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Framework: Alpha-Theory

1 Benci and Di Nasso have introduced a simplified presentation
of nonstandard analysis called the Alpha-Theory.

2 Alpha-Theory extends ZFC by adding a nonstandard
hypernatural number α.

3 Every function f with domain N is extended to its “ideal”
value at α, f [α].

4 If X is a set then ∗X = {f [α] : f : N→ X}.

5 Every nonprincipal ultrafilter U is of the form
{X ⊆ N : β ∈ ∗X} for some β ∈ ∗N \ N.

6 The framework is convenient but unnecessary. The proofs can
be carried out by referring directly to the ultrafilters or the
notion of a functional extensions as introduced by Forti.
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Notation

For a tree T on N and n ∈ N, we use the following notation:

[T ] = {X ∈ [N]∞ : ∀s ∈ [N]<∞(s v X =⇒ s ∈ T )},

T (n) = {s ∈ T : |s| = n}.

The stem of T is the v-maximal s in T that is v-comparable to
every element of T . If T has a stem we denote it by st(T ).

For s ∈ T , we use the following notation

T/s = {t ∈ T : s v t}.
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~α-trees

Fix a sequence ~α = 〈αs : s ∈ [N]<∞〉 of nonstandard hypernatural
numbers.

Definition

An ~α-tree is a tree T with stem st(T ) such that for all
s ∈ T/st(T ),

s ∪ {αs} ∈ ∗T .

Example

[N]<∞ is an ~α-tree.
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Lemma (Lemma 7.33 [2] Todorcevic)

Suppose that H ⊆ [N]<∞ and for all s ∈ H, s ∪ {αs} ∈ ∗H.

Then
for all ~α-trees T , if st(T ) ∈ H then there exists an ~α-tree S ⊆ T
with st(S) = st(T ) such that S/st(S) ⊆ H.

We build an ~α-tree, level-by-level, recursively.{
L0 = {st(T )}
Ln+1 = {s ∪ {m} ∈ [N]<∞ : s ∈ Ln,m > max(s), & s ∪ {m} ∈ H ∩ T}.

S = {s ∈ [N]<∞ : s v st(T )} ∪
∞⋃
n=0

Ln.

For all s ∈ Ln,

s ∪ {αs} ∈ ∗H ∩ ∗T = ∗(H ∩ T ).

S is an ~α-tree with stem st(T ).
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~α-Ramsey theorem

Theorem (T. [3])

For all X ⊆ [N]∞

and for all ~α-trees T there exists an ~α-tree
S ⊆ T with st(S) = st(T ) such that one of the following holds:

1 [S ] ⊆ X .

2 [S ] ∩ X = ∅.
3 For all ~α-trees S ′, if S ′ ⊆ S then [S ′] 6⊆ X and [S ′] ∩ X 6= ∅.
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Proof of the ~α-Ramsey theorem

Consider the following sets

F = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ∩ X = ∅}

G = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ⊆ X}

H = {s ∈ [N]<∞ : ∀~α-tree S ⊆ T with stem s, [S ] 6⊆ X and [S ] ∩ X 6= ∅}.

Note that H = [N]<∞ \ (F ∪ G ).

Tim Abstract ultra-Ramsey Theory 8/31



Proof of the ~α-Ramsey theorem

Consider the following sets

F = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ∩ X = ∅}

G = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ⊆ X}

H = {s ∈ [N]<∞ : ∀~α-tree S ⊆ T with stem s, [S ] 6⊆ X and [S ] ∩ X 6= ∅}.

Note that H = [N]<∞ \ (F ∪ G ).

Tim Abstract ultra-Ramsey Theory 8/31



Proof of the ~α-Ramsey theorem

Consider the following sets

F = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ∩ X = ∅}

G = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ⊆ X}

H = {s ∈ [N]<∞ : ∀~α-tree S ⊆ T with stem s, [S ] 6⊆ X and [S ] ∩ X 6= ∅}.

Note that H = [N]<∞ \ (F ∪ G ).

Tim Abstract ultra-Ramsey Theory 8/31



Proof of the ~α-Ramsey theorem

Consider the following sets

F = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ∩ X = ∅}

G = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ⊆ X}

H = {s ∈ [N]<∞ : ∀~α-tree S ⊆ T with stem s, [S ] 6⊆ X and [S ] ∩ X 6= ∅}.

Note that H = [N]<∞ \ (F ∪ G ).

Tim Abstract ultra-Ramsey Theory 8/31



Proof of the ~α-Ramsey theorem

Consider the following sets

F = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ∩ X = ∅}

G = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ⊆ X}

H = {s ∈ [N]<∞ : ∀~α-tree S ⊆ T with stem s, [S ] 6⊆ X and [S ] ∩ X 6= ∅}.

Note that H = [N]<∞ \ (F ∪ G ).

Tim Abstract ultra-Ramsey Theory 8/31



Proof of the ~α-Ramsey theorem

Claim

If s ∪ {αs} 6∈ ∗H then s 6∈ H.

Suppose that s ∪ {αs} 6∈ ∗H = ∗[N]<∞ \ (∗G ∪ ∗F ).

Hence, s ∪ {αs} ∈ ∗G or s ∪ {αs} ∈ ∗F .

Wlog assume s ∪ {αs} ∈ ∗G .

Let A = {n ∈ N : s ∪ {n} ∈ G} and note that αs ∈ ∗A.

For each n ∈ A, let Tn be an ~α-tree with stem s ∪ {n} such that
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Proof of the ~α-Ramsey theorem (Proof of claim)

Let S =
⋃

n∈A Tn. It is clear that

• S is a tree with stem s,

• {s ∪ {n} : n ∈ A} =
⋃

n∈A{st(Tn)} ⊆ S ,

• [S ] =
⋃

n∈A[Tn] ⊆ X .

If t ∈ S/st(S) then either (†) t = s or (‡) there exists n ∈ A such
that t ∈ Tn/(s ∪ {n}).

t ∪ {αt} = s ∪ {αs} ∈ ∗{s ∪ {n} : n ∈ A} = ∗
⋃
n∈A
{st(Tn)} ⊆ ∗S . (†)

t ∪ {αt} ∈ ∗Tn ⊆ ∗S . (‡)
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Proof of the ~α-Ramsey theorem

So S is an ~α-tree with stem s such that [S ] ⊆ X . Thus, s ∈ G . In
particular, s 6∈ H.

F = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ∩ X = ∅}

G = {s ∈ [N]<∞ : ∃~α-tree S ⊆ T with stem s such that [S ] ⊆ X}

H = {s ∈ [N]<∞ : ∀~α-tree S ⊆ T with stem s, [S ] 6⊆ X and [S ] ∩ X 6= ∅}.

Wlog assume that st(T ) ∈ H.

By the previous Lemma and Claim there is an ~α-tree S ⊆ T such
that st(S) = st(T ) and S/st(S) ⊆ H.

If S ′ ⊆ S is an ~α-tree then st(S ′) ∈ S/st(S) ⊆ H.

Since S ′ ⊆ T and st(S ′) ∈ H, [S ′] 6⊆ X and [S ′] ∩ X 6= ∅.
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~α-Ramsey theorem

Theorem (T. [3])

For all X ⊆ [N]∞ and for all ~α-trees T there exists an ~α-tree
S ⊆ T with st(S) = st(T ) such that one of the following holds:

1 [S ] ⊆ X .

2 [S ] ∩ X = ∅.
3 For all ~α-trees S ′, if S ′ ⊆ S then [S ′] 6⊆ X and [S ′] ∩ X 6= ∅.
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Finite dimensional ~α-Ramsey theorem

Theorem (T.)

Suppose that n ∈ N. For all A ⊆ [N]n and for all ~α-trees T there
exists an ~α-tree S ⊆ T with st(S) = st(T ) such that either
S(n) ⊆ A or S(n) ∩ A = ∅.

• Let X = {Y ∈ [N]∞ : rn(Y ) ∈ A}.

• X can not satisfy conclusion (3) in the statement of alpha
Ramsey theorem because any ~α-tree S with |st(S)| ≥ n will
either have [S ] ⊆ X or [S ] ∩ X = ∅.

• Thus, either S(n) ⊆ A or S(n) ∩ A = ∅ depending on whether
[S ] ⊆ X or [S ] ∩ X = ∅, respectively.
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Local Ramsey Theory

Definition

For s ∈ [N]<∞ and X ∈ [N]∞, let

[s,X ] = {Y ∈ [N]∞ : s v Y ⊆ X}.

Definition

Suppose that C ⊆ [N]∞. X ⊆ [N]∞ is C-Ramsey if for all
[s,X ] 6= ∅ with X ∈ C there exists Y ∈ [s,X ] ∩ C such that either
[s,Y ] ⊆ X or [s,Y ] ∩ X = ∅.

Definition

X ⊆ [N]∞ is C-Ramsey null if for all [s,X ] 6= ∅ with X ∈ C there
exists Y ∈ [s,X ] ∩ C such that [s,Y ] ∩ X = ∅.
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Local Ramsey Theory

Definition

Suppose that C ⊆ [N]∞. We say that ([N]∞, C,⊆) is a topological
Ramsey space if the following conditions hold:

1 {[s,X ] : X ∈ C} is a neighborhood base for a topology on
[N]∞.

2 The collection of C-Ramsey sets coincides with the σ-algebra
of sets with the Baire property with respect to the topology
generated by {[s,X ] : X ∈ C}.

3 The collection of C-Ramsey null sets coincides with the
σ-ideal of meager sets with respect to the topology generated
by {[s,X ] : X ∈ C}.
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Local Ramsey Theory

Theorem (The Ellentuck Theorem)

([N]∞, [N]∞,⊆) is a topological Ramsey space.

Theorem (Louveau)

If U is a selective ultrafilter then ([N]∞,U ,⊆) is a topological
Ramsey space.

Remark

Local Ramsey theory is concerned with characterizing the
conditions on C which guarantee that ([N]∞, C,⊆) forms a Ramsey
space.
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α-Ramsey Theory

Definition

X ⊆ [N]∞ is said to be ~α-Ramsey if for all ~α-trees T there exists
an ~α-tree S ⊆ T with st(S) = st(T ) such that either [S ] ⊆ X or
[S ] ∩ X = ∅.

Definition

X is said to be ~α-Ramsey null if for all ~α-trees T there exists an
~α-tree S ⊆ T with st(S) = st(T ) such that [S ] ∩ X = ∅.

Definition

The topology on [N]∞ generated by {[T ] : T is an ~α-tree} is called
the ~α-Ellentuck topology.

Remark

The ~α-Ellentuck space is a zero-dimensional Baire space on [N]∞

with the countable chain condition.
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α-Ramsey Theory

Corollary

Every ~α-open set is ~α-Ramsey.

Proof.

• Suppose that X is not ~α-Ramsey and then apply the
~α-Ramsey theorem.

• Then there exists an ~α-tree T and S such that S ⊆ T with
st(S) = st(T ) and for all ~α-trees S ′ ⊆ S , [S ′] 6⊆ X and
[S ′] ∩ X 6= ∅.

• Let X be any element of [S ] ∩ X .
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α-Ramsey Theory

Definition

X ⊆ [N]∞ is ~α-nowhere dense/ is ~α-meager/ has the ~α-Baire
property if it is nowhere dense/ is meager/ has the Baire property
with respect to the ~α-Ellentuck topology.

Theorem (T., The ~α-Ellentuck Theorem)

For any sequence of nonstandard hypernatural numbers ~α, the
collection of ~α-Ramsey sets coincides with the σ-algebra of sets
with the ~α-Baire property and the collection of ~α-Ramsey null sets
coincides with the σ-ideal of ~α-meager sets.
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Application to Local Ramsey Theory

Theorem (T.)

Suppose that U := {X ⊆ ω : β ∈ ∗X} is selective ultrafilter on N.
For X ⊆ [N]∞ the following are equivalent:

1 X has the β-Baire property.

2 X is β-Ramsey.

3 X has the U-Baire property.

4 X is U-Ramsey.

Furthermore, the following are equivalent:

1 X is β-meager.

2 X is β-Ramsey null.

3 X is U-meager.

4 X is U-Ramsey null.
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Definition (Strong Cauchy Infinitesimal Principle)

Every nonstandard hypernatural number β is the ideal value of an
increasing sequence of natural numbers.

Theorem (T. )

The following are equivalent:

1 The strong Cauchy infinitesimal principle.

2 {X ∈ [N]∞ : α ∈ ∗X} is a selective ultrafilter.

3 If T is an α-tree and s ∈ T/st(T ) then there exists
X ∈ [s,N] such that α ∈ ∗X and [s,X ] ⊆ [T ].

4 ([N]∞, {X ∈ [N]∞ : α ∈ ∗X},⊆) is a topological Ramsey
space.

Theorem (T. )

If X is β-Ramsey for all nonstandard hypernatural numbers β then
X is Ramsey.
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Abstract α-Ramsey Theory

We extend the main results to the setting of triples

(R,≤, r)
1 ≤ is a quasi-order on R,

2 r is a function with domain N×R.

Example (The Ellentuck Space)

([N]∞,⊆, r) where r is the map such that for all n ∈ N and for all
X = {x0, x1, x2, . . . }, listed in increasing order,

r(n,X ) =

{
∅ if n = 0,

{x0, . . . , xn−1} otherwise.

The range of r is [N]<∞ and for all s ∈ [N]<∞ and for all
X ∈ [N]∞, s v X if and only if there exists n ∈ N such that
r(n,X ) = s.
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Abstract α-Ramsey Theory

The range of r , is denoted by AR.

For n ∈ N and X ∈ R we use the following notation

ARn = {r(n,X ) ∈ AR : X ∈ R},

ARn � X = {r(n,Y ) ∈ AR : Y ∈ R & Y ≤ X},

AR � X =
∞⋃
n=0

ARn � X .

If s ∈ AR and X ∈ R then we say s is an initial segment of X
and write s v X , if there exists n ∈ N such that s = r(n,X ).

If s v X and s 6= X then we write s @ X . We use the following
notation:

[s] = {Y ∈ R : s v Y },

[s,X ] = {Y ∈ R : s v Y ≤ X}.
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Abstract ~α-Ramsey Theory

A subset T of AR is called a tree on R if T 6= ∅ and for all
s, t ∈ AR,

s v t ∈ T =⇒ s ∈ T .

For a tree T on R and n ∈ N, we use the following notation:

[T ] = {X ∈ R : ∀s ∈ AR(s v X =⇒ s ∈ T )},

T (n) = {s ∈ T : s ∈ ARn}.

Lemma

If (R,≤, r) satisfies A.1(Sequencing), A.2(Finitization) and
A.4(Pigeonhole Principle) then for all s ∈ AR and for all X ∈ R
such that s v X , there exists αs ∈ ∗(AR � X ) \ (AR � X ) such
that

s v αs ∈ ∗AR|s|+1.
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Abstract ~α-Ramsey Theory

Definition

An ~α-tree is a tree T on R with stem st(T ) such that for all
s ∈ T/st(T ),

αs ∈ ∗T .

Example

Note that AR is a tree on R with stem ∅. Moreover, for all
s ∈ AR, αs ∈ ∗AR. Thus, AR is an ~α-tree.
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The Abstract ~α-Ramsey Theorem

Theorem (T.)

Assume that (R,≤, r) satisfies A.1, A.2 and A.4 and for all
s ∈ AR, ∗s = s. For all X ⊆ R and for all ~α-trees T there exists
an ~α-tree S ⊆ T with st(S) = st(T ) such that one of the
following holds:

1 [S ] ⊆ X .

2 [S ] ∩ X = ∅.
3 For all ~α-trees S ′, if S ′ ⊆ S then [S ′] 6⊆ X and [S ′] ∩ X 6= ∅.

Tim Abstract ultra-Ramsey Theory 27/31



The Abstract ~α-Ellentuck Theorem

Definition

Assume that (R,≤, r) satisfies A.1, A.2 and A.4 and for all
s ∈ AR, ∗s = s. The topology on R generated by
{[T ] : T is an ~α-tree} is called the ~α-Ellentuck topology.

Theorem (T.)

Assume (R,≤, r) satisfies A.1, A.2 and A.4 and for all s ∈ AR,
∗s = s. If ~α is a sequence of nonstandard hyperapproximations,
then the collection of ~α-Ramsey sets coincides with the σ-algebra
of sets with the ~α-Baire property and the collection of ~α-Ramsey
null sets coincides with the σ-ideal of ~α-meager sets.
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Application to Abstract Local Ramsey Theory

Theorem (T.)

Assume that (R,≤, r) satisfies A.1, A.2 and A.4 and for all
s ∈ AR, ∗s = s. Let

R~α = {X ∈ R : ∀s ∈ AR � X , αs ∈ ∗r|s|+1[s,X ]}.

If for all ~α-trees T there exists X ∈ R~α such that
∅ 6= [st(T ),X ] ⊆ [T ], then (R,R~α,≤, r) is a topological Ramsey
space.
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Application to Abstract Local Ramsey Theory

Question

Let (R,≤, r) be a topological Ramsey space satisfying A.1-A.4.
Suppose that U ⊆ R a selective ultrafilter with respect to R as
defined by Di Prisco, Mijares and Nieto. For each s ∈ AR, let Us
be the ultrafilter on {t ∈ AR|s|+1 : s v t} generated by

{r|s|+1[s,X ] : X ∈ U} and ~U = 〈Us : s ∈ AR〉. Is it the case that

for all ~U-trees T there exists X ∈ R~U such that
∅ 6= [st(T ),X ] ⊆ [T ]?
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Thank you for your attention.
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