The *k*-colour Ramsey number of odd cycles via non-linear optimisation

Jozef Skokan

London School of Economics

July 16, 2018

Joint work with Matthew Jenssen

Jozef Skokan

Definition

For a graph G and an integer $k \ge 2$, let $R_k(G)$ denote the smallest integer N for which any edge-coloring of the complete graph K_N by k colors contains a monochromatic copy of G.

Definition

For a graph G and an integer $k \ge 2$, let $R_k(G)$ denote the smallest integer N for which any edge-coloring of the complete graph K_N by k colors contains a monochromatic copy of G.

Theorem (Ramsey, 1930)

For any graph G, $R_k(G)$ is finite.

Theorem (Erdős, 1947; Erdős, Szekeres, 1935)

 $2^{n/2} \leq R_2(K_n) \leq 2^{2n}$

Famous problem: improve these bounds

Jozef Skokan

Theorem (Erdős, 1947; Erdős, Szekeres, 1935)

 $2^{n/2} \leq R_2(K_n) \leq 2^{2n}$

Famous problem: improve these bounds

Questions: (Erdős et al. 70's)

- What controls the growth of $R_2(G)$ as a function of |G|?
- Can we strengthen Ramsey's theorem to show that the monochromatic clique has some additional structure?
- How large monochromatic set exists in edge-colorings of K_N satisfying certain restrictions ?

The Ramsey properties of sparse graphs (of bounded maximum degree, bounded degeneracy, bounded average degree) have been extensively studied early on, for example:

Theorem (Gyarfás, Gerencsér, '67)
$$R_2(P_n) = \left\lfloor \frac{3n}{2} \right\rfloor - 1.$$

Theorem (Bondy and Erdős, Faudree and Schelp, Rosta, '73)

$$R_2(C_n) = \begin{cases} 2n-1, & \text{if } n \ge 5 \text{ is odd,} \\ \frac{3n}{2}-1, & \text{if } n \ge 6 \text{ is even.} \end{cases}$$

Jozef Skokan

The Ramsey properties of sparse graphs (of bounded maximum degree, bounded degeneracy, bounded average degree) have been extensively studied early on, for example:

Theorem (Gyarfás, Gerencsér, '67)
$$R_2(P_n) = \left\lfloor \frac{3n}{2} \right\rfloor - 1.$$

Theorem (Bondy and Erdős, Faudree and Schelp, Rosta, '73)

$$R_2(C_n) = \begin{cases} 2n-1, & \text{if } n \ge 5 \text{ is odd,} \\ \frac{3n}{2} - 1, & \text{if } n \ge 6 \text{ is even.} \end{cases}$$

For more than two colors much less is known!

Jozef Skokan

Problem History

For more than three colors much less is known:

Theorem (Cockayne, Lorimer, '75) $R_k(nK_2) = n + 1 + k(n - 1)$

Jozef Skokan

Problem History

For more than three colors much less is known:

Theorem (Cockayne, Lorimer, '75)

 $R_k(nK_2) = n + 1 + k(n - 1)$

Conjecture (Bondy, Erdős, '73)

For all k and odd
$$n > 3$$
, $R_k(C_n) = 2^{k-1}(n-1) + 1$.

4. COMMENTS

We have not been able to evaluate $R(G_1,...,G_k)$ for k > 2 even in the case of cycles. It is easy to see that, when $G_i \cong C_n$, $1 \le i \le k$, and n is odd,

$$R(G_1,...,G_k) \ge 2^{k-1}(n-1)+1.$$

On the other hand we can show that, in this case,

$$R(G_1,\ldots,G_k) \leq (k+2)!n.$$

Also of interest would be to find $R(C_n, C_r)$, $R(C_n, K_r)$, and $R(C_n, K_r^2)$ for all values of *n* and *r*. Since, by [4], $R(C_4, K_4) = 10$ it is possible that

Jozef Skokan

Conjecture (Bondy, Erdős, '73)

For all k and odd n > 3, $R_k(C_n) = 2^{k-1}(n-1) + 1$.

Jozef Skokan

Conjecture (Bondy, Erdős, '73)

Conjecture (Bondy, Erdős, '73)

For all k and odd n > 3, $R_k(C_n) = 2^{k-1}(n-1) + 1$.

Progress Toward Conjecture (k = 3)

First breakthrough/ early use of the Regularity Method.

Theorem (Łuczak, '99)

$$R_3(C_n) = 4n + o(n)$$
 as $n \to \infty$.

Jozef Skokan

Progress Toward Conjecture (k = 3)

First breakthrough/ early use of the Regularity Method.

Theorem (Łuczak, '99)

$$R_3(C_n) = 4n + o(n)$$
 as $n \to \infty$.

Subsequently improved using stability-type arguments.

Theorem (Kohayakawa, Simonovits, Skokan, '05)

 $R_3(C_n) = 4n - 3$ for sufficiently large odd n.

Jozef Skokan

Progress Toward Conjecture (general case)

Theorem (Erdős, Graham, '75)

For all k and odd n, $R_k(C_n) \leq 2(k+2)!n$.

Jozef Skokan

Theorem (Erdős, Graham, '75)

For all k and odd n, $R_k(C_n) \leq 2(k+2)!n$.

Theorem (Łuczak, Simonovits, Skokan, '10)

For all k and odd n, $R_k(C_n) \leq k2^k n + o(n)$ as $n \to \infty$.

Jozef Skokan

Theorem (Erdős, Graham, '75)

For all k and odd n, $R_k(C_n) \leq 2(k+2)!n$.

Theorem (Łuczak, Simonovits, Skokan, '10)

For all k and odd n, $R_k(C_n) \leq k2^k n + o(n)$ as $n \to \infty$.

Theorem (Jenssen, S. '16+)

For all k, if n is odd and sufficiently large then

$$R_k(C_n) = 2^{k-1}(n-1) + 1.$$

Act 1: there are more extremal colourings than we imagined

Jozef Skokan

Subcubes of Q_k

Think of an element of $\tau \in \{0, 1, *\}^k$ as a subset of $\{0, 1\}^k$ by considering a '*' as a 'missing bit' and considering all possible ways of filling in the missing bits.

Example

We think of
$$au = (1, 0, *)$$
 as the set

$$Q_{\tau} = \{(1, 0, 0), (1, 0, 1)\}.$$

Example

We think of
$$au = (0, *, *)$$
 as the set

$$Q_{\tau} = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1)\}.$$

Sets $V_{(0,*,0)}$, $V_{(1,*,0)}$, $V_{(0,*,1)}$, $V_{(1,*,1)}$, have size n-1 each

Sets $V_{(0,*,0)}$, $V_{(1,*,0)}$, $V_{(0,*,1)}$, $V_{(1,*,1)}$, have size n-1 each

We allow colour *i* between V_{τ} and V_{σ} iff $\tau_i = 1 - \sigma_i$.

Sets $V_{(0,*,0)}$, $V_{(1,*,0)}$, $V_{(0,*,1)}$, $V_{(1,*,1)}$, have size n-1 each

We allow colour *i* between V_{τ} and V_{σ} iff $\tau_i = 1 - \sigma_i$.

Sets $V_{(0,*,0)}$, $V_{(1,*,0)}$, $V_{(0,*,1)}$, $V_{(1,*,1)}$, have size n-1 each there is no monochromatic C_n if n is odd.

We allow colour *i* between V_{τ} and V_{σ} iff $\tau_i = 1 - \sigma_i$.

Jozef Skokan

Colouring of $K_{2^2(n-1)}$ without monochromatic C_n .

Jozef Skokan

We allow colour *i* between V_{τ} and V_{σ} iff $\tau_i = 1 - \sigma_i$.

We allow colour *i* between V_{τ} and V_{σ} iff $\tau_i = 1 - \sigma_i$.

We allow colour *i* between V_{τ} and V_{σ} iff $\tau_i = 1 - \sigma_i$.

Jozef Skokan

Another colouring of $K_{2^2(n-1)}$ without monochromatic C_n .

Jozef Skokan
New Extremal Constructions

Act 2: how to exploit the characterization of (all) extremal colourings

Jozef Skokan

For all k and odd n,
$$R_k(C_n) = 2^{k-1}n + o(n)$$
 as $n \to \infty$.

Jozef Skokan

For all k and $\varepsilon > 0$ there is an n_0 such that, for any odd $n > n_0$, $R_k(C_n) \le (1 + \varepsilon)2^{k-1}n$.

For all k and $\varepsilon > 0$ there is an n_0 such that, for any odd $n > n_0$, $R_k(C_n) \le (1 + \varepsilon)2^{k-1}n$.

By Łuczak's method of connected matchings it suffices to prove the following:

For all k and $\varepsilon > 0$ there is an n_0 such that, for any odd $n > n_0$, $R_k(C_n) \le (1 + \varepsilon)2^{k-1}n$.

By Łuczak's method of connected matchings it suffices to prove the following:

Proposition

For every $\varepsilon > 0$ there exist a $\delta > 0$ and an n_0 such that the following holds:

If $n \ge n_0$ is odd and G is a graph with $N = (1 + \varepsilon)2^{k-1}n$ vertices and at least $(1 - \delta)\binom{N}{2}$ edges, then each k-coloring of G contains a monochromatic odd connected matching of size (n + 1)/2.

Matching

Connected Matching

Odd Connected Matching

Jozef Skokan

For all k and $\varepsilon > 0$ there is an n_0 such that, for any odd $n > n_0$, $R_k(C_n) \le (1 + \varepsilon)2^{k-1}n$.

By Łuczak's method of connected matchings it suffices to prove the following:

Proposition

For every $\varepsilon > 0$ there exist a $\delta > 0$ and an n_0 such that the following holds:

If $n \ge n_0$ is odd and G is a graph with $N = (1 + \varepsilon)2^{k-1}n$ vertices and at least $(1 - \delta)\binom{N}{2}$ edges, then each k-coloring of G contains a monochromatic odd connected matching of size (n + 1)/2.

Let G be a k-colored graph and let $i \in [k]$ be any colour.

Jozef Skokan

Let G be a k-colored graph and let $i \in [k]$ be any colour.

• Let G_i denote the spanning subgraph of G induced by edges of color i.

- Let G_i denote the spanning subgraph of G induced by edges of color i.
- Write $V(G) = V_0^i \cup V_1^i \cup V_*^i$ where $G_i[V_0^i \cup V_1^i]$ is bipartite and $G_i[V_*^i]$ is a collection of non-bipartite connected components.

- Let G_i denote the spanning subgraph of G induced by edges of color i.
- Write $V(G) = V_0^i \cup V_1^i \cup V_*^i$ where $G_i[V_0^i \cup V_1^i]$ is bipartite and $G_i[V_*^i]$ is a collection of non-bipartite connected components.
- For $\tau = (\tau_1, \ldots, \tau_k) \in \{0, 1, *\}^k$, let $V_{\tau} = \bigcap_{j=1}^k V_{\tau_j}^j$.

- Let G_i denote the spanning subgraph of G induced by edges of color i.
- Write V(G) = V₀ⁱ ∪ V₁ⁱ ∪ V_{*}ⁱ where G_i[V₀ⁱ ∪ V₁ⁱ] is bipartite and G_i[V_{*}ⁱ] is a collection of non-bipartite connected components.
- For $\tau = (\tau_1, \ldots, \tau_k) \in \{0, 1, *\}^k$, let $V_{\tau} = \bigcap_{j=1}^k V_{\tau_j}^j$.
- Define the dimension of τ as $\omega(\tau) := |\{j \in [k] : \tau_j = *\}|.$

- Let G_i denote the spanning subgraph of G induced by edges of color i.
- Write V(G) = V₀ⁱ ∪ V₁ⁱ ∪ V_{*}ⁱ where G_i[V₀ⁱ ∪ V₁ⁱ] is bipartite and G_i[V_{*}ⁱ] is a collection of non-bipartite connected components.
- For $\tau = (\tau_1, \ldots, \tau_k) \in \{0, 1, *\}^k$, let $V_\tau = \bigcap_{j=1}^k V_{\tau_j}^j$.
- Define the dimension of τ as $\omega(\tau) := |\{j \in [k] : \tau_j = *\}|.$
- $\omega(au)$ is the maximum number of colors possible on edges in $V_ au$.

Suppose that G is a k-colored graph with $N = (1 + \varepsilon)2^{k-1}n$ vertices, $(1 - \delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of (n + 1)/2 edges.

Suppose that G is a k-colored graph with $N = (1 + \varepsilon)2^{k-1}n$ vertices, $(1 - \delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of (n + 1)/2 edges.

We show that for δ small and *n* large we reach a contradiction.

Suppose that G is a k-colored graph with $N = (1 + \varepsilon)2^{k-1}n$ vertices, $(1 - \delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of (n + 1)/2 edges.

We show that for δ small and *n* large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of G must be very sparse:

Suppose that G is a k-colored graph with $N = (1 + \varepsilon)2^{k-1}n$ vertices, $(1 - \delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of (n + 1)/2 edges.

We show that for δ small and *n* large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of G must be very sparse:

Theorem (Erdős, Gallai, '59)

Let $m \ge 3$. If G has no cycle of length greater than m (a.k.a. connected matching of (m+1)/2 edges), then $e(G) \le (m-1)(v(G)-1)/2$.

Suppose that G is a k-colored graph with $N = (1 + \varepsilon)2^{k-1}n$ vertices, $(1 - \delta)\binom{N}{2}$ edges such that each monochromatic non-bipartite component has no matching of (n + 1)/2 edges.

We show that for δ small and *n* large we reach a contradiction.

By the following theorem the monochromatic non-bipartite components of G must be very sparse:

Theorem (Erdős, Gallai, '59)

Let $m \ge 3$. If G has no cycle of length greater than m (a.k.a. connected matching of (m+1)/2 edges), then $e(G) \le (m-1)(v(G)-1)/2$.

Decomposing G as before, it follows that $|V_{\tau}| \leq \omega(\tau)n + o(n)$ for all $\tau \in \{0, 1, *\}^k$.

For $\tau \in \{0, 1, *\}^k$ let $v_{\tau} = |V_{\tau}|/n$ and let $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$.

Jozef Skokan

For $\tau \in \{0, 1, *\}^k$ let $v_{\tau} = |V_{\tau}|/n$ and let $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$. Counting non-bipartite edges in two different ways we obtain

For $\tau \in \{0, 1, *\}^k$ let $v_{\tau} = |V_{\tau}|/n$ and let $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$. Counting non-bipartite edges in two different ways we obtain

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2 - 2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau} - \sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau} \leq 2^{3k}\delta(1+\varepsilon)^2.$$

For $\tau \in \{0, 1, *\}^k$ let $v_\tau = |V_\tau|/n$ and let $v = (v_\tau : \tau \in \{0, 1, *\}^k)$. Counting non-bipartite edges in two different ways we obtain

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2 - 2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau} - \sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau} \leq 2^{3k}\delta(1+\varepsilon)^2.$$

Consider this inequality as a constraint on the non-negative reals v_{τ} and try to maximize

$$\|v\|_1 = \sum_{ au \in \{0,1,*\}^k} v_{ au}$$

Jozef Skokan

For $\tau \in \{0, 1, *\}^k$ let $v_\tau = |V_\tau|/n$ and let $v = (v_\tau : \tau \in \{0, 1, *\}^k)$. Counting non-bipartite edges in two different ways we obtain

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2 - 2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau} - \sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau} \leq 2^{3k}\delta(1+\varepsilon)^2.$$

Consider this inequality as a constraint on the non-negative reals v_{τ} and try to maximize

$$\|v\|_1 = \sum_{\tau \in \{0,1,*\}^k} v_{\tau} = \frac{N}{n}.$$

Jozef Skokan

For $\tau \in \{0, 1, *\}^k$ let $v_\tau = |V_\tau|/n$ and let $v = (v_\tau : \tau \in \{0, 1, *\}^k)$. Counting non-bipartite edges in two different ways we obtain

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2 - 2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau} - \sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau} \leq 2^{3k}\delta(1+\varepsilon)^2.$$

Consider this inequality as a constraint on the non-negative reals v_{τ} and try to maximize

$$\|v\|_1 = \sum_{\tau \in \{0,1,*\}^k} v_{\tau} = \frac{N}{n}.$$

We get the desired contradiction by showing that

$$\|v\|_1 < (1+\epsilon)2^{k-1} = \frac{N}{n}.$$

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Jozef Skokan

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Suppose that $Q_{\rho} \cap Q_{\pi} \neq \emptyset$ for some $\rho, \pi \in \{0, 1, *\}^k$, then we may write the above as

$$(A+v_
ho+v_\pi)^2-Bv_
ho-Cv_\pi-D\leq 0,$$

where $A, B, C, D \ge 0$ do not depend on v_{ρ} or v_{π} .

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Suppose that $Q_{\rho} \cap Q_{\pi} \neq \emptyset$ for some $\rho, \pi \in \{0, 1, *\}^k$, then we may write the above as

$$(A+v_
ho+v_\pi)^2-Bv_
ho-Cv_\pi-D\leq 0,$$

where $A, B, C, D \ge 0$ do not depend on v_{ρ} or v_{π} .

Wlog suppose $B \geq C$ and set $v_{
ho}' = v_{
ho} + v_{\pi}$ and $v_{\pi}' = 0$.

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Suppose that $Q_{\rho} \cap Q_{\pi} \neq \emptyset$ for some $\rho, \pi \in \{0, 1, *\}^k$, then we may write the above as

$$(A+v_
ho+v_\pi)^2-Bv_
ho-Cv_\pi-D\leq 0,$$

where $A, B, C, D \ge 0$ do not depend on v_{ρ} or v_{π} .

Wlog suppose $B \ge C$ and set $v'_{\rho} = v_{\rho} + v_{\pi}$ and $v'_{\pi} = 0$. Call this the (π, ρ) -compression of $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$.

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Suppose that $Q_{\rho} \cap Q_{\pi} \neq \emptyset$ for some $\rho, \pi \in \{0, 1, *\}^k$, then we may write the above as

$$(A+v_
ho+v_\pi)^2-Bv_
ho-Cv_\pi-D\leq 0,$$

where $A, B, C, D \ge 0$ do not depend on v_{ρ} or v_{π} .

Wlog suppose $B \ge C$ and set $v'_{\rho} = v_{\rho} + v_{\pi}$ and $v'_{\pi} = 0$. Call this the (π, ρ) -compression of $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$. Compressions preserve $||v||_1$ and keep v in the feasible region.

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Jozef Skokan

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Applying a compression argument we may assume that $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_k .

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2 - 2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau} - \sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau} \leq 0.$$

Applying a compression argument we may assume that $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_k . This transforms the constraint equation to

$$\sum_{\tau\in\mathcal{D}}(v_{\tau}^2-\omega(\tau)v_{\tau})\leq 0.$$

Jozef Skokan

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2 - 2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau} - \sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau} \leq 0.$$

Applying a compression argument we may assume that $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_k . This transforms the constraint equation to

$$\sum_{ au\in\mathcal{D}}(v_{ au}^2-\omega(au)v_{ au})\leq 0.$$

 Much more amenable to analysis: the constraint is convex (Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
Compressing to a Spherical Constraint

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Applying a compression argument we may assume that $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_k . This transforms the constraint equation to

$$\sum_{ au\in\mathcal{D}}(v_{ au}^2-\omega(au)v_{ au})\leq 0.$$

- Much more amenable to analysis: the constraint is convex (Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
- It turns out that an optimal point v must be a 0-1 vector supported on a perfect matching of Q_k.

Compressing to a Spherical Constraint

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq 0.$$

Applying a compression argument we may assume that $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_k . This transforms the constraint equation to

$$\sum_{ au\in\mathcal{D}}(v_{ au}^2-\omega(au)v_{ au})\leq 0.$$

- Much more amenable to analysis: the constraint is convex (Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
- It turns out that an optimal point v must be a 0-1 vector supported on a perfect matching of Q_k.
- For such a v we have $||v||_1 = 2^{k-1}$ and a compactness argument gives the desired contradiction.

Compressing to a Spherical Constraint

$$\left(\sum_{\tau\in\{0,1,*\}^k}v_{\tau}\right)^2-2\sum_{Q_{\sigma}\cap Q_{\tau}=\emptyset}v_{\sigma}v_{\tau}-\sum_{\tau\in\{0,1,*\}^k}\omega(\tau)v_{\tau}\leq o_{\delta}(1).$$

Applying a compression argument we may assume that $v = (v_{\tau} : \tau \in \{0, 1, *\}^k)$ is supported on a collection \mathcal{D} of disjoint subcubes of Q_k . This transforms the constraint equation to

$$\sum_{ au \in \mathcal{D}} (v_{ au}^2 - \omega(au) v_{ au}) \leq o_{\delta}(1).$$

- Much more amenable to analysis, the constraint is convex (Karush-Kuhn-Tucker conditions, Slater condition for strong duality).
- It turns out that an optimal point v must be a 0-1 vector supported on a perfect matching of Q_k.
- For such a v we have $||v||_1 = 2^{k-1} + o_{\delta}(1)$, however $||v||_1 = 2^{k-1} + \varepsilon$, a contradiction.

Let S be the set of complete graphs admitting a k-coloring with no monochromatic C_n .

Ramsey Theory	Analysis
Maximize $v(G)$ subject to	Maximize $ x _1$ subject to
	a k
${\sf G}\in {\cal S}.$	$x \in S \subseteq \mathbb{R}^{3^*}.$
Extremal construction	Optimal point
An almost extremal construction	An almost optimal point must be
must be 'close' to an extremal con-	close (in ℓ_1 -norm) to an optimal
struction (hypercube coloring).	point.

Let S be the set of complete graphs admitting a k-coloring with no monochromatic C_n .

Ramsey Theory	Analysis
Maximize $v(G)$ subject to	Maximize $ x _1$ subject to
	- 2k
$G\in\mathcal{S}.$	$x \in S \subseteq \mathbb{R}^{3^{\circ}}$.
Extremal construction	Optimal point
An almost extremal construction	An almost optimal point must be
must be 'close' to an extremal con-	close (in ℓ_1 -norm) to an optimal
struction (hypercube coloring).	point.

607158046495120886820621 extremal constructions for k = 7

Analytic and Combinatorial Stability

The key ingredient for analytic stability is that the optimal points are *isolated*.

Analytic and Combinatorial Stability

The key ingredient for analytic stability is that the optimal points are *isolated*.

The k-colour Ramsey number of odd cycles via non-linear optimisation

Theorem (Jenssen, S. '16+)

For all k, if n is odd and sufficiently large, then

$$R_k(C_n) = 2^{k-1}(n-1) + 1.$$

'sufficiently large' means huge

Theorem (Day, Johnson '17)

For all odd n, if k is sufficiently large, then

$$R_k(C_n) > (2 + c(n))^{k-1}(n-1).$$

Jozef Skokan

The k-colour Ramsey number of odd cycles via non-linear optimisation

- The same proof gives $R(C_{n_1}, C_{n_1}, \ldots, C_{n_k}) = 2^{k-1}(\max n_i 1) + 1$, where n_i 's are large and odd.
- How about mixed parities?
- Possible application: finding monochromatic circumference of a k-edge coloured dense graphs.
- Does the analytic approach have wider applications in Ramsey theory?

Thank you for listening!

Jozef Skokan

The k-colour Ramsey number of odd cycles via non-linear optimisation