

CONTAINERS MADE EASY

Anush Tserunyan

University of Illinois at Urbana-Champaign

- ① **Containers theorem for finite hypergraphs** — joint with Anton Bernshteyn, Michelle Delcourt, and Henry Towsner
- ② **Containers theorem for algebraic hypergraphs** — joint with Anton Bernshteyn and Michelle Delcourt

From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

*Certain properties of **dense** combinatorial structures are inherited by their randomly chosen **sparse** substructures.*

From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

*Certain properties of **dense** combinatorial structures are inherited by their randomly chosen sparse substructures.*

Typical example: from dense Szemerédi to sparse random Szemerédi.

From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

*Certain properties of **dense** combinatorial structures are inherited by their randomly chosen sparse substructures.*

Typical example: from **dense Szemerédi** to **sparse random Szemerédi**.

- ▶ Say that a finite set $S \subset \mathbb{N}$ is (δ, k) -Szemerédi, where $\delta > 0$ and $k \in \mathbb{N}$, if every subset $A \subseteq S$ with $|A| \geq \delta|S|$ contains a k -term arithmetic progression.

From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

*Certain properties of **dense** combinatorial structures are inherited by their randomly chosen sparse substructures.*

Typical example: from **dense Szemerédi** to **sparse random Szemerédi**.

- ▶ Say that a finite set $S \subset \mathbb{N}$ is (δ, k) -Szemerédi, where $\delta > 0$ and $k \in \mathbb{N}$, if every subset $A \subseteq S$ with $|A| \geq \delta|S|$ contains a k -term arithmetic progression.
- ▶ **Dense Szemerédi** (Szemerédi 1975): For all $\delta > 0$ and $k \in \mathbb{N}$, and for large enough $n \in \mathbb{N}$, the set $\mathbf{n} := \{0, \dots, n-1\}$ is (δ, k) -Szemerédi.

From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

*Certain properties of **dense** combinatorial structures are inherited by their randomly chosen sparse substructures.*

Typical example: from **dense Szemerédi** to **sparse random Szemerédi**.

- ▶ Say that a finite set $S \subset \mathbb{N}$ is (δ, k) -Szemerédi, where $\delta > 0$ and $k \in \mathbb{N}$, if every subset $A \subseteq S$ with $|A| \geq \delta|S|$ contains a k -term arithmetic progression.
- ▶ **Dense Szemerédi** (Szemerédi 1975): For all $\delta > 0$ and $k \in \mathbb{N}$, and for large enough $n \in \mathbb{N}$, the set $\mathbf{n} := \{0, \dots, n-1\}$ is (δ, k) -Szemerédi.
- ▶ **Sparse Random Szemerédi** (Conlon–Gowers 2016, Schacht 2016): For all $\delta > 0$ and $k \in \mathbb{N}$, there is $C > 0$ such that

From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

*Certain properties of **dense** combinatorial structures are inherited by their randomly chosen sparse substructures.*

Typical example: from **dense Szemerédi** to **sparse random Szemerédi**.

- ▶ Say that a finite set $S \subset \mathbb{N}$ is (δ, k) -Szemerédi, where $\delta > 0$ and $k \in \mathbb{N}$, if every subset $A \subseteq S$ with $|A| \geq \delta|S|$ contains a k -term arithmetic progression.
- ▶ **Dense Szemerédi** (Szemerédi 1975): For all $\delta > 0$ and $k \in \mathbb{N}$, and for large enough $n \in \mathbb{N}$, the set $\mathbf{n} := \{0, \dots, n-1\}$ is (δ, k) -Szemerédi.
- ▶ **Sparse Random Szemerédi** (Conlon–Gowers 2016, Schacht 2016): For all $\delta > 0$ and $k \in \mathbb{N}$, there is $C > 0$ such that for any sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities satisfying $Cn^{-\frac{1}{k-1}} \leq p_n \leq 1$, we have

From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

*Certain properties of **dense** combinatorial structures are inherited by their randomly chosen sparse substructures.*

Typical example: from **dense Szemerédi** to **sparse random Szemerédi**.

- ▶ Say that a finite set $S \subset \mathbb{N}$ is (δ, k) -Szemerédi, where $\delta > 0$ and $k \in \mathbb{N}$, if every subset $A \subseteq S$ with $|A| \geq \delta|S|$ contains a k -term arithmetic progression.
- ▶ **Dense Szemerédi** (Szemerédi 1975): For all $\delta > 0$ and $k \in \mathbb{N}$, and for large enough $n \in \mathbb{N}$, the set $\mathbf{n} := \{0, \dots, n-1\}$ is (δ, k) -Szemerédi.
- ▶ **Sparse Random Szemerédi** (Conlon–Gowers 2016, Schacht 2016): For all $\delta > 0$ and $k \in \mathbb{N}$, there is $C > 0$ such that for any sequence $(p_n)_{n \in \mathbb{N}}$ of probabilities satisfying $Cn^{-\frac{1}{k-1}} \leq p_n \leq 1$, we have

$$\lim_{n \rightarrow \infty} \mathbb{P}[[\mathbf{n}]_{p_n} \text{ is } (\delta, k)\text{-Szemerédi}] = 1,$$

where $[\mathbf{n}]_p$ denotes a randomly chosen subset where each element is included with probability p .

Associated k -hypergraph

- We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H , i.e. $H \cap [I]^k = \emptyset$.

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H , i.e. $H \cap [I]^k = \emptyset$.
- ▶ Thus, a set $S \subseteq n$ is (δ, k) -Szemerédi \iff no subset of S of size $\geq \delta|S|$ is independent in H .

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H , i.e. $H \cap [I]^k = \emptyset$.
- ▶ Thus, a set $S \subseteq n$ is (δ, k) -Szemerédi \iff no subset of S of size $\geq \delta|S|$ is independent in H .
- ▶ To prove the sparse random Szemerédi theorem, we need to find a really good upper bound on the number $|\mathcal{I}(H)|$ of independent sets in H .

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H , i.e. $H \cap [I]^k = \emptyset$.
- ▶ Thus, a set $S \subseteq n$ is (δ, k) -Szemerédi \iff no subset of S of size $\geq \delta|S|$ is independent in H .
- ▶ To prove the sparse random Szemerédi theorem, we need to find a really good upper bound on the number $|\mathcal{I}(H)|$ of independent sets in H .
- ▶ This is what the **hypergraph containers theorem** does.

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H , i.e. $H \cap [I]^k = \emptyset$.
- ▶ Thus, a set $S \subseteq n$ is (δ, k) -Szemerédi \iff no subset of S of size $\geq \delta|S|$ is independent in H .
- ▶ To prove the sparse random Szemerédi theorem, we need to find a really good upper bound on the number $|\mathcal{I}(H)|$ of independent sets in H .
- ▶ This is what the **hypergraph containers theorem** does. It was proven by Balogh, Morris, and Samotij (JAMS, 2015), and independently by Saxton and Thomason (**Inventiones Math.**, 2015).

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H , i.e. $H \cap [I]^k = \emptyset$.
- ▶ Thus, a set $S \subseteq n$ is (δ, k) -Szemerédi \iff no subset of S of size $\geq \delta|S|$ is independent in H .
- ▶ To prove the sparse random Szemerédi theorem, we need to find a really good upper bound on the number $|\mathcal{I}(H)|$ of independent sets in H .
- ▶ This is what the **hypergraph containers theorem** does. It was proven by Balogh, Morris, and Samotij (JAMS, 2015), and independently by Saxton and Thomason (**Inventiones Math.**, 2015).
- ▶ It also can be viewed as a transference principle: in “dense” hypergraphs, sparse random subsets are still “somewhat dense”.

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H , i.e. $H \cap [I]^k = \emptyset$.
- ▶ Thus, a set $S \subseteq n$ is (δ, k) -Szemerédi \iff no subset of S of size $\geq \delta|S|$ is independent in H .
- ▶ To prove the sparse random Szemerédi theorem, we need to find a really good upper bound on the number $|\mathcal{I}(H)|$ of independent sets in H .
- ▶ This is what the **hypergraph containers theorem** does. It was proven by Balogh, Morris, and Samotij (JAMS, 2015), and independently by Saxton and Thomason (**Inventiones Math.**, 2015).
- ▶ It also can be viewed as a transference principle: in homogeneous hypergraphs, **sparse random** subsets are still “**somewhat dense**”.

Associated k -hypergraph

- ▶ We define a k -hypergraph H on n (i.e. $H \subseteq [n]^k$) by
$$h := \{m_1, m_2, \dots, m_k\} \in H \iff h \text{ is an arithmetic progression.}$$
- ▶ A set $I \subseteq n$ has no k -term arithmetic progressions $\iff I$ is independent in H , i.e. $H \cap [I]^k = \emptyset$.
- ▶ Thus, a set $S \subseteq n$ is (δ, k) -Szemerédi \iff no subset of S of size $\geq \delta|S|$ is independent in H .
- ▶ To prove the sparse random Szemerédi theorem, we need to find a really good upper bound on the number $|\mathcal{I}(H)|$ of independent sets in H .
- ▶ This is what the **hypergraph containers theorem** does. It was proven by Balogh, Morris, and Samotij (JAMS, 2015), and independently by Saxton and Thomason (**Inventiones Math.**, 2015).
- ▶ It also can be viewed as a transference principle: in homogeneous hypergraphs, sparse random subsets are still **not independent**.

Hypergraph Containers

The **hypergraph containers theorem** gives a tool for analyzing the structure of all the independent subsets in a hypergraph by “capturing” each independent set in one of a small number of “containers”.

Hypergraph Containers

The **hypergraph containers theorem** gives a tool for analyzing the structure of all the independent subsets in a hypergraph by “capturing” each independent set in one of a small number of “containers”.

- ▶ Let H be a k -hypergraph with n vertices and $n^{1+(k-1)\delta}$ edges.

Hypergraph Containers

The **hypergraph containers theorem** gives a tool for analyzing the structure of all the independent subsets in a hypergraph by “capturing” each independent set in one of a small number of “containers”.

- ▶ Let H be a k -hypergraph with n vertices and $n^{1+(k-1)\delta}$ edges.
- ▶ In general, $|\mathcal{I}(H)| \approx 2^n$;

Hypergraph Containers

The **hypergraph containers theorem** gives a tool for analyzing the structure of all the independent subsets in a hypergraph by “capturing” each independent set in one of a small number of “containers”.

- ▶ Let H be a k -hypergraph with n vertices and $n^{1+(k-1)\delta}$ edges.
- ▶ In general, $|\mathcal{I}(H)| \approx 2^n$; for instance, when each edge of H involves at least one vertex from a small set of vertices.

Hypergraph Containers

The **hypergraph containers theorem** gives a tool for analyzing the structure of all the independent subsets in a hypergraph by “capturing” each independent set in one of a small number of “containers”.

- ▶ Let H be a k -hypergraph with n vertices and $n^{1+(k-1)\delta}$ edges.
- ▶ In general, $|\mathcal{I}(H)| \approx 2^n$; for instance, when each edge of H involves at least one vertex from a small set of vertices.
- ▶ However, this doesn't happen in **homogeneous** hypergraphs, i.e., those in which the **1-degree** of each vertex is not much more than $n^{(k-1)\delta}$, and similar upper bounds hold for the **ℓ -degrees** of the sets of $\ell < k$ vertices.

Hypergraph Containers

The **hypergraph containers theorem** gives a tool for analyzing the structure of all the independent subsets in a hypergraph by “capturing” each independent set in one of a small number of “containers”.

- ▶ Let H be a k -hypergraph with n vertices and $n^{1+(k-1)\delta}$ edges.
- ▶ In general, $|\mathcal{I}(H)| \approx 2^n$; for instance, when each edge of H involves at least one vertex from a small set of vertices.
- ▶ However, this doesn't happen in **homogeneous** hypergraphs, i.e., those in which the **1-degree** of each vertex is not much more than $n^{(k-1)\delta}$, and similar upper bounds hold for the **ℓ -degrees** of the sets of $\ell < k$ vertices.
- ▶ The containers theorem says that in such hypergraphs, each independent set I contains a **fingerprint F** , i.e., a subset of size $O(n^{1-\delta})$.

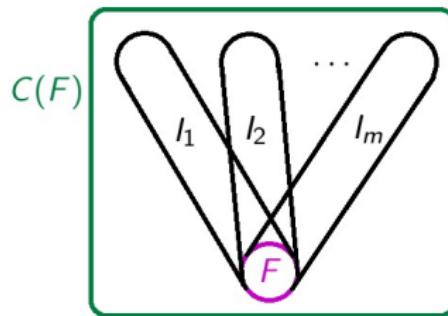
Hypergraph Containers

The **hypergraph containers theorem** gives a tool for analyzing the structure of all the independent subsets in a hypergraph by “capturing” each independent set in one of a small number of “containers”.

- ▶ Let H be a k -hypergraph with n vertices and $n^{1+(k-1)\delta}$ edges.
- ▶ In general, $|\mathcal{I}(H)| \approx 2^n$; for instance, when each edge of H involves at least one vertex from a small set of vertices.
- ▶ However, this doesn’t happen in **homogeneous** hypergraphs, i.e., those in which the **1-degree** of each vertex is not much more than $n^{(k-1)\delta}$, and similar upper bounds hold for the **ℓ -degrees** of the sets of $\ell < k$ vertices.
- ▶ The containers theorem says that in such hypergraphs, each independent set I contains a **fingerprint** F , i.e., a subset of size $O(n^{1-\delta})$.
- ▶ Each fingerprint F determines a **container** $C(F)$ of size less than $(1-\alpha)n$, where $\alpha \in (0, 1)$, such that if F is a fingerprint of an independent set I , then $I \subseteq C(F)$.

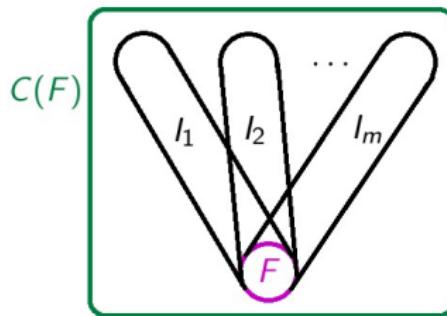
Hypergraph Containers (continued)

- ▶ **Containers Theorem:** $I \mapsto F \mapsto C(F)$ such that $F \subseteq I \subseteq C(F)$.



Hypergraph Containers (continued)

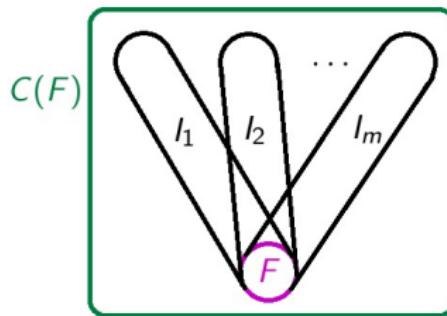
- ▶ **Containers Theorem:** $I \mapsto F \mapsto C(F)$ such that $F \subseteq I \subseteq C(F)$.



- ▶ Each container can host $\leq 2^{(1-\alpha)n}$ independent sets,

Hypergraph Containers (continued)

- ▶ **Containers Theorem:** $I \mapsto F \mapsto C(F)$ such that $F \subseteq I \subseteq C(F)$.

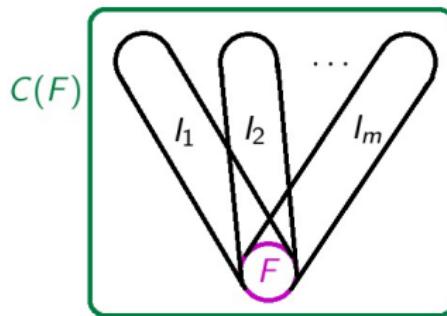


- ▶ Each container can host $\leq 2^{(1-\alpha)n}$ independent sets, and

$$\# \text{ of containers} \leq \# \text{ of fingerprints} \leq 2^{o(n)},$$

Hypergraph Containers (continued)

- ▶ **Containers Theorem:** $I \mapsto F \mapsto C(F)$ such that $F \subseteq I \subseteq C(F)$.



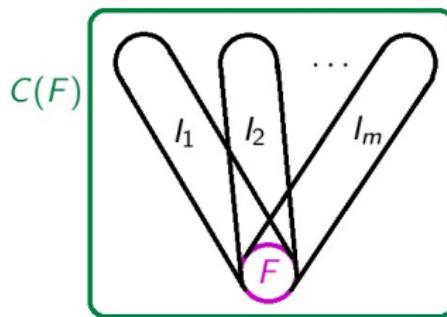
- ▶ Each container can host $\leq 2^{(1-\alpha)n}$ independent sets, and

$$\# \text{ of containers} \leq \# \text{ of fingerprints} \leq 2^{o(n)},$$

$$\text{so } |\mathcal{I}(H)| \leq 2^{(1-\alpha)n+o(n)} \ll 2^{(1-\frac{\alpha}{2})n} \ll 2^n.$$

Hypergraph Containers (continued)

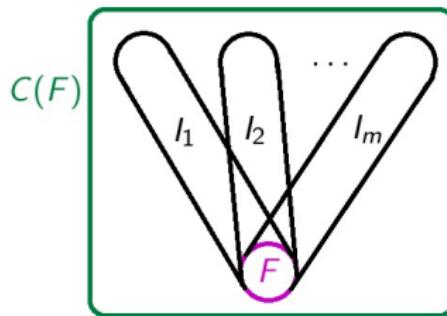
- ▶ **Containers Theorem:** $I \mapsto F \mapsto C(F)$ such that $F \subseteq I \subseteq C(F)$.



- ▶ Each container can host $\leq 2^{(1-\alpha)n}$ independent sets, and
$$\# \text{ of containers} \leq \# \text{ of fingerprints} \leq 2^{o(n)},$$
so $|\mathcal{I}(H)| \leq 2^{(1-\alpha)n+o(n)} \ll 2^{(1-\frac{\alpha}{2})n} \ll 2^n.$
- ▶ Note: in this calculation we used the trivial upper bound $2^{(1-\alpha)n}$ on the number of independent sets inside a given container;

Hypergraph Containers (continued)

- ▶ **Containers Theorem:** $I \mapsto F \mapsto C(F)$ such that $F \subseteq I \subseteq C(F)$.



- ▶ Each container can host $\leq 2^{(1-\alpha)n}$ independent sets, and

$$\# \text{ of containers} \leq \# \text{ of fingerprints} \leq 2^{o(n)},$$

$$\text{so } |\mathcal{I}(H)| \leq 2^{(1-\alpha)n+o(n)} \ll 2^{(1-\frac{\alpha}{2})n} \ll 2^n.$$

- ▶ Note: in this calculation we used the trivial upper bound $2^{(1-\alpha)n}$ on the number of independent sets inside a given container; in practice, the above machinery is iteratively applied to the container, leading to stronger results, such as the **Sparse Random Szemerédi** theorem.

Our proof of the Containers Theorem

- ▶ The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite involved and both use the so-called **scythe algorithm**.

Our proof of the Containers Theorem

- ▶ The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite involved and both use the so-called **scythe algorithm**.
- ▶ **Scythe algorithm** goes through every vertex of the k -hypergraph H and builds a $(k - 1)$ -hypergraph H' .

Our proof of the Containers Theorem

- ▶ The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite involved and both use the so-called **scythe algorithm**.
- ▶ **Scythe algorithm** goes through every vertex of the k -hypergraph H and builds a $(k - 1)$ -hypergraph H' . **Either** H' satisfies the same hypothesis as H , so induction on k finishes the proof,

Our proof of the Containers Theorem

- ▶ The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite involved and both use the so-called **scythe algorithm**.
- ▶ **Scythe algorithm** goes through every vertex of the k -hypergraph H and builds a $(k - 1)$ -hypergraph H' . Either H' satisfies the same hypothesis as H , so induction on k finishes the proof, or failure of H' to satisfy the same hypothesis as H determines a container.

Our proof of the Containers Theorem

- ▶ The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite involved and both use the so-called **scythe algorithm**.
- ▶ **Scythe algorithm** goes through every vertex of the k -hypergraph H and builds a $(k - 1)$ -hypergraph H' . Either H' satisfies the same hypothesis as H , so induction on k finishes the proof, or failure of H' to satisfy the same hypothesis as H determines a container.
- ▶ Our initial idea was to find a conceptually simple nonstandard proof in the ultraproduct of natural numbers, where there is a **notion of dimension** capturing **logarithmic rate of growth** of finite sets.

Our proof of the Containers Theorem

- ▶ The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite involved and both use the so-called **scythe algorithm**.
- ▶ **Scythe algorithm** goes through every vertex of the k -hypergraph H and builds a $(k - 1)$ -hypergraph H' . Either H' satisfies the same hypothesis as H , so induction on k finishes the proof, or failure of H' to satisfy the same hypothesis as H determines a container.
- ▶ Our initial idea was to find a conceptually simple nonstandard proof in the ultraproduct of natural numbers, where there is a **notion of dimension** capturing **logarithmic rate of growth** of finite sets.
- ▶ We did come up with such a proof, but because this notion of dimension isn't first-order definable, we had to approximate it with **logarithmic size**, so constants showed up even in the ultraproduct.

Our proof of the Containers Theorem

- ▶ The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite involved and both use the so-called **scythe algorithm**.
- ▶ **Scythe algorithm** goes through every vertex of the k -hypergraph H and builds a $(k - 1)$ -hypergraph H' . Either H' satisfies the same hypothesis as H , so induction on k finishes the proof, or failure of H' to satisfy the same hypothesis as H determines a container.
- ▶ Our initial idea was to find a conceptually simple nonstandard proof in the ultraproduct of natural numbers, where there is a **notion of dimension** capturing **logarithmic rate of growth** of finite sets.
- ▶ We did come up with such a proof, but because this notion of dimension isn't first-order definable, we had to approximate it with **logarithmic size**, so constants showed up even in the ultraproduct.
- ▶ So we abandoned ultraproducts altogether and wrote the proof for finite hypergraphs (less than 4 pages).

Our proof of the Containers Theorem

- ▶ The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite involved and both use the so-called **scythe algorithm**.
- ▶ **Scythe algorithm** goes through every vertex of the k -hypergraph H and builds a $(k - 1)$ -hypergraph H' . Either H' satisfies the same hypothesis as H , so induction on k finishes the proof, or failure of H' to satisfy the same hypothesis as H determines a container.
- ▶ Our initial idea was to find a conceptually simple nonstandard proof in the ultraproduct of natural numbers, where there is a **notion of dimension** capturing **logarithmic rate of growth** of finite sets.
- ▶ We did come up with such a proof, but because this notion of dimension isn't first-order definable, we had to approximate it with **logarithmic size**, so constants showed up even in the ultraproduct.
- ▶ So we abandoned ultraproducts altogether and wrote the proof for finite hypergraphs (less than 4 pages).
- ▶ As a result, our proof is nonalgorithmic: it builds H' in one step.

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

- ▶ For $U \subseteq [X]^\ell$, $H_U := \{v \in [X]^{k-\ell} : u \cup v \in H \text{ for some } u \in U\}$.

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

- ▶ For $U \subseteq [X]^\ell$, $H_U := \{v \in [X]^{k-\ell} : u \cup v \in H \text{ for some } u \in U\}$.
- ▶ When $U = \{u\}$, write H_u instead, and let $\deg_H(u) := |H_u|$.

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

- ▶ For $U \subseteq [X]^\ell$, $H_U := \{v \in [X]^{k-\ell} : u \cup v \in H \text{ for some } u \in U\}$.
- ▶ When $U = \{u\}$, write H_u instead, and let $\deg_H(u) := |H_u|$.
- ▶ Put $\Delta_\ell(H) := \max_{u \in [X]^\ell} \deg_H(u)$.

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

- ▶ For $U \subseteq [X]^\ell$, $H_U := \{v \in [X]^{k-\ell} : u \cup v \in H \text{ for some } u \in U\}$.
- ▶ When $U = \{u\}$, write H_u instead, and let $\deg_H(u) := |H_u|$.
- ▶ Put $\Delta_\ell(H) := \max_{u \in [X]^\ell} \deg_H(u)$.
- ▶ We define the **logarithmic degree** $\delta_X(H)$ of H as the least $\delta \in [0, 1]$ such that $\Delta_\ell(H) \leq |X|^{(k-\ell)\delta}$ for all $\ell \in \{1, \dots, k-1\}$.

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

- ▶ For $U \subseteq [X]^\ell$, $H_U := \{v \in [X]^{k-\ell} : u \cup v \in H \text{ for some } u \in U\}$.
- ▶ When $U = \{u\}$, write H_u instead, and let $\deg_H(u) := |H_u|$.
- ▶ Put $\Delta_\ell(H) := \max_{u \in [X]^\ell} \deg_H(u)$.
- ▶ We define the **logarithmic degree** $\delta_X(H)$ of H as the least $\delta \in [0, 1]$ such that $\Delta_\ell(H) \leq |X|^{(k-\ell)\delta}$ for all $\ell \in \{1, \dots, k-1\}$.
- ▶ We say that H is **δ -bounded** if $\delta_X(H) \leq \delta$.

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

- ▶ For $U \subseteq [X]^\ell$, $H_U := \{v \in [X]^{k-\ell} : u \cup v \in H \text{ for some } u \in U\}$.
- ▶ When $U = \{u\}$, write H_u instead, and let $\deg_H(u) := |H_u|$.
- ▶ Put $\Delta_\ell(H) := \max_{u \in [X]^\ell} \deg_H(u)$.
- ▶ We define the **logarithmic degree** $\delta_X(H)$ of H as the least $\delta \in [0, 1]$ such that $\Delta_\ell(H) \leq |X|^{(k-\ell)\delta}$ for all $\ell \in \{1, \dots, k-1\}$.
- ▶ We say that H is **δ -bounded** if $\delta_X(H) \leq \delta$.
- ▶ For $\delta, \varepsilon \in [0, 1]$, we call H **(δ, ε) -homogeneous** if it is δ -bounded and $\log_{|X|} |H| \geq 1 + (k-1)\delta - \varepsilon$

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

- ▶ For $U \subseteq [X]^\ell$, $H_U := \{v \in [X]^{k-\ell} : u \cup v \in H \text{ for some } u \in U\}$.
- ▶ When $U = \{u\}$, write H_u instead, and let $\deg_H(u) := |H_u|$.
- ▶ Put $\Delta_\ell(H) := \max_{u \in [X]^\ell} \deg_H(u)$.
- ▶ We define the **logarithmic degree** $\delta_X(H)$ of H as the least $\delta \in [0, 1]$ such that $\Delta_\ell(H) \leq |X|^{(k-\ell)\delta}$ for all $\ell \in \{1, \dots, k-1\}$.
- ▶ We say that H is **δ -bounded** if $\delta_X(H) \leq \delta$.
- ▶ For $\delta, \varepsilon \in [0, 1]$, we call H **(δ, ε) -homogeneous** if it is δ -bounded and $\log_{|X|} |H| \geq 1 + (k-1)\delta - \varepsilon$, so

$$1 + (k-1)\delta - \varepsilon \leq \log_{|X|} |H| \leq 1 + (k-1)\delta.$$

Logarithmic degree and homogeneity

Let H be a k -hypergraph on a finite set X .

- ▶ For $U \subseteq [X]^\ell$, $H_U := \{v \in [X]^{k-\ell} : u \cup v \in H \text{ for some } u \in U\}$.
- ▶ When $U = \{u\}$, write H_u instead, and let $\deg_H(u) := |H_u|$.
- ▶ Put $\Delta_\ell(H) := \max_{u \in [X]^\ell} \deg_H(u)$.
- ▶ We define the **logarithmic degree** $\delta_X(H)$ of H as the least $\delta \in [0, 1]$ such that $\Delta_\ell(H) \leq |X|^{(k-\ell)\delta}$ for all $\ell \in \{1, \dots, k-1\}$.
- ▶ We say that H is **δ -bounded** if $\delta_X(H) \leq \delta$.
- ▶ For $\delta, \varepsilon \in [0, 1]$, we call H **(δ, ε) -homogeneous** if it is δ -bounded and $\log_{|X|} |H| \geq 1 + (k-1)\delta - \varepsilon$, so
$$1 + (k-1)\delta - \varepsilon \leq \log_{|X|} |H| \leq 1 + (k-1)\delta.$$
- ▶ Note: even when H is δ -bounded, the fiber hypergraph H_U need not be δ -bounded, especially for large $U \subseteq X$.

Logarithmic degree and homogeneity

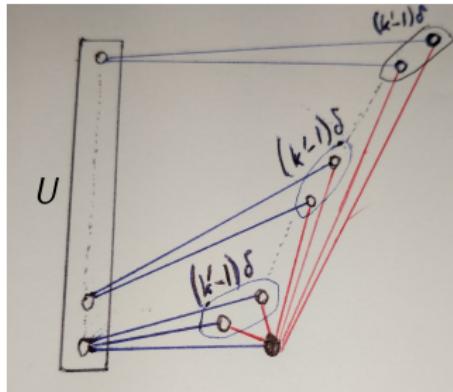
- ▶ Suppose $k := 3$ and H is δ -bounded, so the ℓ -degrees have logarithmic size $\leq (k - \ell)\delta$.

Logarithmic degree and homogeneity

- ▶ Suppose $k := 3$ and H is δ -bounded, so the ℓ -degrees have logarithmic size $\leq (k - \ell)\delta$.
- ▶ In particular, the 2-degrees have logarithmic size $\leq (k' - 1)\delta$, where $k' := k - 1$.

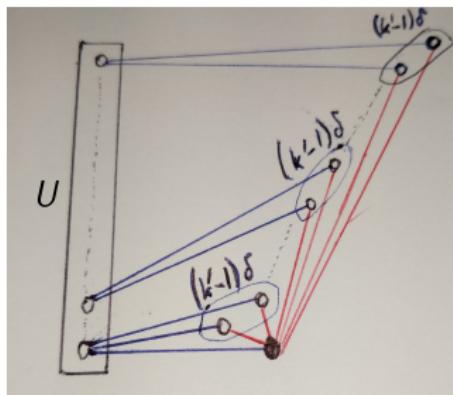
Logarithmic degree and homogeneity

- ▶ Suppose $k := 3$ and H is δ -bounded, so the ℓ -degrees have logarithmic size $\leq (k - \ell)\delta$.
- ▶ In particular, the 2-degrees have logarithmic size $\leq (k' - 1)\delta$, where $k' := k - 1$.



Logarithmic degree and homogeneity

- ▶ Suppose $k := 3$ and H is δ -bounded, so the ℓ -degrees have logarithmic size $\leq (k - \ell)\delta$.
- ▶ In particular, the 2-degrees have logarithmic size $\leq (k' - 1)\delta$, where $k' := k - 1$.



Let $|H|_\delta$ denote the maximum size of a δ -bounded subhypergraph of H :

$$|H|_{\delta} := \max \{ |H'| : H' \subseteq H \text{ and } H' \text{ is } \delta\text{-bounded} \}.$$

Fingerprint/container pair

Fingerprint: Let $\pi \in [0, 1]$.

Fingerprint/container pair

Fingerprint: Let $\pi \in [0, 1]$.

- ▶ A π -fingerprint is a subset $F \subseteq X$ with $\log_{|X|} |F| \leq \pi$.

Fingerprint/container pair

Fingerprint: Let $\pi \in [0, 1]$.

- ▶ A π -fingerprint is a subset $F \subseteq X$ with $\log_{|X|} |F| \leq \pi$.
- ▶ A (π, k) -print is a tuple $F := (F_i)_{0 \leq i < \ell}$ of π -fingerprints, where $\ell \leq k - 1$.

Fingerprint/container pair

Fingerprint: Let $\pi \in [0, 1]$.

- ▶ A π -fingerprint is a subset $F \subseteq X$ with $\log_{|X|} |F| \leq \pi$.
- ▶ A (π, k) -print is a tuple $\mathcal{F} := (F_i)_{0 \leq i < \ell}$ of π -fingerprints, where $\ell \leq k - 1$. Let $\mathcal{F}_\pi^k(X)$ denote the set of all (π, k) -prints.

Fingerprint/container pair

Fingerprint: Let $\pi \in [0, 1]$.

- ▶ A π -fingerprint is a subset $F \subseteq X$ with $\log_{|X|} |F| \leq \pi$.
- ▶ A (π, k) -print is a tuple $\mathcal{F} := (F_i)_{0 \leq i < \ell}$ of π -fingerprints, where $\ell \leq k - 1$. Let $\mathcal{F}_\pi^k(X)$ denote the set of all (π, k) -prints.

Fingerprint/container pair: Let $\sigma \in [0, 1]$. For relations

$\searrow \subseteq \mathcal{I}_X(H) \times \mathcal{F}_\pi^k(X)$ and $\nearrow \subseteq \mathcal{F}_\pi^k(X) \times \mathcal{P}(X)$, the pair (\searrow, \nearrow) is called a (π, σ) -print/container pair for H if

Fingerprint/container pair

Fingerprint: Let $\pi \in [0, 1]$.

- ▶ A π -fingerprint is a subset $F \subseteq X$ with $\log_{|X|} |F| \leq \pi$.
- ▶ A (π, k) -print is a tuple $\mathcal{F} := (F_i)_{0 \leq i < \ell}$ of π -fingerprints, where $\ell \leq k - 1$. Let $\mathcal{F}_\pi^k(X)$ denote the set of all (π, k) -prints.

Fingerprint/container pair: Let $\sigma \in [0, 1]$. For relations

$\searrow \subseteq \mathcal{I}_X(H) \times \mathcal{F}_\pi^k(X)$ and $\nearrow \subseteq \mathcal{F}_\pi^k(X) \times \mathcal{P}(X)$, the pair (\searrow, \nearrow) is called a (π, σ) -print/container pair for H if

- ▶ $\text{dom}(\searrow) = \mathcal{I}_X(H)$ and $\text{im}(\searrow) \subseteq \text{dom}(\nearrow)$;

Fingerprint/container pair

Fingerprint: Let $\pi \in [0, 1]$.

- ▶ A π -fingerprint is a subset $F \subseteq X$ with $\log_{|X|} |F| \leq \pi$.
- ▶ A (π, k) -print is a tuple $\mathcal{F} := (F_i)_{0 \leq i < \ell}$ of π -fingerprints, where $\ell \leq k - 1$. Let $\mathcal{F}_\pi^k(X)$ denote the set of all (π, k) -prints.

Fingerprint/container pair: Let $\sigma \in [0, 1]$. For relations

$\searrow \subseteq \mathcal{I}_X(H) \times \mathcal{F}_\pi^k(X)$ and $\nearrow \subseteq \mathcal{F}_\pi^k(X) \times \mathcal{P}(X)$, the pair (\searrow, \nearrow) is called a (π, σ) -print/container pair for H if

- ▶ $\text{dom}(\searrow) = \mathcal{I}_X(H)$ and $\text{im}(\searrow) \subseteq \text{dom}(\nearrow)$;
- ▶ for each $I \in \mathcal{I}_X(H)$, $\mathcal{F} \in \mathcal{F}_\pi^k(X)$, and $C \in \mathcal{P}(H)$, if $I \searrow \mathcal{F} \nearrow C$, then

$$\bigcup \mathcal{F} \subseteq I \subseteq \bigcup \mathcal{F} \cup C;$$

Fingerprint/container pair

Fingerprint: Let $\pi \in [0, 1]$.

- ▶ A π -fingerprint is a subset $F \subseteq X$ with $\log_{|X|} |F| \leq \pi$.
- ▶ A (π, k) -print is a tuple $\mathbf{F} := (F_i)_{0 \leq i < \ell}$ of π -fingerprints, where $\ell \leq k - 1$. Let $\mathcal{F}_\pi^k(X)$ denote the set of all (π, k) -prints.

Fingerprint/container pair: Let $\sigma \in [0, 1]$. For relations

$\searrow \subseteq \mathcal{I}_X(H) \times \mathcal{F}_\pi^k(X)$ and $\nearrow \subseteq \mathcal{F}_\pi^k(X) \times \mathcal{P}(X)$, the pair (\searrow, \nearrow) is called a (π, σ) -print/container pair for H if

- ▶ $\text{dom}(\searrow) = \mathcal{I}_X(H)$ and $\text{im}(\searrow) \subseteq \text{dom}(\nearrow)$;
- ▶ for each $I \in \mathcal{I}_X(H)$, $\mathbf{F} \in \mathcal{F}_\pi^k(X)$, and $\mathbf{C} \in \mathcal{P}(H)$, if $I \searrow \mathbf{F} \nearrow \mathbf{C}$, then

$$\bigcup \mathbf{F} \subseteq I \subseteq \bigcup \mathbf{F} \cup \mathbf{C};$$

- ▶ each container $\mathbf{C} \in \text{im}(\nearrow)$ has a large complement:

$$\log_{|X|} |X \setminus \mathbf{C}| \geq 1 - \sigma.$$

Containers Theorem — our version

Theorem (Bernshteyn–Delcourt–Towsner–Ts. 2018)

For any $k \in \mathbb{N}^+$, $\pi \in [0, 1]$, and $\varepsilon > 0$, putting $\delta := 1 - \pi$ and $\sigma := 3^{k-1}\varepsilon$, the following holds:

Containers Theorem — our version

Theorem (Bernshteyn–Delcourt–Towsner–Ts. 2018)

For any $k \in \mathbb{N}^+$, $\pi \in [0, 1]$, and $\varepsilon > 0$, putting $\delta := 1 - \pi$ and $\sigma := 3^{k-1}\varepsilon$, the following holds: For any finite set X large enough so that

$$\log_{|X|} 2 \leq \frac{\varepsilon}{2k} \quad \text{and} \quad \log_{|X|} 2 \leq \frac{\pi}{(k-1)},$$

Containers Theorem — our version

Theorem (Bernshteyn–Delcourt–Towsner–Ts. 2018)

For any $k \in \mathbb{N}^+$, $\pi \in [0, 1]$, and $\varepsilon > 0$, putting $\delta := 1 - \pi$ and $\sigma := 3^{k-1}\varepsilon$, the following holds: For any finite set X large enough so that

$$\log_{|X|} 2 \leq \frac{\varepsilon}{2k} \quad \text{and} \quad \log_{|X|} 2 \leq \frac{\pi}{(k-1)},$$

any (δ, ε) -homogeneous hypergraph $H \subseteq [X]^k$ admits a (π, σ) -print/container pair.

Containers Theorem — our version

Theorem (Bernshteyn–Delcourt–Towsner–Ts. 2018)

For any $k \in \mathbb{N}^+$, $\pi \in [0, 1]$, and $\varepsilon > 0$, putting $\delta := 1 - \pi$ and $\sigma := 3^{k-1}\varepsilon$, the following holds: For any finite set X large enough so that

$$\log_{|X|} 2 \leq \frac{\varepsilon}{2k} \quad \text{and} \quad \log_{|X|} 2 \leq \frac{\pi}{(k-1)},$$

any (δ, ε) -homogeneous hypergraph $H \subseteq [X]^k$ admits a (π, σ) -print/container pair.

Remark

- ▶ In most applications, π and δ are constants independent of $|X|$, while ε and σ are parameters of order $O(\log_{|X|} 2)$.

Containers Theorem — our version

Theorem (Bernshteyn–Delcourt–Towsner–Ts. 2018)

For any $k \in \mathbb{N}^+$, $\pi \in [0, 1]$, and $\varepsilon > 0$, putting $\delta := 1 - \pi$ and $\sigma := 3^{k-1}\varepsilon$, the following holds: For any finite set X large enough so that

$$\log_{|X|} 2 \leq \frac{\varepsilon}{2k} \quad \text{and} \quad \log_{|X|} 2 \leq \frac{\pi}{(k-1)},$$

any (δ, ε) -homogeneous hypergraph $H \subseteq [X]^k$ admits a (π, σ) -print/container pair.

Remark

- ▶ In most applications, π and δ are constants independent of $|X|$, while ε and σ are parameters of order $O(\log_{|X|} 2)$.
- ▶ In particular, for a container C , having $\log_{|X|} |X \setminus C| \geq 1 - \sigma$ usually implies $|C| \leq (1 - \alpha)|X|$ for some $\alpha \in (0, 1)$.

Logarithmic size \approx dimension

- ▶ Declaring $\dim(X) := 1$, the sets whose size has the same “order of magnitude” as $|X|$, e.g. $2|X|$ or $|X|/17$, should also have dimension 1.

Logarithmic size \approx dimension

- ▶ Declaring $\dim(X) := 1$, the sets whose size has the same “order of magnitude” as $|X|$, e.g. $2|X|$ or $|X|/17$, should also have dimension 1.
- ▶ On the other hand, a set of size $100\sqrt{|X|}$ should have dimension $1/2$, while $[X]^k$ should have dimension k .

Logarithmic size \approx dimension

- ▶ Declaring $\dim(X) := 1$, the sets whose size has the same “order of magnitude” as $|X|$, e.g. $2|X|$ or $|X|/17$, should also have dimension 1.
- ▶ On the other hand, a set of size $100\sqrt{|X|}$ should have dimension $1/2$, while $[X]^k$ should have dimension k .
- ▶ This becomes well-defined in the ultraproduct of natural numbers and is called **fine pseudofinite dimension**.

Logarithmic size \approx dimension

- ▶ Declaring $\dim(X) := 1$, the sets whose size has the same “order of magnitude” as $|X|$, e.g. $2|X|$ or $|X|/17$, should also have dimension 1.
- ▶ On the other hand, a set of size $100\sqrt{|X|}$ should have dimension $1/2$, while $[X]^k$ should have dimension k .
- ▶ This becomes well-defined in the ultraproduct of natural numbers and is called **fine pseudofinite dimension**.
- ▶ The advantage of dimension over logarithmic size is that it's **max-additive**, i.e. $\dim(A \cup B) = \max \{\dim(A), \dim(B)\}$.

Logarithmic size \approx dimension

- ▶ Declaring $\dim(X) := 1$, the sets whose size has the same “order of magnitude” as $|X|$, e.g. $2|X|$ or $|X|/17$, should also have dimension 1.
- ▶ On the other hand, a set of size $100\sqrt{|X|}$ should have dimension $1/2$, while $[X]^k$ should have dimension k .
- ▶ This becomes well-defined in the ultraproduct of natural numbers and is called **fine pseudofinite dimension**.
- ▶ The advantage of dimension over logarithmic size is that it's **max-additive**, i.e. $\dim(A \cup B) = \max \{\dim(A), \dim(B)\}$.
- ▶ We now give a heuristic (nonsensical) proof treating logarithmic size as dimension.

Logarithmic size \approx dimension

- ▶ Declaring $\dim(X) := 1$, the sets whose size has the same “order of magnitude” as $|X|$, e.g. $2|X|$ or $|X|/17$, should also have dimension 1.
- ▶ On the other hand, a set of size $100\sqrt{|X|}$ should have dimension $1/2$, while $[X]^k$ should have dimension k .
- ▶ This becomes well-defined in the ultraproduct of natural numbers and is called **fine pseudofinite dimension**.
- ▶ The advantage of dimension over logarithmic size is that it's **max-additive**, i.e. $\dim(A \cup B) = \max \{\dim(A), \dim(B)\}$.
- ▶ We now give a heuristic (nonsensical) proof treating logarithmic size as dimension. This lets us ignore the ε from (δ, ε) -homogeneity.

Logarithmic size \approx dimension

- ▶ Declaring $\dim(X) := 1$, the sets whose size has the same “order of magnitude” as $|X|$, e.g. $2|X|$ or $|X|/17$, should also have dimension 1.
- ▶ On the other hand, a set of size $100\sqrt{|X|}$ should have dimension $1/2$, while $[X]^k$ should have dimension k .
- ▶ This becomes well-defined in the ultraproduct of natural numbers and is called **fine pseudofinite dimension**.
- ▶ The advantage of dimension over logarithmic size is that it's **max-additive**, i.e. $\dim(A \cup B) = \max \{\dim(A), \dim(B)\}$.
- ▶ We now give a heuristic (nonsensical) proof treating logarithmic size as dimension. This lets us ignore the ε from (δ, ε) -homogeneity.
- ▶ We prove by induction on k , so let H be a δ -homogeneous k -hypergraph on X and I be an independent set.

Logarithmic size \approx dimension

- ▶ Declaring $\dim(X) := 1$, the sets whose size has the same “order of magnitude” as $|X|$, e.g. $2|X|$ or $|X|/17$, should also have dimension 1.
- ▶ On the other hand, a set of size $100\sqrt{|X|}$ should have dimension $1/2$, while $[X]^k$ should have dimension k .
- ▶ This becomes well-defined in the ultraproduct of natural numbers and is called **fine pseudofinite dimension**.
- ▶ The advantage of dimension over logarithmic size is that it's **max-additive**, i.e. $\dim(A \cup B) = \max \{\dim(A), \dim(B)\}$.
- ▶ We now give a heuristic (nonsensical) proof treating logarithmic size as dimension. This lets us ignore the ε from (δ, ε) -homogeneity.
- ▶ We prove by induction on k , so let H be a δ -homogeneous k -hypergraph on X and I be an independent set.
- ▶ Need to assign a **fingerprint** $\textcolor{violet}{F}$ to I and a **container** $\textcolor{green}{C}$ to $\textcolor{violet}{F}$.

Heuristic proof

- ▶ Let $F \subseteq I$ be a **maximal** homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- ▶ **Case 1:** $\dim(F) = 1 - \delta$.

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- ▶ **Case 1:** $\dim(F) = 1 - \delta$. Then $\dim(H') = 1 + (k-2)\delta$, so H' is a δ -homogeneous $(k-1)$ -hypergraph and induction applies!

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- ▶ **Case 1:** $\dim(F) = 1 - \delta$. Then $\dim(H') = 1 + (k-2)\delta$, so H' is a δ -homogeneous $(k-1)$ -hypergraph and induction applies!
- ▶ (This is where the print becomes a tuple and not just F .)

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- ▶ **Case 2:** $\dim(F) < 1 - \delta$.

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- ▶ **Case 2:** $\dim(F) < 1 - \delta$. Then for any $x \in I \setminus F$ it must be that

$$\dim(H_x \setminus H_F) < (k-1)\delta.$$

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- ▶ **Case 2:** $\dim(F) < 1 - \delta$. Then for any $x \in I \setminus F$ it must be that

$$\dim(H_x \setminus H_F) < (k-1)\delta.$$

- ▶ Otherwise, because dimension is max-additive, $H' \cup H_x$ is still δ -bounded,

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- ▶ **Case 2:** $\dim(F) < 1 - \delta$. Then for any $x \in I \setminus F$ it must be that

$$\dim(H_x \setminus H_F) < (k-1)\delta.$$

- ▶ Otherwise, because dimension is max-additive, $H' \cup H_x$ is still δ -bounded, so $F \cup \{x\}$ is still expanding, violating the maximality of F .

Heuristic proof

- ▶ Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- ▶ Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- ▶ **Case 2:** $\dim(F) < 1 - \delta$. Then for any $x \in I \setminus F$ it must be that

$$\dim(H_x \setminus H_F) < (k-1)\delta.$$

- ▶ Otherwise, because dimension is max-additive, $H' \cup H_x$ is still δ -bounded, so $F \cup \{x\}$ is still expanding, violating the maximality of F .
- ▶ Thus, $C := \{x \in X : \dim(H_x \setminus H_F) < (k-1)\delta\}$ serves as a container for the print F since $I \subseteq F \cup C$

Heuristic proof

- Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- Case 2:** $\dim(F) < 1 - \delta$. Then for any $x \in I \setminus F$ it must be that

$$\dim(H_x \setminus H_F) < (k-1)\delta.$$

- Otherwise, because dimension is max-additive, $H' \cup H_x$ is still δ -bounded, so $F \cup \{x\}$ is still expanding, violating the maximality of F .

- Thus, $C := \{x \in X : \dim(H_x \setminus H_F) < (k-1)\delta\}$ serves as a container for the print F since $I \subseteq F \cup C$ and it's not hard to check (again using max-additivity of dimension) that $X \setminus C$ is of dimension 1.

Heuristic proof

- Let $F \subseteq I$ be a maximal homogeneously expanding subset, i.e.

$$|H_F|_\delta \geq |F| \cdot |X|^{(k-1)\delta}.$$

- Let $H' \subseteq H_F$ be a witness, i.e. it is δ -bounded and

$$|H'| \geq |F| \cdot |X|^{(k-1)\delta}.$$

- Note: $\dim(F) \leq 1 - \delta = \pi$ since $\dim(H') \leq 1 + (k-2)\delta$.

- Case 2:** $\dim(F) < 1 - \delta$. Then for any $x \in I \setminus F$ it must be that

$$\dim(H_x \setminus H_F) < (k-1)\delta.$$

- Otherwise, because dimension is max-additive, $H' \cup H_x$ is still δ -bounded, so $F \cup \{x\}$ is still expanding, violating the maximality of F .

- Thus, $C := \{x \in X : \dim(H_x \setminus H_F) < (k-1)\delta\}$ serves as a container for the print F since $I \subseteq F \cup C$ and it's not hard to check (again using max-additivity of dimension) that $X \setminus C$ is of dimension 1.

Independent sets in algebraic hypergraphs

Inspired by how well the idea of dimension worked, Bernshteyn, Delcourt, and I considered another setting where a notion of dimension is available, namely, [algebraic hypergraphs in algebraically closed fields](#).

Independent sets in algebraic hypergraphs

Inspired by how well the idea of dimension worked, Bernshteyn, Delcourt, and I considered another setting where a notion of dimension is available, namely, algebraic hypergraphs in algebraically closed fields.

Theorem (Bernshteyn–Delcourt–Ts. 2018+)

If a given algebraic hypergraph is “dense”, then a Zariski-generic low-dimensional polynomially parameterized subset of the vertices induces a subhypergraph that is also “dense” (in particular, far from independent).

Independent sets in algebraic hypergraphs

Inspired by how well the idea of dimension worked, Bernshteyn, Delcourt, and I considered another setting where a notion of dimension is available, namely, algebraic hypergraphs in algebraically closed fields.

Theorem (Bernshteyn–Delcourt–Ts. 2018+)

If a given algebraic hypergraph is “dense”, then a Zariski-generic low-dimensional polynomially parameterized subset of the vertices induces a subhypergraph that is also “dense” (in particular, far from independent).

- ▶ The first difficulty here is that algebraic sets don't look random.

Independent sets in algebraic hypergraphs

Inspired by how well the idea of dimension worked, Bernshteyn, Delcourt, and I considered another setting where a notion of dimension is available, namely, algebraic hypergraphs in algebraically closed fields.

Theorem (Bernshteyn–Delcourt–Ts. 2018+)

If a given algebraic hypergraph is “dense”, then a Zariski-generic low-dimensional polynomially parameterized subset of the vertices induces a subhypergraph that is also “dense” (in particular, far from independent).

- ▶ The first difficulty here is that algebraic sets don't look random.
- ▶ However, as the degrees of the polynomials defining it get higher, it looks more and more random — enough for our arguments to go through.

Independent sets in algebraic hypergraphs

Inspired by how well the idea of dimension worked, Bernshteyn, Delcourt, and I considered another setting where a notion of dimension is available, namely, algebraic hypergraphs in algebraically closed fields.

Theorem (Bernshteyn–Delcourt–Ts. 2018+)

If a given algebraic hypergraph is “dense”, then a Zariski-generic low-dimensional polynomially parameterized subset of the vertices induces a subhypergraph that is also “dense” (in particular, far from independent).

- ▶ The first difficulty here is that algebraic sets don't look random.
- ▶ However, as the degrees of the polynomials defining it get higher, it looks more and more random — enough for our arguments to go through.
- ▶ The second difficulty is that not only did **we** not know algebraic geometry, but the kinds of questions that arose didn't seem to be known to algebraic geometers either.

Independent sets in algebraic hypergraphs

Inspired by how well the idea of dimension worked, Bernshteyn, Delcourt, and I considered another setting where a notion of dimension is available, namely, algebraic hypergraphs in algebraically closed fields.

Theorem (Bernshteyn–Delcourt–Ts. 2018+)

If a given algebraic hypergraph is “dense”, then a Zariski-generic low-dimensional polynomially parameterized subset of the vertices induces a subhypergraph that is also “dense” (in particular, far from independent).

- ▶ The first difficulty here is that algebraic sets don't look random.
- ▶ However, as the degrees of the polynomials defining it get higher, it looks more and more random — enough for our arguments to go through.
- ▶ The second difficulty is that not only did **we** not know algebraic geometry, but the kinds of questions that arose didn't seem to be known to algebraic geometers either.
- ▶ Model theory to the rescue: long live saturation and compactness!

An ad that eventually popped up on Henry's twitter

An ad that eventually popped up on Henry's twitter

 Containership @containershipio · Aug 9

Deploy, scale and manage your microservices across any major cloud provider using Containership. Try it free today!

Containership

CONTAINERS MADE EASY

Deploy instantly on any or all of the major cloud providers.

GET STARTED

Deploy Containerized Apps on Any Cloud Provider Free

containership.io

Q 8 H 17 M

Promoted

Thank you