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A Theorem of Erdos

Theorem (Erdos)

Suppose X C RY is infinite. Then there is Y C X with |Y| = |X|, such
that all pairs of points from Y have distinct distances.
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A Theorem of Erdos

Theorem (Erdos)

Suppose X C RY is infinite. Then there is Y C X with |Y| = |X|, such
that all pairs of points from Y have distinct distances.

Proof when X is countable.
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Suppose X C RY is infinite. Then there is Y C X with |Y| = |X|, such
that all pairs of points from Y have distinct distances.

Proof when X is countable.

@ Enumerate X = {a,: n < w}. Define f : @) — R via
F({n, m}) = llan — am|.
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A Theorem of Erdos

Theorem (Erdos)

Suppose X C RY is infinite. Then there is Y C X with |Y| = |X|, such
that all pairs of points from Y have distinct distances.

Proof when X is countable.

@ Enumerate X = {a, : n < w}. Define f : @) — R via
F({n, m}) = lan — amll

@ Apply the canonical Ramsey theorem to f to get some infinite Y C X
on which f is either homogeneous, or min-homogeneous, or
max-homogeneous, or rainbow (injective).
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A Theorem of Erdos

Theorem (Erdos)

Suppose X C RY is infinite. Then there is Y C X with |Y| = |X|, such
that all pairs of points from Y have distinct distances.

Proof when X is countable.

@ Enumerate X = {a, : n < w}. Define f : @) — R via
F({n, m}) = llan — aml|.

@ Apply the canonical Ramsey theorem to f to get some infinite Y C X
on which f is either homogeneous, or min-homogeneous, or
max-homogeneous, or rainbow (injective).

© If we get a rainbow set, then we are done. Otherwise, get a
contradiction to Hilbert's basis theorem.
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A Theorem of Erdos

Theorem (Erdos)

Suppose X C RY is infinite. Then there is Y C X with |Y| = |X|, such
that all pairs of points from Y have distinct distances.

Proof when X is countable.

@ Enumerate X = {a, : n < w}. Define f : @) — R via
F({n, m}) = llan — aml|.

@ Apply the canonical Ramsey theorem to f to get some infinite Y C X
on which f is either homogeneous, or min-homogeneous, or
max-homogeneous, or rainbow (injective).

© If we get a rainbow set, then we are done. Otherwise, get a
contradiction to Hilbert's basis theorem.

For example, if f is min-homogeneous, look at

Vo= {x € C? ) (x(i)—am(i))> =Y (an(i)—am(i))? for all m < n}.
i<d i<d
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Cardinals

We work in ZFC.
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The cardinal numbers are well-ordered:
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We work in ZFC.

The cardinal numbers are well-ordered:

0,1,2,...,Ng, Ny, No, o0 Ry, N g, Nepgos oo, Ry, Ny 41,0
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We work in ZFC.

The cardinal numbers are well-ordered:
Oa 1a 25 s 3N07 va N2a s aNo.M Nw+17 Nw+2’ SERE) Nwlv Nw1+1a s

Definition

Suppose k is an infinite cardinal. Let X be a set of cardinality .
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Definition

Suppose k is an infinite cardinal. Let X be a set of cardinality .
k is singular if X can be split into fewer than k pieces, each of size less
than k.
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We work in ZFC.

The cardinal numbers are well-ordered:
Oa 1a 25 s 3N07 va N2a s aNo.M Nw+17 Nw+2’ SERE) Nwlv Nw1+1a EERN]

Definition

Suppose k is an infinite cardinal. Let X be a set of cardinality .
k is singular if X can be split into fewer than k pieces, each of size less
than k. Otherwise, & is regular.

2% the cardinality of the continuum, fits somewhere among the X's.
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Higher arity—What Erdos Proved
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Higher arity—What Erdos Proved

Definition

Suppose X C R? and 2 < a < d + 1. Then say that X is a-rainbow if for
all u,v e (;() if u and v both have non-zero volume, then they have

distinct volumes.
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Higher arity—What Erdos Proved

Definition

Suppose X C R? and 2 < a < d + 1. Then say that X is a-rainbow if for
all u,v e (;() if u and v both have non-zero volume, then they have
distinct volumes.

Theorem (Erdos)

Suppose X C RY is infinite, and | X| is regular, and 2 < a < d + 1. Then
there is Y C X with |Y| = |X|, such that Y is a-rainbow.
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Higher arity—What Erdos Proved

Definition

Suppose X C R? and 2 < a < d + 1. Then say that X is a-rainbow if for
all u,v e ()s) if u and v both have non-zero volume, then they have
distinct volumes.

Theorem (Erdos)

Suppose X C RY is infinite, and | X| is regular, and 2 < a < d + 1. Then
there is Y C X with |Y| = |X|, such that Y is a-rainbow.

Theorem (Erdos)

Suppose k < 280 js singular. Then there is X C R of size k, such that
whenever Y C X has size k, then Y is not 3-rainbow.
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Gameplan

We want to control degenerate simplices, and we want to understand what
happens at singular cardinals.
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We want to control degenerate simplices, and we want to understand what
happens at singular cardinals.

Given X C RY, choose a finite coloring f : X?9+2 — ¢ such that f(w)
encodes the set of all subsets of w of zero volume, and the set of all pairs
of subsets of w of equal volume.
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encodes the set of all subsets of w of zero volume, and the set of all pairs

of subsets of w of equal volume.

Our goal is to find some Y C X such that f behaves canonically on Y.
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happens at singular cardinals.

Given X C RY, choose a finite coloring f : X?9+2 — ¢ such that f(w)
encodes the set of all subsets of w of zero volume, and the set of all pairs
of subsets of w of equal volume.

Our goal is to find some Y C X such that f behaves canonically on Y.

If f were some arbitrary coloring, we would need to first fix an ordering of
X. We would then apply the Erdos-Rado theorem to get some Y C X
such that f is constant on increasing tuples from Y'; typically | Y| << |X|.
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We want to control degenerate simplices, and we want to understand what
happens at singular cardinals.

Given X C RY, choose a finite coloring f : X?9+2 — ¢ such that f(w)
encodes the set of all subsets of w of zero volume, and the set of all pairs
of subsets of w of equal volume.

Our goal is to find some Y C X such that f behaves canonically on Y.

If f were some arbitrary coloring, we would need to first fix an ordering of
X. We would then apply the Erdos-Rado theorem to get some Y C X
such that f is constant on increasing tuples from Y'; typically | Y| << |X|.

But note that our coloring f is definable in (C,+,-,0,1), a stable
structure. This gives us added leverage.
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Definition

Suppose M is a structure. Then M is stable if: for all N = M, for all
d < w, and for all definable X C N9 x N9, X does not contain an infinite
half-graph.
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Definition

Suppose M is a structure. Then M is stable if: for all N = M, for all

d < w, and for all definable X € N9 x N9, X does not contain an infinite
half-graph. In more words, there is no sequence (3, : n < w) from N9 such
that for all n,m < w, (35,3m) € X if and only if n < m.
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half-graph. In more words, there is no sequence (3, : n < w) from N9 such
that for all n,m < w, (35,3m) € X if and only if n < m.

(¢,+,-,0,1) is a stable structure.

D. Ulrich and W. Gasarch (UMCP and UCI) Distinct Volume Subsets July 20, 2018 7/12



Definition

Suppose M is a structure. Then M is stable if: for all N = M, for all

d < w, and for all definable X € N9 x N9, X does not contain an infinite
half-graph. In more words, there is no sequence (3, : n < w) from N9 such
that for all n,m < w, (35,3m) € X if and only if n < m.

(¢,+,-,0,1) is a stable structure.

Note: the volume of a simplex in R? is the square root of a certain
polynomial (the Cayley-Menger determinant) in the coefficients of the
vertices. Thus the coloring f on the previous slide really is definable in

(C,+,-,0,1).
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Canonization for regular x

D. Ulrich and W. Gasarch (UMCP and UCI) Distinct Volume Subsets July 20, 2018



Canonization for regular x

Theorem (Shelah)

Suppose M is a stable structure, X C M has regular cardinality, and
f: M" — c is a definable coloring. Then there is Y C X with |Y|= |X]
such that f is constant on tuples of distinct elements from Y.
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Canonization for regular x

Theorem (Shelah)

Suppose M is a stable structure, X C M has regular cardinality, and
f: M" — c is a definable coloring. Then there is Y C X with |Y|= |X]
such that f is constant on tuples of distinct elements from Y.

Definition

| A

Suppose X C R? and 2 < a < d + 1. Then say that X is strongly

a-rainbow if for all distinct u,v € (:() the volumes of u and v are distinct
and nonzero.
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Canonization for regular x

Theorem (Shelah)

Suppose M is a stable structure, X C M has regular cardinality, and
f: M" — c is a definable coloring. Then there is Y C X with |Y|= |X]
such that f is constant on tuples of distinct elements from Y.

Definition

Suppose X C R? and 2 < a < d + 1. Then say that X is strongly
a-rainbow if for all distinct u,v € (:() the volumes of u and v are distinct
and nonzero. Say that X is strictly a-rainbow if X is strongly a’-rainbow
for all &’ < a, and the volume of every a + 1-element subset of X is 0 (i.e.,
X is a subset of an a — 1-dimensional hyperplane).

| A
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Canonization for regular x

Theorem (Shelah)

Suppose M is a stable structure, X C M has regular cardinality, and
f: M" — c is a definable coloring. Then there is Y C X with |Y| = |X|
such that f is constant on tuples of distinct elements from Y .

Suppose X C R? and 2 < a < d + 1. Then say that X is strongly
a-rainbow if for all distinct u, v € (:() the volumes of u and v are distinct
and nonzero. Say that X is strictly a-rainbow if X is strongly a’-rainbow
for all &’ < a, and the volume of every a + 1-element subset of X is 0 (i.e.,
X is a subset of an a — 1-dimensional hyperplane).

.

Theorem (U., G.)

Suppose X C RY is infinite, with |X| regular. Then there is Y C X with
|Y| = | X]|, such that for some2 < a<d+1, Y is strictly a-rainbow.

v
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Singular k

Theorem (U., G.)

Suppose M is a stable structure, and X C M has singular cardinality ,
and f : M" — c is definable.
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Singular k

Theorem (U., G.)

Suppose M is a stable structure, and X C M has singular cardinality ,
and f : M"™ — c is definable. Let E be any equivalence relation on X with
fewer than k classes, each of size less than k.
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Singular k

Theorem (U., G.)

Suppose M is a stable structure, and X C M has singular cardinality ,
and f : M"™ — c is definable. Let E be any equivalence relation on X with
fewer than k classes, each of size less than x. Then there is Y C X with

|Y| = |X|, such that for all 3 € X", f(3) depends only on the isomorphism
type of (range(a), E).
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Singular k

Theorem (U., G.)

Suppose M is a stable structure, and X C M has singular cardinality k,
and f : M™ — c is definable. Let E be any equivalence relation on X with
fewer than k classes, each of size less than k. Then there is Y C X with
|Y| = |X|, such that for all 3 € X", f(3) depends only on the isomorphism
type of (range(a), E).

Theorem (U., G.)

Suppose k < 2% js infinite. Then there is a finite list (C; : i < i) of
subsets of R? of size k, such that whenever X C R has size , there is
some i < iy and some injection F : C; — X, which preserves the relations
“u is a degenerate simplex” and ‘“u,v have the same volume,” for all
tuples u, v of length2 < a < d + 1.
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Definable subsets of R?

Definition

Suppose X is a topological space. Then P C X is perfect is P is closed
and has no nonisolated points.
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Definable subsets of R?

Definition

Suppose X is a topological space. Then P C X is perfect is P is closed
and has no nonisolated points.

Any reasonably definable subset of RY (for instance, any Borel subset) is
either countable or else has a perfect subset.
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Definable subsets of R?

Definition

Suppose X is a topological space. Then P C X is perfect is P is closed
and has no nonisolated points.

Any reasonably definable subset of RY (for instance, any Borel subset) is
either countable or else has a perfect subset.

Theorem (Blass)

Suppose f : (2:! ) — ¢ partitions (25 ) into finitely many pieces, each with
the property of Baire. Then there is some perfect P C 2N on which f
takes on one of (n — 1)! canonical behaviors.
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Definable subsets of R?

Definition

Suppose X is a topological space. Then P C X is perfect is P is closed
and has no nonisolated points.

Any reasonably definable subset of RY (for instance, any Borel subset) is
either countable or else has a perfect subset.

Theorem (Blass)

Suppose f : (25 ) — ¢ partitions (25 ) into finitely many pieces, each with
the property of Baire. Then there is some perfect P C 2N on which f
takes on one of (n — 1)! canonical behaviors.

Theorem (U., G.)

Suppose P C RY s perfect. Then there is Q C P perfect and some
2 < a<d+1, such that Q is strictly a-rainbow.
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A Relative Consistency Result

By Erdos's theorem and our perfect set theorem, the following holds in
ZFC as well as ZF+ antichoice principles:
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Given X C RY infinite, there is Y C X with |Y| = |X
2-rainbow.

, such that Y is
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A Relative Consistency Result

By Erdos's theorem and our perfect set theorem, the following holds in
ZFC as well as ZF+ antichoice principles:

Given X C RY infinite, there is Y C X with |Y| = |X
2-rainbow.

, such that Y is

Nonetheless

Theorem (U., G.)

It is consistent with ZF that there is some uncountable X C RY which has
no uncountable 2-rainbow subset.
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Thank you
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