Ramsey theory in algebraic topological language

Sławomir Solecki

Cornell University

Research supported by NSF grant DMS-1700426

July 2018

900

Unifying efforts in Ramsey theory:

Nešetřil, Ramsey theory, 1995

Todorcevic, Introduction to Ramsey spaces, 2010

Solecki, Abstract approach to finite Ramsey theory and a self-dual Ramsey theorem. 2013

Gromov, Colorful categories, 2015

Hubička-Nešetřil, Ramsey classes with closure operations, to appear (2017)

Sac

Normed induction complexes

Э July 2018 3 / 28

990

- A simplicial complex S is a family of non-empty sets closed under taking non-empty subsets.
- Sets in \mathcal{S} are called **faces** of \mathcal{S} .
- V(S) = the set of all vertexes of S.

Sac

A simplicial map f from S_1 to S_2 is a function $f: V(S_1) \to V(S_2)$ that preserves faces, that is, for each face $s \in S_1$ the image of s under f is a face in S_2 .

For a face $s \in S_1$, we write f(s) for the face in S_2 that is the image of s. We write

$$f: \mathcal{S}_1 \to \mathcal{S}_2$$

instead of $f: V(\mathcal{S}_1) \to V(\mathcal{S}_2)$.

Sac

A simplicial map f from S_1 to S_2 is a function $f: V(S_1) \to V(S_2)$ that preserves faces, that is, for each face $s \in S_1$ the image of s under f is a face in S_2 .

For a face $s \in S_1$, we write f(s) for the face in S_2 that is the image of s. We write

$$f: \mathcal{S}_1 \to \mathcal{S}_2$$

instead of $f: V(\mathcal{S}_1) \to V(\mathcal{S}_2)$.

A **partial simplicial map** is a function $f: X \to V(S_2)$, for some $X \subseteq V(S_1)$, that preserves faces included in X.

L a partial order. Let

Ch(L),

be the chain simplicial complex of L whose faces are finite non-empty linearly ordered subsets of L.

Sac

Sławomir Solecki (Cornell University) Ramsey theory in topological language

Э July 2018 7 / 28

Sac

- a family Δ of simplicial maps from ${\mathcal S}$ to ${\mathcal S}$,
- a family F of partial simplicial maps from $\mathcal S$ to $\mathcal S$,
- a simplicial map $|\cdot| \colon \mathcal{S} \to \operatorname{Ch}(\mathcal{L})$, for some partial order \mathcal{L}

200

イロト 不得 トイヨト イヨト 二日

- a family Δ of simplicial maps from ${\mathcal S}$ to ${\mathcal S}$,
- a family F of partial simplicial maps from $\mathcal S$ to $\mathcal S$,
- a simplicial map $|\cdot|: S \to Ch(L)$, for some partial order L

required to fulfill the following axioms

200

イロト 不得 トイヨト イヨト 二日

- a family Δ of simplicial maps from \mathcal{S} to \mathcal{S} ,
- a family F of partial simplicial maps from S to S,
- a simplicial map $|\cdot|: S \to Ch(L)$, for some partial order L

required to fulfill the following axioms

(A) maps in Δ commute with maps in F,

- **(B)** maps in Δ are contractions with respect to $|\cdot|$,
- (C) maps in F are monotone with respect to $|\cdot|$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

- a family Δ of simplicial maps from \mathcal{S} to \mathcal{S} ,
- a family F of partial simplicial maps from S to S,
- a simplicial map $|\cdot|: S \to Ch(L)$, for some partial order L

required to fulfill the following axioms

- (A) $\delta(f(x)) = f(\delta(x))$ for each $x \in V(S)$, $f \in F$ and $\delta \in \Delta$ for which both sides are defined,
- **(B)** maps in Δ are contractions with respect to $|\cdot|$,
- (C) maps in F are monotone with respect to $|\cdot|$.

- a family Δ of simplicial maps from ${\mathcal S}$ to ${\mathcal S}$,
- a family F of partial simplicial maps from S to S,
- a simplicial map $|\cdot| : S \to Ch(L)$, for some partial order L

required to fulfill the following axioms

- (A) $\delta(f(x)) = f(\delta(x))$ for each $x \in V(S)$, $f \in F$ and $\delta \in \Delta$ for which both sides are defined,
- (B) $|\delta(x)| \leq |x|$ for all $x \in V(\mathcal{S})$ and $\delta \in \Delta$,
- (C) maps in F are monotone with respect to $|\cdot|$.

- a family Δ of simplicial maps from ${\mathcal S}$ to ${\mathcal S}$,
- a family F of partial simplicial maps from S to S,
- a simplicial map $|\cdot| : S \to Ch(L)$, for some partial order L

required to fulfill the following axioms

- (A) $\delta(f(x)) = f(\delta(x))$ for each $x \in V(S)$, $f \in F$ and $\delta \in \Delta$ for which both sides are defined,
- **(B)** $|\delta(x)| \leq |x|$ for all $x \in V(\mathcal{S})$ and $\delta \in \Delta$,
- (C) if f(y) is defined and $|x| \le |y|$, for $x, y \in V(S)$ and $f \in F$, then f(x) is defined and $|f(x)| \le |f(y)|$.

990

<ロト <回ト < 回ト < 回ト

 $V(S_0) = finite$, possibly empty, subsets of \mathbb{N}^+ Faces of $S_0 = finite$ nonempty families of sets in $V(S_0)$ of equal cardinality

Sar

 $V(S_0) = finite$, possibly empty, subsets of \mathbb{N}^+ Faces of $S_0 = finite$ nonempty families of sets in $V(S_0)$ of equal cardinality

 $\Delta_0 = \{\delta_0\}$, where for $x \in V(\mathcal{S}_0)$,

$$\delta_0(x) = \begin{cases} x \setminus \{\max x\}, & \text{if } x \neq \emptyset; \\ \emptyset, & \text{if } x = \emptyset \end{cases}$$

 $V(S_0) = finite$, possibly empty, subsets of \mathbb{N}^+ Faces of $S_0 = finite$ nonempty families of sets in $V(S_0)$ of equal cardinality

 $\Delta_0 = \{\delta_0\}$, where for $x \in V(\mathcal{S}_0)$,

$$\delta_0(x) = egin{cases} x \setminus \{\max x\}, & \textit{if } x
eq \emptyset; \ \emptyset, & \textit{if } x = \emptyset \end{cases}$$

 F_0 = partial functions $V(S_0) \rightarrow V(S_0)$ induced by pointwise application of strictly increasing functions from a finite initial segment of \mathbb{N}^+ to \mathbb{N}^+

 $V(S_0) = finite$, possibly empty, subsets of \mathbb{N}^+ Faces of $S_0 = finite$ nonempty families of sets in $V(S_0)$ of equal cardinality

 $\Delta_0 = \{\delta_0\}$, where for $x \in V(\mathcal{S}_0)$,

$$\delta_0(x) = egin{cases} x \setminus \{\max x\}, & \textit{if } x
eq \emptyset; \ \emptyset, & \textit{if } x = \emptyset \end{cases}$$

 F_0 = partial functions $V(S_0) \rightarrow V(S_0)$ induced by pointwise application of strictly increasing functions from a finite initial segment of \mathbb{N}^+ to \mathbb{N}^+

 $L_0 = \mathbb{N}$ with the natural order and, for $x \in V(\mathcal{S}_0)$,

$$|x| = \begin{cases} \max x, & \text{if } x \neq \emptyset; \\ 0, & \text{if } x = \emptyset \end{cases}$$

Ramsey degree

Sławomir Solecki (Cornell University) Ramsey theory in topological language

Ξ July 2018 9 / 28

990

<ロト <回ト < 回ト < 回ト

 $(\mathcal{S}, \mathcal{F}, \Delta, |\cdot|)$ a normed induction complex

Let \mathcal{A} be a family of subsets of F. For $a \in A$ and $s \in S$, we say a(s) is defined if f(s) is defined for each $f \in a$.

3 July 2018 10 / 28

Sar

 $(\mathcal{S}, \mathsf{F}, \Delta, |\cdot|)$ a normed induction complex

Let \mathcal{A} be a family of subsets of F. For $a \in \mathcal{A}$ and $s \in \mathcal{S}$, we say a(s) is defined if f(s) is defined for each $f \in a$.

We want \mathcal{A} to act on faces of \mathcal{S} .

So we say that A is **compatible** if, for each face s of S and each $a \in A$ with a(s) defined,

 $\bigcup \{f(s) \colon f \in a\}$

is a face of \mathcal{S} .

 $(\mathcal{S}, \mathcal{F}, \Delta, |\cdot|)$ a normed induction complex

Let \mathcal{A} be a **family of subsets of** F. For $a \in \mathcal{A}$ and $s \in \mathcal{S}$, we say a(s) **is defined** if f(s) is defined for each $f \in a$.

We want \mathcal{A} to act on faces of \mathcal{S} . So we say that \mathcal{A} is **compatible** if, for each face *s* of \mathcal{S} and each $a \in \mathcal{A}$ with a(s) defined,

$$\bigcup \{f(s) \colon f \in a\}$$

is a face of \mathcal{S} .

For a compatible \mathcal{A} and $a \in \mathcal{A}$, if a(s) is defined, we write

$$a(s) = \bigcup \{f(s) \colon f \in a\}.$$

Example ctd. For I, J, finite initial segments of \mathbb{N}^+ , $a_{I,J}$ = elements of F_0 induced by strictly increasing functions whose domains are equal to I and whose images are included in J

 $\mathcal{A}_0 = all \ sets \ a_{I,J}$

3 July 2018 11 / 28

Sac

Example ctd. For I, J, finite initial segments of \mathbb{N}^+ , $a_{I,I}$ = elements of F_0 induced by strictly increasing functions whose domains are equal to I and whose images are included in J

 $\mathcal{A}_0 = all \ sets \ a_{I,J}$

 \mathcal{A}_0 is compatible.

Sac

 $(\mathcal{S}, \mathcal{F}, \Delta, |\cdot|)$ a normed induction complex

For $d \in \mathbb{N}^+$, a *d*-coloring is a simplical map from S to the (d-1)-dimensional simplex, that is, it is an arbitrary function from V(S) to a set with *d* elements.

Sac

Assume we have: a normed induction complex $(\mathcal{S}, \mathcal{F}, \Delta, |\cdot|)$ and a compatible family \mathcal{A} of subsets of F.

イロト イポト イヨト イヨト

Sac

Assume we have: a normed induction complex $(S, F, \Delta, |\cdot|)$ and a compatible family A of subsets of F.

Let $s \in S$ be a face. We define the **Ramsey degree** of s,

rd(*s*),

to be the smallest number $r \in \mathbb{N}^+$ with the following property:

イロト イポト イヨト

Assume we have: a normed induction complex $(S, F, \Delta, |\cdot|)$ and a compatible family A of subsets of F.

Let $s \in S$ be a face. We define the **Ramsey degree** of s,

rd(*s*),

to be the smallest number $r \in \mathbb{N}^+$ with the following property: given $d \in \mathbb{N}^+$, there exists $a \in A$ with a(s) defined and such that

イロト イポト イヨト

Assume we have: a normed induction complex $(S, F, \Delta, |\cdot|)$ and a compatible family A of subsets of F.

Let $s \in S$ be a face. We define the **Ramsey degree** of s,

rd(*s*),

to be the smallest number $r \in \mathbb{N}^+$ with the following property: given $d \in \mathbb{N}^+$, there exists $a \in A$ with a(s) defined and such that, for each *d*-coloring, there exists $f \in a$ with f(s) attaining at most *r* colors.

Aim: find upper bounds for rd(s).

590

<ロト <回ト < 回ト < 回ト

Aim: find upper bounds for rd(s).

$\langle \Delta \rangle$ = the family of functions obtained by closing Δ under composition

Sac

Aim: find upper bounds for rd(s).

 $\langle \Delta \rangle$ = the family of functions obtained by closing Δ under composition The upper bound we are aiming for is

 $\operatorname{rd}(s) \leq \min{\operatorname{card}(\delta(s)) \mid \delta \in \langle \Delta \rangle}.$

▲ ■ ▶ ■ のへの July 2018 14 / 28

Pigeonhole principle

Sławomir Solecki (Cornell University) Ramsey theory in topological language

3 July 2018 15 / 28

900

<ロト <回ト < 回ト < 回ト

$$s_{x,\delta} = \{ y \in s \mid \delta y = x \}.$$

Sławomir Solecki (Cornell University) Ramsey theory in topological language

3 July 2018 16 / 28

590

◆ロト ◆信 ト ◆注 ト ◆注 ト

$$s_{x,\delta} = \{ y \in s \mid \delta y = x \}.$$

The following statement is the pigeonhole principle (PP).

Sar

$$s_{\mathsf{x},\delta} = \{ \mathsf{y} \in \mathsf{s} \mid \delta \mathsf{y} = \mathsf{x} \}.$$

The following statement is the pigeonhole principle (PP).

(**PP**) Given: a face $s \in S$ and a number $d \in \mathbb{N}^+$. For each $\delta \in \Delta$ and $x \in \delta(s)$, there exists $a \in A$ with a(s) defined and such that

< ロト < 同ト < ヨト < ヨ

$$s_{x,\delta} = \{ y \in s \mid \delta y = x \}.$$

The following statement is the pigeonhole principle (PP).

(**PP**) Given: a face $s \in S$ and a number $d \in \mathbb{N}^+$. For each $\delta \in \Delta$ and $x \in \delta(s)$, there exists $a \in A$ with a(s) defined and such that, for each *d*-coloring, there exists $f \in a$ with

— $f(s_{x,\delta})$ monochromatic

$$s_{x,\delta} = \{ y \in s \mid \delta y = x \}.$$

The following statement is the pigeonhole principle (PP).

(**PP**) Given: a face $s \in S$ and a number $d \in \mathbb{N}^+$. For each $\delta \in \Delta$ and $x \in \delta(s)$, there exists $a \in A$ with a(s) defined and such that, for each *d*-coloring, there exists $f \in a$ with

 $\begin{array}{l} -- f(s_{x,\delta}) \text{ monochromatic and} \\ -- f \upharpoonright \{y \in \delta(s) \colon |y| \leq |x|\} \text{ is the identity map.} \end{array}$

$$s_{x,\delta} = \{ y \in s \mid \delta y = x \}.$$

The following statement is the pigeonhole principle (PP).

(**PP**) Given: a face $s \in S$ and a number $d \in \mathbb{N}^+$. For each $\delta \in \Delta$ and $x \in \delta(s)$, there exists $a \in A$ with a(s) defined and such that, for each *d*-coloring, there exists $f \in a$ with

$$\begin{array}{l} -- f(s_{x,\delta}) \text{ monochromatic and} \\ -- f(y) = y \text{ for each } y \in \delta(s), \ |y| \leq |x| \end{array} \end{array}$$

The **theorem** will say: (PP) implies

 $\operatorname{rd}(s) \leq \min\{\operatorname{card}(\delta(s)) \mid \delta \in \langle \Delta \rangle\}, \text{ for each face } s \in \mathcal{S}.$

500

ヘロト 人間ト 人注ト 人注ト

The theorem will say: (PP) implies

 $\operatorname{rd}(s) \leq \min\{\operatorname{card}(\delta(s)) \mid \delta \in \langle \Delta \rangle\}, \text{ for each face } s \in \mathcal{S}.$

For this, we need the compatible family $\mathcal{A} \subseteq F$ to **interact more closely** with the normed induction complex $(\mathcal{S}, F, \Delta, |\cdot|)$. We need to impose conditions of **composability** and **extendability** on \mathcal{A} .

・ロト ・ 理ト ・ ヨト ・ ヨト … ヨ

The general Ramsey theorem

Sławomir Solecki (Cornell University) Ramsey theory in topological language

Э July 2018 18 / 28

990

The following condition is a requirement that sets in \mathcal{A} can be **composed** in a weak sense.

イロト イポト イヨト イヨト

Sac

The following condition is a requirement that sets in ${\cal A}$ can be composed in a weak sense.

 \mathcal{A} is **composable** if for each $s \in \mathcal{S}$ and $a, b \in \mathcal{A}$ with a(s) and b(a(s)) defined

< ロト < 同ト < ヨト < ヨ

The following condition is a requirement that sets in ${\cal A}$ can be composed in a weak sense.

 \mathcal{A} is **composable** if for each $s \in \mathcal{S}$ and $a, b \in \mathcal{A}$ with a(s) and b(a(s)) defined, there exists $c \in \mathcal{A}$ with c(s) defined

The following condition is a requirement that sets in \mathcal{A} can be **composed** in a weak sense.

 \mathcal{A} is **composable** if for each $s \in S$ and $a, b \in \mathcal{A}$ with a(s) and b(a(s)) defined, there exists $c \in \mathcal{A}$ with c(s) defined and such that, for $f \in a$ and $g \in b$, there exists $h \in c$ with

 $h \upharpoonright s = g \circ (f \upharpoonright s).$

 \mathcal{A} is **extendable** if for each $s \in S$, $\delta \in \Delta$, and $a \in \mathcal{A}$ with $a(\delta(s))$ defined

 \mathcal{A} is **extendable** if for each $s \in S$, $\delta \in \Delta$, and $a \in \mathcal{A}$ with $a(\delta(s))$ defined, there exists $b \in \mathcal{A}$ with b(s) defined

 \mathcal{A} is **extendable** if for each $s \in S$, $\delta \in \Delta$, and $a \in \mathcal{A}$ with $a(\delta(s))$ defined, there exists $b \in \mathcal{A}$ with b(s) defined and such that for each $f \in a$ there exists $g \in b$ with

 $g \upharpoonright \delta(s) = f \upharpoonright \delta(s).$

A **Ramsey domain** is a normed induction complex $(S, F, \Delta, |\cdot|)$ together with a compatible family \mathcal{A} that is composable and extendable.

Sac

A **Ramsey domain** is a normed induction complex $(S, F, \Delta, |\cdot|)$ together with a compatible family A that is composable and extendable.

We write (S, A) for the Ramsey domain without explicitly mentioning F, Δ and $|\cdot|$.

Sac

Theorem (S.) If (PP) holds in a Ramsey domain (S, A), then for each face s of S

 $\operatorname{rd}(s) \leq \min\{\operatorname{card}(\delta(s)) \mid \delta \in \langle \Delta \rangle\}.$

200

Two main points of the **proof**:

900

<ロト <回ト < 回ト < 回ト

Two main points of the **proof**:

(1) The estimate on the right involves $\langle \Delta \rangle$ rather than just Δ . This difficulty is handled by one induction argument that proceeds on the representation of a function in $\langle \Delta \rangle$ as a composition of a finite sequence of functions from Δ . Roughly speaking this part of the argument involves propagating the pigeonhole principle (PP) from Δ to $\langle \Delta \rangle$.

Sac

Two main points of the **proof**:

(1) The estimate on the right involves $\langle \Delta \rangle$ rather than just Δ . This difficulty is handled by one induction argument that proceeds on the representation of a function in $\langle \Delta \rangle$ as a composition of a finite sequence of functions from Δ . Roughly speaking this part of the argument involves propagating the pigeonhole principle (PP) from Δ to $\langle \Delta \rangle$.

(2) The pigeonhole principle (PP) finds f ensuring monochromaticity depending on $x \in \delta(s)$. In the theorem, we need an f that is independent of x. This difficulty is handled by another induction argument proceeding on the complexity of x as measured by $|x| \in L$.

Infinite dimensional Ramsey theory

Sławomir Solecki (Cornell University) Ramsey theory in topological language

3 July 2018 24 / 28

-

イロト イロト イヨト イ

 $(\mathcal{S}, \mathcal{F}, \Delta, |\cdot|)$ a normed induction complex Set $X = V(\mathcal{S})$, assume $\Delta = \{\delta\}$.

July 2018 25 / 28

500

<ロト < 団ト < 団ト < 団ト < 団ト = 三</p>

 $(\mathcal{S}, \mathcal{F}, \Delta, |\cdot|)$ a normed induction complex Set $X = V(\mathcal{S})$, assume $\Delta = \{\delta\}$.

A face $s \in S$ is **locally finite** if, for each $x \in s$, the set $\{y \in s \mid |y| \leq |x|\}$ is finite.

Sac

 $(S, F, \Delta, |\cdot|)$ a normed induction complex Set X = V(S), assume $\Delta = \{\delta\}$.

A face $s \in S$ is **locally finite** if, for each $x \in s$, the set $\{y \in s \mid |y| \leq |x|\}$ is finite.

F is **composable** and **extendable**.

F is topologically **closed**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Define

$$\varprojlim X = \{(x_n) \in X^{\mathbb{N}} \mid x_n = \delta(x_{n+1}) \text{ for each } n\}.$$

Sławomir Solecki (Cornell University) Ramsey theory in topological language 900

Define

$$arprojlim_{m}X=\{(x_{n})\in X^{\mathbb{N}}\mid x_{n}=\delta(x_{n+1}) ext{ for each } n\}.$$

A sequence $\vec{s} = (s_n)$ of faces of S is **coherent** if

—
$$s_n = \delta(s_{n+1})$$
, for all $n \in \mathbb{N}$;

- $-\bigcup_n s_n$ is a face in \mathcal{S} ;
- s_0 consist of one vertex.

Sac

Define

$$\varprojlim X = \{(x_n) \in X^{\mathbb{N}} \mid x_n = \delta(x_{n+1}) \text{ for each } n\}.$$

A sequence $\vec{s} = (s_n)$ of faces of S is **coherent** if

—
$$s_n = \delta(s_{n+1})$$
, for all $n \in \mathbb{N}$;

- $-\bigcup_n s_n$ is a face in S;
- s_0 consist of one vertex.

For a coherent sequence \vec{s} , let

$$[\vec{s}] = \{(x_n) \in \varprojlim X \mid x_n \in s_n \text{ for each } n\}.$$

$(\mathbf{PP})_{inf}$ Given $d \in \mathbb{N}$, for each face $s \in S$, $x \in \delta(s)$, and each *d*-coloring

Sławomir Solecki (Cornell University) Ramsey theory in topological language

3 July 2018 27 / 28

596

◆ロト ◆聞ト ◆ヨト ◆ヨト

 $(\mathsf{PP})_{\inf}$ Given $d \in \mathbb{N}$, for each face $s \in S$, $x \in \delta(s)$, and each *d*-coloring, there is $f \in F$ such that f(s) is defined, $f(s_x)$ is monochromatic, and $f \upharpoonright \{y \in X : |y| \le |x|\}$ is the identity.

 $(\mathsf{PP})_{\inf}$ Given $d \in \mathbb{N}$, for each face $s \in S$, $x \in \delta(s)$, and each *d*-coloring, there is $f \in F$ such that f(s) is defined, $f(s_x)$ is monochromatic, and $f \upharpoonright \{y \in X : |y| \le |x|\}$ is the identity.

 $(\mathbf{R})_{inf}$ Given $d \in \mathbb{N}$, for each coherent sequence of faces (s_n) , and each closed *d*-coloring of $\varprojlim X$

 $(\mathsf{PP})_{\inf}$ Given $d \in \mathbb{N}$, for each face $s \in S$, $x \in \delta(s)$, and each *d*-coloring, there is $f \in F$ such that f(s) is defined, $f(s_x)$ is monochromatic, and $f \upharpoonright \{y \in X : |y| \le |x|\}$ is the identity.

 $(\mathbf{R})_{inf}$ Given $d \in \mathbb{N}$, for each coherent sequence of faces (s_n) , and each closed *d*-coloring of $\varprojlim X$, there exists $f \in F$ such that $f(\bigcup_n s_n)$ is defined and $f([(s_n)])$ is monochromatic.

Theorem (S.)

Let $(S, F, \Delta, |\cdot|)$ be a normed induction complex with locally finite faces. Assume F is composable, extandable, and closed. Then $(PP)_{inf}$ implies $(R)_{inf}$.

Sar