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From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

Certain properties of dense combinatorial structures are inherited by their
randomly chosen sparse substructures.

Typical example: from dense Szemerédi to sparse random Szemerédi.

» Say that a finite set S C N is (0, k)-Szemerédi, where 6 > 0 and k € N,
if every subset A C S with |A| > §|S| contains a k-term arithmetic
progression.

» Dense Szemerédi (Szemerédi 1975): For all § > 0 and k € N, and for
large enough n € N, the set n:={0,...,n— 1} is (0, k)-Szemerédi.

» Sparse Random Szemerédi (Conlon—Gowers 2016, Schacht 2016): For
all § > 0 and k € N, there is C > 0 such that for any sequence (pp)nen

1
of probabilities satisfying Cn™ -1 < p, < 1, we have
nIl_)ﬁ;()]P’[[n]pn is (0, k)-Szemerédi| = 1,

where [n], denotes a randomly chosen subset where each element is
included with probability p.
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Associated k-hypergraph

» We define a k-hypergraph H on n (i.e. H C [n]*) by
h:={my,my,...,my} € H <= his an arithmetic progression.
> A set | C n has no k-term arithmetic progressions <= [ is independent
inH, ie. HN[k=0.

» Thus, aset S C nis (6, k)-Szemerédi <= no subset of S of size
> §|S| is independent in H.

> To prove the sparse random Szemerédi theorem, we need to find a really
good upper bound on the number |Z(H)| of independent sets in H.

» This is what the hypergraph containers theorem does. It was proven
by Balogh, Morris, and Samotij (JAMS, 2015), and independently by
Saxton and Thomason (Inventiones Math., 2015).

> It also can be viewed as a transference principle: in homogeneous
hypergraphs, sparse random subsets are still not independent.



Hypergraph Containers

The hypergraph containers theorem gives a tool for analyzing the

structure of all the independent subsets in a hypergraph by “capturing”
each independent set in one of a small number of “containers”.



Hypergraph Containers

The hypergraph containers theorem gives a tool for analyzing the
structure of all the independent subsets in a hypergraph by “capturing”
each independent set in one of a small number of “containers”.

» Let H be a k-hypergraph with n vertices and n'T(k=1)9 edges.



Hypergraph Containers

The hypergraph containers theorem gives a tool for analyzing the
structure of all the independent subsets in a hypergraph by “capturing”
each independent set in one of a small number of “containers”.

» Let H be a k-hypergraph with n vertices and n'T(k=1)9 edges.

» In general, |Z(H)| ~ 2";



Hypergraph Containers

The hypergraph containers theorem gives a tool for analyzing the
structure of all the independent subsets in a hypergraph by “capturing”
each independent set in one of a small number of “containers”.

» Let H be a k-hypergraph with n vertices and n'T(k=1)9 edges.

> In general, |Z(H)| ~ 2"; for instance, when each edge of H involves at
least one vertex from a small set of vertices.



Hypergraph Containers

The hypergraph containers theorem gives a tool for analyzing the
structure of all the independent subsets in a hypergraph by “capturing”
each independent set in one of a small number of “containers”.

» Let H be a k-hypergraph with n vertices and n'T(k=1)9 edges.

> In general, |Z(H)| ~ 2"; for instance, when each edge of H involves at
least one vertex from a small set of vertices.

» However, this doesn’t happen in homogeneous hypergraphs, i.e., those in
which the 1-degree of each vertex is not much more than n(k=1% and
similar upper bounds hold for the /-degrees of the sets of ¢ < k vertices.



Hypergraph Containers

The hypergraph containers theorem gives a tool for analyzing the
structure of all the independent subsets in a hypergraph by “capturing”
each independent set in one of a small number of “containers”.

» Let H be a k-hypergraph with n vertices and n'T(k=1)9 edges.

> In general, |Z(H)| ~ 2"; for instance, when each edge of H involves at
least one vertex from a small set of vertices.

» However, this doesn’t happen in homogeneous hypergraphs, i.e., those in
which the 1-degree of each vertex is not much more than n(k=1% and
similar upper bounds hold for the /-degrees of the sets of ¢ < k vertices.

» The containers theorem says that in such hypergraphs, each independent
set | contains a fingerprint F, i.e., a subset of size O (n1_5).



Hypergraph Containers

The hypergraph containers theorem gives a tool for analyzing the
structure of all the independent subsets in a hypergraph by “capturing”
each independent set in one of a small number of “containers”.

» Let H be a k-hypergraph with n vertices and n'T(k=1)9 edges.

> In general, |Z(H)| ~ 2"; for instance, when each edge of H involves at
least one vertex from a small set of vertices.

» However, this doesn’t happen in homogeneous hypergraphs, i.e., those in
which the 1-degree of each vertex is not much more than n(k=1% and
similar upper bounds hold for the /-degrees of the sets of ¢ < k vertices.

» The containers theorem says that in such hypergraphs, each independent
set | contains a fingerprint F, i.e., a subset of size O (n1_5).

» Each fingerprint F determines a container C(F) of size less than
(1 — a)n, where a € (0, 1), such that if F is a fingerprint of an
independent set /, then | C C(F).
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Hypergraph Containers (continued)

» Containers Theorem: | — F — C(F) such that F C | C C(F).

c(F)

1—a)n

» Each container can host < 2 independent sets, and

# of containers < # of fingerprints < 20(n),
so ]I(H)| < 2(1—a)n+o(n) < 2(1—%)n<< on.

» Note: in this calculation we used the trivial upper bound 2(1=*)" on the
number of independent sets inside a given container; in practice, the
above machinery is iteratively applied to the container, leading to
stronger results, such as the Sparse Random Szemerédi theorem.
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Our proof of the Containers Theorem

» The Balogh—Morris—Samotij and Saxton—Thomason proofs are quite
involved and both use the so-called scythe algorithm.

> Scythe algorithm goes through every vertex of the k-hypergraph H and
builds a (k — 1)-hypergraph H'. Either H’' satisfies the same hypothesis
as H, so induction on k finishes the proof, or failure of H' to satisfy the
same hypothesis as H determines a container.

> Qur initial idea was to find a conceptually simple nonstandard proof in
the ultraproduct of natural numbers, where there is a notion of dimension
capturing logarithmic rate of growth of finite sets.

» We did come up with such a proof, but because this notion of dimension
isn't first-order definable, we had to approximate it with logarithmic size,
so constants showed up even in the ultraproduct.

» So we abandoned ultraproducts altogether and wrote the proof for finite
hypergraphs (less than 4 pages).

» As a result, our proof is nonalgorithmic: it builds H' in one step.
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Let H be a k-hypergraph on a finite set X.

» For U C [X]%, Hy = {v e [X]**: uUv € H for some u € U}.
» When U = {u}, write H, instead, and let degy(u) := |H,|.
> Put Ay(H) == max,cx)e degp(u).

» We define the logarithmic degree dx(H) of H as the least ¢ € [0, 1] such
that Ag(H) < |X|=9% forall £ € {1,...,k —1}.

» We say that H is J-bounded if dx(H) < d.

» For d,e € [0,1], we call H (¢, 2)-homogeneous if it is d-bounded and
logx||H| > 1+ (k— 1) — ¢, so
1+ (k—1)0 —e < logx |H| <1+ (k —1)é.

» Note: even when H is 6-bounded, the fiber hypergraph Hy need not be
d-bounded, especially for large U C X.
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Logarithmic degree and homogeneity

> Suppose k := 3 and H is §-bounded, so the ¢-degrees have logarithmic
size < (k — £)6.

» In particular, the 2-degrees have logarithmic size < (k" — 1)d, where
k' :=k—1.

Let |H|; denote the maximum size of a §-bounded subhypergraph of H:
|H|s :==max {|H'| : H C H and H' is 6-bounded}.
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» A (m, k)-print is a tuple F := (F;)o<i<¢ of m-fingerprints, where

¢ < k—1. Let FX(X) denote the set of all (, k)-prints.

Fingerprint/container pair: Let o € [0, 1]. For relations

NC Ix(H) x FE(X) and 2C FE(X) x 2(X), the pair (\, /) is called
a (m, o)-print/container pair for H if

» dom(\,) = Zx(H) and im(Y,) € dom(,");

» for each | € Ix(H), F € FX(X), and C € 2(H), if I \, F /' C, then
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» A (m, k)-print is a tuple F := (F;)o<i<¢ of m-fingerprints, where
¢ < k—1. Let FX(X) denote the set of all (, k)-prints.

Fingerprint/container pair: Let o € [0, 1]. For relations

NC Ix(H) x FE(X) and 2C FE(X) x 2(X), the pair (\, /) is called
a (m, o)-print/container pair for H if

» dom(\,) = Zx(H) and im(Y,) € dom(,");

» for each | € Ix(H), F € FX(X), and C € 2(H), if I \, F /' C, then

UFQIQUFUC

» each container C € im(") has a large complement:

|0g|X| |X\C| >1-o.
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Containers Theorem — our version

Theorem (Bernshteyn—Delcourt—Towsner-Ts. 2018)

For any k € N*, 7 € [0,1], and € > 0, putting § .= 1 — 7 and o = 3k ¢,
the following holds: For any finite set X large enough so that

™
|0g|X| 2 2k and IOg|X| 2 < m,

any (6, €)-homogeneous hypergraph H C [X]* admits a
(m, )-print/container pair.

Remark

» In most applications, m and § are constants independent of |X|, while e
and o are parameters of order O(logx| 2).

> In particular, for a container C, having log|x| |X \ C| > 1 — o usually
implies |C| < (1 — «)|X| for some a € (0,1).
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Logarithmic size ~ dimension

» Declaring dim(X) := 1, the sets whose size has the same “order of
magnitude” as |X|, e.g. 2|X] or |X|/17, should also have dimension 1.

» On the other hand, a set of size 100/|X| should have dimension 1/2,
while [X]¥ should have dimension k.

» This becomes well-defined in the ultraproduct of natural numbers and is
called fine pseudofinite dimension.

» The advantage of dimension over logarithmic size is that it's
max-additive, i.e. dim(AU B) = max {dim(A),dim(B)}.

» We now give a heuristic (nonsensical) proof treating logarithmic size as
dimension. This lets us ignore the e from (J, €)-homogeneity.

» We prove by induction on k, so let H be a 6-homogeneous k-hypergraph
on X and / be an independent set.

> Need to assign a fingerprint F to / and a container C to F.
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> Let F C /| be a maximal homogeneously expanding subset, i.e.
|Hels = |F|- |X|*1°,

v

Let H' C Hg be a witness, i.e. it is d-bounded and
[H'| > |F|-|X|k10,

v

Note: dim(F) < 1— 9§ = 7 since dim(H’) <1+ (k — 2)J.

Case 1: dim(F) =1 —¢. Then dim(H') =1+ (k —2)J, so H' is a
d-homogeneous (k — 1)-hypergraph and induction applies!

v

v

(This is where the print becomes a tuple and not just F.)
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Independent sets in algebraic hypergraphs

Inspired by how well the idea of dimension worked, Bernshteyn, Delcourt,
and | considered another setting where a notion of dimension is available,
namely, algebraic hypergraphs in algebraically closed fields.

Theorem (Bernshteyn—Delcourt-Ts. 2018+)

If a given algebraic hypergraph is “dense”, then a Zariski-generic
low-dimensional polynomially parameterized subset of the vertices induces a
subhypergraph that is also “dense” (in particular, far from independent).

» The first difficulty here is that algebraic sets don't look random.

> However, as the degrees of the polynomials defining it get higher, it looks
more and more random — enough for our arguments to go through.

» The second difficulty is that not only did we not know algebraic
geometry, but the kinds of questions that arose didn’t seem to be known
to algebraic geometers either.

» Model theory to the rescue: long live saturation and compactness!
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