
The k-colour Ramsey number of odd cycles via
non-linear optimisation

Jozef Skokan

London School of Economics

July 16, 2018

Joint work with Matthew Jenssen

Jozef Skokan The k-colour Ramsey number of odd cycles via non-linear optimisation



Background

Definition

For a graph G and an integer k ≥ 2, let Rk(G ) denote the smallest integer
N for which any edge-coloring of the complete graph KN by k colors
contains a monochromatic copy of G .

Theorem (Ramsey, 1930)

For any graph G , Rk(G ) is finite.
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Background

Theorem (Erdős, 1947; Erdős, Szekeres, 1935)

2n/2 ≤ R2(Kn) ≤ 22n

Famous problem: improve these bounds

Questions: (Erdős et al. 70’s)

What controls the growth of R2(G ) as a function of |G | ?

Can we strengthen Ramsey’s theorem to show that the
monochromatic clique has some additional structure?

How large monochromatic set exists in edge-colorings of KN satisfying
certain restrictions ?
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Questions: (Erdős et al. 70’s)

What controls the growth of R2(G ) as a function of |G | ?

Can we strengthen Ramsey’s theorem to show that the
monochromatic clique has some additional structure?

How large monochromatic set exists in edge-colorings of KN satisfying
certain restrictions ?

Jozef Skokan The k-colour Ramsey number of odd cycles via non-linear optimisation



Background

The Ramsey properties of sparse graphs (of bounded maximum degree,
bounded degeneracy, bounded average degree) have been extensively
studied early on, for example:

Theorem (Gyarfás, Gerencsér, ’67)

R2(Pn) =

⌊
3n

2

⌋
− 1.

Theorem (Bondy and Erdős, Faudree and Schelp, Rosta, ’73)

R2(Cn) =

{
2n − 1, if n ≥ 5 is odd,
3n
2 − 1, if n ≥ 6 is even.

For more than two colors much less is known!
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Problem History

For more than three colors much less is known:

Theorem (Cockayne, Lorimer, ’75)

Rk(nK2) = n + 1 + k(n − 1)

Conjecture (Bondy, Erdős, ’73)

For all k and odd n > 3, Rk(Cn) = 2k−1(n − 1) + 1.
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A Lower Bound Construction

Conjecture (Bondy, Erdős, ’73)

For all k and odd n > 3, Rk(Cn) = 2k−1(n − 1) + 1.

n − 1
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Progress Toward Conjecture (k = 3)

First breakthrough/ early use of the Regularity Method.

Theorem ( Luczak, ’99)

R3(Cn) = 4n + o(n) as n→∞.

Subsequently improved using stability-type arguments.

Theorem (Kohayakawa, Simonovits, Skokan, ’05)

R3(Cn) = 4n − 3 for sufficiently large odd n.
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Progress Toward Conjecture (general case)

Theorem (Erdős, Graham, ’75)

For all k and odd n, Rk(Cn) ≤ 2(k + 2)!n.

Theorem ( Luczak, Simonovits, Skokan, ’10)

For all k and odd n, Rk(Cn) ≤ k2kn + o(n) as n→∞.

Theorem (Jenssen, S. ’16+)

For all k , if n is odd and sufficiently large then

Rk(Cn) = 2k−1(n − 1) + 1.
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Act 1: there are more extremal colourings
than we imagined
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Subcubes of Qk

Think of an element of τ ∈ {0, 1, ∗}k as a subset of {0, 1}k by considering
a ‘∗’ as a ‘missing bit’ and considering all possible ways of filling in the
missing bits.

Example

We think of τ = (1, 0, ∗) as the set

Qτ = {(1, 0, 0), (1, 0, 1)}.

Example

We think of τ = (0, ∗, ∗) as the set

Qτ = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.
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Extremal Colorings from Matchings in Q3

Sets V(0,∗,0), V(1,∗,0), V(0,∗,1), V(1,∗,1), have size n − 1 each there is no
monochromatic Cn if n is odd.

V(1,∗,0) V(1,∗,1)

V(0,∗,0) V(0,∗,1)

We allow colour i between Vτ and Vσ iff τi = 1− σi .
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Extremal Colorings from Matchings in Q3

Colouring of K22(n−1) without monochromatic Cn.
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Extremal Colorings from Matchings in Q3

Another colouring of K22(n−1) without monochromatic Cn.
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New Extremal Constructions

(∗, 1, 1, 1)(∗, 0, 0, 0)

(0, ∗, 1, 0)

(1, ∗, 1, 0)

(1, 1, 0, ∗) (0, 1, 0, ∗)

(0, 0, ∗, 1)

(1, 0, ∗, 1)
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Act 2: how to exploit the characterization
of (all) extremal colourings
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An Asymptotic Result First

Theorem (Asymptotic Version)

For all k and odd n, Rk(Cn) = 2k−1n + o(n) as n→∞.

By  Luczak’s method of connected matchings it suffices to prove the
following:

Proposition

For every ε > 0 there exist a δ > 0 and an n0 such that the following holds:

If n ≥ n0 is odd and G is a graph with N = (1 + ε)2k−1n vertices and at
least (1− δ)

(N
2

)
edges,

then each k-coloring of G contains a monochromatic odd connected

matching of size (n + 1)/2.
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Odd Connected

Matching
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Odd

Connected Matching
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Odd Connected Matching
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Graph Decomposition

Let G be a k-colored graph and let i ∈ [k] be any colour.

Let Gi denote the spanning subgraph of G induced by edges of color i .
Write V (G ) = V i

0 ∪V i
1 ∪V i

∗ where Gi [V
i
0 ∪V i

1] is bipartite and Gi [V
i
∗]

is a collection of non-bipartite connected components.
For τ = (τ1, . . . , τk) ∈ {0, 1, ∗}k , let Vτ =

⋂k
j=1 V

j
τj .

Define the dimension of τ as ω(τ) := |{j ∈ [k] : τj = ∗}|.
ω(τ) is the maximum number of colors possible on edges in Vτ .{

3k parts

V(∗,0,1)

V(1,1,∗)
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Sketch Proof

Suppose that G is a k-colored graph with N = (1 + ε)2k−1n vertices,
(1− δ)

(N
2

)
edges such that each monochromatic non-bipartite component

has no matching of (n + 1)/2 edges.

We show that for δ small and n large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of
G must be very sparse:

Theorem (Erdős, Gallai, ’59)

Let m ≥ 3. If G has no cycle of length greater than m (a.k.a. connected
matching of (m + 1)/2 edges), then e(G ) ≤ (m − 1)(v(G )− 1)/2.

Decomposing G as before, it follows that |Vτ | ≤ ω(τ)n + o(n) for all
τ ∈ {0, 1, ∗}k .
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τ ∈ {0, 1, ∗}k .
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A Quadratic Constraint

For τ ∈ {0, 1, ∗}k let vτ = |Vτ |/n and let v = (vτ : τ ∈ {0, 1, ∗}k).

Counting non-bipartite edges in two different ways we obtain ∑
τ∈{0,1,∗}k

vτ

2

− 2
∑

Qσ∩Qτ=∅

vσvτ −
∑

τ∈{0,1,∗}k
ω(τ)vτ ≤ 23kδ(1 + ε)2.

Consider this inequality as a constraint on the non-negative reals vτ and
try to maximize

‖v‖1 =
∑

τ∈{0,1,∗}k
vτ=

N

n
.

We get the desired contradiction by showing that

‖v‖1 < (1 + ε)2k−1=
N

n
.
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A Compression Argument

 ∑
τ∈{0,1,∗}k

vτ

2

− 2
∑

Qσ∩Qτ=∅

vσvτ −
∑

τ∈{0,1,∗}k
ω(τ)vτ ≤ 0.

Suppose that Qρ ∩ Qπ 6= ∅ for some ρ, π ∈ {0, 1, ∗}k , then we may write
the above as

(A + vρ + vπ)2 − Bvρ − Cvπ − D ≤ 0,

where A,B,C ,D ≥ 0 do not depend on vρ or vπ.

Wlog suppose B ≥ C and set v ′ρ = vρ + vπ and v ′π = 0.

Call this the (π, ρ)-compression of v = (vτ : τ ∈ {0, 1, ∗}k).

Compressions preserve ‖v‖1 and keep v in the feasible region.
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Compressing to a Spherical Constraint

 ∑
τ∈{0,1,∗}k

vτ

2

− 2
∑

Qσ∩Qτ=∅

vσvτ −
∑

τ∈{0,1,∗}k
ω(τ)vτ ≤ 0.

Applying a compression argument we may assume that
v = (vτ : τ ∈ {0, 1, ∗}k) is supported on a collection D of disjoint
subcubes of Qk .This transforms the constraint equation to∑

τ∈D
(v2τ − ω(τ)vτ ) ≤ 0.

Much more amenable to analysis: the constraint is convex
(Karush-Kuhn-Tucker conditions, Slater condition for strong duality).

It turns out that an optimal point v must be a 0-1 vector supported
on a perfect matching of Qk .

For such a v we have ‖v‖1 = 2k−1 and a compactness argument gives
the desired contradiction.
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Compressing to a Spherical Constraint

 ∑
τ∈{0,1,∗}k

vτ

2

− 2
∑

Qσ∩Qτ=∅

vσvτ −
∑

τ∈{0,1,∗}k
ω(τ)vτ ≤ oδ(1).

Applying a compression argument we may assume that
v = (vτ : τ ∈ {0, 1, ∗}k) is supported on a collection D of disjoint
subcubes of Qk . This transforms the constraint equation to∑

τ∈D
(v2τ − ω(τ)vτ ) ≤ oδ(1).

Much more amenable to analysis, the constraint is convex
(Karush-Kuhn-Tucker conditions, Slater condition for strong duality).

It turns out that an optimal point v must be a 0-1 vector supported
on a perfect matching of Qk .

For such a v we have ‖v‖1 = 2k−1 + oδ(1), however ‖v‖1 = 2k−1 + ε,
a contradiction.

Jozef Skokan The k-colour Ramsey number of odd cycles via non-linear optimisation



Towards the Exact Result

Let S be the set of complete graphs admitting a k-coloring with no
monochromatic Cn.

Ramsey Theory Analysis

Maximize v(G ) subject to

G ∈ S.

Maximize ‖x‖1 subject to

x ∈ S ⊆ R3k .

Extremal construction Optimal point

An almost extremal construction
must be ‘close’ to an extremal con-
struction (hypercube coloring).

An almost optimal point must be
close (in `1-norm) to an optimal
point.

607158046495120886820621 extremal constructions for k = 7
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Analytic and Combinatorial Stability

The key ingredient for analytic stability is that the optimal points are
isolated.
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Epilogue

Theorem (Jenssen, S. ’16+)

For all k , if n is odd and sufficiently large, then

Rk(Cn) = 2k−1(n − 1) + 1.

‘sufficiently large’ means huge

Theorem (Day, Johnson ’17)

For all odd n, if k is sufficiently large, then

Rk(Cn) > (2 + c(n))k−1(n − 1).
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Final remarks

The same proof gives R(Cn1 ,Cn1 , . . . ,Cnk ) = 2k−1(max ni − 1) + 1,
where ni ’s are large and odd.

How about mixed parities?

Possible application: finding monochromatic circumference of a
k-edge coloured dense graphs.

Does the analytic approach have wider applications in Ramsey theory?
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Thank you for listening!
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