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Suppose G = (V ,E ) is a finite graph, so V is a finite set and
E ⊆ [V ]2 is a set of pairs.

It is natural to put the counting measure on subsets of V k :
when X ⊆ V k , µk(Y ) = |X |

|V |k

Various results in extremal combinatorics (Szemerédi regularity,
graph removal, etc) can be viewed as probabilistic theorems in this
setting. For example:

Theorem (Triangle Removal)
For every ε > 0 there is a δ > 0 such that either:

the set of triangles has measure > δ, or
there is a set R ⊆ E of edges with measure < ε such that
(V ,E \ R) has no triangles.
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Suppose that, for each i , Gi = (Vi ,Ei ) is a graph with |Vi | finite
and limi→∞ |Vi | =∞.

The ultraproduct
(V ,E ) =

∏
U

(Vi ,Ei )

is a graph on an uncountable set V .

We can hope to lift the counting measure on the V k
i to a measure

on V :
when Xi ⊆ V k

i for all i , there is an internal set X =
∏
U Xi ,

and we can define

µk(X ) = lim
U

|Xi |
|Vi |k

.

we can let Bk be the σ-algebra generated by the internal
subsets of V k .
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To summarize:
we have a graph (V ,E ) with uncountably many vertices,
for each k, we have a measure space (V k ,Bk , µ

k),
for internal sets (like E , or the set of triangles), the measure
in µk is the limit of the corresponding measures µk

i .

For example, one way to prove triangle removal is to prove:

Theorem
If (V ,E ) is an ultraproduct of graphs, either:

the set of triangles has positive measure, or
for every ε > 0, there is an internal set R ⊆ E with measure
< ε such that (V ,E \ R) has no triangles.
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But the measurable sets of k-tuples are not the product of the sets
of singletons:

Theorem
There is a set A ∈ B2 which is not in the σ-algebra generated by
B1 × B1.

Recall that B × B is the σ-algebra generated (under complements
and countable unions and intersections) by rectangles B × C .
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That means sets in B1 × B1 are approximated by rectangles:

Theorem
If A ∈ B1×B1 then, for every ε > 0, there exist Bi ,Ci ∈ B1 so that

µ(A4 (
⋃
i≤k

Bi × Ci )) < ε.

On the other hand, the sets in B2 \ (B1 × B1) cannot be
approximated in this way.

In fact, any set has a decomposition

χA ≈ f (x , y) +
∑
i≤d

γiχBi (x)χCi (y)

where f is quasi-random.

This phenomenon is familiar in finite combinatorics: the product
B1×B1 corresponds to the partition given by Szemerédi regularity.
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Definition
A graph E ⊆ V 2 has VC dimension ≥ d if there exist elements

y1, . . . , yd ∈ V

such that, for every S ⊆ {y1, . . . , yd}, there is some x ∈ V so that

Ex ∩ {y1, . . . , yd} = S.

So the slices Ex are able to pick out every subset of the set
{y1, . . . , yd}.
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Example
Consider the graph E ⊆ [0, 1]× [0, 1] where (i , j) ∈ E iff i < j .

This has VC dimension 2: given any y1, y2 ∈ [0, 1], without loss of
generality y1 < y2. Then, no matter what x is,

Ex ∩ {y1, y2} is one of ∅, {y2}, {y1, y2}.
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Example
If Ei is a random graph on Vi and (V ,E ) =

∏
U (Vi ,Ei ) then the

VC dimension of E is infinite.

Given any {y1, . . . , yd} ⊆ V and any S ⊆ {y1, . . . , yd}, the
probability that Ex ∩ {y1, . . . , yd} 6= S is 1− 2−d , so if we have n
choices of x , by the union bound, the probability the VC dimension
is ≤ d is bounded by

2d (1− 2−d )n

which approaches 0 as n approaches ∞.



Graded Probability Spaces VC Dimension Hypergraphs 2-VC Graphs

Standard facts about VC dimension:
Theorem

VC dimension is symmetric up to some loss of constants: if
E ⊆ X × Y has VC dimension ≤ d then the flipped graph
E ′ ⊆ Y × X has VC dimension ≤ 2d+1 − 1.

Sauer-Shelah: If E has VC dimension < d then whenever
{y1, . . . , ym} ∈ Y , there are at most

∑d−1
i=0

(m
i
)

sets
S ⊆ {y1, . . . , ym} such that there is an x with

Ex ∩ {y1, . . . , ym} = S.

The quantity in Sauer-Shelah is a polynomial, so Sauer-Shelah says:
The number of subsets of {y1, . . . , ym} is either bounded
by a polynomial or (for some sets {y1, . . . , ym}) contains
every subset (and therefore grows exponentially).



Graded Probability Spaces VC Dimension Hypergraphs 2-VC Graphs

Standard facts about VC dimension:
Theorem

VC dimension is symmetric up to some loss of constants: if
E ⊆ X × Y has VC dimension ≤ d then the flipped graph
E ′ ⊆ Y × X has VC dimension ≤ 2d+1 − 1.
Sauer-Shelah: If E has VC dimension < d then whenever
{y1, . . . , ym} ∈ Y , there are at most

∑d−1
i=0

(m
i
)

sets
S ⊆ {y1, . . . , ym} such that there is an x with

Ex ∩ {y1, . . . , ym} = S.

The quantity in Sauer-Shelah is a polynomial, so Sauer-Shelah says:
The number of subsets of {y1, . . . , ym} is either bounded
by a polynomial or (for some sets {y1, . . . , ym}) contains
every subset (and therefore grows exponentially).



Graded Probability Spaces VC Dimension Hypergraphs 2-VC Graphs

Standard facts about VC dimension:
Theorem

VC dimension is symmetric up to some loss of constants: if
E ⊆ X × Y has VC dimension ≤ d then the flipped graph
E ′ ⊆ Y × X has VC dimension ≤ 2d+1 − 1.
Sauer-Shelah: If E has VC dimension < d then whenever
{y1, . . . , ym} ∈ Y , there are at most

∑d−1
i=0

(m
i
)

sets
S ⊆ {y1, . . . , ym} such that there is an x with

Ex ∩ {y1, . . . , ym} = S.

The quantity in Sauer-Shelah is a polynomial, so Sauer-Shelah says:
The number of subsets of {y1, . . . , ym} is either bounded
by a polynomial or (for some sets {y1, . . . , ym}) contains
every subset (and therefore grows exponentially).



Graded Probability Spaces VC Dimension Hypergraphs 2-VC Graphs

Theorem (The VC Theorem)
Suppose E ⊆ X × Y has finite VC dimension and let ε > 0. Then
there exists a set {y1, . . . , ym} (with m depending only on the VC
dimension and ε) such that for every single x ∈ X, either:

µ(Ex ) < ε, or
|Ex ∩ {y1, . . . , ym}| 6= ∅.

The set {y1, . . . , ym} is called an ε-net.

Almost every set {y1, . . . , ym} has this property.
By choosing {y1, . . . , ym} slightly larger, we can ensure

|Ex ∩ {y1, . . . , ym}|
m ≈ µ(Ex ).

This is called an ε-approximation.
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Corollary
Suppose E ⊆ X × Y has finite VC and let ε > 0. Then there exists
{y1, . . . , ym} ⊆ Y so that for any x , x ′ ∈ X, either:

µ(Ex 4 Ex ′) < ε, or
Ex ∩ {y1, . . . , ym} 6= Ex ′ ∩ {y1, . . . , ym}.

Corollary
Suppose E ⊆ X × Y has finite VC dimension and let ε > 0. Then
there exist x1, . . . , xk such that, for every x ∈ X, there is some xi
with µ(Ex 4 Exi ) < ε.
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Corollary (Regularity for VC dimension)
If E ⊆ V 2 has finite VC dimension then:

E belongs to B1 × B1,
the number of rectangles needed to approximated E to within
ε is bounded by a polynomial in 1/ε.

Sketch.
Choose x1, . . . , xk so that, for every x ∈ X , there is some xi with
µ(Ex 4 Exi ) < ε|X |. Take Xi = {x | |Ex 4 Exi | < ε}.

For each S ⊆ {x1, . . . , xk}, take YS = {y | (xi , y) ∈ E iff xi ∈ S}.

Then
f =

∑
i ,S

µ(E ∩ (Xi × YS))
µ(Xi × YS) χXiχYS

suffices.
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The same ideas apply to 3-graphs (that is, hypergraphs whose
edges are triples):

when each (Vi ,Hi ) is a 3-graph with |Vi | finite and
limi→∞ |Vi | =∞, the ultraproduct (V ,H) is a k-graph on an
uncountable set,

when Xi ⊆ V k
i for all i , there is a set X =

∏
U Xi with

µk(X ) = limU |Xi |
|Vi |k

,

for each k, we have a measure space (V k ,Bk , µ
k).
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Example
Choose E ,F ,G ∈ B2 to be quasi-random.

We define

H = {(x , y , z) | χE (x , y) + χF (x , z) + χG(y , z) ∈ {1, 3}}.

This hypergraph is “random” relative to any box:

µ(H ∩ (A× B × C)) ≈ 1
2µ(A× B × C).
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Certainly B3 contains sets not in B1 ×B1 ×B1, or even in B2 ×B1.

But these do not exhaust the ways lower-order sets could define
sets of triples. We need to consider cylinder intersections: sets of
the form

{(x , y , z) | (x , y) ∈ A and (x , z) ∈ B and (y , z) ∈ C}

where A,B,C ∈ B2.

These sets generate a σ-algebra B3,2. We still have B3 ) B3,2.
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The appropriate decomposition is to take a hypergraph χE and
write it in the form

χE (x , y , z) ≈ f (x , y) +
∑
i≤d2

γiχAi (x , y)χBi (x , z)χCi (y , z)

+
∑
i≤d1

δiχDi i (x)χFi (y)χGi (z)

where Ai ,Bi ,Ci are quasi-random (possibly directed) graphs.

This does correspond in a precise way to hypergraph regularity for
3-graphs, but the correspondence is a bit more complicated
because the interactions of different bounds are more complicated.
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Definition
A 3-graph H ⊆ V 3 has 2-VC dimension ≥ d if there is a rectangle

y1, . . . , yd ∈ V , z1, . . . , zd ∈ V

such that, for every S ⊆ {y1, . . . , yd} × {z1, . . . , zd}, there is some
x ∈ V so that

Hx ∩ ({y1, . . . , yd} × {z1, . . . , zd}) = S.
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Example
Recall the hypergraph where E ,F ,G ⊆ V 2 are each quasi-random,
and H consists of those (x , y , z) so that an odd number of the
pairs (x , y), (x , z), (y , z) belong to the respective graphs.

We claim H has 2-VC dimension ≤ 65.

Consider any
{y1, . . . , y5} ⊆ V and {z1, . . . , z65} ⊆ V . By Ramsey’s Theorem
(and possibly reordering the elements), without loss of generality
we may assume either {y1, y2, y3} × {z1, z2, z3} ⊆ G or
{y1, y2, y3} × {z1, z2, z3} ∩ G = ∅.

Then no x can have

Hx ∩ ({y1, y2, y3} × {z1, z2, z3}) = {(y1, z1), (y2, z2), (y3, z3)} :

this would imply that no two of χE (x , y1), χE (x , y2), and χE (x , y3)
can be equal, which is impossible.
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Theorem (Chernikov-Palacin-Takeuchi)
If H has VC dimension < d then whenever {y1, . . . , ym} ⊆ V and
{z1, . . . , zm} ⊆ V , there is an ε(d) > 0 so that there are at most
2m2−ε(d) sets S ⊆ {y1, . . . , yd} × {z1, . . . , zd} such that there is an
x with

Hx ∩ ({y1, . . . , yd} × {z1, . . . , zd}) = S.

The bound 2m2−ε is not as strong as original conjectured, but CPT
show it is close to optimal.
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The key theorem about VC dimension was:

Theorem (The VC Theorem)
Suppose E ⊆ V 2 has finite VC dimension and let ε > 0. Then
there exists a set {y1, . . . , ym} (with m depending only on the VC
dimension and ε) such that for every single x ∈ X, either:

µ(Ex ) < ε, or
|Ex ∩ {y1, . . . , ym}| 6= ∅.

We don’t even know what the right definition of an ε-net would be
for 2-VC dimension.
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Theorem
Suppose E ⊆ V 2 has finite VC dimension and let ε > 0. Then
there exist x1, . . . , xn such that, for every x ∈ V , there is some xi
with µ(Ex 4 Exi ) < ε.

Theorem (Chernikov-T.)
Suppose H ⊆ V 3 has finite 2-VC dimension and let ε > 0. Then
there exist x1, . . . , xn such that, for every x ∈ V , there is a partition

V 2 =
⋃

j≤m,k≤m
Bj × Ck

and, for each pair (j , k), a Boolean combination E (j,k) of the Exi ,
such that

|µ(Ex 4
⋃

j≤m,k≤m
E (j,k) ∩ (Bj × Ck)) < ε.
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Suppose E ⊆ V 2 has finite VC dimension and let ε > 0. Then
there exist x1, . . . , xn such that, for every x ∈ V , there is some xi
with µ(Ex 4 Exi ) < ε.

Theorem (Chernikov-T.)
Suppose H ⊆ V 3 has finite 2-VC dimension and let ε > 0. Then
there exist x1, . . . , xn such that, for every x ∈ V , there is a partition

V 2 =
⋃

j≤m,k≤m
Bj × Ck

and, for each pair (j , k), a Boolean combination E (j,k) of the Exi ,
such that

|µ(Ex 4
⋃

j≤m,k≤m
E (j,k) ∩ (Bj × Ck)) < ε.
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Theorem (Regularity for VC dimension)
If E ⊆ V 2 has finite VC dimension then:

E belongs to B1 × B1,
the number of rectangles needed to approximated E to within
ε is bounded by a polynomial in 1/ε.

Theorem (Chernikov-T.)
If H ⊆ V 3 has finite 2-VC dimension then H belongs to B3,2.
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Theorem (Chernikov-T.)
Suppose H ⊆ V 3 has finite 2-VC dimension and let ε > 0. Then
there exist x1, . . . , xn such that, for every x ∈ V , there is a partition

V 2 =
⋃

j≤m,k≤m
Bj × Ck

and, for each pair (j , k), a Boolean combination E (j,k) of the Exi ,
such that

|µ(Ex 4
⋃

j≤m,k≤m
E (j,k) ∩ (Bj × Ck)) < ε.

Theorem (Chernikov-T.)
If H ⊆ V 3 has finite 2-VC dimension then H belongs to B3,2.

The end.
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Theorem (Chernikov-T.)
Suppose H ⊆ V 3 has finite 2-VC dimension and let ε > 0. Then
there exist x1, . . . , xn such that, for every x ∈ V , there is a partition

V 2 =
⋃

j≤m,k≤m
Bj × Ck

and, for each pair (j , k), a Boolean combination E (j,k) of the Exi ,
such that

|µ(Ex 4
⋃

j≤m,k≤m
E (j,k) ∩ (Bj × Ck)) < ε.

Theorem (Chernikov-T.)
If H ⊆ V 3 has finite 2-VC dimension then H belongs to B3,2.

The end.
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