transforms the constraint equation to

D (v = w(r)vr) < os(1).

T€D

@ Much more amenable to analysis, the constraint is convex
(Karush-Kuhn-Tucker conditions, Slater condition for strong duality).

@ It turns out that an optimal point v must be a 0-1 vector supported
on a perfect matching of Q.

o For such a v we have |v|j; = 271 + 05(1), however |v|; = 25~ +¢,
a contradiction.
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Towards the Exact Result

Let S be the set of complete graphs admitting a k-coloring with no
monochromatic C,.

Ramsey Theory Analysis
Maximize v(G) subject to Maximize ||x||1 subject to
Ges. xeSCcR¥.
Extremal construction Optimal point
An almost extremal construction | An almost optimal point must be
must be ‘close’ to an extremal con- | close (in ¢;-norm) to an optimal
struction (hypercube coloring). point.
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Towards the Exact Result

Let S be the set of complete graphs admitting a k-coloring with no
monochromatic C,.

Ramsey Theory Analysis
Maximize v(G) subject to Maximize ||x||1 subject to
Ges. xeSCcR¥.
Extremal construction Optimal point
An almost extremal construction | An almost optimal point must be
must be ‘close’ to an extremal con- | close (in ¢;-norm) to an optimal
struction (hypercube coloring). point.

607158046495120886820621 extremal constructions for k =7
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Analytic and Combinatorial Stability

The key ingredient for analytic stability is that the optimal points are
isolated.
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Analytic and Combinatorial Stability

The key ingredient for analytic stability is that the optimal points are
isolated.

Isolated Optimum
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Epilogue

Theorem (Jenssen, S. '16+)
For all k, if n is odd and sufficiently large, then

Re(Cp) =2KY(n—1)+1.

‘sufficiently large’ means huge

Theorem (Day, Johnson '17)

For all odd n, if k is sufficiently large, then

Re(Co) > (2+ c(n) " 1(n—1).
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Final remarks

o The same proof gives R(Cpy, Coy, - - -, Cn,) = 257 (maxn; — 1) + 1,
where n;'s are large and odd.

@ How about mixed parities?

@ Possible application: finding monochromatic circumference of a
k-edge coloured dense graphs.

@ Does the analytic approach have wider applications in Ramsey theory?
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Thank you for listening!
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