Hypernatural numbers in ultra-Ramsey theory

Timothy Trujillo

RaTLoCC 18 June 2018 Bertinoro, Italy

trujillo@shsu.edu http://www.shsu.edu/~txt031

1 Framework for the results

- 1 Framework for the results
- 2 Notation for trees

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory
- 5 The alpha-Ellentuck theorem

- Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory
- 5 The alpha-Ellentuck theorem
- 6 An application to local Ramsey theory

- Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory
- 5 The alpha-Ellentuck theorem
- 6 An application to local Ramsey theory
- **7** Extending to the abstract setting of triples (\mathcal{R}, \leq, r)

- Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory
- 5 The alpha-Ellentuck theorem
- 6 An application to local Ramsey theory
- **7** Extending to the abstract setting of triples (\mathcal{R}, \leq, r)
- 8 An application to abstract local Ramsey theory

 Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α.

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α.
- Severy function f with domain N is extended to its "ideal" value at α, f[α].

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α.
- 3 Every function f with domain N is extended to its "ideal" value at α, f[α].
- 4 If X is a set then $*X = \{f[\alpha] : f : \mathbb{N} \to X\}.$

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α.
- 3 Every function f with domain N is extended to its "ideal" value at α, f[α].
- 4 If X is a set then $*X = \{f[\alpha] : f : \mathbb{N} \to X\}.$
- **5** Every nonprincipal ultrafilter \mathcal{U} is of the form $\{X \subseteq \mathbb{N} : \beta \in {}^*X\}$ for some $\beta \in {}^*\mathbb{N} \setminus \mathbb{N}$.

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α.
- 3 Every function f with domain N is extended to its "ideal" value at α, f[α].
- 4 If X is a set then $*X = \{f[\alpha] : f : \mathbb{N} \to X\}.$
- **5** Every nonprincipal ultrafilter \mathcal{U} is of the form $\{X \subseteq \mathbb{N} : \beta \in {}^*X\}$ for some $\beta \in {}^*\mathbb{N} \setminus \mathbb{N}$.
- **6** The framework is convenient but unnecessary. The proofs can be carried out by referring directly to the ultrafilters or the notion of a functional extensions as introduced by Forti.

Notation

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

Notation

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{ X \in [\mathbb{N}]^{\infty} : \forall s \in [\mathbb{N}]^{<\infty} (s \sqsubseteq X \implies s \in T) \},\$$

Notation

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{ X \in [\mathbb{N}]^{\infty} : \forall s \in [\mathbb{N}]^{<\infty} (s \sqsubseteq X \implies s \in T) \},\$$

$$T(n) = \{s \in T : |s| = n\}.$$

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{ X \in [\mathbb{N}]^{\infty} : \forall s \in [\mathbb{N}]^{<\infty} (s \sqsubseteq X \implies s \in T) \},\$$

$$T(n) = \{s \in T : |s| = n\}.$$

The stem of T is the \sqsubseteq -maximal s in T that is \sqsubseteq -comparable to every element of T. If T has a stem we denote it by st(T).

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{ X \in [\mathbb{N}]^{\infty} : \forall s \in [\mathbb{N}]^{<\infty} (s \sqsubseteq X \implies s \in T) \},\$$

$$T(n) = \{s \in T : |s| = n\}.$$

The stem of T is the \sqsubseteq -maximal s in T that is \sqsubseteq -comparable to every element of T. If T has a stem we denote it by st(T).

For $s \in T$, we use the following notation

$$T/s = \{t \in T : s \sqsubseteq t\}.$$

Definition

An $\vec{\alpha}$ -tree is a tree T with stem st(T) such that

Definition

An $\vec{\alpha}$ -tree is a tree T with stem st(T) such that for all $s \in T/st(T)$, $s \cup \{\alpha_s\} \in {}^*T$.

Definition

An $\vec{\alpha}$ -tree is a tree T with stem st(T) such that for all $s \in T/st(T)$, $s \cup \{\alpha_s\} \in {}^*T$.

Example

 $[\mathbb{N}]^{<\infty}$ is an $\vec{\alpha}$ -tree.

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$.

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T,

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T, if $st(T) \in H$ then there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T)

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T, if $st(T) \in H$ then there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $S/st(S) \subseteq H$.

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T, if $st(T) \in H$ then there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $S/st(S) \subseteq H$.

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T, if $st(T) \in H$ then there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $S/st(S) \subseteq H$.

$$\begin{cases} L_0 = \{st(T)\} \end{cases}$$

ć

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T, if $st(T) \in H$ then there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $S/st(S) \subseteq H$.

$$\begin{cases} L_0 = \{ st(T) \} \\ L_{n+1} = \{ s \cup \{ m \} \in [\mathbb{N}]^{<\infty} : s \in L_n, m > \max(s), \& s \cup \{ m \} \in H \cap T \}. \end{cases}$$

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T, if $st(T) \in H$ then there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $S/st(S) \subseteq H$.

$$\begin{cases} L_0 = \{st(T)\}\\ L_{n+1} = \{s \cup \{m\} \in [\mathbb{N}]^{<\infty} : s \in L_n, m > \max(s), \& s \cup \{m\} \in H \cap T\}. \end{cases}$$
$$S = \{s \in [\mathbb{N}]^{<\infty} : s \sqsubseteq st(T)\} \cup \bigcup_{n=0}^{\infty} L_n. \end{cases}$$

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T, if $st(T) \in H$ then there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $S/st(S) \subseteq H$.

We build an $\vec{\alpha}$ -tree, level-by-level, recursively.

$$\begin{cases} L_0 = \{st(T)\}\\ L_{n+1} = \{s \cup \{m\} \in [\mathbb{N}]^{<\infty} : s \in L_n, m > \max(s), \& s \cup \{m\} \in H \cap T\}. \end{cases}$$
$$S = \{s \in [\mathbb{N}]^{<\infty} : s \sqsubseteq st(T)\} \cup \bigcup_{n=0}^{\infty} L_n. \end{cases}$$

For all $s \in L_n$,

$$\mathbf{s} \cup \{\alpha_{\mathbf{s}}\} \in {}^{*}\boldsymbol{H} \cap {}^{*}\boldsymbol{T} = {}^{*}(\boldsymbol{H} \cap \boldsymbol{T}).$$

Suppose that $H \subseteq [\mathbb{N}]^{<\infty}$ and for all $s \in H$, $s \cup \{\alpha_s\} \in {}^*H$. Then for all $\vec{\alpha}$ -trees T, if $st(T) \in H$ then there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $S/st(S) \subseteq H$.

We build an $\vec{\alpha}$ -tree, level-by-level, recursively.

$$\begin{cases} L_0 = \{st(T)\}\\ L_{n+1} = \{s \cup \{m\} \in [\mathbb{N}]^{<\infty} : s \in L_n, m > \max(s), \& s \cup \{m\} \in H \cap T\}. \end{cases}$$
$$S = \{s \in [\mathbb{N}]^{<\infty} : s \sqsubseteq st(T)\} \cup \bigcup_{n=0}^{\infty} L_n. \end{cases}$$

For all $s \in L_n$,

$$\mathbf{s} \cup \{\alpha_{\mathbf{s}}\} \in {}^*H \cap {}^*T = {}^*(H \cap T).$$

S is an $\vec{\alpha}$ -tree with stem st(T).

Theorem (T. [3])

For all $\mathcal{X} \subseteq [\mathbb{N}]^\infty$

Theorem (T. [3])

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T
For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T)

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that one of the following holds: 1 $[S] \subseteq \mathcal{X}$.

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that one of the following holds:

1 $[S] \subseteq \mathcal{X}$.

$$2 [S] \cap \mathcal{X} = \emptyset.$$

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that one of the following holds:

1 $[S] \subseteq \mathcal{X}$.

$$2 [S] \cap \mathcal{X} = \emptyset.$$

3 For all $\vec{\alpha}$ -trees S', if $S' \subseteq S$ then $[S'] \not\subseteq \mathcal{X}$ and $[S'] \cap \mathcal{X} \neq \emptyset$.

Consider the following sets

Consider the following sets

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset\}$

Consider the following sets

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset\}$

 $G = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \subseteq \mathcal{X}\}$

Consider the following sets

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset\}$

 $G = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \subseteq \mathcal{X}\}$

 $H = \{ s \in [\mathbb{N}]^{<\infty} : \forall \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s, [S] \not\subseteq \mathcal{X} \text{ and } [S] \cap \mathcal{X} \neq \emptyset \}.$

Consider the following sets

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset\}$

 $G = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \subseteq \mathcal{X}\}$

 $H = \{ s \in [\mathbb{N}]^{<\infty} : \forall \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s, [S] \not\subseteq \mathcal{X} \text{ and } [S] \cap \mathcal{X} \neq \emptyset \}.$

Note that $H = [\mathbb{N}]^{<\infty} \setminus (F \cup G)$.

If $s \cup \{\alpha_s\} \notin {}^*H$ then $s \notin H$.

If $s \cup \{\alpha_s\} \notin {}^*H$ then $s \notin H$.

Suppose that $s \cup \{\alpha_s\} \notin {}^*H = {}^*[\mathbb{N}]^{<\infty} \setminus ({}^*G \cup {}^*F).$

If $s \cup \{\alpha_s\} \notin {}^*H$ then $s \notin H$.

Suppose that $s \cup \{\alpha_s\} \notin {}^*H = {}^*[\mathbb{N}]^{<\infty} \setminus ({}^*G \cup {}^*F).$

Hence, $s \cup \{\alpha_s\} \in {}^*G$ or $s \cup \{\alpha_s\} \in {}^*F$.

If $s \cup \{\alpha_s\} \notin {}^*H$ then $s \notin H$.

Suppose that $s \cup \{\alpha_s\} \notin {}^*H = {}^*[\mathbb{N}]^{<\infty} \setminus ({}^*G \cup {}^*F).$

Hence, $s \cup \{\alpha_s\} \in {}^*G$ or $s \cup \{\alpha_s\} \in {}^*F$.

Wlog assume $s \cup \{\alpha_s\} \in {}^*G$.

If $s \cup \{\alpha_s\} \notin {}^*H$ then $s \notin H$.

Suppose that $s \cup \{\alpha_s\} \notin {}^*H = {}^*[\mathbb{N}]^{<\infty} \setminus ({}^*G \cup {}^*F).$

Hence, $s \cup \{\alpha_s\} \in {}^*G$ or $s \cup \{\alpha_s\} \in {}^*F$.

Wlog assume $s \cup \{\alpha_s\} \in {}^*G$.

Let $A = \{n \in \mathbb{N} : s \cup \{n\} \in G\}$ and note that $\alpha_s \in {}^*A$.

If $s \cup \{\alpha_s\} \notin {}^*H$ then $s \notin H$.

Suppose that $s \cup \{\alpha_s\} \notin {}^*H = {}^*[\mathbb{N}]^{<\infty} \setminus ({}^*G \cup {}^*F).$

Hence, $\mathbf{s} \cup \{\alpha_{\mathbf{s}}\} \in {}^*G$ or $\mathbf{s} \cup \{\alpha_{\mathbf{s}}\} \in {}^*F$.

Wlog assume $s \cup \{\alpha_s\} \in {}^*G$.

Let $A = \{n \in \mathbb{N} : s \cup \{n\} \in G\}$ and note that $\alpha_s \in {}^*A$.

For each $n \in A$, let T_n be an $\vec{\alpha}$ -tree with stem $s \cup \{n\}$ such that $[T_n] \subseteq \mathcal{X}$.

Let $S = \bigcup_{n \in A} T_n$. It is clear that

• *S* is a tree with stem *s*,

Let $S = \bigcup_{n \in A} T_n$. It is clear that

• S is a tree with stem s,

•
$${s \cup {n} : n \in A} = \bigcup_{n \in A} {st(T_n)} \subseteq S$$
,

Let $S = \bigcup_{n \in A} T_n$. It is clear that

• S is a tree with stem s,

•
$${s \cup {n} : n \in A} = \bigcup_{n \in A} {st(T_n)} \subseteq S$$
,

•
$$[S] = \bigcup_{n \in A} [T_n] \subseteq \mathcal{X}.$$

Let $S = \bigcup_{n \in A} T_n$. It is clear that

• S is a tree with stem s,

•
$${s \cup {n} : n \in A} = \bigcup_{n \in A} {st(T_n)} \subseteq S$$
,

•
$$[S] = \bigcup_{n \in A} [T_n] \subseteq \mathcal{X}.$$

If $t \in S/st(S)$ then either (†) t = s

Let $S = \bigcup_{n \in A} T_n$. It is clear that

• S is a tree with stem s,

•
$${s \cup {n} : n \in A} = \bigcup_{n \in A} {st(T_n)} \subseteq S$$
,

•
$$[S] = \bigcup_{n \in A} [T_n] \subseteq \mathcal{X}.$$

If $t \in S/st(S)$ then either (†) t = s or (‡) there exists $n \in A$ such that $t \in T_n/(s \cup \{n\})$.

Let $S = \bigcup_{n \in A} T_n$. It is clear that

• S is a tree with stem s,

•
$${s \cup {n} : n \in A} = \bigcup_{n \in A} {st(T_n)} \subseteq S$$
,

•
$$[S] = \bigcup_{n \in A} [T_n] \subseteq \mathcal{X}$$

If $t \in S/st(S)$ then either (†) t = s or (‡) there exists $n \in A$ such that $t \in T_n/(s \cup \{n\})$.

 $t \cup \{\alpha_t\} = s \cup \{\alpha_s\} \in {}^*{s \cup \{n\} : n \in A\} = {}^*\bigcup_{n \in A} \{st(T_n)\} \subseteq {}^*S. (\dagger)$

Let $S = \bigcup_{n \in A} T_n$. It is clear that

• S is a tree with stem s,

•
$${s \cup {n} : n \in A} = \bigcup_{n \in A} {st(T_n)} \subseteq S$$
,

•
$$[S] = \bigcup_{n \in A} [T_n] \subseteq \mathcal{X}$$

If $t \in S/st(S)$ then either (†) t = s or (‡) there exists $n \in A$ such that $t \in T_n/(s \cup \{n\})$.

 $t \cup \{\alpha_t\} = s \cup \{\alpha_s\} \in {}^*{s \cup \{n\} : n \in A\} = {}^*\bigcup_{n \in A} \{st(T_n)\} \subseteq {}^*S. (\dagger)$

$$t \cup \{\alpha_t\} \in {}^*T_n \subseteq {}^*S. \tag{\ddagger}$$

So *S* is an $\vec{\alpha}$ -tree with stem *s* such that $[S] \subseteq \mathcal{X}$. Thus, $s \in G$. In particular, $s \notin H$.

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset \}$ $G = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \subseteq \mathcal{X} \}$ $H = \{s \in [\mathbb{N}]^{<\infty} : \forall \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s, [S] \not\subseteq \mathcal{X} \text{ and } [S] \cap \mathcal{X} \neq \emptyset \}.$

So *S* is an $\vec{\alpha}$ -tree with stem *s* such that $[S] \subseteq \mathcal{X}$. Thus, $s \in G$. In particular, $s \notin H$.

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset \}$ $G = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \subseteq \mathcal{X} \}$ $H = \{s \in [\mathbb{N}]^{<\infty} : \forall \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s, [S] \not\subseteq \mathcal{X} \text{ and } [S] \cap \mathcal{X} \neq \emptyset \}.$ Wlog assume that $st(T) \in H$.

So S is an $\vec{\alpha}$ -tree with stem s such that $[S] \subseteq \mathcal{X}$. Thus, $s \in G$. In particular, $s \notin H$.

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset\}$

 $\mathcal{G} = \{ s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \subseteq \mathcal{X} \}$

 $H = \{ s \in [\mathbb{N}]^{<\infty} : \forall \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s, [S] \not\subseteq \mathcal{X} \text{ and } [S] \cap \mathcal{X} \neq \emptyset \}.$

Wlog assume that $st(T) \in H$.

By the previous Lemma and Claim there is an $\vec{\alpha}$ -tree $S \subseteq T$ such that st(S) = st(T) and $S/st(S) \subseteq H$.

So S is an $\vec{\alpha}$ -tree with stem s such that $[S] \subseteq \mathcal{X}$. Thus, $s \in G$. In particular, $s \notin H$.

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset\}$

 $\mathcal{G} = \{ s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \subseteq \mathcal{X} \}$

 $H = \{ s \in [\mathbb{N}]^{<\infty} : \forall \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s, [S] \not\subseteq \mathcal{X} \text{ and } [S] \cap \mathcal{X} \neq \emptyset \}.$

Wlog assume that $st(T) \in H$.

By the previous Lemma and Claim there is an $\vec{\alpha}$ -tree $S \subseteq T$ such that st(S) = st(T) and $S/st(S) \subseteq H$.

If $S' \subseteq S$ is an $\vec{\alpha}$ -tree then $st(S') \in S/st(S) \subseteq H$.

So S is an $\vec{\alpha}$ -tree with stem s such that $[S] \subseteq \mathcal{X}$. Thus, $s \in G$. In particular, $s \notin H$.

 $F = \{s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \cap \mathcal{X} = \emptyset\}$

 $\mathcal{G} = \{ s \in [\mathbb{N}]^{<\infty} : \exists \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s \text{ such that } [S] \subseteq \mathcal{X} \}$

 $H = \{ s \in [\mathbb{N}]^{<\infty} : \forall \vec{\alpha} \text{-tree } S \subseteq T \text{ with stem } s, [S] \not\subseteq \mathcal{X} \text{ and } [S] \cap \mathcal{X} \neq \emptyset \}.$

Wlog assume that $st(T) \in H$.

By the previous Lemma and Claim there is an $\vec{\alpha}$ -tree $S \subseteq T$ such that st(S) = st(T) and $S/st(S) \subseteq H$.

If $S' \subseteq S$ is an $\vec{\alpha}$ -tree then $st(S') \in S/st(S) \subseteq H$.

Since $S' \subseteq T$ and $st(S') \in H$, $[S'] \not\subseteq X$ and $[S'] \cap X \neq \emptyset$.

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that one of the following holds:

- **1** $[S] \subseteq \mathcal{X}$.
- **2** $[S] \cap \mathcal{X} = \emptyset$.
- **3** For all $\vec{\alpha}$ -trees S', if $S' \subseteq S$ then $[S'] \not\subseteq \mathcal{X}$ and $[S'] \cap \mathcal{X} \neq \emptyset$.

Theorem (T.)

Suppose that $n \in \mathbb{N}$. For all $A \subseteq [\mathbb{N}]^n$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $S(n) \subseteq A$ or $S(n) \cap A = \emptyset$.

• Let
$$\mathcal{X} = \{Y \in [\mathbb{N}]^{\infty} : r_n(Y) \in A\}.$$

Theorem (T.)

Suppose that $n \in \mathbb{N}$. For all $A \subseteq [\mathbb{N}]^n$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $S(n) \subseteq A$ or $S(n) \cap A = \emptyset$.

- Let $\mathcal{X} = \{Y \in [\mathbb{N}]^{\infty} : r_n(Y) \in A\}.$
- \mathcal{X} can not satisfy conclusion (3) in the statement of alpha Ramsey theorem because any $\vec{\alpha}$ -tree S with $|st(S)| \ge n$ will either have $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Theorem (T.)

Suppose that $n \in \mathbb{N}$. For all $A \subseteq [\mathbb{N}]^n$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $S(n) \subseteq A$ or $S(n) \cap A = \emptyset$.

- Let $\mathcal{X} = \{Y \in [\mathbb{N}]^{\infty} : r_n(Y) \in A\}.$
- \mathcal{X} can not satisfy conclusion (3) in the statement of alpha Ramsey theorem because any $\vec{\alpha}$ -tree S with $|st(S)| \ge n$ will either have $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.
- Thus, either $S(n) \subseteq A$ or $S(n) \cap A = \emptyset$ depending on whether $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$, respectively.

Definition

For $s\in [\mathbb{N}]^{<\infty}$ and $X\in [\mathbb{N}]^\infty$, let

$$[s,X] = \{Y \in [\mathbb{N}]^{\infty} : s \sqsubseteq Y \subseteq X\}.$$

Definition

For $s\in [\mathbb{N}]^{<\infty}$ and $X\in [\mathbb{N}]^\infty$, let

$$[s,X] = \{Y \in [\mathbb{N}]^{\infty} : s \sqsubseteq Y \subseteq X\}.$$

Definition

Suppose that $\mathcal{C} \subseteq [\mathbb{N}]^{\infty}$.

Definition

For $s\in [\mathbb{N}]^{<\infty}$ and $X\in [\mathbb{N}]^\infty$, let

$$[s,X] = \{Y \in [\mathbb{N}]^{\infty} : s \sqsubseteq Y \subseteq X\}.$$

Definition

Suppose that $C \subseteq [\mathbb{N}]^{\infty}$. $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is C-Ramsey if for all $[s, X] \neq \emptyset$ with $X \in C$ there exists $Y \in [s, X] \cap C$ such that either $[s, Y] \subseteq \mathcal{X}$ or $[s, Y] \cap \mathcal{X} = \emptyset$.

Definition

For $s\in [\mathbb{N}]^{<\infty}$ and $X\in [\mathbb{N}]^\infty$, let

$$[s,X] = \{Y \in [\mathbb{N}]^{\infty} : s \sqsubseteq Y \subseteq X\}.$$

Definition

Suppose that $C \subseteq [\mathbb{N}]^{\infty}$. $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is C-Ramsey if for all $[s, X] \neq \emptyset$ with $X \in C$ there exists $Y \in [s, X] \cap C$ such that either $[s, Y] \subseteq \mathcal{X}$ or $[s, Y] \cap \mathcal{X} = \emptyset$.

Definition

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is \mathcal{C} -Ramsey null if for all $[s, X] \neq \emptyset$ with $X \in \mathcal{C}$ there exists $Y \in [s, X] \cap \mathcal{C}$ such that $[s, Y] \cap \mathcal{X} = \emptyset$.

Definition

Suppose that $C \subseteq [\mathbb{N}]^{\infty}$. We say that $([\mathbb{N}]^{\infty}, C, \subseteq)$ is a **topological Ramsey space** if the following conditions hold:

- **1** {[*s*, *X*] : *X* ∈ *C*} is a neighborhood base for a topology on $[\mathbb{N}]^{\infty}$.
- 2 The collection of C-Ramsey sets coincides with the σ-algebra of sets with the Baire property with respect to the topology generated by {[s, X] : X ∈ C}.
- 3 The collection of C-Ramsey null sets coincides with the σ-ideal of meager sets with respect to the topology generated by {[s, X] : X ∈ C}.
Local Ramsey Theory

Theorem (The Ellentuck Theorem)

 $([\mathbb{N}]^{\infty}, [\mathbb{N}]^{\infty}, \subseteq)$ is a topological Ramsey space.

Local Ramsey Theory

Theorem (The Ellentuck Theorem)

 $([\mathbb{N}]^{\infty}, [\mathbb{N}]^{\infty}, \subseteq)$ is a topological Ramsey space.

Theorem (Louveau)

If \mathcal{U} is a selective ultrafilter then $([\mathbb{N}]^{\infty}, \mathcal{U}, \subseteq)$ is a topological Ramsey space.

Local Ramsey Theory

Theorem (The Ellentuck Theorem)

 $([\mathbb{N}]^{\infty}, [\mathbb{N}]^{\infty}, \subseteq)$ is a topological Ramsey space.

Theorem (Louveau)

If \mathcal{U} is a selective ultrafilter then $([\mathbb{N}]^{\infty}, \mathcal{U}, \subseteq)$ is a topological Ramsey space.

Remark

Local Ramsey theory is concerned with characterizing the conditions on \mathcal{C} which guarantee that $([\mathbb{N}]^{\infty}, \mathcal{C}, \subseteq)$ forms a Ramsey space.

Definition

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is said to be $\vec{\alpha}$ -Ramsey if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Definition

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is said to be $\vec{\alpha}$ -Ramsey if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Definition

 \mathcal{X} is said to be $\vec{\alpha}$ -Ramsey null if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $[S] \cap \mathcal{X} = \emptyset$.

Definition

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is said to be $\vec{\alpha}$ -Ramsey if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Definition

 \mathcal{X} is said to be $\vec{\alpha}$ -Ramsey null if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $[S] \cap \mathcal{X} = \emptyset$.

Definition

The topology on $[\mathbb{N}]^{\infty}$ generated by $\{[\mathcal{T}] : \mathsf{T} \text{ is an } \vec{\alpha}\text{-tree}\}$ is called **the** $\vec{\alpha}\text{-Ellentuck topology}$.

Definition

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is said to be $\vec{\alpha}$ -Ramsey if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Definition

 \mathcal{X} is said to be $\vec{\alpha}$ -Ramsey null if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $[S] \cap \mathcal{X} = \emptyset$.

Definition

The topology on $[\mathbb{N}]^{\infty}$ generated by $\{[\mathcal{T}] : \mathsf{T} \text{ is an } \vec{\alpha}\text{-tree}\}$ is called **the** $\vec{\alpha}\text{-Ellentuck topology}$.

Remark

The $\vec{\alpha}$ -Ellentuck space is a zero-dimensional Baire space on $[\mathbb{N}]^{\infty}$ with the countable chain condition.

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

Proof.

• Suppose that $\mathcal X$ is not $\vec \alpha$ -Ramsey and then apply the $\vec \alpha$ -Ramsey theorem.

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

Proof.

- Suppose that $\mathcal X$ is not $\vec \alpha$ -Ramsey and then apply the $\vec \alpha$ -Ramsey theorem.
- Then there exists an $\vec{\alpha}$ -tree T and S such that $S \subseteq T$ with st(S) = st(T)

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

Proof.

- Suppose that \mathcal{X} is not $\vec{\alpha}$ -Ramsey and then apply the $\vec{\alpha}$ -Ramsey theorem.
- Then there exists an $\vec{\alpha}$ -tree T and S such that $S \subseteq T$ with st(S) = st(T) and for all $\vec{\alpha}$ -trees $S' \subseteq S$, $[S'] \not\subseteq \mathcal{X}$ and $[S'] \cap \mathcal{X} \neq \emptyset$.

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

Proof.

- Suppose that \mathcal{X} is not $\vec{\alpha}$ -Ramsey and then apply the $\vec{\alpha}$ -Ramsey theorem.
- Then there exists an $\vec{\alpha}$ -tree T and S such that $S \subseteq T$ with st(S) = st(T) and for all $\vec{\alpha}$ -trees $S' \subseteq S$, $[S'] \not\subseteq \mathcal{X}$ and $[S'] \cap \mathcal{X} \neq \emptyset$.
- Let X be any element of $[S] \cap \mathcal{X}$.

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

Proof (Cont).

• If S' is an $\vec{\alpha}$ -tree and $X \in [S']$ then $X \in [S] \cap [S']$.

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

- If S' is an $\vec{\alpha}$ -tree and $X \in [S']$ then $X \in [S] \cap [S']$.
- So either $st(S') \sqsubseteq st(S) \sqsubseteq X$ or $st(S) \sqsubseteq st(S') \sqsubseteq X$.

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

- If S' is an $\vec{\alpha}$ -tree and $X \in [S']$ then $X \in [S] \cap [S']$.
- So either $st(S') \sqsubseteq st(S) \sqsubseteq X$ or $st(S) \sqsubseteq st(S') \sqsubseteq X$.
- Thus, $S' \cap S$ is an $\vec{\alpha}$ -tree.

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

- If S' is an $\vec{\alpha}$ -tree and $X \in [S']$ then $X \in [S] \cap [S']$.
- So either $st(S') \sqsubseteq st(S) \sqsubseteq X$ or $st(S) \sqsubseteq st(S') \sqsubseteq X$.
- Thus, $S' \cap S$ is an $\vec{\alpha}$ -tree.
- Since $S' \cap S \subseteq S$, $[S' \cap S] \not\subseteq X$ and $[S' \cap S] \cap X \neq \emptyset$.

Corollary

Every $\vec{\alpha}$ -open set is $\vec{\alpha}$ -Ramsey.

- If S' is an $\vec{\alpha}$ -tree and $X \in [S']$ then $X \in [S] \cap [S']$.
- So either $st(S') \sqsubseteq st(S) \sqsubseteq X$ or $st(S) \sqsubseteq st(S') \sqsubseteq X$.
- Thus, $S' \cap S$ is an $\vec{\alpha}$ -tree.
- Since $S' \cap S \subseteq S$, $[S' \cap S] \not\subseteq X$ and $[S' \cap S] \cap X \neq \emptyset$.
- In particular, $[S'] \not\subseteq \mathcal{X}$ as $[S' \cap S] \subseteq [S']$.
- So X is not an interior point of \mathcal{X} .
- Thus X is not α

 -open.

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is $\vec{\alpha}$ -nowhere dense/ is $\vec{\alpha}$ -meager/ has the $\vec{\alpha}$ -Baire property if it is nowhere dense/ is meager/ has the Baire property with respect to the $\vec{\alpha}$ -Ellentuck topology.

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is $\vec{\alpha}$ -nowhere dense/ is $\vec{\alpha}$ -meager/ has the $\vec{\alpha}$ -Baire property if it is nowhere dense/ is meager/ has the Baire property with respect to the $\vec{\alpha}$ -Ellentuck topology.

Theorem (T., The $\vec{\alpha}$ -Ellentuck Theorem)

For any sequence of nonstandard hypernatural numbers $\vec{\alpha}$,

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is $\vec{\alpha}$ -nowhere dense/ is $\vec{\alpha}$ -meager/ has the $\vec{\alpha}$ -Baire property if it is nowhere dense/ is meager/ has the Baire property with respect to the $\vec{\alpha}$ -Ellentuck topology.

Theorem (T., The $\vec{\alpha}$ -Ellentuck Theorem)

For any sequence of nonstandard hypernatural numbers $\vec{\alpha}$, the collection of $\vec{\alpha}$ -Ramsey sets coincides with the σ -algebra of sets with the $\vec{\alpha}$ -Baire property

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is $\vec{\alpha}$ -nowhere dense/ is $\vec{\alpha}$ -meager/ has the $\vec{\alpha}$ -Baire property if it is nowhere dense/ is meager/ has the Baire property with respect to the $\vec{\alpha}$ -Ellentuck topology.

Theorem (T., The $\vec{\alpha}$ -Ellentuck Theorem)

For any sequence of nonstandard hypernatural numbers $\vec{\alpha}$, the collection of $\vec{\alpha}$ -Ramsey sets coincides with the σ -algebra of sets with the $\vec{\alpha}$ -Baire property and the collection of $\vec{\alpha}$ -Ramsey null sets coincides with the σ -ideal of $\vec{\alpha}$ -meager sets.

Theorem (T.)

Suppose that $\mathcal{U} := \{X \subseteq \omega : \beta \in {}^*X\}$ is selective ultrafilter on \mathbb{N} . For $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ the following are equivalent:

- **1** \mathcal{X} has the β -Baire property.
- **2** \mathcal{X} is β -Ramsey.
- **3** \mathcal{X} has the \mathcal{U} -Baire property.
- 4 X is U-Ramsey.

Furthermore, the following are equivalent:

- **1** \mathcal{X} is β -meager.
- **2** \mathcal{X} is β -Ramsey null.
- **3** \mathcal{X} is \mathcal{U} -meager.

4 \mathcal{X} is \mathcal{U} -Ramsey null.

Definition (Strong Cauchy Infinitesimal Principle)

Every nonstandard hypernatural number β is the ideal value of an increasing sequence of natural numbers.

Definition (Strong Cauchy Infinitesimal Principle)

Every nonstandard hypernatural number β is the ideal value of an increasing sequence of natural numbers.

Theorem (T.)

The following are equivalent:

- 1 The strong Cauchy infinitesimal principle.
- **2** $\{X \in [\mathbb{N}]^{\infty} : \alpha \in {}^{*}X\}$ is a selective ultrafilter.
- **3** If T is an α -tree and $s \in T/st(T)$ then there exists $X \in [s, \mathbb{N}]$ such that $\alpha \in {}^*X$ and $[s, X] \subseteq [T]$.
- ([ℕ][∞], {X ∈ [ℕ][∞] : α ∈ *X}, ⊆) is a topological Ramsey space.

Theorem (T.)

If $\mathcal X$ is β -Ramsey for all nonstandard hypernatural numbers β then $\mathcal X$ is Ramsey.

We extend the main results to the setting of triples

$$(\mathcal{R},\leq,r)$$

$$(\mathcal{R},\leq,r)$$

We extend the main results to the setting of triples

$$(\mathcal{R},\leq,r)$$

- **1** \leq is a quasi-order on \mathcal{R} ,
- **2** *r* is a function with domain $\mathbb{N} \times \mathcal{R}$.

We extend the main results to the setting of triples

$$(\mathcal{R},\leq,r)$$

- **1** \leq is a quasi-order on \mathcal{R} ,
- **2** *r* is a function with domain $\mathbb{N} \times \mathcal{R}$.

Example (The Ellentuck Space)

 $([\mathbb{N}]^{\infty}, \subseteq, r)$ where r is the map such that for all $n \in \mathbb{N}$ and for all $X = \{x_0, x_1, x_2, \dots\}$, listed in increasing order,

$$r(n,X) = \begin{cases} \emptyset & \text{if } n = 0, \\ \{x_0, \dots, x_{n-1}\} & \text{otherwise.} \end{cases}$$

We extend the main results to the setting of triples

$$(\mathcal{R},\leq,r)$$

- $\mathbf{1} \leq \mathsf{is} \mathsf{ a} \mathsf{ quasi-order} \mathsf{ on } \mathcal{R},$
- **2** *r* is a function with domain $\mathbb{N} \times \mathcal{R}$.

Example (The Ellentuck Space)

 $([\mathbb{N}]^{\infty}, \subseteq, r)$ where r is the map such that for all $n \in \mathbb{N}$ and for all $X = \{x_0, x_1, x_2, \dots\}$, listed in increasing order,

$$r(n,X) = egin{cases} \emptyset & ext{if } n=0, \ \{x_0,\ldots,x_{n-1}\} & ext{otherwise}. \end{cases}$$

The range of r is $[\mathbb{N}]^{<\infty}$ and for all $s \in [\mathbb{N}]^{<\infty}$ and for all $X \in [\mathbb{N}]^{\infty}$, $s \sqsubseteq X$ if and only if there exists $n \in \mathbb{N}$ such that r(n, X) = s.

The range of r, is denoted by \mathcal{AR} .

The range of r, is denoted by \mathcal{AR} . For $n \in \mathbb{N}$ and $X \in \mathcal{R}$ we use the following notation

$$\mathcal{AR}_n = \{ r(n, X) \in \mathcal{AR} : X \in \mathcal{R} \},$$
$$\mathcal{AR}_n \upharpoonright X = \{ r(n, Y) \in \mathcal{AR} : Y \in \mathcal{R} \& Y \le X \},$$
$$\mathcal{AR} \upharpoonright X = \bigcup_{n=0}^{\infty} \mathcal{AR}_n \upharpoonright X.$$

The range of r, is denoted by \mathcal{AR} . For $n \in \mathbb{N}$ and $X \in \mathcal{R}$ we use the following notation

$$\mathcal{AR}_n = \{r(n, X) \in \mathcal{AR} : X \in \mathcal{R}\},\$$
$$\mathcal{AR}_n \upharpoonright X = \{r(n, Y) \in \mathcal{AR} : Y \in \mathcal{R} \& Y \le X\},\$$
$$\mathcal{AR} \upharpoonright X = \bigcup_{n=0}^{\infty} \mathcal{AR}_n \upharpoonright X.$$

If $s \in AR$ and $X \in R$ then we say s is an initial segment of X and write $s \sqsubseteq X$, if there exists $n \in \mathbb{N}$ such that s = r(n, X).

The range of r, is denoted by \mathcal{AR} . For $n \in \mathbb{N}$ and $X \in \mathcal{R}$ we use the following notation

$$\mathcal{AR}_n = \{r(n, X) \in \mathcal{AR} : X \in \mathcal{R}\},\$$
$$\mathcal{AR}_n \upharpoonright X = \{r(n, Y) \in \mathcal{AR} : Y \in \mathcal{R} \& Y \le X\},\$$
$$\mathcal{AR} \upharpoonright X = \bigcup_{n=0}^{\infty} \mathcal{AR}_n \upharpoonright X.$$

If $s \in AR$ and $X \in R$ then we say s is an initial segment of X and write $s \sqsubseteq X$, if there exists $n \in \mathbb{N}$ such that s = r(n, X). If $s \sqsubseteq X$ and $s \neq X$ then we write $s \sqsubset X$. We use the following notation:

$$[s] = \{Y \in \mathcal{R} : s \sqsubseteq Y\},$$
$$[s, X] = \{Y \in \mathcal{R} : s \sqsubseteq Y \le X\}.$$

A subset T of AR is called a **tree on** R if $T \neq \emptyset$ and for all $s, t \in AR$,

$$s \sqsubseteq t \in T \implies s \in T.$$

For a tree T on \mathcal{R} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{ X \in \mathcal{R} : \forall s \in \mathcal{AR} (s \sqsubseteq X \implies s \in T) \},$$
$$T(n) = \{ s \in T : s \in \mathcal{AR}_n \}.$$

A subset T of AR is called a **tree on** R if $T \neq \emptyset$ and for all $s, t \in AR$,

$$s \sqsubseteq t \in T \implies s \in T.$$

For a tree T on \mathcal{R} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{ X \in \mathcal{R} : \forall s \in \mathcal{AR} (s \sqsubseteq X \implies s \in T) \},\$$

$$T(n) = \{s \in T : s \in \mathcal{AR}_n\}.$$

Lemma

If (\mathcal{R}, \leq, r) satisfies A.1(Sequencing), A.2(Finitization) and A.4(Pigeonhole Principle) then for all $s \in \mathcal{AR}$ and for all $X \in \mathcal{R}$ such that $s \sqsubseteq X$, there exists $\alpha_s \in {}^*(\mathcal{AR} \upharpoonright X) \setminus (\mathcal{AR} \upharpoonright X)$ such that

$$s \sqsubseteq \alpha_s \in {}^*\mathcal{AR}_{|s|+1}.$$

An $\vec{\alpha}$ -tree is a tree T on \mathcal{R} with stem st(T) such that for all $s \in T/st(T)$,

 $\alpha_s \in {}^*T.$

An $\vec{\alpha}$ -tree is a tree T on \mathcal{R} with stem st(T) such that for all $s \in T/st(T)$,

 $\alpha_s \in {}^*T.$

Example

Note that \mathcal{AR} is a tree on \mathcal{R} with stem \emptyset . Moreover, for all $s \in \mathcal{AR}$, $\alpha_s \in {}^*\mathcal{AR}$. Thus, \mathcal{AR} is an $\vec{\alpha}$ -tree.

Theorem (T.)

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. For all $\mathcal{X} \subseteq \mathcal{R}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that one of the following holds:

- 1 $[S] \subseteq \mathcal{X}$.
- **2** $[S] \cap \mathcal{X} = \emptyset$.
- **3** For all $\vec{\alpha}$ -trees S', if $S' \subseteq S$ then $[S'] \not\subseteq \mathcal{X}$ and $[S'] \cap \mathcal{X} \neq \emptyset$.
Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. The topology on \mathcal{R} generated by $\{[\mathcal{T}] : \mathcal{T} \text{ is an } \vec{\alpha} \text{-tree}\}$ is called **the** $\vec{\alpha}$ -**Ellentuck topology**.

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. The topology on \mathcal{R} generated by $\{[T] : T \text{ is an } \vec{\alpha} \text{-tree}\}$ is called **the** $\vec{\alpha}$ -**Ellentuck topology**.

Theorem (T.)

Assume (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s.

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. The topology on \mathcal{R} generated by $\{[T] : T \text{ is an } \vec{\alpha} \text{-tree}\}$ is called **the** $\vec{\alpha}$ -**Ellentuck topology**.

Theorem (T.)

Assume (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. If $\vec{\alpha}$ is a sequence of nonstandard hyperapproximations,

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. The topology on \mathcal{R} generated by $\{[T] : T \text{ is an } \vec{\alpha} \text{-tree}\}$ is called **the** $\vec{\alpha}$ -**Ellentuck topology**.

Theorem (T.)

Assume (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. If $\vec{\alpha}$ is a sequence of nonstandard hyperapproximations, then the collection of $\vec{\alpha}$ -Ramsey sets coincides with the σ -algebra of sets with the $\vec{\alpha}$ -Baire property

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. The topology on \mathcal{R} generated by $\{[T] : T \text{ is an } \vec{\alpha} \text{-tree}\}$ is called **the** $\vec{\alpha}$ -**Ellentuck topology**.

Theorem (T.)

Assume (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. If $\vec{\alpha}$ is a sequence of nonstandard hyperapproximations, then the collection of $\vec{\alpha}$ -Ramsey sets coincides with the σ -algebra of sets with the $\vec{\alpha}$ -Baire property and the collection of $\vec{\alpha}$ -Ramsey null sets coincides with the σ -ideal of $\vec{\alpha}$ -meager sets.

Theorem (T.)

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. Let

$$\mathcal{R}_{\vec{\alpha}} = \{ X \in \mathcal{R} : \forall s \in \mathcal{AR} \upharpoonright X, \ \alpha_s \in {}^*r_{|s|+1}[s,X] \}.$$

If for all $\vec{\alpha}$ -trees T there exists $X \in \mathcal{R}_{\vec{\alpha}}$ such that $\emptyset \neq [st(T), X] \subseteq [T]$, then $(\mathcal{R}, \mathcal{R}_{\vec{\alpha}}, \leq, r)$ is a topological Ramsey space.

Question

Let (\mathcal{R}, \leq, r) be a topological Ramsey space satisfying A.1-A.4. Suppose that $\mathcal{U} \subseteq \mathcal{R}$ a selective ultrafilter with respect to \mathcal{R} as defined by Di Prisco, Mijares and Nieto. For each $s \in \mathcal{AR}$, let \mathcal{U}_s be the ultrafilter on $\{t \in \mathcal{AR}_{|s|+1} : s \sqsubseteq t\}$ generated by $\{r_{|s|+1}[s, X] : X \in \mathcal{U}\}$ and $\vec{\mathcal{U}} = \langle \mathcal{U}_s : s \in \mathcal{AR} \rangle$. Is it the case that for all $\vec{\mathcal{U}}$ -trees T there exists $X \in \mathcal{R}_{\vec{\mathcal{U}}}$ such that $\emptyset \neq [st(T), X] \subseteq [T]$? Thank you for your attention.

- [1] Benci and Di Nasso, *Alpha-theory: an elementary axiomatics for nonstandard analysis*, Expositiones Mathematicae (2003)
- [2] Todorcevic, Introduction to Ramsey spaces, 2010.
- [3] Trujillo, *Hypernatural numbers in ultra-Ramsey Theory* arXiv preprint (2017)