Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
	0000000	0000	0000000

Generalizing VC dimension to higher arity

Henry Towsner

University of Pennsylvania

July 2018

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	000000	0000	0000000

Suppose G = (V, E) is a finite graph, so V is a finite set and $E \subseteq [V]^2$ is a set of pairs.

It is natural to put the *counting measure* on subsets of V^k :

• when
$$X \subseteq V^k$$
, $\mu^k(Y) = \frac{|X|}{|V|^k}$

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	000000	0000	0000000

Suppose G = (V, E) is a finite graph, so V is a finite set and $E \subseteq [V]^2$ is a set of pairs.

It is natural to put the *counting measure* on subsets of V^k :

• when
$$X\subseteq V^k$$
, $\mu^k(Y)=rac{|X|}{|V|^k}$

Various results in extremal combinatorics (Szemerédi regularity, graph removal, etc) can be viewed as probabilistic theorems in this setting. For example:

Theorem (Triangle Removal)

For every $\epsilon > 0$ there is a $\delta > 0$ such that either:

- the set of triangles has measure $> \delta$, or
- there is a set $R \subseteq E$ of edges with measure $< \epsilon$ such that $(V, E \setminus R)$ has no triangles.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
0●000	000000	0000	0000000

Suppose that, for each *i*, $G_i = (V_i, E_i)$ is a graph with $|V_i|$ finite and $\lim_{i\to\infty} |V_i| = \infty$.

The ultraproduct

$$(V, E) = \prod_{\mathcal{U}} (V_i, E_i)$$

is a graph on an uncountable set V.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
○●○○○		0000	0000000

Suppose that, for each *i*, $G_i = (V_i, E_i)$ is a graph with $|V_i|$ finite and $\lim_{i\to\infty} |V_i| = \infty$.

The ultraproduct

$$(V, E) = \prod_{\mathcal{U}} (V_i, E_i)$$

is a graph on an uncountable set V.

We can hope to lift the counting measure on the V_i^k to a measure on V:

• when $X_i \subseteq V_i^k$ for all *i*, there is an internal set $X = \prod_{\mathcal{U}} X_i$, and we can define

$$\mu^k(X) = \lim_{\mathcal{U}} \frac{|X_i|}{|V_i|^k}.$$

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
○●○○○	000000	0000	0000000

Suppose that, for each *i*, $G_i = (V_i, E_i)$ is a graph with $|V_i|$ finite and $\lim_{i\to\infty} |V_i| = \infty$.

The ultraproduct

$$(V, E) = \prod_{\mathcal{U}} (V_i, E_i)$$

is a graph on an uncountable set V.

We can hope to lift the counting measure on the V_i^k to a measure on V:

• when $X_i \subseteq V_i^k$ for all *i*, there is an internal set $X = \prod_{\mathcal{U}} X_i$, and we can define

$$\mu^k(X) = \lim_{\mathcal{U}} \frac{|X_i|}{|V_i|^k}.$$

 we can let B_k be the σ-algebra generated by the internal subsets of V^k.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00●00		0000	0000000

To summarize:

- we have a graph (V, E) with uncountably many vertices,
- for each k, we have a measure space $(V^k, \mathcal{B}_k, \mu^k)$,
- for internal sets (like *E*, or the set of triangles), the measure in μ^k is the limit of the corresponding measures μ^k_i.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00●00		0000	0000000

To summarize:

- we have a graph (V, E) with uncountably many vertices,
- for each k, we have a measure space $(V^k, \mathcal{B}_k, \mu^k)$,
- for internal sets (like *E*, or the set of triangles), the measure in μ^k is the limit of the corresponding measures μ_i^k .

For example, one way to prove triangle removal is to prove:

TheoremIf (V, E) is an ultraproduct of graphs, either:• the set of triangles has positive measure, or• for every $\epsilon > 0$, there is an internal set $R \subseteq E$ with measure< ϵ such that $(V, E \setminus R)$ has no triangles.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	000000	0000	0000000

But the measurable sets of k-tuples are *not* the product of the sets of singletons:

Theorem

There is a set $A \in \mathcal{B}_2$ which is not in the σ -algebra generated by $\mathcal{B}_1 \times \mathcal{B}_1$.

Recall that $\mathcal{B} \times \mathcal{B}$ is the σ -algebra generated (under complements and countable unions and intersections) by rectangles $B \times C$.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	000000	0000	0000000

That means sets in $\mathcal{B}_1 \times \mathcal{B}_1$ are approximated by rectangles:

Theorem

If $A \in \mathcal{B}_1 \times \mathcal{B}_1$ then, for every $\epsilon > 0$, there exist $B_i, C_i \in \mathcal{B}_1$ so that

$$\mu(A \bigtriangleup (\bigcup_{i \le k} B_i \times C_i)) < \epsilon.$$

 Graded Probability Spaces
 VC Dimension
 Hypergraphs
 2-VC Graphs

 0000●
 000000
 0000
 000000

That means sets in $\mathcal{B}_1 \times \mathcal{B}_1$ are approximated by rectangles:

Theorem

If $A \in \mathcal{B}_1 \times \mathcal{B}_1$ then, for every $\epsilon > 0$, there exist $B_i, C_i \in \mathcal{B}_1$ so that

$$\mu(A \bigtriangleup (\bigcup_{i \leq k} B_i \times C_i)) < \epsilon.$$

On the other hand, the sets in $\mathcal{B}_2 \setminus (\mathcal{B}_1 \times \mathcal{B}_1)$ cannot be approximated in this way.

In fact, any set has a decomposition

$$\chi_A \approx f(x, y) + \sum_{i \leq d} \gamma_i \chi_{B_i}(x) \chi_{C_i}(y)$$

where *f* is *quasi-random*.

 Graded Probability Spaces
 VC Dimension
 Hypergraphs
 2-VC Graphs

 0000●
 000000
 0000
 000000

That means sets in $\mathcal{B}_1 \times \mathcal{B}_1$ are approximated by rectangles:

Theorem

If $A \in \mathcal{B}_1 \times \mathcal{B}_1$ then, for every $\epsilon > 0$, there exist $B_i, C_i \in \mathcal{B}_1$ so that

$$\mu(A \bigtriangleup (\bigcup_{i \leq k} B_i \times C_i)) < \epsilon.$$

On the other hand, the sets in $\mathcal{B}_2 \setminus (\mathcal{B}_1 \times \mathcal{B}_1)$ cannot be approximated in this way.

In fact, any set has a decomposition

$$\chi_A \approx f(x, y) + \sum_{i \leq d} \gamma_i \chi_{B_i}(x) \chi_{C_i}(y)$$

where f is quasi-random.

This phenomenon is familiar in finite combinatorics: the product $\mathcal{B}_1 \times \mathcal{B}_1$ corresponds to the partition given by Szemerédi regularity.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
	●000000	0000	0000000

Definition

A graph $E \subseteq V^2$ has VC dimension $\geq d$ if there exist elements

 $y_1,\ldots,y_d\in V$

such that, for every $S \subseteq \{y_1, \ldots, y_d\}$, there is some $x \in V$ so that

 $E_x \cap \{y_1,\ldots,y_d\} = S.$

So the slices E_x are able to pick out every subset of the set $\{y_1, \ldots, y_d\}$.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	000000	0000	0000000

Consider the graph $E \subseteq [0,1] \times [0,1]$ where $(i,j) \in E$ iff i < j.

This has VC dimension 2: given any $y_1, y_2 \in [0, 1]$, without loss of generality $y_1 < y_2$. Then, no matter what x is,

 $E_x \cap \{y_1, y_2\}$ is one of $\emptyset, \{y_2\}, \{y_1, y_2\}.$

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
	00●0000	0000	0000000

If E_i is a random graph on V_i and $(V, E) = \prod_{\mathcal{U}} (V_i, E_i)$ then the VC dimension of E is infinite.

Given any $\{y_1, \ldots, y_d\} \subseteq V$ and any $S \subseteq \{y_1, \ldots, y_d\}$, the probability that $E_x \cap \{y_1, \ldots, y_d\} \neq S$ is $1 - 2^{-d}$, so if we have *n* choices of *x*, by the union bound, the probability the VC dimension is $\leq d$ is bounded by

$$2^d(1-2^{-d})^n$$

which approaches 0 as *n* approaches ∞ .

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
	000000		

Standard facts about VC dimension:

Theorem

• VC dimension is symmetric up to some loss of constants: if $E \subseteq X \times Y$ has VC dimension $\leq d$ then the flipped graph $E' \subseteq Y \times X$ has VC dimension $\leq 2^{d+1} - 1$.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	0000000	0000	0000000

Standard facts about VC dimension:

Theorem

- VC dimension is symmetric up to some loss of constants: if $E \subseteq X \times Y$ has VC dimension $\leq d$ then the flipped graph $E' \subseteq Y \times X$ has VC dimension $\leq 2^{d+1} 1$.
- Sauer-Shelah: If E has VC dimension < d then whenever $\{y_1, \ldots, y_m\} \in Y$, there are at most $\sum_{i=0}^{d-1} \binom{m}{i}$ sets $S \subseteq \{y_1, \ldots, y_m\}$ such that there is an x with

$$E_{x} \cap \{y_1,\ldots,y_m\} = S.$$

Standard facts about VC dimension:

Theorem

- VC dimension is symmetric up to some loss of constants: if $E \subseteq X \times Y$ has VC dimension $\leq d$ then the flipped graph $E' \subseteq Y \times X$ has VC dimension $\leq 2^{d+1} 1$.
- Sauer-Shelah: If E has VC dimension < d then whenever $\{y_1, \ldots, y_m\} \in Y$, there are at most $\sum_{i=0}^{d-1} \binom{m}{i}$ sets $S \subseteq \{y_1, \ldots, y_m\}$ such that there is an x with

$$E_{x} \cap \{y_1,\ldots,y_m\} = S.$$

The quantity in Sauer-Shelah is a polynomial, so Sauer-Shelah says:

The number of subsets of $\{y_1, \ldots, y_m\}$ is either bounded by a polynomial or (for some sets $\{y_1, \ldots, y_m\}$) contains every subset (and therefore grows exponentially).

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	0000000	0000	0000000

Theorem (The VC Theorem)

Suppose $E \subseteq X \times Y$ has finite VC dimension and let $\epsilon > 0$. Then there exists a set $\{y_1, \ldots, y_m\}$ (with m depending only on the VC dimension and ϵ) such that for every single $x \in X$, either:

•
$$\mu(E_x) < \epsilon$$
, or

•
$$|E_x \cap \{y_1,\ldots,y_m\}| \neq \emptyset.$$

The set $\{y_1, \ldots, y_m\}$ is called an ϵ -net.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	0000000	0000	0000000

Theorem (The VC Theorem)

Suppose $E \subseteq X \times Y$ has finite VC dimension and let $\epsilon > 0$. Then there exists a set $\{y_1, \ldots, y_m\}$ (with m depending only on the VC dimension and ϵ) such that for every single $x \in X$, either:

•
$$\mu(E_x) < \epsilon$$
, or

•
$$|E_x \cap \{y_1,\ldots,y_m\}| \neq \emptyset.$$

The set $\{y_1, \ldots, y_m\}$ is called an ϵ -net.

• Almost every set $\{y_1, \ldots, y_m\}$ has this property.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	0000000	0000	0000000

Theorem (The VC Theorem)

Suppose $E \subseteq X \times Y$ has finite VC dimension and let $\epsilon > 0$. Then there exists a set $\{y_1, \ldots, y_m\}$ (with m depending only on the VC dimension and ϵ) such that for every single $x \in X$, either:

•
$$\mu(E_x) < \epsilon$$
, or

•
$$|E_x \cap \{y_1,\ldots,y_m\}| \neq \emptyset.$$

The set $\{y_1, \ldots, y_m\}$ is called an ϵ -net.

- Almost every set $\{y_1, \ldots, y_m\}$ has this property.
- By choosing $\{y_1, \ldots, y_m\}$ slightly larger, we can ensure

$$\frac{|E_x \cap \{y_1,\ldots,y_m\}|}{m} \approx \mu(E_x).$$

This is called an ϵ -approximation.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	0000000	0000	0000000

Corollary

Suppose $E \subseteq X \times Y$ has finite VC and let $\epsilon > 0$. Then there exists $\{y_1, \ldots, y_m\} \subseteq Y$ so that for any $x, x' \in X$, either:

- $\mu(E_x \bigtriangleup E_{x'}) < \epsilon$, or
- $E_x \cap \{y_1, \ldots, y_m\} \neq E_{x'} \cap \{y_1, \ldots, y_m\}.$

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	0000000	0000	0000000

Corollary

Suppose $E \subseteq X \times Y$ has finite VC and let $\epsilon > 0$. Then there exists $\{y_1, \ldots, y_m\} \subseteq Y$ so that for any $x, x' \in X$, either:

- $\mu(E_x \bigtriangleup E_{x'}) < \epsilon$, or
- $E_x \cap \{y_1,\ldots,y_m\} \neq E_{x'} \cap \{y_1,\ldots,y_m\}.$

Corollary

Suppose $E \subseteq X \times Y$ has finite VC dimension and let $\epsilon > 0$. Then there exist x_1, \ldots, x_k such that, for every $x \in X$, there is some x_i with $\mu(E_x \bigtriangleup E_{x_i}) < \epsilon$.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
	000000●	0000	0000000

Corollary (Regularity for VC dimension)

- If $E \subseteq V^2$ has finite VC dimension then:
 - E belongs to $\mathcal{B}_1 \times \mathcal{B}_1$,
 - the number of rectangles needed to approximated E to within ϵ is bounded by a polynomial in $1/\epsilon$.

Corollary (Regularity for VC dimension)

If $E \subseteq V^2$ has finite VC dimension then:

- E belongs to $\mathcal{B}_1 \times \mathcal{B}_1$,
- the number of rectangles needed to approximated E to within ϵ is bounded by a polynomial in $1/\epsilon$.

Sketch.

Choose x_1, \ldots, x_k so that, for every $x \in X$, there is some x_i with $\mu(E_x \bigtriangleup E_{x_i}) < \epsilon |X|$. Take $X_i = \{x \mid |E_x \bigtriangleup E_{x_i}| < \epsilon\}$.

For each $S \subseteq \{x_1, \ldots, x_k\}$, take $Y_S = \{y \mid (x_i, y) \in E \text{ iff } x_i \in S\}$.

Then

$$f = \sum_{i,S} \frac{\mu(E \cap (X_i \times Y_S))}{\mu(X_i \times Y_S)} \chi_{X_i} \chi_{Y_S}$$

suffices.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
		0000	

The same ideas apply to 3-graphs (that is, hypergraphs whose edges are triples):

 when each (V_i, H_i) is a 3-graph with |V_i| finite and lim_{i→∞} |V_i| = ∞, the ultraproduct (V, H) is a k-graph on an uncountable set,

Graded Probability Spaces	VC Dimension	Hypergraphs ●000	2-VC Graphs 0000000

The same ideas apply to 3-graphs (that is, hypergraphs whose edges are triples):

 when each (V_i, H_i) is a 3-graph with |V_i| finite and lim_{i→∞} |V_i| = ∞, the ultraproduct (V, H) is a k-graph on an uncountable set,

• when
$$X_i \subseteq V_i^k$$
 for all i , there is a set $X = \prod_{\mathcal{U}} X_i$ with $\mu^k(X) = \lim_{\mathcal{U}} \frac{|X_i|}{|V_i|^k}$,

Graded Probability Spaces	VC Dimension	Hypergraphs ●000	2-VC Graphs 0000000

The same ideas apply to 3-graphs (that is, hypergraphs whose edges are triples):

 when each (V_i, H_i) is a 3-graph with |V_i| finite and lim_{i→∞} |V_i| = ∞, the ultraproduct (V, H) is a k-graph on an uncountable set,

• when
$$X_i \subseteq V_i^k$$
 for all i , there is a set $X = \prod_{\mathcal{U}} X_i$ with $\mu^k(X) = \lim_{\mathcal{U}} \frac{|X_i|}{|V_i|^k}$,

• for each k, we have a measure space $(V^k, \mathcal{B}_k, \mu^k)$.

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
00000	000000	0000	0000000

Choose $E, F, G \in \mathcal{B}_2$ to be quasi-random.

We define

$$H = \{(x, y, z) \mid \chi_E(x, y) + \chi_F(x, z) + \chi_G(y, z) \in \{1, 3\}\}.$$

Graded Probability Spaces	VC Dimension	Hypergraphs ○●○○	2-VC Graphs 0000000

Choose $E, F, G \in \mathcal{B}_2$ to be quasi-random.

We define

$$H = \{(x, y, z) \mid \chi_{E}(x, y) + \chi_{F}(x, z) + \chi_{G}(y, z) \in \{1, 3\}\}.$$

This hypergraph is "random" relative to any box:

$$\mu(H \cap (A \times B \times C)) \approx \frac{1}{2}\mu(A \times B \times C).$$

Graded Probability Spaces	VC Dimension	Hypergraphs 00●0	2-VC Graphs 0000000

Certainly \mathcal{B}_3 contains sets not in $\mathcal{B}_1 \times \mathcal{B}_1 \times \mathcal{B}_1$, or even in $\mathcal{B}_2 \times \mathcal{B}_1$.

But these do not exhaust the ways lower-order sets could define sets of triples. We need to consider *cylinder intersections*: sets of the form

 $\{(x, y, z) \mid (x, y) \in A \text{ and } (x, z) \in B \text{ and } (y, z) \in C\}$ where $A, B, C \in \mathcal{B}_2$.

Graded Probability Spaces	VC Dimension	Hypergraphs 00●0	2-VC Graphs 0000000

Certainly \mathcal{B}_3 contains sets not in $\mathcal{B}_1 \times \mathcal{B}_1 \times \mathcal{B}_1$, or even in $\mathcal{B}_2 \times \mathcal{B}_1$.

But these do not exhaust the ways lower-order sets could define sets of triples. We need to consider *cylinder intersections*: sets of the form

$$\{(x, y, z) \mid (x, y) \in A \text{ and } (x, z) \in B \text{ and } (y, z) \in C\}$$

where $A, B, C \in \mathcal{B}_2$.

These sets generate a σ -algebra $\mathcal{B}_{3,2}$. We still have $\mathcal{B}_3 \supseteq \mathcal{B}_{3,2}$.

Graded Probability Spaces	VC Dimension	Hypergraphs 000●	2-VC Graphs 0000000

The appropriate decomposition is to take a hypergraph χ_{E} and write it in the form

$$\chi_{E}(x, y, z) \approx f(x, y) + \sum_{i \leq d_{2}} \gamma_{i} \chi_{A_{i}}(x, y) \chi_{B_{i}}(x, z) \chi_{C_{i}}(y, z)$$
$$+ \sum_{i \leq d_{1}} \delta_{i} \chi_{D_{i}i}(x) \chi_{F_{i}}(y) \chi_{G_{i}}(z)$$

where A_i, B_i, C_i are quasi-random (possibly directed) graphs.

Graded Probability Spaces	VC Dimension	Hypergraphs ○○○●	2-VC Graphs 0000000

The appropriate decomposition is to take a hypergraph $\chi_{\rm E}$ and write it in the form

$$\begin{split} \chi_E(x, y, z) &\approx f(x, y) + \sum_{i \leq d_2} \gamma_i \chi_{A_i}(x, y) \chi_{B_i}(x, z) \chi_{C_i}(y, z) \\ &+ \sum_{i \leq d_1} \delta_i \chi_{D_i i}(x) \chi_{F_i}(y) \chi_{G_i}(z) \end{split}$$

where A_i, B_i, C_i are quasi-random (possibly directed) graphs.

This does correspond in a precise way to hypergraph regularity for 3-graphs, but the correspondence is a bit more complicated because the interactions of different bounds are more complicated.

Graded Probability Spaces	VC Dimension	Hypergraphs 0000	2-VC Graphs ●000000

Definition

A 3-graph $H \subseteq V^3$ has 2-VC dimension $\geq d$ if there is a rectangle

$$y_1,\ldots,y_d\in V,\ z_1,\ldots,z_d\in V$$

such that, for every $S \subseteq \{y_1, \ldots, y_d\} \times \{z_1, \ldots, z_d\}$, there is some $x \in V$ so that

$$H_{x} \cap (\{y_1,\ldots,y_d\} \times \{z_1,\ldots,z_d\}) = S.$$

Graded Probability Spaces	VC Dimension	Hypergraphs 0000	2-VC Graphs ⊙●○○○○○

Recall the hypergraph where $E, F, G \subseteq V^2$ are each quasi-random, and H consists of those (x, y, z) so that an odd number of the pairs (x, y), (x, z), (y, z) belong to the respective graphs.

We claim *H* has 2-VC dimension \leq 65.

Recall the hypergraph where $E, F, G \subseteq V^2$ are each quasi-random, and H consists of those (x, y, z) so that an odd number of the pairs (x, y), (x, z), (y, z) belong to the respective graphs.

We claim *H* has 2-VC dimension ≤ 65 . Consider any $\{y_1, \ldots, y_5\} \subseteq V$ and $\{z_1, \ldots, z_{65}\} \subseteq V$. By Ramsey's Theorem (and possibly reordering the elements), without loss of generality we may assume either $\{y_1, y_2, y_3\} \times \{z_1, z_2, z_3\} \subseteq G$ or $\{y_1, y_2, y_3\} \times \{z_1, z_2, z_3\} \cap G = \emptyset$.

Recall the hypergraph where $E, F, G \subseteq V^2$ are each quasi-random, and H consists of those (x, y, z) so that an odd number of the pairs (x, y), (x, z), (y, z) belong to the respective graphs.

We claim *H* has 2-VC dimension ≤ 65 . Consider any $\{y_1, \ldots, y_5\} \subseteq V$ and $\{z_1, \ldots, z_{65}\} \subseteq V$. By Ramsey's Theorem (and possibly reordering the elements), without loss of generality we may assume either $\{y_1, y_2, y_3\} \times \{z_1, z_2, z_3\} \subseteq G$ or $\{y_1, y_2, y_3\} \times \{z_1, z_2, z_3\} \cap G = \emptyset$.

Then no x can have

$$H_{x} \cap (\{y_{1}, y_{2}, y_{3}\} \times \{z_{1}, z_{2}, z_{3}\}) = \{(y_{1}, z_{1}), (y_{2}, z_{2}), (y_{3}, z_{3})\}:$$

this would imply that no two of $\chi_E(x, y_1), \chi_E(x, y_2)$, and $\chi_E(x, y_3)$ can be equal, which is impossible.

Graded Probability Spaces	VC Dimension	Hypergraphs 0000	2-VC Graphs 00●0000

Theorem (Chernikov-Palacin-Takeuchi)

If H has VC dimension < d then whenever $\{y_1, \ldots, y_m\} \subseteq V$ and $\{z_1, \ldots, z_m\} \subseteq V$, there is an $\epsilon(d) > 0$ so that there are at most $2^{m^{2-\epsilon(d)}}$ sets $S \subseteq \{y_1, \ldots, y_d\} \times \{z_1, \ldots, z_d\}$ such that there is an κ with

$$H_{x} \cap (\{y_1,\ldots,y_d\} \times \{z_1,\ldots,z_d\}) = S.$$

Graded Probability Spaces	VC Dimension	Hypergraphs 0000	2-VC Graphs 00●0000

Theorem (Chernikov-Palacin-Takeuchi)

If H has VC dimension < d then whenever $\{y_1, \ldots, y_m\} \subseteq V$ and $\{z_1, \ldots, z_m\} \subseteq V$, there is an $\epsilon(d) > 0$ so that there are at most $2^{m^{2-\epsilon(d)}}$ sets $S \subseteq \{y_1, \ldots, y_d\} \times \{z_1, \ldots, z_d\}$ such that there is an x with

$$H_x \cap (\{y_1,\ldots,y_d\} \times \{z_1,\ldots,z_d\}) = S.$$

The bound $2^{m^{2-\epsilon}}$ is not as strong as original conjectured, but CPT show it is close to optimal.

Graded Probability Spaces	VC Dimension	Hypergraphs 0000	2-VC Graphs 000●000

The key theorem about VC dimension was:

Theorem (The VC Theorem)

Suppose $E \subseteq V^2$ has finite VC dimension and let $\epsilon > 0$. Then there exists a set $\{y_1, \ldots, y_m\}$ (with m depending only on the VC dimension and ϵ) such that for every single $x \in X$, either:

•
$$\mu(E_x) < \epsilon$$
, or

•
$$|E_x \cap \{y_1,\ldots,y_m\}| \neq \emptyset.$$

We don't even know what the right definition of an ϵ -net would be for 2-VC dimension.

Graded Probability Spaces	VC Dimension	Hypergraphs 0000	2-VC Graphs 0000●00
Theorem			
	² has finite VC diment. ., x_n such that, for ev.) < ϵ .		

Grad 000	ded Probability Spaces	VC Dimension	Hypergraphs 0000	2-VC Grap 0000●00	
	Theorem				
Suppose $E \subseteq V^2$ has finite VC dimension and let $\epsilon > 0$. T		Then			
	there exist x_1, \ldots, x_n such that, for every $x \in V$, there is some x_i				

phs

with $\mu(E_x \bigtriangleup E_{x_i}) < \epsilon$.

Theorem (Chernikov-T.)

Suppose $H \subseteq V^3$ has finite 2-VC dimension and let $\epsilon > 0$. Then there exist x_1, \ldots, x_n such that, for every $x \in V$, there is a partition

$$V^2 = \bigcup_{j \le m, k \le m} B_j \times C_k$$

and, for each pair (j, k), a Boolean combination $E^{(j,k)}$ of the E_{x_i} , such that

$$|\mu(E_x \bigtriangleup \bigcup_{j \le m, k \le m} E^{(j,k)} \cap (B_j \times C_k)) < \epsilon.$$

Graded Probability Spaces	VC Dimension	Hypergraphs	2-VC Graphs
	0000000	0000	0000000

Theorem (Regularity for VC dimension)

- If $E \subseteq V^2$ has finite VC dimension then:
 - E belongs to $\mathcal{B}_1 \times \mathcal{B}_1$,
 - the number of rectangles needed to approximated E to within ϵ is bounded by a polynomial in $1/\epsilon$.

Theorem (Chernikov-T.)

If $H \subseteq V^3$ has finite 2-VC dimension then H belongs to $\mathcal{B}_{3,2}$.

Theorem (Chernikov-T.)

Suppose $H \subseteq V^3$ has finite 2-VC dimension and let $\epsilon > 0$. Then there exist x_1, \ldots, x_n such that, for every $x \in V$, there is a partition

VC Dimension

$$V^2 = \bigcup_{j \le m, k \le m} B_j \times C_k$$

and, for each pair (j, k), a Boolean combination $E^{(j,k)}$ of the E_{x_i} , such that

$$|\mu(E_x \bigtriangleup \bigcup_{j \le m, k \le m} E^{(j,k)} \cap (B_j \times C_k)) < \epsilon.$$

Theorem (Chernikov-T.)

If $H \subseteq V^3$ has finite 2-VC dimension then H belongs to $\mathcal{B}_{3,2}$.

Suppose $H \subseteq V^3$ has finite 2-VC dimension and let $\epsilon > 0$. Then there exist x_1, \ldots, x_n such that, for every $x \in V$, there is a partition

2-VC Graphs

VC Dimension

 $V^2 = \bigcup_{j \le m, k \le m} B_j \times C_k$

and, for each pair (j, k), a Boolean combination $E^{(j,k)}$ of the E_{x_i} , such that

$$|\mu(E_x \bigtriangleup \bigcup_{j \le m, k \le m} E^{(j,k)} \cap (B_j \times C_k)) < \epsilon.$$

Theorem (Chernikov-T.)

If $H \subseteq V^3$ has finite 2-VC dimension then H belongs to $\mathcal{B}_{3,2}$.

The end.