Distinct Volume Subsets: The Uncountable Case

Douglas Ulrich ¹ William Gasarch ²

¹University of California, Irvine ds_ulrich@hotmail.com

²University of Maryland at College Park gasarch@cs.umd.edu

July 20, 2018

D. Ulrich and W. Gasarch (UMCP and UCI)

Distinct Volume Subsets

• Paul Erdös. Some remarks on set theory. *Proceedings of the American Mathematical Society*, 1:127–141, 1950.

• Paul Erdös. Some remarks on set theory. *Proceedings of the American Mathematical Society*, 1:127–141, 1950.

 David Conlon, Jacob Fox, William Gasarch, David G. Harris, Douglas Ulrich, and Samuel Zbarsky. Distinct Volume Subsets, SIAM J. Discrete Math. 29(1), 472-480. • Paul Erdös. Some remarks on set theory. *Proceedings of the American Mathematical Society*, 1:127–141, 1950.

 David Conlon, Jacob Fox, William Gasarch, David G. Harris, Douglas Ulrich, and Samuel Zbarsky. Distinct Volume Subsets, SIAM J. Discrete Math. 29(1), 472-480.

• Douglas Ulrich and William Gasarch. Distinct Volume Subsets via Indiscernibles, *Archive for Mathematical Logic* (to appear).

D. Ulrich and W. Gasarch (UMCP and UCI)

э

・ロト ・ 日 ト ・ 目 ト ・

Theorem (Erdös)

Suppose $X \subset \mathbb{R}^d$ is infinite. Then there is $Y \subseteq X$ with |Y| = |X|, such that all pairs of points from Y have distinct distances.

Theorem (Erdös)

Suppose $X \subset \mathbb{R}^d$ is infinite. Then there is $Y \subseteq X$ with |Y| = |X|, such that all pairs of points from Y have distinct distances.

Theorem (Erdös)

Suppose $X \subset \mathbb{R}^d$ is infinite. Then there is $Y \subseteq X$ with |Y| = |X|, such that all pairs of points from Y have distinct distances.

• Enumerate
$$X = \{a_n : n < \omega\}$$
. Define $f : {\mathbb{N} \choose 2} \to \mathbb{R}$ via $f(\{n, m\}) = ||a_n - a_m||$.

Theorem (Erdös)

Suppose $X \subset \mathbb{R}^d$ is infinite. Then there is $Y \subseteq X$ with |Y| = |X|, such that all pairs of points from Y have distinct distances.

- Enumerate $X = \{a_n : n < \omega\}$. Define $f : {\mathbb{N} \choose 2} \to \mathbb{R}$ via $f(\{n, m\}) = ||a_n a_m||$.
- ② Apply the canonical Ramsey theorem to *f* to get some infinite *Y* ⊆ *X* on which *f* is either homogeneous, or min-homogeneous, or max-homogeneous, or rainbow (injective).

Theorem (Erdös)

Suppose $X \subset \mathbb{R}^d$ is infinite. Then there is $Y \subseteq X$ with |Y| = |X|, such that all pairs of points from Y have distinct distances.

- Enumerate $X = \{a_n : n < \omega\}$. Define $f : {\mathbb{N} \choose 2} \to \mathbb{R}$ via $f(\{n, m\}) = ||a_n a_m||$.
- ② Apply the canonical Ramsey theorem to *f* to get some infinite *Y* ⊆ *X* on which *f* is either homogeneous, or min-homogeneous, or max-homogeneous, or rainbow (injective).
- If we get a rainbow set, then we are done. Otherwise, get a contradiction to Hilbert's basis theorem.

Theorem (Erdös)

Suppose $X \subset \mathbb{R}^d$ is infinite. Then there is $Y \subseteq X$ with |Y| = |X|, such that all pairs of points from Y have distinct distances.

- Enumerate $X = \{a_n : n < \omega\}$. Define $f : {\mathbb{N} \choose 2} \to \mathbb{R}$ via $f(\{n, m\}) = ||a_n a_m||$.
- ② Apply the canonical Ramsey theorem to *f* to get some infinite *Y* ⊆ *X* on which *f* is either homogeneous, or min-homogeneous, or max-homogeneous, or rainbow (injective).
- If we get a rainbow set, then we are done. Otherwise, get a contradiction to Hilbert's basis theorem.
 For example, if f is min-homogeneous, look at

$$V_n := \{x \in \mathbb{C}^d : \sum_{i < d} (x(i) - a_m(i))^2 = \sum_{i < d} (a_n(i) - a_m(i))^2 \text{ for all } m < n\}.$$

イロト イヨト イヨト イヨト

We work in ZFC.

イロト イヨト イヨト イヨ

We work in ZFC.

The cardinal numbers are well-ordered: $0, 1, 2, \ldots,$

Image: Image:

.

We work in ZFC.

The cardinal numbers are well-ordered: $0, 1, 2, \ldots, \aleph_0, \aleph_1, \aleph_2, \ldots,$

★ ∃ ► ★

We work in ZFC.

The cardinal numbers are well-ordered: $0, 1, 2, ..., \aleph_0, \aleph_1, \aleph_2, ..., \aleph_\omega, \aleph_{\omega+1}, \aleph_{\omega+2}, ...,$

< ∃ ►

The cardinal numbers are well-ordered: $0, 1, 2, \ldots, \aleph_0, \aleph_1, \aleph_2, \ldots, \aleph_\omega, \aleph_{\omega+1}, \aleph_{\omega+2}, \ldots, \aleph_{\omega_1}, \aleph_{\omega_1+1}, \ldots$

The cardinal numbers are well-ordered: $0, 1, 2, \ldots, \aleph_0, \aleph_1, \aleph_2, \ldots, \aleph_{\omega}, \aleph_{\omega+1}, \aleph_{\omega+2}, \ldots, \aleph_{\omega_1}, \aleph_{\omega_1+1}, \ldots,$

Definition

Suppose κ is an infinite cardinal. Let X be a set of cardinality κ .

★ ∃ ▶

The cardinal numbers are well-ordered: $0, 1, 2, \ldots, \aleph_0, \aleph_1, \aleph_2, \ldots, \aleph_\omega, \aleph_{\omega+1}, \aleph_{\omega+2}, \ldots, \aleph_{\omega_1}, \aleph_{\omega_1+1}, \ldots,$

Definition

Suppose κ is an infinite cardinal. Let X be a set of cardinality κ . κ is singular if X can be split into fewer than κ pieces, each of size less than κ .

The cardinal numbers are well-ordered: $0, 1, 2, \ldots, \aleph_0, \aleph_1, \aleph_2, \ldots, \aleph_\omega, \aleph_{\omega+1}, \aleph_{\omega+2}, \ldots, \aleph_{\omega_1}, \aleph_{\omega_1+1}, \ldots,$

Definition

Suppose κ is an infinite cardinal. Let X be a set of cardinality κ . κ is singular if X can be split into fewer than κ pieces, each of size less than κ . Otherwise, κ is regular.

The cardinal numbers are well-ordered: $0, 1, 2, \ldots, \aleph_0, \aleph_1, \aleph_2, \ldots, \aleph_\omega, \aleph_{\omega+1}, \aleph_{\omega+2}, \ldots, \aleph_{\omega_1}, \aleph_{\omega_1+1}, \ldots,$

Definition

Suppose κ is an infinite cardinal. Let X be a set of cardinality κ . κ is singular if X can be split into fewer than κ pieces, each of size less than κ . Otherwise, κ is regular.

 2^{\aleph_0} , the cardinality of the continuum, fits somewhere among the \aleph 's.

D. Ulrich and W. Gasarch (UMCP and UCI)

(日)

Suppose $X \subset \mathbb{R}^d$ and $2 \le a \le d+1$. Then say that X is *a*-rainbow if for all $u, v \in \binom{X}{a}$, if u and v both have non-zero volume, then they have distinct volumes.

Suppose $X \subset \mathbb{R}^d$ and $2 \le a \le d+1$. Then say that X is *a*-rainbow if for all $u, v \in \binom{X}{a}$, if u and v both have non-zero volume, then they have distinct volumes.

Theorem (Erdös)

Suppose $X \subseteq \mathbb{R}^d$ is infinite, and |X| is regular, and $2 \le a \le d + 1$. Then there is $Y \subseteq X$ with |Y| = |X|, such that Y is a-rainbow.

Suppose $X \subset \mathbb{R}^d$ and $2 \le a \le d+1$. Then say that X is *a*-rainbow if for all $u, v \in \binom{X}{a}$, if u and v both have non-zero volume, then they have distinct volumes.

Theorem (Erdös)

Suppose $X \subseteq \mathbb{R}^d$ is infinite, and |X| is regular, and $2 \le a \le d + 1$. Then there is $Y \subseteq X$ with |Y| = |X|, such that Y is a-rainbow.

Theorem (Erdös)

Suppose $\kappa \leq 2^{\aleph_0}$ is singular. Then there is $X \subseteq \mathbb{R}^d$ of size κ , such that whenever $Y \subseteq X$ has size κ , then Y is not 3-rainbow.

< □ > < □ > < □ > < □ > < □ > < □ >

Gameplan

D. Ulrich and W. Gasarch (UMCP and UCI)

Given $X \subseteq \mathbb{R}^d$, choose a finite coloring $f : X^{2d+2} \to c$ such that f(w) encodes the set of all subsets of w of zero volume, and the set of all pairs of subsets of w of equal volume.

Given $X \subseteq \mathbb{R}^d$, choose a finite coloring $f : X^{2d+2} \to c$ such that f(w) encodes the set of all subsets of w of zero volume, and the set of all pairs of subsets of w of equal volume.

Our goal is to find some $Y \subseteq X$ such that f behaves canonically on Y.

Given $X \subseteq \mathbb{R}^d$, choose a finite coloring $f : X^{2d+2} \to c$ such that f(w) encodes the set of all subsets of w of zero volume, and the set of all pairs of subsets of w of equal volume.

Our goal is to find some $Y \subseteq X$ such that f behaves canonically on Y.

If *f* were some arbitrary coloring, we would need to first fix an ordering of *X*. We would then apply the Erdös-Rado theorem to get some $Y \subseteq X$ such that *f* is constant on increasing tuples from *Y*; typically |Y| << |X|.

Given $X \subseteq \mathbb{R}^d$, choose a finite coloring $f : X^{2d+2} \to c$ such that f(w) encodes the set of all subsets of w of zero volume, and the set of all pairs of subsets of w of equal volume.

Our goal is to find some $Y \subseteq X$ such that f behaves canonically on Y.

If *f* were some arbitrary coloring, we would need to first fix an ordering of *X*. We would then apply the Erdös-Rado theorem to get some $Y \subseteq X$ such that *f* is constant on increasing tuples from *Y*; typically |Y| << |X|.

But note that our coloring f is definable in $(\mathbb{C}, +, \cdot, 0, 1)$, a *stable structure*. This gives us added leverage.

Suppose *M* is a structure. Then *M* is stable if: for all $N \equiv M$, for all $d < \omega$, and for all definable $X \subseteq N^d \times N^d$, X does not contain an infinite half-graph.

Suppose *M* is a structure. Then *M* is stable if: for all $N \equiv M$, for all $d < \omega$, and for all definable $X \subseteq N^d \times N^d$, X does not contain an infinite half-graph. In more words, there is no sequence $(\overline{a}_n : n < \omega)$ from N^d such that for all $n, m < \omega$, $(\overline{a}_n, \overline{a}_m) \in X$ if and only if n < m.

Suppose *M* is a structure. Then *M* is stable if: for all $N \equiv M$, for all $d < \omega$, and for all definable $X \subseteq N^d \times N^d$, X does not contain an infinite half-graph. In more words, there is no sequence $(\overline{a}_n : n < \omega)$ from N^d such that for all $n, m < \omega$, $(\overline{a}_n, \overline{a}_m) \in X$ if and only if n < m.

Example

 $(\mathfrak{C}, +, \cdot, 0, 1)$ is a stable structure.

Suppose *M* is a structure. Then *M* is stable if: for all $N \equiv M$, for all $d < \omega$, and for all definable $X \subseteq N^d \times N^d$, X does not contain an infinite half-graph. In more words, there is no sequence $(\overline{a}_n : n < \omega)$ from N^d such that for all $n, m < \omega$, $(\overline{a}_n, \overline{a}_m) \in X$ if and only if n < m.

Example

 $(\mathfrak{C}, +, \cdot, 0, 1)$ is a stable structure.

Note: the volume of a simplex in \mathbb{R}^d is the square root of a certain polynomial (the Cayley-Menger determinant) in the coefficients of the vertices. Thus the coloring f on the previous slide really is definable in $(\mathbb{C}, +, \cdot, 0, 1)$.

D. Ulrich and W. Gasarch (UMCP and UCI)

Suppose *M* is a stable structure, $X \subseteq M$ has regular cardinality, and $f: M^n \to c$ is a definable coloring. Then there is $Y \subseteq X$ with |Y| = |X| such that *f* is constant on tuples of distinct elements from *Y*.

Suppose *M* is a stable structure, $X \subseteq M$ has regular cardinality, and $f: M^n \to c$ is a definable coloring. Then there is $Y \subseteq X$ with |Y| = |X| such that *f* is constant on tuples of distinct elements from *Y*.

Definition

Suppose $X \subseteq \mathbb{R}^d$ and $2 \le a \le d+1$. Then say that X is strongly *a*-rainbow if for all distinct $u, v \in \binom{X}{a}$, the volumes of u and v are distinct and nonzero.

Suppose *M* is a stable structure, $X \subseteq M$ has regular cardinality, and $f: M^n \to c$ is a definable coloring. Then there is $Y \subseteq X$ with |Y| = |X| such that *f* is constant on tuples of distinct elements from *Y*.

Definition

Suppose $X \subseteq \mathbb{R}^d$ and $2 \le a \le d+1$. Then say that X is strongly *a*-rainbow if for all distinct $u, v \in \binom{X}{a}$, the volumes of u and v are distinct and nonzero. Say that X is strictly *a*-rainbow if X is strongly *a'*-rainbow for all $a' \le a$, and the volume of every a + 1-element subset of X is 0 (i.e., X is a subset of an a - 1-dimensional hyperplane).

Suppose *M* is a stable structure, $X \subseteq M$ has regular cardinality, and $f: M^n \to c$ is a definable coloring. Then there is $Y \subseteq X$ with |Y| = |X| such that *f* is constant on tuples of distinct elements from *Y*.

Definition

Suppose $X \subseteq \mathbb{R}^d$ and $2 \le a \le d+1$. Then say that X is strongly a-rainbow if for all distinct $u, v \in \binom{X}{a}$, the volumes of u and v are distinct and nonzero. Say that X is strictly a-rainbow if X is strongly a'-rainbow for all $a' \le a$, and the volume of every a + 1-element subset of X is 0 (i.e., X is a subset of an a - 1-dimensional hyperplane).

Theorem (U., G.)

Suppose $X \subseteq \mathbb{R}^d$ is infinite, with |X| regular. Then there is $Y \subseteq X$ with |Y| = |X|, such that for some $2 \le a \le d + 1$, Y is strictly a-rainbow.

Singular κ

D. Ulrich and W. Gasarch (UMCP and UCI)

Suppose M is a stable structure, and $X \subseteq M$ has singular cardinality κ , and $f : M^n \to c$ is definable.

★ ∃ ▶

Suppose M is a stable structure, and $X \subseteq M$ has singular cardinality κ , and $f: M^n \to c$ is definable. Let E be any equivalence relation on X with fewer than κ classes, each of size less than κ .

Suppose *M* is a stable structure, and $X \subseteq M$ has singular cardinality κ , and $f: M^n \to c$ is definable. Let *E* be any equivalence relation on *X* with fewer than κ classes, each of size less than κ . Then there is $Y \subseteq X$ with |Y| = |X|, such that for all $\overline{a} \in X^n$, $f(\overline{a})$ depends only on the isomorphism type of (range(\overline{a}), *E*).

Suppose *M* is a stable structure, and $X \subseteq M$ has singular cardinality κ , and $f: M^n \to c$ is definable. Let *E* be any equivalence relation on *X* with fewer than κ classes, each of size less than κ . Then there is $Y \subseteq X$ with |Y| = |X|, such that for all $\overline{a} \in X^n$, $f(\overline{a})$ depends only on the isomorphism type of (range(\overline{a}), *E*).

Theorem (U., G.)

Suppose $\kappa \leq 2^{\aleph_0}$ is infinite. Then there is a finite list $(C_i : i < i_*)$ of subsets of \mathbb{R}^d of size κ , such that whenever $X \subseteq \mathbb{R}^d$ has size κ , there is some $i < i_*$ and some injection $F : C_i \to X$, which preserves the relations "u is a degenerate simplex" and "u, v have the same volume," for all tuples u, v of length $2 \leq a \leq d + 1$.

< □ > < □ > < □ > < □ > < □ > < □ >

Definable subsets of \mathbb{R}^{d}

D. Ulrich and W. Gasarch (UMCP and UCI)

Image: Image:

Suppose X is a topological space. Then $P \subseteq X$ is perfect is P is closed and has no nonisolated points.

Suppose X is a topological space. Then $P \subseteq X$ is perfect is P is closed and has no nonisolated points.

Any reasonably definable subset of \mathbb{R}^d (for instance, any Borel subset) is either countable or else has a perfect subset.

Suppose X is a topological space. Then $P \subseteq X$ is perfect is P is closed and has no nonisolated points.

Any reasonably definable subset of \mathbb{R}^d (for instance, any Borel subset) is either countable or else has a perfect subset.

Theorem (Blass)

Suppose $f : \binom{2^{\mathbb{N}}}{n} \to c$ partitions $\binom{2^{\mathbb{N}}}{n}$ into finitely many pieces, each with the property of Baire. Then there is some perfect $P \subseteq 2^{\mathbb{N}}$ on which f takes on one of (n-1)! canonical behaviors.

Suppose X is a topological space. Then $P \subseteq X$ is perfect is P is closed and has no nonisolated points.

Any reasonably definable subset of \mathbb{R}^d (for instance, any Borel subset) is either countable or else has a perfect subset.

Theorem (Blass)

Suppose $f : \binom{2^{\mathbb{N}}}{n} \to c$ partitions $\binom{2^{\mathbb{N}}}{n}$ into finitely many pieces, each with the property of Baire. Then there is some perfect $P \subseteq 2^{\mathbb{N}}$ on which f takes on one of (n-1)! canonical behaviors.

Theorem (U., G.)

Suppose $P \subseteq \mathbb{R}^d$ is perfect. Then there is $Q \subseteq P$ perfect and some $2 \leq a \leq d+1$, such that Q is strictly a-rainbow.

D. Ulrich and W. Gasarch (UMCP and UCI)

Distinct Volume Subsets

A Relative Consistency Result

Theorem

Given $X \subseteq \mathbb{R}^d$ infinite, there is $Y \subseteq X$ with |Y| = |X|, such that Y is 2-rainbow.

Theorem

Given $X \subseteq \mathbb{R}^d$ infinite, there is $Y \subseteq X$ with |Y| = |X|, such that Y is 2-rainbow.

Nonetheless

Theorem

Given $X \subseteq \mathbb{R}^d$ infinite, there is $Y \subseteq X$ with |Y| = |X|, such that Y is 2-rainbow.

Nonetheless

Theorem (U., G.)

It is consistent with ZF that there is some uncountable $X \subseteq \mathbb{R}^d$ which has no uncountable 2-rainbow subset.

Thank you

D. Ulrich and W. Gasarch (UMCP and UCI)

• • • • • • • • • • •