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You’ve seen many powerful methods for NLP:

- Language models, Part-of-Speech tagging, 
Syntactic Parsing, …

- Word Sense Disambiguation, Machine 
Translation, Semantic Similarity, ...

The goal: Machine Reading

- Autonomous understanding of unstructured text on a large scale

“I hereby offer to bet anyone a lobster dinner that by 2015 we will have a computer program 
capable of automatically reading at least 80% of the factual content across the entire English-
speaking web, and placing those facts in a structured knowledge base.”
(T. Mitchell. Reading the Web: A Breakthrough Goal for AI. AI Magazine, 2005)
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Machine Reading is an ill-posed problem:

Human Reading

✓ high precision
✓ broad scope
✓ high comprehension
✓ background knowledge
❌ sentence-by-sentence
❌ (usually) single language
❌ slow

Machine Reading

❌ noisy
❌ limited scope
❌ minimal reasoning
❌ bottom up
✓ corpus-wide statistics
✓ (possibly) multilingual
✓ very fast!

O. Etzioni, M. Banko, M.J. Cafarella. Machine Reading. AAAI, 2007.
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“A process of getting structured data from unstructured 
information in the text”
(Jurafsky and Martin, 2009)

“Identification of instances of a particular class of 
relationships in a natural language text, and the extraction of 
relevant arguments for that relationships”
(Grishman, 1997)
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(Jurafsky and Martin, 2009)
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Traditional Information Extraction pipeline:

(Jurafsky and Martin, 2009)

1. Named Entity Recognition (homework 3, anyone?)

(Jurafsky and Martin, 2009)
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Traditional Information Extraction pipeline:

1. Named Entity Recognition (homework 3, anyone?)

2. Relation Extraction

spokesman of

part of

part of

fare increase

( American Airlines , part of , AMR Corp. )

( Tim Wagner , spokesman of , AMR Corp. )

( United , part of , UAL Corp. )
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Yes, but… which (and how many) relations?

- Restricted set of semantic relations handcrafted by humans
(either general or domain-specific)
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Yes, but… which (and how many) relations?

- Wikipedia infoboxes!

- Restricted set of semantic relations handcrafted by humans
(either general or domain-specific)

( Sapienza , Rector , Eugenio Gaudio )

( Sapienza , Location , Rome )
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Yes, but… which (and how many) relations?

- Wikipedia infoboxes!

- Restricted set of semantic relations handcrafted by humans
(either general or domain-specific)

Crowdsourced ontology derived (mainly) from 
Wikipedia infoboxes and containing over 2 billion 
RDF triples.http://wiki.dbpedia.org

http://www.freebase.com

people/person/nationality

location/location/contains

people/person/place-of-birth

...
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Yes, but… which (and how many) relations?

- Wikipedia infoboxes

- Restricted set of semantic relations handcrafted by humans
(either general or domain-specific)

- Ontological relations from thesauri like WordNet

is a, instance of  (hypernymy)

part of (meronymy)

...

entailment

pertanymy
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Hand-written patterns and rules

Supervised learning algorithms

Semi-supervised learning algorithms

Plenty of approaches:

Weak and distant supervision

Unsupervised algorithms
(Open Information Extraction)
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Hand-written patterns and rules (Hearst, 1992)

(Jurafsky and Martin, 2009)
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Supervised Learning (Zhao and Grishman, 2005; Bunescu 
and Mooney, 2006) 
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- Start from a fixed set of relations and entities

Supervised Learning (Zhao and Grishman, 2005; Bunescu 
and Mooney, 2006) 



Information Extraction

(Open) Information Extraction
Claudio Delli Bovi 29/05/2015 9

- Start from a fixed set of relations and entities

- Use these to annotate a large enough training corpus
Positive examples: annotated triples 〈entity, relation, entity〉 
Negative examples: generated from non-annotated within-sentence entity pairs

Supervised Learning (Zhao and Grishman, 2005; Bunescu 
and Mooney, 2006) 
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Supervised Learning (Zhao and Grishman, 2005; Bunescu 
and Mooney, 2006) 

- Start from a fixed set of relations and entities

- Use these to annotate a large enough training corpus

- Train a classifier to annotate unseen text

Positive examples: annotated triples 〈entity, relation, entity〉 
Negative examples: generated from non-annotated within-sentence entity pairs

Word features (bag-of-words, headwords, bigrams…)

NE features (entity types and their concatenation)

Syntactic features (constituents, dependency paths, ...)
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Semi-supervised/Weakly Supervised Learning (Kozareva 
and Hovy, 2010) 
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Start from very few high-precision seed patterns (or seed triples)

“ [...] Ryanair has a hub at 
Charleroi.”

(Ryanair, hub, Charleroi)

Semi-supervised/Weakly Supervised Learning (Kozareva 
and Hovy, 2010) 
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“ [...] Ryanair has a hub at 
Charleroi.”

(Ryanair, hub, Charleroi)

Bootstrapping:

“Budget airline Ryanair, which uses Charleroi 
as a hub, scrapped all weekend flights out of 
the airport”

“All flights in and out of Ryanair’s Belgian hub at 
Charleroi airport were grounded on Friday”

“A spokesman at Charleroi, a main hub for Ryanair, 
estimated that 8000 passengers had already been 
affected”

1. Find sentences that contain 
both entities

Semi-supervised/Weakly Supervised Learning (Kozareva 
and Hovy, 2010) 
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Semi-supervised/Weakly Supervised Learning (Kozareva 
and Hovy, 2010) 

“ [...] Ryanair has a hub at 
Charleroi.”

(Ryanair, hub, Charleroi)

Bootstrapping:

“Budget airline Ryanair, which uses Charleroi 
as a hub, scrapped all weekend flights out of 
the airport”

“All flights in and out of Ryanair’s Belgian hub at 
Charleroi airport were grounded on Friday”

“A spokesman at Charleroi, a main hub for Ryanair, 
estimated that 8000 passengers had already been 
affected”

1. Find sentences that contain 
both entities

2. Generalize to new patterns

/[ORG], which uses [LOC] as a hub/

/[ORG]'s hub at [LOC]/

/[LOC] a main hub for [ORG]/
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Self-supervised Learning (Etzioni et al., 2005; Weld et al., 2008) 

Idea: use the new patterns to search for additional triples and 
build a self-labeled training dataset
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Self-supervised Learning (Etzioni et al., 2005; Weld et al., 2008) 

Issues: error propagation, semantic drift (erroneous patterns 
leads to the introduction of erroneous tuples, which, in turn...) 

Idea: use the new patterns to search for additional triples and 
build a self-labeled training dataset

/[ORG] has a hub at [LOC]/ “ [...] Sydney has a ferry hub at 
Circular Quay”

(Sydney, hub, Circular Quay)
?
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Web-scale self-supervised learning system, running at CMU
continuously 24 hours per day

NELL - Never Ending Language Learning (Carlson et al., 2010) 
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Requires:
- An initial ontology with categories (person,sportsTeam, 

fruit, ...) and relations (playsInstrument, 
playsOnTeam, ...)

NELL - Never Ending Language Learning (Carlson et al., 2010) 

Web-scale self-supervised learning system, running at CMU
continuously 24 hours per day
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- 10-15 seed examples of each category and relation

NELL - Never Ending Language Learning (Carlson et al., 2010) 

Requires:
- An initial ontology with categories (person,sportsTeam, 

fruit, ...) and relations (playsInstrument, 
playsOnTeam, ...)

Web-scale self-supervised learning system, running at CMU
continuously 24 hours per day
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Uses a variety of methods to extract beliefs from the web 

Hundreds of different extraction 
modules simultaneously trained:

- Co-occurrence based 
pattern learners

- HTML lists and tables 
miners

- “Traditional” classifiers 
on various features

NELL - Never Ending Language Learning (Carlson et al., 2010) 
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..and a bit of human supervision 
once in a while!

Hundreds of different extraction 
modules simultaneously trained...

NELL - Never Ending Language Learning (Carlson et al., 2010) 

Uses a variety of methods to extract beliefs from the web 
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NELL - Never Ending Language Learning (Carlson et al., 2010) 

http://rtw.ml.cmu.edu/rtw/
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Distantly Supervised Learning (Mintz et al., 2009; Riedel et al., 
2010, Hoffmann et al., 2011) 

Instead of just a handful of seeds, use a large knowledge base 
(possibly human-contributed) to acquire many reliable training 
examples
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Distantly Supervised Learning (Mintz et al., 2009; Riedel et al., 
2010, Hoffmann et al., 2011) 

Instead of just a handful of seeds, use a large knowledge base 
(possibly human-contributed) to acquire many reliable training 
examples

For each entity pair, identify all sentences mentioning them in a 
massive unlabeled corpus
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Distantly Supervised Learning (Mintz et al., 2009; Riedel et al., 
2010, Hoffmann et al., 2011) 

Instead of just a handful of seeds, use a large knowledge base 
(possibly human-contributed) to acquire many reliable training 
examples

Lots of noisy pattern features, then combined in 
a supervised classifier

For each entity pair, identify all sentences mentioning them in a 
massive unlabeled corpus
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Distantly Supervised Learning (Mintz et al., 2009; Riedel et al., 
2010, Hoffmann et al., 2011) 

Distant supervision assumption:
If two entities participate in a relation, all sentences that mention 
these two entities express that relation
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Distantly Supervised Learning (Mintz et al., 2009; Riedel et al., 
2010, Hoffmann et al., 2011) 

Distant supervision assumption:
If two entities participate in a relation, all sentences that mention 
these two entities express that relation

(Brad Pitt, married with, 
Angelina Jolie)

“ Brad Pitt will be starring with 
Angelina Jolie in ‘World War X’ ”

“Angelina Jolie joins Brad Pitt for 
first public appearance [...]”

“Angelina Jolie expects another 
baby with Brad Pitt”
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Distantly Supervised Learning (Mintz et al., 2009; Riedel et al., 
2010, Hoffmann et al., 2011) 

Relax the assumption:
- If two entities participate in a relation, all sentences at least 

one sentence that mention these two entities express that 
relation

Multi-instance

(expressed-at-least-once assumption)
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Distantly Supervised Learning (Mintz et al., 2009; Riedel et al., 
2010, Hoffmann et al., 2011) 

Relax the assumption:
- If two entities participate in a relation, all sentences at least 

one sentence that mention these two entities express that 
relation

Multi-instance

- Allow for some relations to overlap:
(Steve Jobs, founded, Apple) (Steve Jobs, CEO of, Apple)

Multi-label Learning (Surdeanu et al., 2012)
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A way more radical approach:

no predefined set of relations

no human intervention

no training data

only a large unlabeled corpus (like the Web) 
as input

Unsupervised Learning (Banko and Etzioni, 2008; Wu and 
Weld, 2010)
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“Open Information Extraction (OIE) [...] a novel extraction paradigm that facilitates 
domain-independent discovery of relations extracted from text and readily 
scales to the diversity and size of the Web corpus. The sole input to an OIE 
system is a corpus, and its output is a set of extracted relations. An OIE system 
makes a single pass over its corpus guaranteeing scalability with the size of the 
corpus.”
(Banko et al., 2007)

OIE system

Web-scale 
unlabeled 
corpus

Unstructured 
set of relation 
instances 
(triples)
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ReVerb (Fader et al., 2011) 
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Given a sentence s:
-  POS tagging and chunking over s;
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ReVerb (Fader et al., 2011) 

Given a sentence s:
-  POS tagging and chunking over s;

-  For each verb in s, find the longest sequence of words w 
that starts with that verb and satisfies syntactic and lexical 
constraints;

-  For each phrase w, find the nearest NP to the left 
and to the right;
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ReVerb (Fader et al., 2011) 

Given a sentence s:
-  POS tagging and chunking over s;

-  For each verb in s, find the longest sequence of words w 
that starts with that verb and satisfies syntactic and lexical 
constraints;

-  For each phrase w, find the nearest NP to the left 
and to the right;

-  Assign a confidence c to the relation r = (x, w, y) 
using a confidence classifier.
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ReVerb (Fader et al., 2011) 

s: United has a hub in Chicago, which is the 
    headquarters of United Continental Holdings.

r1: (United, has a hub in, Chicago)

r2: (Chicago, is the headquarters of,
 United Continental Holdings)
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ReVerb (Fader et al., 2011) 

s: United has a hub in Chicago, which is the 
    headquarters of United Continental Holdings.

r1: (United, has a hub in, Chicago)

r2: (Chicago, is the headquarters of,
 United Continental Holdings)

Almost 15 million extractions (1.3 million distinct 
relations) from the ClueWeb09 dataset!
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OIE is great, but... 
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Sparsity: many relation phrases actually express the 
same relationship (e.g. synonyms, paraphrases)
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Arguments (and relation phrases) are ambiguous

Sparsity: many relation phrases actually express the 
same relationship (e.g. synonyms, paraphrases)
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OIE is great, but... 

Arguments (and relation phrases) are ambiguous

Sparsity: many relation phrases actually express the 
same relationship (e.g. synonyms, paraphrases)

We need semantics!
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PATTY (Nakashole et al., 2012) 
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PATTY (Nakashole et al., 2012) 

From patterns to pattern synsets (clusters of relation phrases 
that express the same relation):

{ settled in , live in , moved to , stayed in , 
in area of , ...}
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PATTY (Nakashole et al., 2012) 

From patterns to pattern synsets (clusters of relation phrases 
that express the same relation)

Each pattern synset (= relation) has semantic types:

film/actor  already played with  film/actor

music/artist already played with  music/composer

...
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PATTY (Nakashole et al., 2012) 

From patterns to pattern synsets (clusters of relation phrases 
that express the same relation)

Each pattern synset (= relation) has semantic types

Patterns are hierarchically organized in a taxonomy:

{ is romantically involved 
with , is dating }

{ knows , ... }⊂
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PATTY (Nakashole et al., 2012) 

Generalized syntactic-ontological-lexical (SOL) patterns:

Amy Winehouse’s soft 
voice in ‘Rehab’

Elvis Presley’s solid voice 
in his song ‘All shook up’
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PATTY (Nakashole et al., 2012) 

Generalized syntactic-ontological-lexical (SOL) patterns:

Amy Winehouse’s soft 
voice in ‘Rehab’

Elvis Presley’s solid voice 
in his song ‘All shook up’

Detect and link 
entities
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PATTY (Nakashole et al., 2012) 

Generalized syntactic-ontological-lexical (SOL) patterns:

<Person> ’s [ ADJ ] voice * <Song> 

Amy Winehouse’s soft 
voice in ‘Rehab’

Elvis Presley’s solid voice 
in his song ‘All shook up’

Generalize SOL 
patterns
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PATTY (Nakashole et al., 2012) 

Generalized syntactic-ontological-lexical (SOL) patterns:

<Person> ’s [ ADJ ] voice * <Song> 

(Elvis Presley, All Shook Up)

(Amy Winehouse, Rehab)
Amy Winehouse’s soft 
voice in ‘Rehab’

Elvis Presley’s solid voice 
in his song ‘All shook up’ Extract relation instances 

(support set)
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PATTY (Nakashole et al., 2012) 

Generalized syntactic-ontological-lexical (SOL) patterns:

<Person> ’s [ ADJ ] voice * <Song> 

Lexical word features (L) 
harvested from an input 
corpora 



Open Information Extraction

(Open) Information Extraction
Claudio Delli Bovi 29/05/2015 24

PATTY (Nakashole et al., 2012) 

Generalized syntactic-ontological-lexical (SOL) patterns:

<Person> ’s [ ADJ ] voice * <Song> 

Syntactic modifiers (S) are 
generalized using POS tags 
or wildcards
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PATTY (Nakashole et al., 2012) 

Generalized syntactic-ontological-lexical (SOL) patterns:

<Person> ’s [ ADJ ] voice * <Song> 

Ontological semantic 
types (O) from a 
knowledge base 
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WiSeNet (Moro and Navigli, 2012; 2013) 
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WiSeNet (Moro and Navigli, 2012; 2013) 

Wikipedia-based Semantic Network:
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WiSeNet (Moro and Navigli, 2012; 2013) 

Filtering out bad relational phrases:

Wiesbaden State Library is funded by the State of Hesse and 
located in Wiesbaden.
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WiSeNet (Moro and Navigli, 2012; 2013) 

Filtering out bad relational phrases:

( Wiesbaden State Library , is funded by the , State of Hesse )

Wiesbaden State Library is funded by the State of Hesse and 
located in Wiesbaden.
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WiSeNet (Moro and Navigli, 2012; 2013) 

Filtering out bad relational phrases:

( Wiesbaden State Library , is funded by the , State of Hesse )

Wiesbaden State Library is funded by the State of Hesse and 
located in Wiesbaden.

( Wiesbaden State Library , is funded by the State of Hesse and 
located in , Wiesbaden )
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WiSeNet (Moro and Navigli, 2012; 2013) 

Filtering out bad relational phrases:

( Wiesbaden State Library , is funded by the , State of Hesse )

Wiesbaden State Library is funded by the State of Hesse and 
located in Wiesbaden.

( Wiesbaden State Library , is funded by the State of Hesse and 
located in , Wiesbaden )

( State of Hesse , and located in , Wiesbaden )
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WiSeNet (Moro and Navigli, 2012; 2013) 

How? Use syntactically-grounded patterns:

X is founded by Y X and located in Y

founded

X

Y

is by

located

X

Yand

in
nsubjpass

conjprep
prep

pobj

pobj

cc
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WiSeNet (Moro and Navigli, 2012; 2013) 

How? Use syntactically-grounded patterns:

X is founded by Y X and located in Y

founded

X

Y

is by

located

X

Yand

in
nsubjpass

conjprep
prep

pobj

pobj

cc
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WiSeNet (Moro and Navigli, 2012; 2013) 

Use soft clustering techniques to build relation synsets with 
ambiguous patterns:

{ is a part of , is a territory of , … , is a province of }

{ is a part of , is a member of , … , is an element of }

{ made her acting debut in the , made his professional debut in the , … }

{ used to build,  used to construct , … , used to manufacture }
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WiSeNet (Moro and Navigli, 2012; 2013) 

Exploit Wikipedia categories to generate semantic types:
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WiSeNet (Moro and Navigli, 2012; 2013) 

Finally, use types to deal with ambiguous relation instances:
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WiSeNet (Moro and Navigli, 2012; 2013) 

Finally, use types to deal with ambiguous relation instances:
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WiSeNet (Moro and Navigli, 2012; 2013) 

Finally, use types to deal with ambiguous relation instances:
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What else?
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Put together syntactic and semantic analysis and 
generate semantically augmented patterns:
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So… happy (knowledge) harvesting!
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