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From “dense” to “sparse random” setting

Transference principle in extremal combinatorics

Certain properties of dense combinatorial structures are inherited by their
randomly chosen sparse substructures.

Typical example: from dense Szemerédi to sparse random Szemerédi.

I Say that a finite set S ⊂ N is (δ, k)-Szemerédi, where δ > 0 and k ∈ N,
if every subset A ⊆ S with |A| > δ|S | contains a k-term arithmetic
progression.

I Dense Szemerédi (Szemerédi 1975): For all δ > 0 and k ∈ N, and for
large enough n ∈ N, the set n ..= {0, . . . , n − 1} is (δ, k)-Szemerédi.

I Sparse Random Szemerédi (Conlon–Gowers 2016, Schacht 2016): For
all δ > 0 and k ∈ N, there is C > 0 such that for any sequence (pn)n∈N

of probabilities satisfying Cn−
1

k−1 6 pn 6 1, we have

lim
n→∞

P
[
[n]pn is (δ, k)-Szemerédi

]
= 1,

where [n]p denotes a randomly chosen subset where each element is
included with probability p.
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I Sparse Random Szemerédi (Conlon–Gowers 2016, Schacht 2016): For
all δ > 0 and k ∈ N, there is C > 0 such that for any sequence (pn)n∈N

of probabilities satisfying Cn−
1

k−1 6 pn 6 1, we have

lim
n→∞

P
[
[n]pn is (δ, k)-Szemerédi
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if every subset A ⊆ S with |A| > δ|S | contains a k-term arithmetic
progression.
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Associated k-hypergraph

I We define a k-hypergraph H on n (i.e. H ⊆ [n]k) by

h ..= {m1,m2, . . . ,mk} ∈ H ..⇐⇒ h is an arithmetic progression.

I A set I ⊆ n has no k-term arithmetic progressions ⇐⇒ I is independent
in H, i.e. H ∩ [I ]k = ∅.

I Thus, a set S ⊆ n is (δ, k)-Szemerédi ⇐⇒ no subset of S of size
> δ|S | is independent in H.

I To prove the sparse random Szemerédi theorem, we need to find a really
good upper bound on the number |I(H)| of independent sets in H.

I This is what the hypergraph containers theorem does. It was proven
by Balogh, Morris, and Samotij (JAMS, 2015), and independently by
Saxton and Thomason (Inventiones Math., 2015).

I It also can be viewed as a transference principle: in “dense” hypergraphs,
sparse random subsets are still “somewhat dense”.
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Hypergraph Containers

The hypergraph containers theorem gives a tool for analyzing the
structure of all the independent subsets in a hypergraph by “capturing”
each independent set in one of a small number of “containers”.

I Let H be a k-hypergraph with n vertices and n1+(k−1)δ edges.

I In general, |I(H)| ≈ 2n; for instance, when each edge of H involves at
least one vertex from a small set of vertices.

I However, this doesn’t happen in homogeneous hypergraphs, i.e., those in
which the 1-degree of each vertex is not much more than n(k−1)δ, and
similar upper bounds hold for the `-degrees of the sets of ` < k vertices.

I The containers theorem says that in such hypergraphs, each independent
set I contains a fingerprint F , i.e., a subset of size O

(
n1−δ

)
.

I Each fingerprint F determines a container C (F ) of size less than
(1− α)n, where α ∈ (0, 1), such that if F is a fingerprint of an
independent set I , then I ⊆ C (F ).
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Hypergraph Containers (continued)

I Containers Theorem: I 7→ F 7→ C (F ) such that F ⊆ I ⊆ C (F ).

I Each container can host 6 2(1−α)n independent sets, and

# of containers 6 # of fingerprints 6 2o(n),

so |I(H)| 6 2(1−α)n+o(n) � 2(1−
α
2
)n� 2n.

I Note: in this calculation we used the trivial upper bound 2(1−α)n on the
number of independent sets inside a given container; in practice, the
above machinery is iteratively applied to the container, leading to
stronger results, such as the Sparse Random Szemerédi theorem.
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Our proof of the Containers Theorem

I The Balogh–Morris–Samotij and Saxton–Thomason proofs are quite
involved and both use the so-called scythe algorithm.

I Scythe algorithm goes through every vertex of the k-hypergraph H and
builds a (k − 1)-hypergraph H ′. Either H ′ satisfies the same hypothesis
as H, so induction on k finishes the proof, or failure of H ′ to satisfy the
same hypothesis as H determines a container.

I Our initial idea was to find a conceptually simple nonstandard proof in
the ultraproduct of natural numbers, where there is a notion of dimension
capturing logarithmic rate of growth of finite sets.

I We did come up with such a proof, but because this notion of dimension
isn’t first-order definable, we had to approximate it with logarithmic size,
so constants showed up even in the ultraproduct.

I So we abandoned ultraproducts altogether and wrote the proof for finite
hypergraphs (less than 4 pages).

I As a result, our proof is nonalgorithmic: it builds H ′ in one step.
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Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε

, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

Let H be a k-hypergraph on a finite set X .

I For U ⊆ [X ]`, HU
..=

{
v ∈ [X ]k−` : u ∪ v ∈ H for some u ∈ U

}
.

I When U = {u}, write Hu instead, and let degH(u)
..= |Hu|.

I Put ∆`(H) ..= maxu∈[X ]` degH(u).

I We define the logarithmic degree δX (H) of H as the least δ ∈ [0, 1] such
that ∆`(H) 6 |X |(k−`)δ for all ` ∈ {1, . . . , k − 1}.

I We say that H is δ-bounded if δX (H) 6 δ.

I For δ, ε ∈ [0, 1], we call H (δ, ε)-homogeneous if it is δ-bounded and
log|X | |H| > 1 + (k − 1)δ − ε, so

1 + (k − 1)δ − ε 6 log|X | |H| 6 1 + (k − 1)δ.

I Note: even when H is δ-bounded, the fiber hypergraph HU need not be
δ-bounded, especially for large U ⊆ X .



Logarithmic degree and homogeneity

I Suppose k ..= 3 and H is δ-bounded, so the `-degrees have logarithmic
size 6 (k − `)δ.

I In particular, the 2-degrees have logarithmic size 6 (k ′ − 1)δ, where
k ′ ..= k − 1.

Let |H|δ denote the maximum size of a δ-bounded subhypergraph of H:

|H|δ ..= max
{
|H ′| : H ′ ⊆ H and H ′ is δ-bounded

}
.
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Fingerprint/container pair

Fingerprint: Let π ∈ [0, 1].

I A π-fingerprint is a subset F ⊆ X with log|X | |F | 6 π.

I A (π, k)-print is a tuple F ..= (Fi )06i<` of π-fingerprints, where

` 6 k − 1. Let F k
π (X ) denote the set of all (π, k)-prints.

Fingerprint/container pair: Let σ ∈ [0, 1]. For relations

↘⊆ IX (H)× F k
π (X ) and ↗⊆ F k

π (X )× P(X ), the pair (↘,↗) is called

a (π, σ)-print/container pair for H if

I dom(↘) = IX (H) and im(↘) ⊆ dom(↗);

I for each I ∈ IX (H), F ∈ F k
π (X ), and C ∈ P(H), if I ↘ F ↗ C , then⋃
F ⊆ I ⊆

⋃
F ∪ C ;

I each container C ∈ im(↗) has a large complement:

log|X | |X \ C | > 1− σ.
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Fingerprint/container pair: Let σ ∈ [0, 1]. For relations
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π (X ) and ↗⊆ F k
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⋃
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Containers Theorem — our version

Theorem (Bernshteyn–Delcourt–Towsner–Ts. 2018)

For any k ∈ N+, π ∈ [0, 1], and ε > 0, putting δ ..= 1− π and σ ..= 3k−1ε,
the following holds:

For any finite set X large enough so that

log|X | 2 6
ε

2k
and log|X | 2 6

π

(k − 1)
,

any (δ, ε)-homogeneous hypergraph H ⊆ [X ]k admits a
(π, σ)-print/container pair.

Remark
I In most applications, π and δ are constants independent of |X |, while ε

and σ are parameters of order O(log|X | 2).

I In particular, for a container C , having log|X | |X \ C | > 1− σ usually
implies |C | 6 (1− α)|X | for some α ∈ (0, 1).
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Logarithmic size ≈ dimension

I Declaring dim(X ) ..= 1, the sets whose size has the same “order of
magnitude” as |X |, e.g. 2|X | or |X |/17, should also have dimension 1.

I On the other hand, a set of size 100
√

|X | should have dimension 1/2,
while [X ]k should have dimension k .

I This becomes well-defined in the ultraproduct of natural numbers and is
called fine pseudofinite dimension.

I The advantage of dimension over logarithmic size is that it’s
max-additive, i.e. dim(A ∪ B) = max {dim(A), dim(B)}.

I We now give a heuristic (nonsensical) proof treating logarithmic size as
dimension. This lets us ignore the ε from (δ, ε)-homogeneity.

I We prove by induction on k , so let H be a δ-homogeneous k-hypergraph
on X and I be an independent set.

I Need to assign a fingerprint F to I and a container C to F .
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Heuristic proof

I Let F ⊆ I be a maximal homogeneously expanding subset, i.e.

|HF |δ > |F | · |X |(k−1)δ.

I Let H ′ ⊆ HF be a witness, i.e. it is δ-bounded and

|H ′| > |F | · |X |(k−1)δ.

I Note: dim(F ) 6 1− δ = π since dim(H ′) 6 1 + (k − 2)δ.

I Case 1: dim(F ) = 1− δ. Then dim(H ′) = 1 + (k − 2)δ, so H ′ is a
δ-homogeneous (k − 1)-hypergraph and induction applies!

I (This is where the print becomes a tuple and not just F .)
Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae
lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis
augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean
placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat
quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus
nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.
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I Case 2: dim(F ) < 1− δ.

Then for any x ∈ I \ F it must be that

dim(Hx \ HF ) < (k − 1)δ.

I Otherwise, because dimension is max-additive, H ′ ∪ Hx is still δ-bounded,

so F ∪ {x} is still expanding, violating the maximality of F .

I Thus, C ..= {x ∈ X : dim(Hx \ HF ) < (k − 1)δ} serves as a container for
the print F since I ⊆ F ∪ C

and it’s not hard to check (again using
max-additivity of dimension) that X \ C is of dimension 1.

Lorem
ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum
gravida mauris. Nam arcu libero, nonummy eget, consectetuer id,
vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac,
nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue
eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.
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gravida mauris. Nam arcu libero, nonummy eget, consectetuer id,
vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis
egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus
vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor
gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac,
nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue
eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci
dignissim rutrum.
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Independent sets in algebraic hypergraphs

Inspired by how well the idea of dimension worked, Bernshteyn, Delcourt,
and I considered another setting where a notion of dimension is available,
namely, algebraic hypergraphs in algebraically closed fields.

Theorem (Bernshteyn–Delcourt–Ts. 2018+)

If a given algebraic hypergraph is “dense”, then a Zariski-generic
low-dimensional polynomially parameterized subset of the vertices induces a
subhypergraph that is also “dense” (in particular, far from independent).

I The first difficulty here is that algebraic sets don’t look random.

I However, as the degrees of the polynomials defining it get higher, it looks
more and more random — enough for our arguments to go through.

I The second difficulty is that not only did we not know algebraic
geometry, but the kinds of questions that arose didn’t seem to be known
to algebraic geometers either.

I Model theory to the rescue: long live saturation and compactness!
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