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Suppose G = (V, E) is a finite graph, so V is a finite set and
E C [V]? is a set of pairs.

It is natural to put the counting measure on subsets of V:

o when X C VK pk(Y) = %
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Suppose G = (V, E) is a finite graph, so V is a finite set and
E C [V]? is a set of pairs.

It is natural to put the counting measure on subsets of V:
k  k _ X
e when X C VK (Y)_ﬁ
Various results in extremal combinatorics (Szemerédi regularity,
graph removal, etc) can be viewed as probabilistic theorems in this
setting. For example:

Theorem (Triangle Removal)

For every € > 0 there is a 6 > 0 such that either:
@ the set of triangles has measure > 6, or

@ there is a set R C E of edges with measure < € such that
(V,E\ R) has no triangles.
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Suppose that, for each i, G; = (V;, E;) is a graph with |V;] finite
and lim;_,« | V| = 0.

The ultraproduct

(V,E)=1[(V;, Ei)

u
is a graph on an uncountable set V.
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Suppose that, for each i, G; = (V;, E;) is a graph with |V;] finite
and lim;_,« | V| = 0.

The ultraproduct

(V,E)=1[(V;, Ei)

u
is a graph on an uncountable set V.

We can hope to lift the counting measure on the V¥ to a measure
on V:

@ when X; C \/,-k for all i, there is an internal set X = [[;, X;,
and we can define

| Xi]

|Vilk

p (X) = lim
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Suppose that, for each i, G; = (V;, E;) is a graph with |V;] finite
and lim;_,« | V| = 0.

The ultraproduct

(V,E)=1[(V;, Ei)

u
is a graph on an uncountable set V.

We can hope to lift the counting measure on the V¥ to a measure
on V:

@ when X; C \/,-k for all i, there is an internal set X = [[;, X;,
and we can define

Kixey _ i Xl
i (X)—Ilbr{n“/’_k.

@ we can let By be the o-algebra generated by the internal
subsets of V.
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To summarize:
@ we have a graph (V/, E) with uncountably many vertices,
o for each k, we have a measure space (Vk,Bk,uk),

e for internal sets (like E, or the set of triangles), the measure
in 1X is the limit of the corresponding measures uf-‘.
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To summarize:
@ we have a graph (V/, E) with uncountably many vertices,
o for each k, we have a measure space (Vk,Bk,uk),

e for internal sets (like E, or the set of triangles), the measure
in 1X is the limit of the corresponding measures uf-‘.

For example, one way to prove triangle removal is to prove:

If (V,E) is an ultraproduct of graphs, either:

@ the set of triangles has positive measure, or

e for every € > 0, there is an internal set R C E with measure
< e such that (V, E \ R) has no triangles.
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But the measurable sets of k-tuples are not the product of the sets
of singletons:

There is a set A € By which is not in the o-algebra generated by
81 X [)’1.

Recall that B x B is the o-algebra generated (under complements
and countable unions and intersections) by rectangles B x C.



Graded Probability Spaces
0000@

That means sets in By x By are approximated by rectangles:

If A € By x By then, for every € > 0, there exist B;, C; € By so that

WAL (JBixG)<e

i<k
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That means sets in By x By are approximated by rectangles:

If A € By x By then, for every € > 0, there exist B;, C; € By so that

WAL (JBixG)<e

i<k

On the other hand, the sets in By \ (B1 x B1) cannot be
approximated in this way.

In fact, any set has a decomposition

XA~ f(x,y) + > vixe (x)xe(y)
i<d

where f is quasi-random.
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That means sets in By x By are approximated by rectangles:

If A € By x By then, for every € > 0, there exist B;, C; € By so that

WAL (JBixG)<e

i<k

On the other hand, the sets in By \ (B1 x B1) cannot be
approximated in this way.

In fact, any set has a decomposition

XA~ f(x,y) + > vixe (x)xe(y)
i<d

where f is quasi-random.

This phenomenon is familiar in finite combinatorics: the product
By x By corresponds to the partition given by Szemerédi regularity.
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Definition
A graph E C V2 has VC dimension > d if there exist elements

Yi,---,Yd € vV

such that, for every S C {y1,...,yq}, there is some x € V so that

Exﬁ{yl,...,yd}:S.

So the slices E, are able to pick out every subset of the set
{y17 e 7)/d}-
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Example
Consider the graph E C [0,1] x [0, 1] where (i,}) € E iff i <.

This has VC dimension 2: given any y1, y» € [0, 1], without loss of
generality y1 < y». Then, no matter what x is,

Ex N {y1,y2} is one of O, {y>}, {y1,y2}.
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Example

If E; is a random graph on V; and (V, E) = [];,(Vi, E;) then the
VC dimension of E is infinite.

Given any {y1,...,¥4} € V and any S C {y1,...,yq}, the
probability that E, N {y1,...,yq} # Sis 1 —279, so if we have n
choices of x, by the union bound, the probability the VC dimension
is < d is bounded by

2d(1 _ 2—d)n

which approaches 0 as n approaches oco.
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Standard facts about VC dimension:

e VC dimension is symmetric up to some loss of constants: if
E C X X Y has VC dimension < d then the flipped graph
E' C Y x X has VC dimension < 29+1 _ 1.
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Standard facts about VC dimension:

e VC dimension is symmetric up to some loss of constants: if
E C X X Y has VC dimension < d then the flipped graph
E' C Y x X has VC dimension < 29+1 _ 1.

@ Sauer-Shelah: If E has VC dimension < d then whenever

V1, Ym} €Y, there are at most Y91 () sets
S C{y1,...,Ym} such that there is an x with

1

ExN{y,-..,¥m} =S.
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Standard facts about VC dimension:

e VC dimension is symmetric up to some loss of constants: if
E C X X Y has VC dimension < d then the flipped graph
E' C Y x X has VC dimension < 29+1 _ 1.

@ Sauer-Shelah: If E has VC dimension < d then whenever
V1, Ym} €Y, there are at most Y91 () sets
S C{y1,...,Ym} such that there is an x with

1

ExN{y,-..,¥m} =S.

The quantity in Sauer-Shelah is a polynomial, so Sauer-Shelah says:

The number of subsets of {y1,...,ym} is either bounded
by a polynomial or (for some sets {y1,...,ym}) contains
every subset (and therefore grows exponentially).
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Theorem (The VC Theorem)

Suppose E C X X Y has finite VC dimension and let ¢ > 0. Then
there exists a set {y1,...,ym} (with m depending only on the VC
dimension and €) such that for every single x € X, either:

o u(Ex) <e or
o [ExN{y,....ym}t #0.

The set {y1,...,ym} is called an e-net.
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Theorem (The VC Theorem)

Suppose E C X X Y has finite VC dimension and let ¢ > 0. Then
there exists a set {y1,...,ym} (with m depending only on the VC
dimension and €) such that for every single x € X, either:

o u(Ex) <e or
o [ExN{y,....ym}t #0.

The set {y1,...,ym} is called an e-net.

@ Almost every set {yi,...,ym} has this property.
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Theorem (The VC Theorem)

Suppose E C X X Y has finite VC dimension and let ¢ > 0. Then
there exists a set {y1,...,ym} (with m depending only on the VC
dimension and €) such that for every single x € X, either:

o u(Ex) <e or
o [ExN{y,....ym}t #0.

The set {y1,...,ym} is called an e-net.

@ Almost every set {yi,...,ym} has this property.
@ By choosing {y1,...,ym} slightly larger, we can ensure

|EX N {}/17 s e a)/m}|
~ u(Ey).
- H(Ex)

This is called an e-approximation.
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Suppose E C X x Y has finite VC and let € > 0. Then there exists
{y1,--.,¥m} C Y so that for any x,x" € X, either:

o u(Ex A Ey) <e, or
° Exm{yla"'vym} 7é Ex’m{}/lv""ym}-
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Suppose E C X x Y has finite VC and let € > 0. Then there exists
{y1,--.,¥m} C Y so that for any x,x" € X, either:

o u(Ex A Ey) <e, or
° Exm{yla"'v}/m} 7é Ex’m{}/lv""ym}-

Suppose E C X x Y has finite VC dimension and let € > 0. Then

there exist x1, ..., xx such that, for every x € X, there is some x;
with p(Ex A Ey;) < e.
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Corollary (Regularity for VC dimension)

If E C V2 has finite VVC dimension then:
e E belongs to By x By,

@ the number of rectangles needed to approximated E to within
€ is bounded by a polynomial in 1/e.
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Corollary (Regularity for VC dimension)

If E C V2 has finite VVC dimension then:
e E belongs to By x By,

@ the number of rectangles needed to approximated E to within
€ is bounded by a polynomial in 1/e.

Sketch.

Choose xi, ..., xx so that, for every x € X, there is some x; with
w(Ex A Ey) < €l X|. Take X; = {x | |Ex & E| < €}.

For each S C {x1,...,xk}, take Ys ={y | (xi;,y) € E iff x; € S}.

Then

suffices. ]
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The same ideas apply to 3-graphs (that is, hypergraphs whose
edges are triples):
e when each (V;, H;) is a 3-graph with |V;| finite and
lim; o0 |Vi| = 00, the ultraproduct (V, H) is a k-graph on an
uncountable set,
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[ Jelele]

The same ideas apply to 3-graphs (that is, hypergraphs whose
edges are triples):
e when each (V;, H;) is a 3-graph with |V;| finite and
lim; o0 |Vi| = 00, the ultraproduct (V, H) is a k-graph on an
uncountable set,
o when X; C V& for all i, there is a set X = [];; X; with

Nk(X) = limy ||V:||k,



robability Spaces VC Dimensio Hypergraphs

[ Jelele]

The same ideas apply to 3-graphs (that is, hypergraphs whose
edges are triples):
e when each (V;, H;) is a 3-graph with |V;| finite and
lim; o0 |Vi| = 00, the ultraproduct (V, H) is a k-graph on an
uncountable set,
@ when X; C \/,-k for all i, there is a set X = [[;; X; with

. X;
Nk(X) = ||mu ||V:||k'

o for each k, we have a measure space (VX, By, 1¥).
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Choose E, F, G € B, to be quasi-random.

We define

H= {(Xayaz) | XE(X;)’) +XF(X7Z) +XG()’:Z) € {173}}'
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Choose E, F, G € B, to be quasi-random.

We define

H= {(Xayaz) | XE(X;)’) +XF(X7Z) +XG()’:Z) € {173}}'

This hypergraph is “random” relative to any box:

1
u(Hﬂ(AxBxC))ziu(AxBxC).
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Certainly B3 contains sets not in By x B x By, or even in By x Bj.

But these do not exhaust the ways lower-order sets could define
sets of triples. We need to consider cylinder intersections: sets of
the form

{(x,y,2) | (x,y) € Aand (x,z) € B and (y,z) € C}

where A, B, C € Bs.



d Probability Spaces VC Dimension Hypergraphs

[e]e] le]

Certainly B3 contains sets not in By x B x By, or even in By x Bj.

But these do not exhaust the ways lower-order sets could define
sets of triples. We need to consider cylinder intersections: sets of
the form

{(x,y,2) | (x,y) € Aand (x,z) € B and (y,z) € C}
where A, B, C € Bs.

These sets generate a o-algebra B3 >. We still have Bz 2 B3 ».
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The appropriate decomposition is to take a hypergraph xg and
write it in the form

XE(X7)/7Z) ~ f(Xv.y) + Z ’YiXA,'(Xuy)XB,'(XaZ)XC,‘(.y7Z)
i<dp

+ Z (SIXDI XF, ) (Z)

I<d1

where A;, B;, C; are quasi-random (possibly directed) graphs.
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The appropriate decomposition is to take a hypergraph xg and
write it in the form

XE(X7)/7Z) ~ f(Xv.y) + Z ’YiXA,'(Xuy)XB,'(XaZ)XC,‘(.y7Z)
i<dp

+ Z 5IXDI XF, ) (Z)

i<di

where A;, B;, C; are quasi-random (possibly directed) graphs.

This does correspond in a precise way to hypergraph regularity for
3-graphs, but the correspondence is a bit more complicated
because the interactions of different bounds are more complicated.
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Definition
A 3-graph H C V3 has 2-VC dimension > d if there is a rectangle

Vi, ¥d €V, z1,...,2g €V

such that, for every S C {y1,...,vq} X {z1,..., 24}, there is some
x € V so that

He N ({y1, .- ya} x{z1,...,24}) = S.
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Recall the hypergraph where E, F, G C V? are each quasi-random,
and H consists of those (x, y, z) so that an odd number of the
pairs (x,y), (x,z), (v, z) belong to the respective graphs.

We claim H has 2-VC dimension < 65.
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Recall the hypergraph where E, F, G C V? are each quasi-random,
and H consists of those (x, y, z) so that an odd number of the
pairs (x,y), (x,z), (v, z) belong to the respective graphs.

We claim H has 2-VC dimension < 65. Consider any
{nm,...,¥} CVand {z,...,265} C V. By Ramsey's Theorem
(and possibly reordering the elements), without loss of generality
we may assume either {y1, y2,y3} X {z1,22,23} C G or

W, y2,y3} x{z1, 22,3} N G = 0.
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Recall the hypergraph where E, F, G C V? are each quasi-random,
and H consists of those (x, y, z) so that an odd number of the
pairs (x,y), (x,z), (v, z) belong to the respective graphs.

We claim H has 2-VC dimension < 65. Consider any
{nm,...,¥} CVand {z,...,265} C V. By Ramsey's Theorem
(and possibly reordering the elements), without loss of generality
we may assume either {y1, y2,y3} X {z1,22,23} C G or

W, y2,y3} x{z1, 22,3} N G = 0.

Then no x can have

He 0 ({y1, 2, y3} x {z1, 22, z3}) = {(y1, 21); (y2, 22), (v3, z3) } :

this would imply that no two of xg(x, y1), xe(x, y2), and xg(x, y3)
can be equal, which is impossible.
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Theorem (Chernikov-Palacin-Takeuchi)

If H has VC dimension < d then whenever {yi,...,ym} C V and

{zi,...,zm} C V, there is an €(d) > 0 so that there are at most
2m* =@ sets S C {1, va} x{z1,...,2z4} such that there is an
X with

Hen({y1, .-, ya} x{z1,...,24}) = 5.
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Theorem (Chernikov-Palacin-Takeuchi)

If H has VC dimension < d then whenever {yi,...,ym} C V and

{zi,...,zm} C V, there is an €(d) > 0 so that there are at most
2m* =@ sets S C {1, va} x{z1,...,2z4} such that there is an
X with

Hen({y1, .-, ya} x{z1,...,24}) = 5.

The bound 2™ is not as strong as original conjectured, but CPT
show it is close to optimal.
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The key theorem about VC dimension was:

Theorem (The VC Theorem)

Suppose E C V/? has finite VC dimension and let € > 0. Then
there exists a set {y1,...,ym} (with m depending only on the VC
dimension and €) such that for every single x € X, either:

o u(Ex) <e or
o B V1, s ym} #0.

We don’t even know what the right definition of an e-net would be
for 2-VC dimension.
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Suppose E C V/? has finite VC dimension and let € > 0. Then
there exist x1, ..., x, such that, for every x € V, there is some x;
with u(Ex A Ey;) < e.
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Suppose E C V/? has finite VC dimension and let € > 0. Then
there exist x1, ..., x, such that, for every x € V, there is some x;
with u(Ex A Ey;) < e.

Theorem (Chernikov-T.)

Suppose H C V3 has finite 2-VIC dimension and let ¢ > 0. Then
there exist x1, . . ., xp such that, for every x € V, there is a partition

V2 = U Bj X Ck
Jjsm,k<m

and, for each pair (j, k), a Boolean combination EU¥) of the E,.,
such that

WE | EUYRN(B x C)) <e.

j<mk<m
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Theorem (Regularity for VC dimension)
If E C V2 has finite VVC dimension then:
e E belongs to By x By,

@ the number of rectangles needed to approximated E to within
€ is bounded by a polynomial in 1/e.

Theorem (Chernikov-T.)

If HC V3 has finite 2-VIC dimension then H belongs to Bs3.
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Theorem (Chernikov-T.)

Suppose H C V3 has finite 2-VIC dimension and let ¢ > 0. Then
there exist x1, . . ., Xp such that, for every x € V, there is a partition

V2= |J BixGk

Jj<m,k<m

and, for each pair (j, k), a Boolean combination EUX) of the E,.,
such that

w(ExA | EUMN(B x Q) <e

Jj<mk<m

Theorem (Chernikov-T.)

If HC V3 has finite 2-V/C dimension then H belongs to B3 5.
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Theorem (Chernikov-T.)

Suppose H C V3 has finite 2-VIC dimension and let ¢ > 0. Then
there exist x1, . . ., Xp such that, for every x € V, there is a partition

V2= |J BixGk

Jj<m,k<m

and, for each pair (j, k), a Boolean combination EUX) of the E,.,
such that

w(ExA | EUMN(B x Q) <e

Jj<mk<m

Theorem (Chernikov-T.)

If HC V3 has finite 2-V/C dimension then H belongs to B3 5.

The end.
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