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A Theorem of Erdös

Theorem (Erdös)

Suppose X ⊂ Rd is infinite. Then there is Y ⊆ X with |Y | = |X |, such
that all pairs of points from Y have distinct distances.

Proof when X is countable.

1 Enumerate X = {an : n < ω}. Define f :
(N
2

)
→ R via

f ({n,m}) = ‖an − am‖.
2 Apply the canonical Ramsey theorem to f to get some infinite Y ⊆ X

on which f is either homogeneous, or min-homogeneous, or
max-homogeneous, or rainbow (injective).

3 If we get a rainbow set, then we are done. Otherwise, get a
contradiction to Hilbert’s basis theorem.
For example, if f is min-homogeneous, look at

Vn := {x ∈ Cd :
∑
i<d

(x(i)−am(i))2 =
∑
i<d

(an(i)−am(i))2 for all m < n}.
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Cardinals

We work in ZFC .

The cardinal numbers are well-ordered:
0, 1, 2, . . . ,ℵ0,ℵ1,ℵ2, . . . ,ℵω,ℵω+1,ℵω+2, . . . ,ℵω1 ,ℵω1+1, . . . ,

Definition

Suppose κ is an infinite cardinal. Let X be a set of cardinality κ.
κ is singular if X can be split into fewer than κ pieces, each of size less
than κ. Otherwise, κ is regular.

2ℵ0 , the cardinality of the continuum, fits somewhere among the ℵ’s.
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Higher arity—What Erdös Proved

Definition

Suppose X ⊂ Rd and 2 ≤ a ≤ d + 1. Then say that X is a-rainbow if for
all u, v ∈

(X
a

)
, if u and v both have non-zero volume, then they have

distinct volumes.

Theorem (Erdös)

Suppose X ⊆ Rd is infinite, and |X | is regular, and 2 ≤ a ≤ d + 1. Then
there is Y ⊆ X with |Y | = |X |, such that Y is a-rainbow.

Theorem (Erdös)

Suppose κ ≤ 2ℵ0 is singular. Then there is X ⊆ Rd of size κ, such that
whenever Y ⊆ X has size κ, then Y is not 3-rainbow.
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Gameplan

We want to control degenerate simplices, and we want to understand what
happens at singular cardinals.

Given X ⊆ Rd , choose a finite coloring f : X 2d+2 → c such that f (w)
encodes the set of all subsets of w of zero volume, and the set of all pairs
of subsets of w of equal volume.

Our goal is to find some Y ⊆ X such that f behaves canonically on Y .

If f were some arbitrary coloring, we would need to first fix an ordering of
X . We would then apply the Erdös-Rado theorem to get some Y ⊆ X
such that f is constant on increasing tuples from Y ; typically |Y | << |X |.

But note that our coloring f is definable in (C,+, ·, 0, 1), a stable
structure. This gives us added leverage.
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Stability

Definition

Suppose M is a structure. Then M is stable if: for all N ≡ M, for all
d < ω, and for all definable X ⊆ Nd × Nd , X does not contain an infinite
half-graph.

In more words, there is no sequence (an : n < ω) from Nd such
that for all n,m < ω, (an, am) ∈ X if and only if n < m.

Example

(C,+, ·, 0, 1) is a stable structure.

Note: the volume of a simplex in Rd is the square root of a certain
polynomial (the Cayley-Menger determinant) in the coefficients of the
vertices. Thus the coloring f on the previous slide really is definable in
(C,+, ·, 0, 1).
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Canonization for regular κ

Theorem (Shelah)

Suppose M is a stable structure, X ⊆ M has regular cardinality, and
f : Mn → c is a definable coloring. Then there is Y ⊆ X with |Y | = |X |
such that f is constant on tuples of distinct elements from Y .

Definition

Suppose X ⊆ Rd and 2 ≤ a ≤ d + 1. Then say that X is strongly
a-rainbow if for all distinct u, v ∈

(X
a

)
, the volumes of u and v are distinct

and nonzero. Say that X is strictly a-rainbow if X is strongly a′-rainbow
for all a′ ≤ a, and the volume of every a + 1-element subset of X is 0 (i.e.,
X is a subset of an a− 1-dimensional hyperplane).

Theorem (U., G.)

Suppose X ⊆ Rd is infinite, with |X | regular. Then there is Y ⊆ X with
|Y | = |X |, such that for some 2 ≤ a ≤ d + 1, Y is strictly a-rainbow.
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Singular κ

Theorem (U., G.)

Suppose M is a stable structure, and X ⊆ M has singular cardinality κ,
and f : Mn → c is definable. Let E be any equivalence relation on X with
fewer than κ classes, each of size less than κ. Then there is Y ⊆ X with
|Y | = |X |, such that for all a ∈ X n, f (a) depends only on the isomorphism
type of (range(a),E ).

Theorem (U., G.)

Suppose κ ≤ 2ℵ0 is infinite. Then there is a finite list (Ci : i < i∗) of
subsets of Rd of size κ, such that whenever X ⊆ Rd has size κ, there is
some i < i∗ and some injection F : Ci → X, which preserves the relations
“u is a degenerate simplex” and “u, v have the same volume,” for all
tuples u, v of length 2 ≤ a ≤ d + 1.
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Definable subsets of Rd

Definition

Suppose X is a topological space. Then P ⊆ X is perfect is P is closed
and has no nonisolated points.

Any reasonably definable subset of Rd (for instance, any Borel subset) is
either countable or else has a perfect subset.

Theorem (Blass)

Suppose f :
(2N
n

)
→ c partitions

(2N
n

)
into finitely many pieces, each with

the property of Baire. Then there is some perfect P ⊆ 2N on which f
takes on one of (n − 1)! canonical behaviors.

Theorem (U., G.)

Suppose P ⊆ Rd is perfect. Then there is Q ⊆ P perfect and some
2 ≤ a ≤ d + 1, such that Q is strictly a-rainbow.
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A Relative Consistency Result

By Erdös’s theorem and our perfect set theorem, the following holds in
ZFC as well as ZF+ antichoice principles:

Theorem

Given X ⊆ Rd infinite, there is Y ⊆ X with |Y | = |X |, such that Y is
2-rainbow.

Nonetheless

Theorem (U., G.)

It is consistent with ZF that there is some uncountable X ⊆ Rd which has
no uncountable 2-rainbow subset.
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Thank you
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