Generalizing VC dimension to higher arity

Henry Towsner

July 2018

Suppose $G=(V, E)$ is a finite graph, so V is a finite set and $E \subseteq[V]^{2}$ is a set of pairs.

It is natural to put the counting measure on subsets of V^{k} :

- when $X \subseteq V^{k}, \mu^{k}(Y)=\frac{|X|}{|V|^{k}}$

Suppose $G=(V, E)$ is a finite graph, so V is a finite set and $E \subseteq[V]^{2}$ is a set of pairs.

It is natural to put the counting measure on subsets of V^{k} :

- when $X \subseteq V^{k}, \mu^{k}(Y)=\frac{|X|}{|V|^{k}}$

Various results in extremal combinatorics (Szemerédi regularity, graph removal, etc) can be viewed as probabilistic theorems in this setting. For example:

Theorem (Triangle Removal)

For every $\epsilon>0$ there is a $\delta>0$ such that either:

- the set of triangles has measure $>\delta$, or
- there is a set $R \subseteq E$ of edges with measure $<\epsilon$ such that ($V, E \backslash R$) has no triangles.

Suppose that, for each $i, G_{i}=\left(V_{i}, E_{i}\right)$ is a graph with $\left|V_{i}\right|$ finite and $\lim _{i \rightarrow \infty}\left|V_{i}\right|=\infty$.

The ultraproduct

$$
(V, E)=\prod_{\mathcal{U}}\left(V_{i}, E_{i}\right)
$$

is a graph on an uncountable set V.

Suppose that, for each $i, G_{i}=\left(V_{i}, E_{i}\right)$ is a graph with $\left|V_{i}\right|$ finite and $\lim _{i \rightarrow \infty}\left|V_{i}\right|=\infty$.

The ultraproduct

$$
(V, E)=\prod_{\mathcal{U}}\left(V_{i}, E_{i}\right)
$$

is a graph on an uncountable set V.
We can hope to lift the counting measure on the V_{i}^{k} to a measure on V :

- when $X_{i} \subseteq V_{i}^{k}$ for all i, there is an internal set $X=\prod_{\mathcal{U}} X_{i}$, and we can define

$$
\mu^{k}(X)=\lim _{\mathcal{U}} \frac{\left|X_{i}\right|}{\left|V_{i}\right|^{k}}
$$

Suppose that, for each $i, G_{i}=\left(V_{i}, E_{i}\right)$ is a graph with $\left|V_{i}\right|$ finite and $\lim _{i \rightarrow \infty}\left|V_{i}\right|=\infty$.

The ultraproduct

$$
(V, E)=\prod_{\mathcal{U}}\left(V_{i}, E_{i}\right)
$$

is a graph on an uncountable set V.
We can hope to lift the counting measure on the V_{i}^{k} to a measure on V :

- when $X_{i} \subseteq V_{i}^{k}$ for all i, there is an internal set $X=\prod_{\mathcal{U}} X_{i}$, and we can define

$$
\mu^{k}(X)=\lim _{\mathcal{U}} \frac{\left|X_{i}\right|}{\left|V_{i}\right|^{k}}
$$

- we can let \mathcal{B}_{k} be the σ-algebra generated by the internal subsets of V^{k}.

To summarize:

- we have a graph (V, E) with uncountably many vertices,
- for each k, we have a measure space $\left(V^{k}, \mathcal{B}_{k}, \mu^{k}\right)$,
- for internal sets (like E, or the set of triangles), the measure in μ^{k} is the limit of the corresponding measures μ_{i}^{k}.

To summarize:

- we have a graph (V, E) with uncountably many vertices,
- for each k, we have a measure space $\left(V^{k}, \mathcal{B}_{k}, \mu^{k}\right)$,
- for internal sets (like E, or the set of triangles), the measure in μ^{k} is the limit of the corresponding measures μ_{i}^{k}.

For example, one way to prove triangle removal is to prove:

Theorem

If (V, E) is an ultraproduct of graphs, either:

- the set of triangles has positive measure, or
- for every $\epsilon>0$, there is an internal set $R \subseteq E$ with measure $<\epsilon$ such that $(V, E \backslash R)$ has no triangles.

But the measurable sets of k-tuples are not the product of the sets of singletons:

Theorem

There is a set $A \in \mathcal{B}_{2}$ which is not in the σ-algebra generated by $\mathcal{B}_{1} \times \mathcal{B}_{1}$.

Recall that $\mathcal{B} \times \mathcal{B}$ is the σ-algebra generated (under complements and countable unions and intersections) by rectangles $B \times C$.

That means sets in $\mathcal{B}_{1} \times \mathcal{B}_{1}$ are approximated by rectangles:

Theorem

If $A \in \mathcal{B}_{1} \times \mathcal{B}_{1}$ then, for every $\epsilon>0$, there exist $B_{i}, C_{i} \in \mathcal{B}_{1}$ so that

$$
\mu\left(A \triangle\left(\bigcup_{i \leq k} B_{i} \times C_{i}\right)\right)<\epsilon
$$

That means sets in $\mathcal{B}_{1} \times \mathcal{B}_{1}$ are approximated by rectangles:

Theorem

If $A \in \mathcal{B}_{1} \times \mathcal{B}_{1}$ then, for every $\epsilon>0$, there exist $B_{i}, C_{i} \in \mathcal{B}_{1}$ so that

$$
\mu\left(A \triangle\left(\bigcup_{i \leq k} B_{i} \times C_{i}\right)\right)<\epsilon
$$

On the other hand, the sets in $\mathcal{B}_{2} \backslash\left(\mathcal{B}_{1} \times \mathcal{B}_{1}\right)$ cannot be approximated in this way.

In fact, any set has a decomposition

$$
\chi_{A} \approx f(x, y)+\sum_{i \leq d} \gamma_{i} \chi_{B_{i}}(x) \chi_{c_{i}}(y)
$$

where f is quasi-random.

That means sets in $\mathcal{B}_{1} \times \mathcal{B}_{1}$ are approximated by rectangles:

Theorem

If $A \in \mathcal{B}_{1} \times \mathcal{B}_{1}$ then, for every $\epsilon>0$, there exist $B_{i}, C_{i} \in \mathcal{B}_{1}$ so that

$$
\mu\left(A \triangle\left(\bigcup_{i \leq k} B_{i} \times C_{i}\right)\right)<\epsilon
$$

On the other hand, the sets in $\mathcal{B}_{2} \backslash\left(\mathcal{B}_{1} \times \mathcal{B}_{1}\right)$ cannot be approximated in this way.

In fact, any set has a decomposition

$$
\chi_{A} \approx f(x, y)+\sum_{i \leq d} \gamma_{i} \chi_{B_{i}}(x) \chi_{c_{i}}(y)
$$

where f is quasi-random.
This phenomenon is familiar in finite combinatorics: the product $\mathcal{B}_{1} \times \mathcal{B}_{1}$ corresponds to the partition given by Szemerédi regularity.

Definition

A graph $E \subseteq V^{2}$ has $V C$ dimension $\geq d$ if there exist elements

$$
y_{1}, \ldots, y_{d} \in V
$$

such that, for every $S \subseteq\left\{y_{1}, \ldots, y_{d}\right\}$, there is some $x \in V$ so that

$$
E_{x} \cap\left\{y_{1}, \ldots, y_{d}\right\}=S
$$

So the slices E_{x} are able to pick out every subset of the set $\left\{y_{1}, \ldots, y_{d}\right\}$.

Example

Consider the graph $E \subseteq[0,1] \times[0,1]$ where $(i, j) \in E$ iff $i<j$.
This has VC dimension 2: given any $y_{1}, y_{2} \in[0,1]$, without loss of generality $y_{1}<y_{2}$. Then, no matter what x is,

$$
E_{x} \cap\left\{y_{1}, y_{2}\right\} \text { is one of } \emptyset,\left\{y_{2}\right\},\left\{y_{1}, y_{2}\right\} .
$$

Example

If E_{i} is a random graph on V_{i} and $(V, E)=\prod_{\mathcal{U}}\left(V_{i}, E_{i}\right)$ then the VC dimension of E is infinite.

Given any $\left\{y_{1}, \ldots, y_{d}\right\} \subseteq V$ and any $S \subseteq\left\{y_{1}, \ldots, y_{d}\right\}$, the probability that $E_{x} \cap\left\{y_{1}, \ldots, y_{d}\right\} \neq S$ is $1-2^{-d}$, so if we have n choices of x, by the union bound, the probability the VC dimension is $\leq d$ is bounded by

$$
2^{d}\left(1-2^{-d}\right)^{n}
$$

which approaches 0 as n approaches ∞.

Standard facts about VC dimension:

Theorem

- VC dimension is symmetric up to some loss of constants: if $E \subseteq X \times Y$ has $V C$ dimension $\leq d$ then the flipped graph $E^{\prime} \subseteq Y \times X$ has $V C$ dimension $\leq 2^{d+1}-1$.

Standard facts about VC dimension:

Theorem

- VC dimension is symmetric up to some loss of constants: if $E \subseteq X \times Y$ has $V C$ dimension $\leq d$ then the flipped graph $E^{\prime} \subseteq Y \times X$ has $V C$ dimension $\leq 2^{d+1}-1$.
- Sauer-Shelah: If E has $V C$ dimension $<d$ then whenever $\left\{y_{1}, \ldots, y_{m}\right\} \in Y$, there are at most $\sum_{i=0}^{d-1}\binom{m}{i}$ sets
$S \subseteq\left\{y_{1}, \ldots, y_{m}\right\}$ such that there is an x with

$$
E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\}=S
$$

Standard facts about VC dimension:

Theorem

- VC dimension is symmetric up to some loss of constants: if $E \subseteq X \times Y$ has $V C$ dimension $\leq d$ then the flipped graph $E^{\prime} \subseteq Y \times X$ has $V C$ dimension $\leq 2^{d+1}-1$.
- Sauer-Shelah: If E has $V C$ dimension $<d$ then whenever $\left\{y_{1}, \ldots, y_{m}\right\} \in Y$, there are at most $\sum_{i=0}^{d-1}\binom{m}{i}$ sets
$S \subseteq\left\{y_{1}, \ldots, y_{m}\right\}$ such that there is an x with

$$
E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\}=S
$$

The quantity in Sauer-Shelah is a polynomial, so Sauer-Shelah says:
The number of subsets of $\left\{y_{1}, \ldots, y_{m}\right\}$ is either bounded by a polynomial or (for some sets $\left\{y_{1}, \ldots, y_{m}\right\}$) contains every subset (and therefore grows exponentially).

Theorem (The VC Theorem)

Suppose $E \subseteq X \times Y$ has finite VC dimension and let $\epsilon>0$. Then there exists a set $\left\{y_{1}, \ldots, y_{m}\right\}$ (with m depending only on the VC dimension and ϵ) such that for every single $x \in X$, either:

- $\mu\left(E_{x}\right)<\epsilon$, or
- $\left|E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\}\right| \neq \emptyset$.

The set $\left\{y_{1}, \ldots, y_{m}\right\}$ is called an ϵ-net.

Theorem (The VC Theorem)

Suppose $E \subseteq X \times Y$ has finite VC dimension and let $\epsilon>0$. Then there exists a set $\left\{y_{1}, \ldots, y_{m}\right\}$ (with m depending only on the VC dimension and ϵ) such that for every single $x \in X$, either:

- $\mu\left(E_{x}\right)<\epsilon$, or
- $\left|E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\}\right| \neq \emptyset$.

The set $\left\{y_{1}, \ldots, y_{m}\right\}$ is called an ϵ-net.

- Almost every set $\left\{y_{1}, \ldots, y_{m}\right\}$ has this property.

Theorem (The VC Theorem)

Suppose $E \subseteq X \times Y$ has finite VC dimension and let $\epsilon>0$. Then there exists a set $\left\{y_{1}, \ldots, y_{m}\right\}$ (with m depending only on the VC dimension and ϵ) such that for every single $x \in X$, either:

- $\mu\left(E_{x}\right)<\epsilon$, or
- $\left|E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\}\right| \neq \emptyset$.

The set $\left\{y_{1}, \ldots, y_{m}\right\}$ is called an ϵ-net.

- Almost every set $\left\{y_{1}, \ldots, y_{m}\right\}$ has this property.
- By choosing $\left\{y_{1}, \ldots, y_{m}\right\}$ slightly larger, we can ensure

$$
\frac{\left|E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\}\right|}{m} \approx \mu\left(E_{x}\right)
$$

This is called an ϵ-approximation.

Corollary

Suppose $E \subseteq X \times Y$ has finite VC and let $\epsilon>0$. Then there exists $\left\{y_{1}, \ldots, y_{m}\right\} \subseteq Y$ so that for any $x, x^{\prime} \in X$, either:

- $\mu\left(E_{x} \triangle E_{x^{\prime}}\right)<\epsilon$, or
- $E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\} \neq E_{x^{\prime}} \cap\left\{y_{1}, \ldots, y_{m}\right\}$.

Corollary

Suppose $E \subseteq X \times Y$ has finite VC and let $\epsilon>0$. Then there exists $\left\{y_{1}, \ldots, y_{m}\right\} \subseteq Y$ so that for any $x, x^{\prime} \in X$, either:

- $\mu\left(E_{x} \triangle E_{x^{\prime}}\right)<\epsilon$, or
- $E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\} \neq E_{x^{\prime}} \cap\left\{y_{1}, \ldots, y_{m}\right\}$.

Corollary

Suppose $E \subseteq X \times Y$ has finite VC dimension and let $\epsilon>0$. Then there exist x_{1}, \ldots, x_{k} such that, for every $x \in X$, there is some x_{i} with $\mu\left(E_{x} \triangle E_{x_{i}}\right)<\epsilon$.

Corollary (Regularity for VC dimension)

If $E \subseteq V^{2}$ has finite VC dimension then:

- E belongs to $\mathcal{B}_{1} \times \mathcal{B}_{1}$,
- the number of rectangles needed to approximated E to within ϵ is bounded by a polynomial in $1 / \epsilon$.

Corollary (Regularity for VC dimension)

If $E \subseteq V^{2}$ has finite VC dimension then:

- E belongs to $\mathcal{B}_{1} \times \mathcal{B}_{1}$,
- the number of rectangles needed to approximated E to within ϵ is bounded by a polynomial in $1 / \epsilon$.

Sketch.

Choose x_{1}, \ldots, x_{k} so that, for every $x \in X$, there is some x_{i} with $\mu\left(E_{X} \triangle E_{x_{i}}\right)<\epsilon|X|$. Take $X_{i}=\left\{x| | E_{x} \triangle E_{x_{i}} \mid<\epsilon\right\}$.

For each $S \subseteq\left\{x_{1}, \ldots, x_{k}\right\}$, take $Y_{S}=\left\{y \mid\left(x_{i}, y\right) \in E\right.$ iff $\left.x_{i} \in S\right\}$.
Then

$$
f=\sum_{i, S} \frac{\mu\left(E \cap\left(X_{i} \times Y_{S}\right)\right)}{\mu\left(X_{i} \times Y_{S}\right)} \chi_{x_{i}} \chi_{Y_{S}}
$$

suffices.

The same ideas apply to 3-graphs (that is, hypergraphs whose edges are triples):

- when each $\left(V_{i}, H_{i}\right)$ is a 3-graph with $\left|V_{i}\right|$ finite and $\lim _{i \rightarrow \infty}\left|V_{i}\right|=\infty$, the ultraproduct (V, H) is a k-graph on an uncountable set,

The same ideas apply to 3-graphs (that is, hypergraphs whose edges are triples):

- when each $\left(V_{i}, H_{i}\right)$ is a 3-graph with $\left|V_{i}\right|$ finite and $\lim _{i \rightarrow \infty}\left|V_{i}\right|=\infty$, the ultraproduct (V, H) is a k-graph on an uncountable set,
- when $X_{i} \subseteq V_{i}^{k}$ for all i, there is a set $X=\prod_{\mathcal{U}} X_{i}$ with $\mu^{k}(X)=\lim _{\mathcal{U}} \frac{\left|X_{i}\right|}{\left|V_{i}\right|^{k}}$,

The same ideas apply to 3-graphs (that is, hypergraphs whose edges are triples):

- when each $\left(V_{i}, H_{i}\right)$ is a 3-graph with $\left|V_{i}\right|$ finite and $\lim _{i \rightarrow \infty}\left|V_{i}\right|=\infty$, the ultraproduct (V, H) is a k-graph on an uncountable set,
- when $X_{i} \subseteq V_{i}^{k}$ for all i, there is a set $X=\prod_{\mathcal{U}} X_{i}$ with $\mu^{k}(X)=\lim _{\mathcal{U}} \frac{\left|X_{i}\right|}{\left|V_{V}\right|^{k}}$,
- for each k, we have a measure space $\left(V^{k}, \mathcal{B}_{k}, \mu^{k}\right)$.

Example

Choose $E, F, G \in \mathcal{B}_{2}$ to be quasi-random.
We define

$$
H=\left\{(x, y, z) \mid \chi_{E}(x, y)+\chi_{F}(x, z)+\chi_{G}(y, z) \in\{1,3\}\right\} .
$$

Example

Choose $E, F, G \in \mathcal{B}_{2}$ to be quasi-random.
We define

$$
H=\left\{(x, y, z) \mid \chi_{E}(x, y)+\chi_{F}(x, z)+\chi_{G}(y, z) \in\{1,3\}\right\} .
$$

This hypergraph is "random" relative to any box:

$$
\mu(H \cap(A \times B \times C)) \approx \frac{1}{2} \mu(A \times B \times C) .
$$

Certainly \mathcal{B}_{3} contains sets not in $\mathcal{B}_{1} \times \mathcal{B}_{1} \times \mathcal{B}_{1}$, or even in $\mathcal{B}_{2} \times \mathcal{B}_{1}$.
But these do not exhaust the ways lower-order sets could define sets of triples. We need to consider cylinder intersections: sets of the form

$$
\{(x, y, z) \mid(x, y) \in A \text { and }(x, z) \in B \text { and }(y, z) \in C\}
$$

where $A, B, C \in \mathcal{B}_{2}$.

Certainly \mathcal{B}_{3} contains sets not in $\mathcal{B}_{1} \times \mathcal{B}_{1} \times \mathcal{B}_{1}$, or even in $\mathcal{B}_{2} \times \mathcal{B}_{1}$.
But these do not exhaust the ways lower-order sets could define sets of triples. We need to consider cylinder intersections: sets of the form

$$
\{(x, y, z) \mid(x, y) \in A \text { and }(x, z) \in B \text { and }(y, z) \in C\}
$$

where $A, B, C \in \mathcal{B}_{2}$.
These sets generate a σ-algebra $\mathcal{B}_{3,2}$. We still have $\mathcal{B}_{3} \supsetneq \mathcal{B}_{3,2}$.

The appropriate decomposition is to take a hypergraph χ_{E} and write it in the form

$$
\begin{aligned}
\chi_{E}(x, y, z) \approx f(x, y) & +\sum_{i \leq d_{2}} \gamma_{i} \chi_{A_{i}}(x, y) \chi_{B_{i}}(x, z) \chi_{c_{i}}(y, z) \\
& +\sum_{i \leq d_{1}} \delta_{i} \chi_{D_{i} i}(x) \chi_{F_{i}}(y) \chi_{G_{i}}(z)
\end{aligned}
$$

where A_{i}, B_{i}, C_{i} are quasi-random (possibly directed) graphs.

The appropriate decomposition is to take a hypergraph χ_{E} and write it in the form

$$
\begin{aligned}
\chi_{E}(x, y, z) \approx f(x, y) & +\sum_{i \leq d_{2}} \gamma_{i} \chi_{A_{i}}(x, y) \chi_{B_{i}}(x, z) \chi_{c_{i}}(y, z) \\
& +\sum_{i \leq d_{1}} \delta_{i} \chi_{D_{i} i}(x) \chi_{F_{i}}(y) \chi_{G_{i}}(z)
\end{aligned}
$$

where A_{i}, B_{i}, C_{i} are quasi-random (possibly directed) graphs.
This does correspond in a precise way to hypergraph regularity for 3-graphs, but the correspondence is a bit more complicated because the interactions of different bounds are more complicated.

Definition

A 3-graph $H \subseteq V^{3}$ has 2-VC dimension $\geq d$ if there is a rectangle

$$
y_{1}, \ldots, y_{d} \in V, z_{1}, \ldots, z_{d} \in V
$$

such that, for every $S \subseteq\left\{y_{1}, \ldots, y_{d}\right\} \times\left\{z_{1}, \ldots, z_{d}\right\}$, there is some $x \in V$ so that

$$
H_{x} \cap\left(\left\{y_{1}, \ldots, y_{d}\right\} \times\left\{z_{1}, \ldots, z_{d}\right\}\right)=S .
$$

Example

Recall the hypergraph where $E, F, G \subseteq V^{2}$ are each quasi-random, and H consists of those (x, y, z) so that an odd number of the pairs $(x, y),(x, z),(y, z)$ belong to the respective graphs.

We claim H has $2-\mathrm{VC}$ dimension ≤ 65.

Example

Recall the hypergraph where $E, F, G \subseteq V^{2}$ are each quasi-random, and H consists of those (x, y, z) so that an odd number of the pairs $(x, y),(x, z),(y, z)$ belong to the respective graphs.

We claim H has $2-V C$ dimension ≤ 65. Consider any $\left\{y_{1}, \ldots, y_{5}\right\} \subseteq V$ and $\left\{z_{1}, \ldots, z_{65}\right\} \subseteq V$. By Ramsey's Theorem (and possibly reordering the elements), without loss of generality we may assume either $\left\{y_{1}, y_{2}, y_{3}\right\} \times\left\{z_{1}, z_{2}, z_{3}\right\} \subseteq G$ or $\left\{y_{1}, y_{2}, y_{3}\right\} \times\left\{z_{1}, z_{2}, z_{3}\right\} \cap G=\emptyset$.

Example

Recall the hypergraph where $E, F, G \subseteq V^{2}$ are each quasi-random, and H consists of those (x, y, z) so that an odd number of the pairs $(x, y),(x, z),(y, z)$ belong to the respective graphs.

We claim H has $2-V C$ dimension ≤ 65. Consider any $\left\{y_{1}, \ldots, y_{5}\right\} \subseteq V$ and $\left\{z_{1}, \ldots, z_{65}\right\} \subseteq V$. By Ramsey's Theorem (and possibly reordering the elements), without loss of generality we may assume either $\left\{y_{1}, y_{2}, y_{3}\right\} \times\left\{z_{1}, z_{2}, z_{3}\right\} \subseteq G$ or $\left\{y_{1}, y_{2}, y_{3}\right\} \times\left\{z_{1}, z_{2}, z_{3}\right\} \cap G=\emptyset$.

Then no x can have

$$
H_{x} \cap\left(\left\{y_{1}, y_{2}, y_{3}\right\} \times\left\{z_{1}, z_{2}, z_{3}\right\}\right)=\left\{\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right),\left(y_{3}, z_{3}\right)\right\}:
$$

this would imply that no two of $\chi_{E}\left(x, y_{1}\right), \chi_{E}\left(x, y_{2}\right)$, and $\chi_{E}\left(x, y_{3}\right)$ can be equal, which is impossible.

Theorem (Chernikov-Palacin-Takeuchi)

If H has VC dimension $<d$ then whenever $\left\{y_{1}, \ldots, y_{m}\right\} \subseteq V$ and $\left\{z_{1}, \ldots, z_{m}\right\} \subseteq V$, there is an $\epsilon(d)>0$ so that there are at most $2^{m^{2-\epsilon(d)}}$ sets $S \subseteq\left\{y_{1}, \ldots, y_{d}\right\} \times\left\{z_{1}, \ldots, z_{d}\right\}$ such that there is an x with

$$
H_{x} \cap\left(\left\{y_{1}, \ldots, y_{d}\right\} \times\left\{z_{1}, \ldots, z_{d}\right\}\right)=S
$$

Theorem (Chernikov-Palacin-Takeuchi)

If H has VC dimension $<d$ then whenever $\left\{y_{1}, \ldots, y_{m}\right\} \subseteq V$ and $\left\{z_{1}, \ldots, z_{m}\right\} \subseteq V$, there is an $\epsilon(d)>0$ so that there are at most $2^{m^{2-\epsilon(d)}}$ sets $S \subseteq\left\{y_{1}, \ldots, y_{d}\right\} \times\left\{z_{1}, \ldots, z_{d}\right\}$ such that there is an x with

$$
H_{x} \cap\left(\left\{y_{1}, \ldots, y_{d}\right\} \times\left\{z_{1}, \ldots, z_{d}\right\}\right)=S
$$

The bound $2^{m^{2-\epsilon}}$ is not as strong as original conjectured, but CPT show it is close to optimal.

The key theorem about VC dimension was:

Theorem (The VC Theorem)

Suppose $E \subseteq V^{2}$ has finite VC dimension and let $\epsilon>0$. Then there exists a set $\left\{y_{1}, \ldots, y_{m}\right\}$ (with m depending only on the VC dimension and ϵ) such that for every single $x \in X$, either:

- $\mu\left(E_{x}\right)<\epsilon$, or
- $\left|E_{x} \cap\left\{y_{1}, \ldots, y_{m}\right\}\right| \neq \emptyset$.

We don't even know what the right definition of an ϵ-net would be for 2-VC dimension.

Theorem

Suppose $E \subseteq V^{2}$ has finite $V C$ dimension and let $\epsilon>0$. Then there exist x_{1}, \ldots, x_{n} such that, for every $x \in V$, there is some x_{i} with $\mu\left(E_{x} \triangle E_{x_{i}}\right)<\epsilon$.

Theorem

Suppose $E \subseteq V^{2}$ has finite $V C$ dimension and let $\epsilon>0$. Then there exist x_{1}, \ldots, x_{n} such that, for every $x \in V$, there is some x_{i} with $\mu\left(E_{x} \triangle E_{x_{i}}\right)<\epsilon$.

Theorem (Chernikov-T.)

Suppose $H \subseteq V^{3}$ has finite 2-VC dimension and let $\epsilon>0$. Then there exist x_{1}, \ldots, x_{n} such that, for every $x \in V$, there is a partition

$$
V^{2}=\bigcup_{j \leq m, k \leq m} B_{j} \times C_{k}
$$

and, for each pair (j, k), a Boolean combination $E^{(j, k)}$ of the $E_{x_{i}}$, such that

$$
\mid \mu\left(E_{x} \triangle \bigcup_{j \leq m, k \leq m} E^{(j, k)} \cap\left(B_{j} \times C_{k}\right)\right)<\epsilon
$$

Theorem (Regularity for VC dimension)

If $E \subseteq V^{2}$ has finite VC dimension then:

- E belongs to $\mathcal{B}_{1} \times \mathcal{B}_{1}$,
- the number of rectangles needed to approximated E to within ϵ is bounded by a polynomial in $1 / \epsilon$.

Theorem (Chernikov-T.)

If $H \subseteq V^{3}$ has finite $2-V C$ dimension then H belongs to $\mathcal{B}_{3,2}$.

Theorem (Chernikov-T.)

Suppose $H \subseteq V^{3}$ has finite 2-VC dimension and let $\epsilon>0$. Then there exist x_{1}, \ldots, x_{n} such that, for every $x \in V$, there is a partition

$$
V^{2}=\bigcup_{j \leq m, k \leq m} B_{j} \times C_{k}
$$

and, for each pair (j, k), a Boolean combination $E^{(j, k)}$ of the $E_{x_{i}}$, such that

$$
\mid \mu\left(E_{x} \triangle \bigcup_{j \leq m, k \leq m} E^{(j, k)} \cap\left(B_{j} \times C_{k}\right)\right)<\epsilon
$$

Theorem (Chernikov-T.)

If $H \subseteq V^{3}$ has finite $2-V C$ dimension then H belongs to $\mathcal{B}_{3,2}$.

Theorem (Chernikov-T.)

Suppose $H \subseteq V^{3}$ has finite 2-VC dimension and let $\epsilon>0$. Then there exist x_{1}, \ldots, x_{n} such that, for every $x \in V$, there is a partition

$$
V^{2}=\bigcup_{j \leq m, k \leq m} B_{j} \times C_{k}
$$

and, for each pair (j, k), a Boolean combination $E^{(j, k)}$ of the $E_{x_{i}}$, such that

$$
\mid \mu\left(E_{x} \triangle \bigcup_{j \leq m, k \leq m} E^{(j, k)} \cap\left(B_{j} \times C_{k}\right)\right)<\epsilon
$$

Theorem (Chernikov-T.)

If $H \subseteq V^{3}$ has finite $2-V C$ dimension then H belongs to $\mathcal{B}_{3,2}$.

The end.

