
Searching the Web

ARVIND ARASU, JUNGHOO CHO, HECTOR GARCIA-MOLINA, ANDREAS
PAEPCKE, and SRIRAM RAGHAVAN
Stanford University

We offer an overview of current Web search engine design. After introducing a generic search
engine architecture, we examine each engine component in turn. We cover crawling, local Web
page storage, indexing, and the use of link analysis for boosting search performance. The most
common design and implementation techniques for each of these components are presented.
For this presentation we draw from the literature and from our own experimental search
engine testbed. Emphasis is on introducing the fundamental concepts and the results of
several performance analyses we conducted to compare different designs.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: On-line
Information Services—Web-based services; H.3.4 [Information Storage and Retrieval]:
Systems and Software

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Authorities, crawling, HITS, indexing, information
retrieval, link analysis, PageRank, search engine

1. INTRODUCTION
The plentiful content of the World-Wide Web is useful to millions. Some
simply browse the Web through entry points such as Yahoo!. But many
information seekers use a search engine to begin their Web activity. In this
case, users submit a query, typically a list of keywords, and receive a list of
Web pages that may be relevant, typically pages that contain the keywords.
In this paper we discuss the challenges in building good search engines,
and describe some useful techniques.

Many of the search engines use well-known information retrieval (IR)
algorithms and techniques [Salton 1989; Faloutsos 1985]. However, IR
algorithms were developed for relatively small and coherent collections
such as newspaper articles or book catalogs in a (physical) library. The
Web, on the other hand, is massive, much less coherent, changes more

Authors’ address: Computer Science Department, Stanford University, Stanford, CA 94305;
email: {arvinda; cho; hector; paepcke; rsram}@cs.stanford.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1533-5399/01/0800–0002 $5.00

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001, Pages 2–43.

rapidly, and is spread over geographically distributed computers. This
requires new techniques, or extensions to the old ones, to deal with
gathering information, making index structures scalable and efficiently
updateable, and improving the ability of search engines to discriminate.
For the last item, the ability to discriminate, it is possible to exploit the
linkage among Web pages to better identify the truly relevant pages.

There is no question that the Web is huge and challenging. Several
studies have estimated the size of the Web [Bar-Yossef et al. 2000;
Lawrence and Giles 1999; 1998; Bharat and Broder 1999], and while they
report slightly different numbers, most agree that over a billion pages are
available. Given that the average size of a Web page is around 5 to 10K
bytes, just the textual data amounts to at least tens of terabytes. The
growth rate of the Web is even more dramatic. According to Lawrence and
Giles [1999], the size of the Web has doubled in less than two years, and
this growth rate is projected to continue for the next two years.

Aside from these newly created pages, the existing pages are continu-
ously updated [Pitkow and Pirolli 1997; Wills and Mikhailov 1999; Douglis
et al. 1999; Cho and Garcia-Molina 2000a]. For example, in our own study
of over half a million pages over 4 months [Cho and Garcia-Molina 2000a],
we found that about 23% of pages changed daily. In the .com domain 40%
of the pages changed daily, and the half-life of pages was about 10 days (in
10 days half of the pages were gone, i.e., their URLs were no longer valid).
In Cho and Garcia-Molina [2000a], we also report that a Poisson process is
a good model for Web page changes. Later, in Section 2, we show how some
of these results can be used to improve search engine quality.

In addition to size and rapid change, the interlinked nature of the Web
sets it apart from many other collections. Several studies aim to under-
stand how the Web’s linkage is structured and how that structure can be
modeled [Broder et al. 2000 ; Barabasi and Albert 1999; Albert et al. 1999;
Huberman and Adamic 1999; Cho and Garcia-Molina 2000a]. One recent
study, for example, suggests that the link structure of the Web is somewhat
like a “bow tie” [Broder et al. 2000]. That is, about 28% of the pages
constitute a strongly connected core (the center of the bow tie). About 22%
form one of the tie’s loops: these are pages that can be reached from the
core but not vice versa. The other loop consists of 22% of the pages that can
reach the core, but cannot be reached from it. (The remaining nodes can
neither reach the core nor be reached from the core.)

Before we describe search engine techniques, it is useful to understand
how a Web search engine is typically put together. Figure 1 shows such an
engine schematically. Every engine relies on a crawler module to provide
the grist for its operation (shown on the left in Figure 1). Crawlers are
small programs that browse the Web on the search engine’s behalf, simi-
larly to how a human user follows links to reach different pages. The
programs are given a starting set of URLs whose pages they retrieve from
the Web. The crawlers extract URLs appearing in the retrieved pages and
give this information to the crawler control module. This module deter-
mines what links to visit next and feeds the links to visit back to the

Searching the Web • 3

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

crawlers. (Some of the functionality of the crawler control module may be
implemented by the crawlers themselves.) The crawlers also pass the
retrieved pages into a page repository. Crawlers continue visiting the Web
until local resources, such as storage, are exhausted.

This basic algorithm is modified in many variations that give search
engines different levels of coverage or topic bias. For example, crawlers in
one engine might be biased to visit as many sites as possible, leaving out
the pages that are buried deeply within each site. The crawlers in other
engines might specialize on sites in one specific domain, such as govern-
mental pages. The crawl control module is responsible for directing the
crawling operation.

Once the search engine has been through at least one complete crawling
cycle, the crawl control module may be informed by several indexes that
were created during the earlier crawl(s). The crawl control module may, for
example, use a previous crawl’s link graph (the structure index in Figure 1)
to decide which links the crawlers should explore and which links they
should ignore. Crawl control may also use feedback from usage patterns to
guide the crawling process (connection between the query engine and the
crawl control module in Figure 1). Section 2 examines crawling operations
in more detail.

The indexer module extracts all the words from each page and records the
URL where each word occurred. The result is a generally very large “lookup
table” that can provide all the URLs that point to pages where a given word
occurs (the text index in Figure 1). The table is of course limited to the

Fig. 1. General search engine architecture.

4 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

pages that were covered in the crawling process. As mentioned earlier, text
indexing of the Web poses special difficulties, due to its size and its rapid
rate of change. In addition to these quantitative challenges, the Web calls
for some special, less common, kinds of indexes. For example, the indexing
module may also create a structure index, which reflects the links between
pages. Such indexes would not be appropriate for traditional text collec-
tions that do not contain links. The collection analysis module is responsi-
ble for creating a variety of other indexes.

The utility index in Figure 1 is created by the collection analysis module.
For example, utility indexes may provide access to pages of a given length,
pages of a certain “importance,” or pages with some number of images in
them. The collection analysis module may use the text and structure
indexes when creating utility indexes. Section 4 examines indexing in more
detail.

During a crawling and indexing run, search engines must store the pages
they retrieve from the Web. The page repository in Figure 1 represents
this—possibly temporary—collection. Search engines sometimes maintain
a cache of the pages they have visited beyond the time required to build the
index. This cache allows them to serve out result pages very quickly, in
addition to providing basic search facilities. Some systems, such as the
Internet Archive, have aimed to maintain a very large number of pages for
permanent archival purposes. Storage at such a scale again requires
special consideration. Section 3 examines these storage-related issues.

The query engine module is responsible for receiving and filling search
requests from users. The engine relies heavily on the indexes, and some-
times on the page repository. Due to the Web’s size and the fact that users
typically only enter one or two keywords, result sets are usually very large.
Hence the ranking module has the task of sorting the results such that
results near the top are the most likely to be what the user is looking for.
The query module is of special interest because traditional information
retrieval (IR) techniques have run into selectivity problems when applied
without modification to Web searching: Most traditional techniques rely on
measuring the similarity of query texts with texts in a collection’s docu-
ments. The tiny queries over vast collections that are typical for Web
search engines prevent such similarity-based approaches from filtering
sufficient numbers of irrelevant pages out of search results. Section 5
introduces search algorithms that take advantage of the Web’s interlinked
nature. When deployed in conjunction with the traditional IR techniques,
these algorithms significantly improve retrieval precision in Web search
scenarios.

In the rest of this article we describe in more detail the search engine
components we have presented. We also illustrate some of the specific
challenges that arise in each case and some of the techniques that have
been developed. Our paper is not intended to provide a complete survey of
techniques. As a matter of fact, the examples we use for illustration are
drawn mainly from our own work since it is what we know best.

Searching the Web • 5

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

In addition to research at universities and open laboratories, many
dot-com companies have worked on search engines. Unfortunately, many of
the techniques used by dot-coms, and especially the resulting performance,
are private, behind company walls, or are disclosed in patents whose
language only lawyers can comprehend and appreciate. So we believe that
the overview of problems and techniques we provide here can be of use.

2. CRAWLING WEB PAGES

The crawler module (Figure 1) retrieves pages from the Web for later
analysis by the indexing module. As discussed in the Introduction, a
crawler module typically starts off with an initial set of URLs, S0. Roughly,
it first places S0 in a queue where all URLs to be retrieved are kept and
prioritized. From this queue, the crawler gets a URL (in some order),
downloads the page, extracts any URLs in the downloaded page, and puts
the new URLs in the queue. This process is repeated until the crawler
decides to stop. Given the enormous size and the change rate of the Web,
many issues arise, including the following:

(1) What pages should the crawler download? In most cases, the
crawler cannot download all pages on the Web. Even the most compre-
hensive search engine currently indexes a small fraction of the entire
Web [Lawrence and Giles 1999; Bharat and Broder 1999]. Given this
fact, it is important for the crawler to carefully select the pages and to
visit “important” pages first by prioritizing the URLs in the queue
properly, so that the fraction of the Web that is visited (and kept
up-to-date) is more meaningful.

(2) How should the crawler refresh pages? Once the crawler has
downloaded a significant number of pages, it has to start revisiting the
downloaded pages in order to detect changes and refresh the down-
loaded collection. Because Web pages are changing at very different
rates [Cho and Garcia-Molina 2000b ;Wills and Mikhailov 1999], the
crawler needs to carefully decide what page to revisit and what page to
skip, because this decision may significantly impact the “freshness” of
the downloaded collection. For example, if a certain page rarely
changes, the crawler may want to revisit the page less often in order to
visit more frequently changing ones.

(3) How should the load on the visited Web sites be minimized?
When the crawler collects pages from the Web, it consumes resources
belonging to other organizations [Koster 1995]. For example, when the
crawler downloads page p on site S, the site needs to retrieve page p
from its file system, consuming disk and CPU resources. Also, after this
retrieval the page needs to be transferred through the network, which
is another resource shared by multiple organizations. The crawler
should minimize its impact on these resources [Robots Exclusion Proto-
col 2000]. Otherwise, the administrators of the Web site or a particular
network may complain and sometimes completely block access by the
crawler.

6 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

(4) How should the crawling process be parallelized? Due to the
enormous size of the Web, crawlers often run on multiple machines and
download pages in parallel [Brin and Page 1998; Cho and Garcia-
Molina 2000b]. This parallelization is often necessary in order to
download a large number of pages in a reasonable amount of time.
Clearly, these parallel crawlers should be coordinated properly, so that
different crawlers do not visit the same Web site multiple times, and
the adopted crawling policy should be strictly enforced. The coordina-
tion can incur significant communication overhead, limiting the num-
ber of simultaneous crawlers.

In the rest of this section we discuss the first two issues, page selection
and page refresh, in more detail. We do not discuss load or parallelization
issues, mainly because much less research has been done on those topics.

2.1 Page Selection

As we argued, the crawler may want to download “important” pages first,
so that the downloaded collection is of high quality. There are three
questions that need to be addressed: the meaning of “importance,” how a
crawler operates, and how a crawler “guesses” good pages to visit. We
discuss these questions in turn, using our own work to illustrate some of
the possible techniques.

2.1.1 Importance Metrics. Given a Web page P, we can define the
importance of the page in one of the following ways: (These metrics can be
combined, as will be discussed later.)

(1) Interest-driven. The goal is to obtain pages “of interest” to a particular
user or set of users. So important pages are those that match the
interest of users. One particular way to define this notion is through
what we call a driving query. Given a query Q, the importance of page
P is defined to be the “textual similarity” [Salton 1989] between P and
Q. More formally, we compute textual similarity by first viewing each
document (P or Q) as an m-dimensional vector ^w1, . . . , wn&. The term
wi in this vector represents the ith word in the vocabulary. If wi does
not appear in the document, then wi is zero. If it does appear, wi is set
to represent the significance of the word. One common way to compute
the significance wi is to multiply the number of times the ith word
appears in the document by the inverse document frequency (idf) of the
ith word. The idf factor is one divided by the number of times the word
appears in the entire “collection,” which in this case would be the entire
Web. Then we define the similarity between P and Q as a cosine
product between the P and Q vectors [Salton 1989]. Assuming that
query Q represents the user’s interest, this metric shows how “rele-
vant” P is. We use IS~P! to refer to this particular importance metric.

Searching the Web • 7

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Note that if we do not use idf terms in our similarity computation, the
importance of a page, IS~P!, can be computed with “local” information,
i.e., P and Q. However, if we use idf terms, then we need global
information. During the crawling process we have not seen the entire
collection, so we have to estimate the idf factors from the pages that
have been crawled, or from some reference idf terms computed at some
other time. We use IS9~P! to refer to the estimated importance of page
P, which is different from the actual importance IS~P!, which can be
computed only after the entire Web has been crawled.
Chakrabarti et al. [1999] presents another interest-driven approach
based on a hierarchy of topics. Interest is defined by a topic, and the
crawler tries to guess the topic of pages that will be crawled (by
analyzing the link structure that leads to the candidate pages).

(2) Popularity-driven. Page importance depends on how “popular” a page
is. For instance, one way to define popularity is to use a page’s backlink
count. (We use the term backlink for links that point to a given page.)
Thus a Web page P ’s backlinks are the set of all links on pages other
than P, which point to P. When using backlinks as a popularity metric,
the importance value of P is the number of links to P that appear over
the entire Web. We use IB~P! to refer to this importance metric.
Intuitively, a page P that is linked to by many pages is more important
than one that is seldom referenced. This type of “citation count” has
been used in bibliometrics to evaluate the impact of published papers.
On the Web, IB~P! is useful for ranking query results, giving end-users
pages that are more likely to be of general interest. Note that evaluat-
ing IB~P! requires counting backlinks over the entire Web. A crawler
may estimate this value with IB9~P!, the number of links to P that
have been seen so far. (The estimate may be inaccurate early on in a
crawl.) Later in Section 5 we define a similar yet more sophisticated
metric, called PageRank IR~P!, that can also be used as a popularity
measure.

(3) Location-driven. The IL~P! importance of page P is a function of its
location, not of its contents. If URL u leads to P, then IL~P! is a
function of u. For example, URLs ending with “.com” may be deemed
more useful than URLs with other endings, or URLs containing the
string “home” may be of more interest than other URLs. Another
location metric that is sometimes used considers URLs with fewer
slashes more useful than those with more slashes. Location driven
metrics can be considered a special case of interest driven ones, but we
list them separately because they are often easy to evaluate. In partic-
ular, all the location metrics we have mentioned here are local since
they can be evaluated simply by looking at the URL u.

8 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

As stated earlier, our importance metrics can be combined in various
ways. For example, we may define a metric IC~P! 5 k1 z IS~P! 1
k2 z IB~P! 1 k3 z IL~P!, for some constants k1, k2, k3 and query Q. This
combines the similarity metric, the backlink metric, and the location
metric.

2.1.2 Crawler Models. Our goal is to design a crawler that, if possible,
visits high-importance pages before lower-ranked ones for a certain impor-
tance metric. Of course, the crawler will only have estimated importance
values (e.g., IB9~P!) available. Based on these estimates, the crawler will
have to guess the high-importance pages to fetch next. For example, we
may define the quality metric of a crawler in one of the following two ways:

● Crawl & Stop: Under this model, the crawler C starts at its initial page
P0 and stops after visiting K pages. (K is a fixed number determined by
the number of pages that the crawler can download in one crawl.) At this
point a perfect crawler would have visited pages R1, . . . , RK, where R1

is the page with the highest importance value, R2 is the next highest,
and so on. We call pages R1 through RK the hot pages. The K pages
visited by our real crawler will contain only M ~# K ! pages with rank
higher than or equal to that of RK. (Note that we need to know the exact
rank of all pages in order to obtain the value M. Clearly, this estimation
may not be possible until we download all pages and obtain the global
image of the Web. Later, in Section 2.1.4, we restrict the entire Web to
the pages in the Stanford domain and estimate the ranks of pages based
on this assumption.) Then we define the performance of the crawler C to
be PCS~C! 5 ~M z 100! / K. The performance of the ideal crawler is of
course 100%. A crawler that somehow manages to visit pages entirely at
random, and may revisit pages, would have a performance of
~K z 100! / T, where T is the total number of pages in the Web. (Each
page visited is a hot page with probability K / T. Thus, the expected
number of desired pages when the crawler stops is K 2 / T.)

● Crawl & Stop with Threshold: We again assume that the crawler visits K
pages. However, we are now given an importance target G, and any page
with importance higher than G is considered hot. Let us assume that the
total number of hot pages is H. Again, we assume that we know the
ranks of all pages, and thus can obtain the value H. The performance of
the crawler, PST~C!, is the percentage of the H hot pages that have been
visited when the crawler stops. If K , H, then an ideal crawler will have
performance ~K z 100! / H. If K $ H, then the ideal crawler has 100%
performance. A purely random crawler that revisits pages is expected to
visit ~H / T ! z K hot pages when it stops. Thus, its performance is
~K z 100! / T. Only if the random crawler visits all T pages, is its
performance expected to be 100%.

Searching the Web • 9

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

2.1.3 Ordering Metrics. A crawler keeps a queue of URLs that it has
seen during the crawl, and from this queue must select the next URL to
visit. The ordering metric is used by the crawler for this selection, i.e., it
selects the URL u such that the ordering value of u is the highest among
all URLs in the queue. The ordering metric can only use information seen
(and remembered if space is limited) by the crawler.

The ordering metric should be designed with an importance metric in
mind. For instance, if we are searching for high IB~P! pages, it makes
sense to use an IB9~P! as the ordering metric, where P is the page that u
points to. However, it might also make sense to consider an IR9~P! (the
PageRank metric, Section 5), even if our importance metric is the simpler
citation count. In the next section we show why this may be the case.

Location metrics can be used directly for ordering, since the URL of P
directly gives the IL~P! value. However, for similarity metrics, it is much
harder to devise an ordering metric, since we have not seen P yet. We may
be able to use the text that anchors the URL u as a predictor of the text
that P might contain. Thus, one possible ordering metric is IS~A! (for some
query Q), where A is the anchor text of the URL u. Diligenti et al. [2000]
proposes an approach like this, where not just the anchor text, but all the
text of a page (and “near” pages) is considered for IS~P!.

2.1.4 Case Study. To illustrate that it is possible to download important
pages significantly earlier, when we adopt an appropriate ordering metric,
we show some results from an experiment we conducted. To keep our
experiment manageable, we defined the entire Web to be the 225,000
Stanford University Web pages that were downloaded by our Stanford
WebBase crawler. That is, we assumed that all pages outside Stanford have
“zero importance value” and that links to pages outside Stanford or from
pages outside Stanford do not count in page importance computations. Note
that since the pages were downloaded by our crawler, they are all reachable
from the Stanford homepage.

Under this assumption, we measured experimentally the performance of
various ordering metrics for the importance metric IB~P!, and we show the
result in Figure 2. In this graph, we assumed the Crawl & Stop model with
Threshold, with threshold value G 5 100. That is, pages with more than
100 backlinks were considered “hot,” and we measured how many hot pages
were downloaded when the crawler had visited x% of the Stanford pages.
Under this definition, the total number of hot pages was 1,400, which was
about 0.8% of all Stanford pages. The horizontal axis represents the
percentage of pages downloaded from the Stanford domain, and the vertical
axis shows the percentage of hot pages downloaded.

In the experiment, the crawler started at the Stanford homepage
(http://www.stanford.edu) and, in three different experimental condi-
tions, selected the next page visit either by the ordering metric IR9~P!
(PageRank), by IB9~P! (backlink), or by following links breadth-first

10 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

(breadth). The straight line in the graph (Figure 2) shows the expected
performance of a random crawler.

From the graph, we can clearly see that an appropriate ordering metric
can significantly improve the performance of the crawler. For example,
when the crawler used IB9~P! (backlink) as its ordering metric, the crawler
downloaded more than 50% hot pages when it visited less than 20% of the
entire Web. This is a significant improvement compared to a random
crawler or a breadth-first crawler, which downloaded less than 30% hot
pages at the same point. One interesting result of this experiment is that
the PageRank ordering metric, IR9~R!, shows better performance than the
backlink ordering metric IB9~R!, even when the importance metric is
IB~R!. This is due to the inheritance property of the PageRank metric,
which can help avoid downloading “locally popular” pages before “globally
popular but locally unpopular” pages. In additional experiments [Cho et al.
1998] (not described here), we studied other metrics, and also observe that
the right ordering metric can significantly improve crawler performance.

2.2 Page Refresh

Once the crawler has selected and downloaded “important” pages, it has to
periodically refresh the downloaded pages so that the pages are maintained
up-to-date. Clearly, there exist multiple ways to update the pages, and
different strategies will result in different “freshness” of the pages. For
example, consider the following two strategies:

(1) Uniform refresh policy: The crawler revisits all pages at the same
frequency f, regardless of how often they change.

(2) Proportional refresh policy: The crawler revisits a page proportionally
more often when it changes more often. More precisely, assume that l i

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

PageRank

backlink

breadth

random

Ordering metric:

Pages crawled

Hot pages crawled

Fig. 2. The performance of various ordering metrics for IB~P!; G 5 100.

Searching the Web • 11

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

is the change frequency of a page ei and that fi is the crawler’s revisit
frequency for ei. Then the frequency ratio l i / fi is the same for any i.
For example, if page e1 changes 10 times more often than page e2, the
crawler revisits e1 10 times more often than e2.
Note that the crawler needs to estimate l i’s for each page in order to
implement this policy. This estimation can be based on the change
history of a page that the crawler can collect [Cho and Garcia-Molina
2000a]. For example, if a crawler visited/downloaded a page p1 every
day for a month and it detected 10 changes, the crawler may reasonably
estimate that l1 is one change every 3 days. For more detailed discus-
sion on l estimation, see Cho and Garcia-Molina [2000a].

Between these two strategies, which one will give us higher “freshness?”
Also, can we come up with an even better strategy? To answer these
questions, we need to understand how Web pages change over time and
what we mean by “freshness” of pages. In the next two sections, we go over
possible answers to these questions and compare various refresh strategies.

2.2.1 Freshness Metric. Intuitively, we consider a collection of pages
“fresher” when the collection has more up-to-date pages. For instance,
consider two collections, A and B, containing the same 20 Web pages. Then,
if A maintains 10 pages up-to-date on average and if B maintains 15
up-to-date pages, we consider B to be fresher than A. Also, we have a
notion of “age:” Even if all pages are obsolete, we consider collection A
“more current” than B, if A was refreshed 1 day ago and B was refreshed 1
year ago. Based on this intuitive notion, we have found the following
definitions of freshness and age to be useful. (Incidentally, Coffman et al.
[1997] has a slightly different definition of freshness, but it leads to results
that are analogous to ours.) In the following discussion, we refer to the
pages on the Web that the crawler monitors as the real-world pages and
their local copies as the local pages.

Freshness: Let S 5 $e1, . . . , eN% be the local collection of N pages. Then
we define the freshness of the collection as follows.

Definition 1. The freshness of a local page ei at time t is

F~ei;t! 5 H 1 if ei is up-to-date at time t
0 otherwise.

(By up-to-date we mean that the content of a local page equals that of its
real-world counterpart.) Then, the freshness of the local collection S at time
t is

F~S;t! 5
1

N
O
i51

N

F~ei;t!.

12 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

The freshness is the fraction of the local collection that is up-to-date. For
instance, F~S;t! will be one if all local pages are up-to-date, and F~S;t! will
be zero if all local pages are out-of-date.

Age: To capture “how old” the collection is, we define the metric age as
follows:

Definition 2. The age of the local page ei at time t is

A~ei;t! 5 H 0 if ei is up-to-date at time t
t 2 modification time of ei otherwise.

Then the age of the local collection S is

A~S;t! 5
1

N
O
i51

N

A~ei;t!.

The age of S tells us the average “age” of the local collection. For
instance, if all real-world pages changed one day ago and we have not
refreshed them since, A~S;t! is one day.

Obviously, the freshness (and age) of the local collection may change over
time. For instance, the freshness might be 0.3 at one point of time and it
might be 0.6 at another point of time. Because of this possible fluctuation,
we now compute the average freshness over a long period of time and use
this value as the “representative” freshness of a collection.

Definition 3. We define the time average of freshness of page ei, F# ~ei!,

and the time average of freshness of collection S, F# ~S!, as

F# ~ei! 5 lim
t3`

1

tE
0

t

F~ei;t!dt F# ~S! 5 lim
t3`

1

tE
0

t

F~S;t!dt.

The time average of age can be defined similarly.

Mathematically, the time average of freshness or age may not exist, since
we take a limit over time. However, the above definition approximates the
fact that we take the average of freshness over a long period of time. Later
on, we will see that the time average does exist when pages change by a
reasonable process and when the crawler periodically revisits each page.

2.2.2 Refresh Strategy. In comparing the page refresh strategies, it is
important to note that, because crawlers have limited resources, they can
download/update only a limited number of pages within a certain period.
For example, many search engines report that their crawlers typically
download several hundred pages per second. (Our crawler, which we call
the WebBase crawler, typically runs at the rate of 50–100 pages per

Searching the Web • 13

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

second.) Depending on the page refresh strategy, this limited page down-
load resource will be allocated to different pages in different ways. For
example, the proportional refresh policy will allocate this download re-
source proportionally to the page change rate.

To illustrate the issues, consider a very simple example. Suppose that the
crawler maintains a collection of two pages: e1 and e2. Page e1 changes nine
times per day and e2 changes once a day. Our goal is to maximize the
freshness of the database averaged over time. In Figure 3, we illustrate our
simple model. For page e1, one day is split into nine intervals, and e1

changes once and only once in each interval. However, we do not know
exactly when the page changes within an interval. Page e2 changes once
and only once per day, but we do not know precisely when.

Because our crawler is a tiny one, assume that we can refresh one page
per day. Then what page should it refresh? Should the crawler refresh e1 or
should it refresh e2? To answer this question, we need to compare how the
freshness changes if we pick one page over the other. If page e2 changes in
the middle of the day and if we refresh e2 right after the change, it will
remain up-to-date for the remaining half of the day. Therefore, by refresh-
ing page e2 we get 1 / 2 day “benefit”(or freshness increase). However, the
probability that e2 changes before the middle of the day is 1 / 2, so the
“expected benefit” of refreshing e2 is 1 / 2 3 1 / 2 day 5 1 / 4 day . By the
same reasoning, if we refresh e1 in the middle of an interval, e1 will remain
up-to-date for the remaining half of the interval (1 / 18 of the day) with
probability 1 / 2. Therefore, the expected benefit is 1 / 2 3 1 / 18 day 5
1 / 36 day . From this crude estimation, we can see that it is more effective
to select e2 for refresh!

Of course, in practice, we do not know for sure that pages will change in
a given interval. Furthermore, we may also want to worry about the age of
data. (In our example, if we always visit e2, the age of e1 will grow
indefinitely.)

In Cho and Garcia-Molina [2000c], we studied a more realistic scenario,
using the Poisson process model. In particular, we can mathematically
prove that the uniform policy is always superior or equal to the propor-
tional one for any number of pages, change frequencies, and refresh rates,
and for both the freshness and the age metrics when page changes follow
Poisson processes. For a detailed proof, see Cho and Garcia-Molina [2000c].

1 day

e
2

v

 : element modification timev

e
1

v vvvvvvv v

Fig. 3. A database with two pages with different change frequencies.

14 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

In Cho and Garcia-Molina [2000c] we also show how to obtain the
optimal refresh policy (better than uniform or any other), assuming page
changes follow a Poisson process and their change frequencies are static
(i.e., do not change over time). To illustrate, in Figure 4 we show the
refresh frequencies that maximize the freshness value for a simple sce-
nario. In this scenario, the crawler maintains 5 pages with change rates,
1, 2, . . . , 5 (times/day), respectively, and the crawler can download 5
pages per day. The graph in Figure 4 shows the needed refresh frequency of
a page (vertical axis) as a function of its change frequency (horizontal axis),
in order to maximize the freshness of the 5-page collection. For instance,
the optimal revisit frequency for the page that changes once a day is 1.15
times/day. Notice that the graph does not monotonically increase over
change frequency, and thus we need to refresh pages less often if the pages
change too often. The pages with change frequency more than 2.5 times/day
should be refreshed less often than the ones with change frequency 2
times/day. When a certain page changes too often, and if we cannot
maintain it up-to-date under our resource constraint, it is in fact better to
focus our resource on the pages that we can keep track of.

Figure 4 is for a particular 5-page scenario, but in Cho and Garcia-
Molina [2000c] we prove that the shape of the graph is the same for any
distribution of change frequencies under the Poisson process model. That
is, the optimal graph for any collection of pages S is exactly the same as
Figure 4, except that the graph of S is scaled by a constant factor from
Figure 4. Thus, no matter what the scenario, pages that change too
frequently (relative to the available resources) should be penalized and not
visited very frequently.

We can obtain the optimal refresh policy for the age metric, as described
in Cho and Garcia-Molina [2000c].

2.3 Conclusion

In this section we discussed the challenges that a crawler encounters when
it downloads large collections of pages from the Web. In particular, we
studied how a crawler should select and refresh the pages that it retrieves
and maintains.

1 2 3 4 5
λ

0.2

0.4

0.6

0.8

1.0

1.2

1.4
f

Fig. 4. Change frequency vs. refresh frequency for freshness optimization.

Searching the Web • 15

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

There are, of course, still many open issues. For example, it is not clear
how a crawler and a Web site can negotiate/agree on a right crawling
policy, so that the crawler does not interfere with the primary operation of
the site while downloading the pages on the site. Also, existing work on
crawler parallelization is either ad hoc or quite preliminary, so we believe
this issue needs to be carefully studied. Finally, some of the information on
the Web is now “hidden” behind a search interface, where a query must be
submitted or a form filled out. Current crawlers cannot generate queries or
fill out forms, so they cannot visit the “dynamic” content. This problem will
get worse over time, as more and more sites generate their Web pages from
databases.

3. STORAGE

The page repository in Figure 1 is a scalable storage system for managing
large collections of Web pages. As shown in the figure, the repository needs
to perform two basic functions. First, it must provide an interface for the
crawler to store pages. Second, it must provide an efficient access API that
the indexer and collection analysis modules can use to retrieve the pages.
In the rest of the section, we present some key issues and techniques for
such a repository.

3.1 Challenges

A repository manages a large collection of “data objects,” namely, Web
pages. In that sense, it is conceptually quite similar to other systems that
store and manage data objects (e.g., file systems and database systems).
However, a Web repository does not have to provide a lot of the functional-
ity that the other systems provide (e.g., transactions, logging, directory
structure) and, instead, can be targeted to address the following key
challenges:

Scalability: It must be possible to seamlessly distribute the repository
across a cluster of computers and disks, in order to cope with the size of the
Web (see Section 1).

Dual access modes: The repository must support two different access
modes equally efficiently. Random access is used to quickly retrieve a
specific Web page, given the page’s unique identifier. Streaming access is
used to receive the entire collection, or some significant subset, as a stream
of pages. Random access is used by the query engine to serve out cached
copies to the end-user. Streaming access is used by the indexer and
analysis modules to process and analyze pages in bulk.

Large bulk updates: Since the Web changes rapidly (see Section 1), the
repository needs to handle a high rate of modifications. As new versions of
Web pages are received from the crawler, the space occupied by old versions
must be reclaimed1 through space compaction and reorganization. In

1Some repositories might maintain a temporal history of Web pages by storing multiple
versions for each page. We do not consider this here.

16 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

addition, excessive conflicts between the update process and the applica-
tions accessing pages must be avoided.

Obsolete pages: In most file or data systems, objects are explicitly deleted
when no longer needed. However, when a Web page is removed from a Web
site, the repository is not notified. Thus, the repository must have a
mechanism for detecting and removing obsolete pages.

3.2 Designing a Distributed Web Repository

Let us consider a generic Web repository that is designed to function over a
cluster of interconnected storage nodes. There are three key issues that
affect the characteristics and performance of such a repository:

● page distribution across nodes;

● physical page organization within a node; and

● update strategy.

3.2.1 Page Distribution Policies. Pages can be assigned to nodes using a
number of different policies. For example, with a uniform distribution
policy, all nodes are treated identically. A given page can be assigned to
any of the nodes in the system, independent of its identifier. Nodes will
store portions of the collection proportionate to their storage capacities. In
contrast, with a hash distribution policy, allocation of pages to nodes
depends on the page identifiers. In this case, a page identifier would be
hashed to yield a node identifier and the page would be allocated to the
corresponding node. Various other policies are also possible. In Hirai et al.
[2000], we present qualitative and quantitative comparisons of the uniform
and hash distribution policies in the context of a Web repository.

3.2.2 Physical Page Organization Methods. Within a single node, there
are three possible operations that could be executed: page addition/
insertion, high-speed streaming, and random page access. Physical page
organization at each node is a key factor that determines how well a node
supports each of these operations.

There are several options for page organization. For example, a hash-
based organization treats a disk (or disks) as a set of hash buckets, each of
which is small enough to fit in memory. Pages are assigned to hash buckets
depending on their page identifier. Since page additions are common, a
log-structured organization may also be advantageous. In this case, the
entire disk is treated as a large contiguous log to which incoming pages are
appended. Random access is supported using a separate B-tree index that
maps page identifiers to physical locations on disk. One can also devise a
hybrid hashed-log organization, where storage is divided into large sequen-
tial “extents,” as opposed to buckets that fit in memory. Pages are hashed
into extents, and each extent is organized like a log-structured file. In Hirai
et al. [2000] we compare these strategies in detail, and Table I summarizes
the relative performance. Overall, a log-based scheme works very well,
except if many random-access requests are expected.

Searching the Web • 17

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

3.2.3 Update Strategies. Since updates are generated by the crawler,
the design of the update strategy for a Web repository depends on the
characteristics of the crawler. In particular, there are at least two ways in
which a crawler may be structured:

Batch-mode or steady crawler: A batch-mode crawler is executed periodi-
cally, say once every month, and allowed to crawl for a certain amount of
time (or until a targeted set of pages have been crawled) and then stopped.
With such a crawler, the repository receives updates only for a certain
number of days every month. In contrast, a steady crawler runs without
any pause, continuously supplying updates and new pages to the reposi-
tory.

Partial or complete crawls: A batch-mode crawler may be configured to
either perform a complete crawl every time it is run, or recrawl only a
specific set of pages or sites. In the first case, pages from the new crawl
completely replace the old collection of pages already existing in the
repository. In the second case, the new collection is created by applying the
updates of the partial crawl to the existing collection. Note that this
distinction between partial and complete crawls does not make sense for
steady crawlers.

Depending on these two factors, the repository can choose to implement
either in-place update or shadowing. With in-place updates, pages received
from the crawler are directly integrated into the repository’s existing
collection, possibly replacing older versions. With shadowing, pages from a
crawl are stored separately from the existing collection and updates are
applied in a separate step. As shown in Figure 5, the read nodes contain the
existing collection and are used to service all random and streaming access
requests. The update nodes store the set of pages retrieved during the
latest crawl.

The most attractive characteristic of shadowing is the complete separa-
tion between updates and read accesses. A single storage node never has to
handle page addition and page retrieval concurrently. This avoids conflicts,
leading to improved performance and a simpler implementation. On the
downside, since there is a delay between the time a page is retrieved by the
crawler and the time the page is available for access, shadowing may
decrease collection freshness.

In our experience, a batch-mode crawler generating complete crawls is a
good match for a shadowing repository. Analogously, a steady crawler can
be a better match for a repository that uses in-place updates. Furthermore,
shadowing has a greater negative impact on freshness with a steady
crawler than with a batch-mode crawler (for additional details, see Cho and
Garcia-Molina [2000b]).

Table I. Comparing Page Organization Methods

Log-structured Hash-based Hashed-log

Streaming performance 11 2 1
Random access performance 12 11 12
Page addition 11 2 1

18 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

3.3 The Stanford WebBase Repository

To illustrate how all the repository factors fit in, we briefly describe the
Stanford WebBase repository and the choices that were made. The Web-
Base repository is a distributed storage system that works in conjunction
with the Stanford WebCrawler. The repository operates over a cluster of
storage nodes connected by a high-speed communication network (see
Figure 5). The repository employs a node manager to monitor the individ-
ual storage nodes and collect status information (such as free space, load,
fragmentation, and number of outstanding access requests). The node
manager uses this information to control the operations of the repository
and schedule update and access requests on each node.

Each page in the repository is assigned a unique identifier, derived by
computing a signature (e.g., checksum or cyclic redundancy check) of the
URL associated with the page. However, a given URL can have multiple
text string representations. For example, http://WWW.STANFORD.EDU:
80/ and http://www.stanford.edu represent the same Web page but
would give rise to different signatures. To avoid this problem, the URL is
first normalized to yield a canonical representation [Hirai et al. 2000]. The
identifier is computed as a signature of this normalized URL.

Since the Stanford WebCrawler is a batch-mode crawler, the WebBase
repository employs the shadowing technique. It can be configured to use
different page organization methods and distribution policies on the read
nodes and update nodes. Hence, the update nodes can be tuned for optimal
page addition performance and the read nodes, for optimal read performance.

3.4 Conclusion

The page repository is an important component of the overall Web search
architecture. It must support the different access patterns of the query
engine (random access) and the indexer modules (streaming access) efficiently.

LAN
 Crawler

 Indexer

 Analyst

Read nodes
Update nodes

Node manager

Fig. 5. WebBase repository architecture.

Searching the Web • 19

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

It must also employ an update strategy that is tuned to the characteristics
of the crawler.

In this section we focused on the basic functionality required of a Web
repository. However, there are a number of other features that might be
useful for specific applications. We suggest possible enhancements below:

Multiple media types: So far we have assumed that Web repositories
store only plain text or HTML pages. However, with the growth of
nontext content on the Web, it is becoming increasingly important to
store, index, and search over image, audio, and video collections.

Advanced streaming: In our discussion of streaming access, we have
assumed that the streaming order was not important. This is sufficient
for building most basic indexes, including the text and structure indexes
of Figure 1. However, for more complicated indexes, the ability to
retrieve a specific subset (e.g., pages in the “.edu” domain) and/or in a
specified order (e.g., in increasing order by citation rank) may be useful.

4. INDEXING

The indexer and collection analysis modules in Figure 1 build a variety of
indexes on the collected pages. The indexer module builds two basic
indexes: a text (or content) index and a structure (or link index). Using
these two indexes and the pages in the repository, the collection analysis
module builds a variety of other useful indexes. We present a short
description of each type of index, concentrating on their structure and use,
as follows:

Link index: To build a link index, the crawled portion of the Web is
modeled as a graph with nodes and edges. Each node in the graph is a Web
page, and a directed edge from node A to node B represents a hypertext
link in page A that points to page B. An index on the link structure must be
a scalable and efficient representation of this graph.

The most common structural information used by search algorithms
[Brin and Page 1998; Kleinberg 1999] is often neighborhood information,
i.e., given a page P, retrieve the set of pages pointed to by P (outward links)
or the set of pages pointing to P (incoming links). Disk-based adjacency list
representations [Aho et al. 1983] of the original Web graph and of the
inverted Web graph2 can efficiently provide access to such neighborhood
information. Other structural properties of the Web graph can be easily
derived from the basic information stored in these adjacency lists. For
example, the notion of sibling pages is often used as the basis for retrieving
pages “related” to a given page (see Section 5). Such sibling information can
be easily derived from the pair of adjacency list structures described above.

Small graphs of hundreds or even thousands of nodes can be represented
efficiently by any one of a variety of well-known data structures [Aho et al.
1983]. However, doing the same for a graph with several million nodes and

2In the inverted Web graph, the direction of the hypertext links are reversed.

20 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

edges is an engineering challenge. Bharat et al. [1998] describe the connec-
tivity server, a system to scalably deliver linkage information for all pages
retrieved and indexed by the Altavista search engine.

Text index: Even though link-based techniques are used to enhance the
quality and relevance of search results, text-based retrieval (i.e., searching
for pages containing some keywords) continues to be the primary method
for identifying pages relevant to a query. Indexes to support such text-
based retrieval can be implemented using any of the access methods
traditionally used to search over text document collections. Examples
include suffix arrays [Manber and Myers 1990]; inverted files or inverted
indexes [Salton 1989; Witten 1994]; and signature files [Faloutsos and
Christodoulakis 1984]. Inverted indexes have traditionally been the index
structure of choice on the Web. We discuss inverted indexes in detail later
in the section.

Utility indexes: The number and type of utility indexes built by the
collection analysis module depends on the features of the query engine and
the type of information used by the ranking module. For example, a query
engine that allows searches to be restricted to a specific site or domain
(e.g., www.stanford.edu) would benefit from a site index that maps each
domain name to a list of pages belonging to that domain. Similarly, using
neighborhood information from the link index, an iterative algorithm (see
Section 5) can easily compute and store the PageRank associated with each
page in the repository [Brin and Page 1998]. Such an index would be used
at query time to aid in ranking search results.

For the rest of this section we focus our attention on text indexes. In
particular, we address the problem of quickly and efficiently building
inverted indexes over Web-scale collections.

4.1 Structure of an Inverted Index

An inverted index over a collection of Web pages consists of a set of inverted
lists, one for each word (or index term). The inverted list for a term is a
sorted list of locations where the term appears in the collection. In the
simplest case, a location consists of a page identifier and the position of the
term in the page. However, search algorithms often make use of additional
information about the occurrence of terms in a Web page. For example,
terms occurring in boldface (within ,B. tags), in section headings (within
,H1. or ,H2. tags), or as anchor text might be weighted differently in the
ranking algorithms. To accommodate this, an additional payload field is
added to the location entries. The payload field encodes whatever addi-
tional information needs to be maintained about each term occurrence.
Given an index term w and a corresponding location l, we refer to the pair
~w, l! as a posting for w.

In addition to the inverted lists, most text indexes also maintain what is
known as a lexicon. A lexicon lists all the terms occurring in the index
along with some term-level statistics (e.g., total number of documents in
which a term occurs) that are used by the ranking algorithms [Salton 1989;
Witten 1994].

Searching the Web • 21

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

4.2 Challenges

Conceptually, building an inverted index involves processing each page to
extract postings, sorting the postings first on index terms and then on
locations, and finally writing out the sorted postings as a collection of
inverted lists on disk. For relatively small and static collections, as in the
environments traditionally targeted by information retrieval (IR) systems,
index-building times are not very critical. However, when dealing with
Web-scale collections, naive index-building schemes become unmanageable
and require huge resources, often taking days to complete. As a measure of
comparison with traditional IR systems, our 40-million page WebBase
repository (Section 3.3) represents less than 4% of the publicly indexable
Web but is already larger than the 100 GB very large TREC-7 collection
[Hawking and Craswell 1998], which is the benchmark for large IR sys-
tems.

In addition, since content on the Web changes rapidly (see Section 1),
periodic crawling and rebuilding of the index is necessary to maintain
“freshness.” Index rebuildings become necessary because most incremental
index update techniques perform poorly when confronted with the huge
wholesale changes commonly observed between successive crawls of the
Web [Melnik et al. 2001].

Finally, storage formats for the inverted index must be carefully de-
signed. A small compressed index improves query performance by allowing
large portions of the index to be cached in memory. However, there is a
tradeoff between this performance gain and the corresponding decompres-
sion overhead at query time [Moffat and Bell 1995 ; Anh and Moffat 1998;
Witten 1994]. Achieving the right balance becomes extremely challenging
when dealing with Web-scale collections.

4.3 Index Partitioning

Building a Web-scale inverted index requires a highly scalable and distrib-
uted text-indexing architecture. In such an environment, there are two
basic strategies for partitioning the inverted index across a collection of
nodes [Martin et al. 1986; Ribeiro-Neto and Barbosa 1998; Tomasic and
Garcia-Molina 1993].

In the local inverted file (IFL) organization [Ribeiro-Neto and Barbosa
1998], each node is responsible for a disjoint subset of pages in the
collection. A search query is broadcast to all the nodes, each of which
returns disjoint lists of page identifiers containing the search terms.

Global inverted file (IFG) organization [Ribeiro-Neto and Barbosa 1998]
partitions on index terms so that each query server stores inverted lists
only for a subset of the terms in the collection. For example, in a system
with two query servers A and B, A could store the inverted lists for all
index terms that begin with characters in the ranges [a-q], whereas B could
store the inverted lists for the remaining index terms. Therefore, a search
query that asks for pages containing the term “process” only involves A.

22 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

In Melnik et al. [2000], we describe certain important characteristics of
the IFL strategy, such as resilience to node failures and reduced network
load, that make this organization ideal for the Web search environment.
Performance studies in Tomasic and Garcia-Molina [1993] also indicate
that IFL organization uses system resources effectively and provides good
query throughput in most cases.

4.4 WebBase Text-Indexing System

Our experience in building a text index for our WebBase repository serves
to illustrate the problems in building a massive index. Indeed, our index
was built to facilitate tests with different solutions, so we were able to
obtain experimental results that show some of the tradeoffs. In the rest of
this section we provide an overview of the WebBase index and the tech-
niques utilized.

4.4.1 System Overview. Our indexing system operates on a shared-
nothing architecture consisting of a collection of nodes connected by a local
area network (Figure 6). We identify three types of nodes in the system.3

The distributors are part of the WebBase repository (Section 3) and store
the collection of Web pages to be indexed. The indexers execute the core of
the index-building engine. The final inverted index is partitioned across the
query servers using the IFL strategy discussed in Section 4.3.

3We discuss the statistician later, in Section 4.4.3.

Fig. 6. WebBase indexing architecture.

Searching the Web • 23

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

The WebBase indexing system builds the inverted index in two stages. In
the first stage, each distributor node runs a distributor process that
disseminates the pages to the indexers using the streaming access mode
provided by the repository. Each indexer receives a mutually disjoint
subset of pages and their associated identifiers. The indexers parse and
extract postings from the pages, sort the postings in memory, and flush
them to intermediate structures (sorted runs) on disk.

In the second stage, these intermediate structures are merged to create
one or more inverted files and their associated lexicons. An (inverted
file, lexicon) pair is generated by merging a subset of the sorted runs.
Each pair is transferred to one or more query servers depending on the
degree of index replication.

4.4.2 Parallelizing the Index-Builder. The core of our indexing engine is
the index-builder process that executes on each indexer. We demonstrate
below that this process can be effectively parallelized by structuring it as a
software pipeline.

The input to the index-builder is a sequence of Web pages and their
associated identifiers. The output of the index-builder is a set of sorted
runs, each containing postings extracted from a subset of the pages. The
process of generating these sorted runs can logically be split into three
phases as illustrated in Figure 7. We refer to these phases as loading,
processing, and flushing. During the loading phase, some number of pages
are read from the input stream and stored in memory. The processing
phase involves two steps. First, the pages are parsed, tokenized into
individual terms, and stored as a set of postings in a memory buffer. In the
second step, the postings are sorted in-place, first by term and then by
location. During the flushing phase, the sorted postings in the memory
buffer are saved on disk as a sorted run. These three phases are executed
repeatedly until the entire input stream of pages has been consumed.

Loading, processing, and flushing tend to use disjoint sets of system
resources. Processing is obviously CPU-intensive, whereas flushing prima-
rily exerts secondary storage, and loading can be done directly from the
network or a separate disk. Hence indexing performance can be improved
by executing these three phases concurrently (see Figure 8). Since the
execution order of loading, processing, and flushing is fixed, these three
phases together form a software pipeline.

rat: 1
dog: 1
dog: 2
cat: 2
rat: 3
dog: 3

cat: 2
dog: 1
dog: 2
dog: 3
rat: 1
rat: 3

loading processing

sortingstripping,
tokenizing

flushing

page
stream

12
3

rat
dog

disk

memory memory memory

Fig. 7. Different phases in generating sorted runs.

24 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

The goal of our pipelining technique is to design an execution schedule
for the different indexing phases that will result in minimal overall
running time. Our problem differs from a typical job scheduling problem
[Chakrabarti and Muthukrishnan 1996] in that we can vary the sizes of the
incoming jobs, i.e., in every loading phase we can choose the number of
pages to load.

Consider an index-builder that uses N executions of the pipeline to
process the entire collection of pages and generate N sorted runs. By an
execution of the pipeline, we refer to the sequence of three phases—loading,
processing, and flushing—that transform some set of pages into a sorted
run. Let Bi, i 5 1 . . . N, be the buffer sizes used during the N executions.
The sum O i51

N Bi 5 Btotal is fixed for a given amount of input and represents
the total size of all the postings extracted from the pages.

In Melnik et al. [2000], we show that for an indexer with a single
resource of each type (single CPU, single disk, and a single network
connection over which to receive the pages), optimal speed-up of the
pipeline is achieved when the buffer sizes are identical in all executions of
the pipeline, i.e., B 5 B1. . . 5 BN 5 Btotal /N. In addition, we show how
bottleneck analysis can be used to derive an expression for the optimal
value of B in terms of various system parameters. In Melnik et al. [2000],
we also extend the model to incorporate indexers with multiple CPUs and
disks.

Experiments: We conducted a number of experiments using a single
index-builder to verify our model and measure the effective performance
gains achieved through a parallelized index-builder. Figure 9 highlights
the importance of the theoretical analysis as an aid in choosing the right

thread 1

thread 2

thread 3
indexing

time

0
L

P

F

L

P

F

L

P

F

L

P

F

L

P

F

L

P

F

period:
3*p

optimal use
of resources

good use
of resources

wasted
resources

F: flushing
P: processing
L: loading

Fig. 8. Multithreaded execution of index-builder.

Searching the Web • 25

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

buffer size. Even though the predicted optimum size differs slightly from
the observed optimum, the difference in running times between the two
sizes is less than 15 minutes for a 5 million page collection. Figure 10
shows how pipelining impacts the time taken to process and generate
sorted runs for a variety of input sizes. Note that for small collections of
pages, the performance gain through pipelining, though noticeable, is not
substantial. This is because small collections require very few pipeline
executions and the overall time is dominated by the time required at
start-up (to load up the buffers) and shut-down (to flush the buffers). Our
experiments showed that in general, for large collections, a sequential
index-builder is about 30–40% slower than a pipelined index-builder.

4.4.3 Efficient Global Statistics Collection. As mentioned in Section 4,
term-level4 statistics are often used to rank the search results of a query.
For example, one of the most commonly used statistics is inverse document
frequency or IDF. The IDF of a term w is defined as log N / dfw, where N is
the total number of pages in the collection and dfw is the number of pages
that contain at least one occurrence of w [Salton 1989]. In a distributed
indexing system, when the indexes are built and stored on a collection of
machines, gathering global (i.e., collection-wide) term-level statistics with
minimum overhead becomes an important issue [Viles and French 1995].

Some authors suggest computing global statistics at query time. This
would require an extra round of communication among the query servers to
exchange local statistics.5 However, this communication adversely impacts

4Term-level refers to the fact that any gathered statistic describes only single terms, and not
higher level entities such as pages or Web sites.
5By local statistics we mean the statistics that a query server can deduce from the portion of
the index that is stored on that node.

10 20 30 40 50 60 70
5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Total postings buffer size (Mbytes)

T
im

e
to

 g
en

er
at

e
so

rt
ed

 r
un

s
fr

om
 5

 m
ill

io
n

pa
ge

s
(h

ou
rs

)

Predicted optimum

48

Observed optimum

 Loading
 is bottleneck

 Processing
is bottleneck

Fig. 9. Optimal buffer size.

26 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

query processing performance, especially for large collections spread over
many servers.

Statistics-collection in WebBase: To avoid this query time overhead, the
WebBase indexing system precomputes and stores statistics as part of
index creation. A dedicated server known as the statistician (see Figure 6) is
used for computing statistics. Local information from the indexers is sent to
the statistician as the pages are processed. The statistician computes the
global statistics and broadcasts them back to all the indexers. These global
statistics are then integrated into the lexicons during the merging phase,
when the sorted runs are merged to create inverted files (see Section 4.4.1).
Two techniques are used to minimize the overhead of statistics collection.

● Avoiding explicit I/O for statistics: To avoid additional I/O, local data is
sent to the statistician only when it is already available in memory. We
have identified two phases in which this occurs: flushing—when sorted
runs are written to disk, and merging—when sorted runs are merged to
form inverted lists. This leads to the two strategies, FL and ME,
described below.

● Local aggregation: In both FL and ME, postings occur in at least
partially sorted order, meaning multiple postings for a term pass through
memory in groups. Such groups are condensed into (term, local aggre-
gated information) pairs which are sent to the statistician. For example,
if the indexer’s buffer has 1000 individual postings for the term “cat”,
then a single pair (“cat”, 1000) can be sent to the statistician. This
technique greatly reduces the communication overhead in collecting
statistics.

ME strategy: sending local information during merging. Summaries for
each term are aggregated as inverted lists are created in memory and sent
to the statistician. The statistician receives parallel sorted streams of

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

Number of pages indexed (in 100,000’s)

T
im

e
to

 g
en

er
at

e
so

rt
ed

 r
un

s
(in

 h
ou

rs
)

No pipelining (48MB total buffer size)
Pipelining (48MB total buffer size)

Fig. 10. Performance gain through pipelining.

Searching the Web • 27

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

(term, local-aggregate-information) values from each indexer and merges
these streams by term, aggregating the subaggregates for each term. The
resulting global statistics are then sent back to the indexers in sorted-term
order. This approach is entirely stream-based, and does not require in-
memory or on-disk data structures at the statistician or indexer to store
intermediate results. However, the progress of each indexer is synchro-
nized with that of the statistician, which in turn causes indexers to be
synchronized with each other. As a result, the slowest indexer in the group
becomes the bottleneck, holding back the progress of faster indexers.

Figure 11 illustrates the ME strategy for computing the value of dfw (i.e.,
the total number of documents containing w) for each term w in the
collection. The figure shows two indexers with their associated set of
postings. Each indexer aggregates the postings and sends local statistics
(e.g., the pair (cat,2) indicates that the first indexer has seen 2 documents
containing the word ‘cat’) to the statistician.

FL strategy: sending local information during flushing. As sorted runs
are flushed to disk, postings are summarized and the summaries sent to
the statistician. Since sorted runs are accessed sequentially during process-
ing, the statistician receives streams of summaries in globally unsorted
order. To compute statistics from the unsorted streams, the statistician
keeps an in-memory hash table of all terms and their related statistics and
updates the statistics as summaries for a term are received. At the end of
the processing phase, the statistician sorts the statistics in memory and
sends them back to the indexers. Figure 12 illustrates the FL strategy for
collecting page frequency statistics.

In Melnik et al. [2001], we present and analyze experiments that com-
pare the relative overhead6 of the two strategies for different collection

6The relative overhead of a strategy is given by T2 2 T1 / T1, where T2 is the time for full
index creation with statistics collection using that strategy and T1 is the time for full index
creation with no statistics collection

cat: (7,2)
(9,1)

dog:(9,3)
rat: (6,1)

(7,1)

cat: (1,3)
(2,1)
(5,1)

dog:(1,3)
(4,6)

(cat, 5)
(dog, 3)
(rat, 2)

cat: 5
dog: 3
rat: 2

Indexers
(Inverted lists)

Indexers
(Lexicon)

Statistician

Aggregate

(cat, 3)
(dog, 2) cat: 5

dog: 3

(cat, 2)
(dog, 1)
(rat, 2)

Fig. 11. ME strategy.

28 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

sizes. Our studies show that the relative overheads of both strategies are
acceptably small (less than 5% for a 2 million page collection) and exhibit
sublinear growth with increase in collection size. This indicates that
centralized statistics collection is feasible even for very large collections.

Table II summarizes the characteristics of the FL and ME statistics-
gathering strategies.

4.5 Conclusion

The fundamental issue in indexing Web pages, when compared with
indexing in traditional applications and systems, is scale. Instead of
representing hundred- or thousand-node graphs, we need to represent
graphs with millions of nodes and billions of edges. Instead of inverting 2–
or 3–gigabyte collections with a few hundred thousand documents, we need
to build inverted indexes over millions of pages and hundreds of gigabytes.
This requires careful rethinking and redesign of traditional indexing archi-
tectures and data structures to achieve massive scalability.

In this section we provided an overview of the different indexes that are
normally used in a Web search service. We discussed how the fundamental
structure and content indexes as well as other utility indexes (such as the
PageRank index) fit into the overall search architecture. In this context, we
illustrated some of the techniques that we have developed as part of the
Stanford WebBase project to achieve high scalability in building inverted
indexes.

There are a number of challenges that still need to be addressed.
Techniques for incremental update of inverted indexes that can handle the
massive rate of change in Web content are yet to be developed. As new
indexes and ranking measures are invented, techniques to allow such
measures to be computed over massive distributed collections need to be
developed. At the other end of the spectrum, with the increasing impor-
tance of personalization, the ability to build some of these indexes and
measures on a smaller scale (customized for individuals or small groups of

cat: 4
dog: 4

Indexers
(sorted runs)

Indexers
(lexicon)

Statistician

Hash table

Statistician

Hash table

During processing After processing

cat

dog

??

??

rat ??

cat

dog

4

4

rat 2

cat:(1,2)
dog:(1,3)

cat:(7,1)
dog:(7,2)
dog:(8,1)

dog:(6,3)

(cat, 1)
(dog, 1)

(cat, 2)

(rat, 2)

(cat, 1)
(dog, 2)

(dog, 1)

cat: 4
dog: 4
rat: 2

cat:(2,4)
cat:(3,1)

rat:(4,2)
rat:(5,3)

Fig. 12. FL strategy.

Searching the Web • 29

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

users and using limited resources) also becomes important. For example,
Haveliwala [1999] discusses some techniques for efficiently evaluating
PageRank on modestly equipped machines.

5. RANKING AND LINK ANALYSIS

As shown in Figure 1, the query engine collects search terms from the user
and retrieves pages that are likely to be relevant. As mentioned in Section
1, there are two main reasons why traditional information retrieval (IR)
techniques may not be effective enough in ranking query results. First, the
Web is very large, with great variation in the amount, quality and the type
of information in Web pages. Thus, many pages that contain the search
terms may be of poor quality or not be relevant.

Second, many Web pages are not sufficiently self-descriptive, so the IR
techniques that examine the contents of a page alone may not work well.
An often cited example to illustrate this issue is the search for “search
engines” [Kleinberg 1999]. The homepages of most of the principal search
engines do not contain the text “search engine.” Moreover, Web pages are
frequently manipulated by adding misleading terms, so they are ranked
higher by a search engine (spamming). Thus, techniques that base their
decisions on the content of pages alone are easy to manipulate.

The link structure of the Web contains important implied information,
and can help in filtering or ranking Web pages. In particular, a link from
page A to page B can be considered a recommendation of page B by the
author of A. Some new algorithms have been proposed that exploit this link
structure—not only for keyword searching, but other tasks like automati-
cally building a Yahoo-like hierarchy or identifying communities on the
Web. The qualitative performance of these algorithms is generally better
than the IR algorithms since they make use of more information than just
the contents of the pages. While it is indeed possible to influence the link
structure of the Web locally, it is quite hard to do so at a global level. So
link analysis algorithms that work at a global level are relatively robust
against spamming.

The rest of this section describes two interesting link-based techniques—
PageRank and HITS. Some link-based techniques for other tasks like page
classification and identifying online communities are also briefly discussed.

5.1 PageRank

Page et al. [1998] define a global ranking scheme, called PageRank, which
tries to capture the notion of the “importance” of a page. For instance, the
Yahoo! homepage is intuitively more important than the homepage of the

Table II. Comparing Strategies

Phase Statistician load Memory usage Parallelism

ME merging 12 1 12
FL flushing 2 2 11

30 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

Stanford Database Group. This difference is reflected in the number of
other pages that point to these two pages, that is, more pages point to the
Yahoo homepage than to the Stanford Database group homepage. The rank
of page A could thus be defined as the number of pages in the Web that
point to A, and could be used to rank the results of a search query. (We
used the same citation-ranking scheme for IB~P! in Section 2.) However,
citation ranking does not work very well, especially against spamming,
since it is quite easy to artificially create a lot of pages to point to a desired
page.

PageRank extends the basic citation idea by taking into consideration the
importance of the pages that point to a given page. Thus a page receives
more importance if Yahoo points to it, than if some unknown page points to
it. Citation ranking, in contrast, does not distinguish between these two
cases. Note that the definition of PageRank is recursive—the importance of
a page both depends on and influences the importance of other pages.

5.1.1 Simple PageRank. We first present a simple definition of PageR-
ank that captures the above intuition and discuss its computational aspects
before describing a practical variant. Let the pages on the Web be denoted
by 1, 2, . . . , m. Let N~i! denote the number of forward (outgoing) links
from page i. Let B~i! denote the set of pages that point to page i. For now,
assume that the Web pages form a strongly connected graph (every page
can be reached from any other page). (In Section 5.1.4 we discuss how we
can relax this assumption.) The simple PageRank of page i, denoted by r~i!,
is given by

r~i! 5 O
j[B~i!

r~ j ! /N~ j !.

The division by N~ j ! captures the intuition that pages that point to page
i evenly distribute their rank boost to all of the pages they point to. In the
language of linear algebra [Golub and Loan 1989], this can be written as
r 5 ATr, where r is the m 3 1 vector @r~1!, r~2!, . . . , r~m!#, and the
elements ai, j of the matrix A are given by, aij 5 1 / N~i!, if page i points to
page j, and ai, j 5 0 otherwise. Thus the PageRank vector r is the eigenvec-
tor of matrix AT corresponding to the eigenvalue 1. Since the graph is
strongly connected, it can be shown that 1 is an eigenvalue of AT, and the
eigenvector r is uniquely defined (when a suitable normalization is per-
formed and the vector is nonnegative).

5.1.2 Random Surfer Model. The definition of simple PageRank lends
itself to an interpretation based on random walks—called the random
surfer model in Page et al. [1998]. Imagine a person who surfs the Web by
randomly clicking links on the pages visited. This random surfing is
equivalent to a random walk on the underlying link graph. The random
walk problem is a well-studied combinatorial problem [Motwani and
Raghavan 1995]. It can be shown that the PageRank vector r is proportional

Searching the Web • 31

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

to the stationary probability distribution of the random walk. Thus, the
PageRank of a page is proportional to the frequency with which a random
surfer would visit it.

5.1.3 Computing PageRank. As indicated in Section 5.1.1, the PageR-
ank computation is equivalent to computing the principal eigenvector of the
matrix AT defined above. One of the simplest methods for computing the
principal eigenvector of a matrix is called power iteration.7 In power
iteration, an arbitrary initial vector is multiplied repeatedly with the given
matrix [Golub and Loan 1989], until it converges to the principal eigenvec-
tor. The power iteration for PageRank computation is given below:

(1) s 4 any random vector

(2) r 4 AT 3 s

(3) if ir 2 si , e end. r is the PageRank vector

(4) s 4 r, goto 2

To illustrate, Figure 13(a) shows the PageRank for a simple graph. It is
easy to verify that this assignment of ranks satisfies the definition of
PageRank. For instance, node 2 has a rank of 0.286 and two outgoing links.
Half of its rank (0.143) flows to node 1 and half to node 3. Since node 3 has
no other incoming links, its rank is what is received from node 2, i.e., 0.143.
Node 1 receives 0.143 from 2, plus 0.143 / 2 from node 3, plus 0.143 / 2
from node 5, for a total of 0.286. Note that node 1 has a high rank because
it has three incoming links. Node 2 has the same high rank because anyone
who visits 1 will also visit 2. Also note that the ranks over all nodes add up
to 1.0.

7Power iteration is guaranteed to converge only if the graph is aperiodic. (A strongly connected
directed graph is aperiodic if the greatest common divisor of the lengths of all closed walks is
1.) In practice, the Web is always aperiodic.

r
5= r

4
=

r3=

r
2=

r
1= 1 3

2

5 4 r
5= r

4
=

r3=

r
2=

r
1=

0.286

0.143

0.1430.143

0.286 1 3

2

5 4

0.154

0.142

0.101

0.3130.290

(a) (b)

Fig. 13. (a) Simple PageRank; (b) modified PageRank with d 5 0.8.

32 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

5.1.4 Practical PageRank. Simple PageRank is well defined only if the
link graph is strongly connected. However, the Web is far from strongly
connected (see Section 1). In particular, there are two related problems that
arise on the real Web: rank sinks and rank leaks.

Any strongly (internally) connected cluster of pages within the Web
graph from which no links point outwards forms a rank sink. An individual
page that does not have any outlinks constitutes a rank leak. Although,
technically, a rank leak is a special case of rank sink, a rank leak causes a
different kind of problem. In the case of a rank sink, nodes not in a sink
receive a zero rank, which means we cannot distinguish the importance of
such nodes. For example, suppose that in Figure 13(a) we remove the 5
3 1 link, making nodes 4 and 5 a sink. A random surfer visiting this

graph would eventually get stuck in nodes 4 and 5; i.e., nodes 1, 2, and 3
would have rank 0 (and nodes 4 and 5 would have rank 0.5). On the other
hand, any rank reaching a rank leak is lost forever. For instance, in Figure
13(a), if we remove node 5 (and all links associated with it), node 4 becomes
a leak. This leak causes all the ranks to eventually converge to 0. That is,
our random surfer would eventually reach node 4 and will never be seen
again!

Page et al. [1998] suggest eliminating these problems in two ways. First,
they remove all the leak nodes with out-degree 0.8 Second, in order to solve
the problem of sinks, they introduce a decay factor d ~0 , d , 1! in the
PageRank definition. In this modified definition, only a fraction d of the
rank of a page is distributed among the nodes that it points to. The
remaining rank is distributed equally among all the pages on the Web.
Thus, the modified PageRank is

r~i! 5 d z O
j[B~i!

r~ j ! /N~ j ! 1 ~1 2 d! / m,

where m is the total number of nodes in the graph. Note that simple
PageRank (Section 5.1.1) is a special case that occurs when d 5 1.

In the random surfer model, the modification models the surfer occasion-
ally getting “bored” and making a jump to a random page on the Web
(instead of following a random link from the current page). The decay factor
d dictates how often the surfer gets bored.

Figure 13(b) shows the modified PageRank (for d 5 0.8) for the graph of
Figure 13(a) with the link 5 3 1 removed. Nodes 4 and 5 now have higher
ranks than the other nodes, indicating that surfers will tend to gravitate to
4 and 5. However, the other nodes have nonzero ranks.

5.1.5 Computational Issues. In order for the power iteration to be
practical, it is not only necessary that it converge to the PageRank, but that

8Thus, leak nodes get no PageRank. An alternative is to assume that leak nodes have links
back to all the pages that point to them. This way, leak nodes that are reachable via high-rank
pages will have a higher rank than leak nodes reachable through unimportant pages.

Searching the Web • 33

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

it does so in a few iterations. Theoretically, the convergence of the power
iteration for a matrix depends on the eigenvalue gap, which is defined as
the difference between the modulus of the two largest eigenvalues of the
given matrix. Page et al. [1998] claim that this is indeed the case, and that
the power iteration converges reasonably fast (in around 100 iterations).

Also note that we are more interested in the relative ordering of the
pages induced by the PageRank (since this is used to rank the pages) than
the actual PageRank values themselves. Thus, we can terminate the power
iteration once the ordering of the pages becomes reasonably stable. Exper-
iments [Haveliwala 1999] indicate that the ordering induced by the PageR-
ank converges much faster than the actual PageRank.

5.1.6 Using PageRank for Keyword Searching. Brin and Page [1998]
describe a prototype search engine they developed at Stanford, called
Google (which has subsequently become the search engine Google.com).
Google uses both IR techniques and PageRank to answer keyword queries.
Given a query, Google computes an IR score for all the pages that contain
the query terms. The IR score is combined with the PageRank of these
pages to determine the final rank for this query.9

We present a few top results from a search in Google for “java”.
java.sun.com

Source of Java Technology
javaboutique.internet.com

Java Boutique
www.sun.com/java

Java Technology
www.java-pro.com

Java Pro
www.microsoft.com/java/default.htm

Home page – Microsoft Technologies for Java

5.2 HITS

In this section we describe another important link-based search algorithm,
HITS (Hypertext Induced Topic Search). This algorithm was first proposed
by Kleinberg [1999]. In contrast to the PageRank technique, which assigns
a global rank to every page, the HITS algorithm is a query-dependent
ranking technique. Moreover, instead of producing a single ranking score,
the HITS algorithm produces two—the authority and the hub scores.

Authority pages are those most likely to be relevant to a particular query.
For instance, the Stanford University homepage is an authority page for
the query “Stanford University”, while a page that discusses the weather at
Stanford would be less so. The hub pages are pages that are not necessarily
authorities themselves but point to several authority pages. For instance,
the page “searchenginewatch.com” is likely to be a good hub page for the

9Google also uses other text-based techniques to enhance the quality of results. For example,
anchor text is considered part of the page pointed at. That is, if a link in page A with anchor
“Stanford University” points to page B, the text “Stanford University” will be considered part
of B and may even be weighted more heavily than the actual text in B.

34 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

query “search engine” since it points to several authorities, i.e., the
homepages of search engines. There are two reasons why one might be
interested in hub pages. First, these hub pages are used in the HITS
algorithm to compute the authority pages. Second, the hub pages are
themselves a useful set of pages to be returned to the user in response to a
query [Chakrabarti et al. 1998c].

How are the hub and authority pages related? The hub pages are ones
that point to many authority pages. Conversely, one would also expect that
if a page is a good authority, then it would be pointed to by many hubs.
Thus there exists a mutually reinforcing relationship between the hubs and
authorities: An authority page is a page that is pointed to by many hubs
and hubs are pages that point to many authorities.10 This intuition leads to
the HITS algorithm.

5.2.1 The HITS Algorithm. The basic idea of the HITS algorithm is to
identify a small subgraph of the Web and apply link analysis on this
subgraph to locate the authorities and hubs for the given query. The
subgraph that is chosen depends on the user query. The selection of a small
subgraph (typically a few thousand pages), not only focuses the link
analysis on the most relevant part of the Web, but also reduces the amount
of work for the next phase. (Since both the subgraph selection and its
analysis are done at query time, it is important to complete them quickly.)

Identifying the focused subgraph. The focused subgraph is generated by
forming a root set R—a random set of pages containing the given query
string—and expanding the root set to include the pages that are in the
“neighborhood” of R. The text index (Section 4) can be used to construct the
root set.11 The algorithm for computing the focused subgraph is as follows:

(1) R 4 set of t pages that contain the query terms (using the text index)

(2) S 4 R

(3) for each page p [R
(a) include all the pages that p points to in S
(b) include (up to a maximum d) all pages that point to p in S

(4) the graph induced by S is the focused subgraph

The algorithm takes as input the query string and two parameters t and
d. Parameter t limits the size of the root set, while parameter d limits the
number of pages added to the focused subgraph. The latter control limits
the influence of an extremely popular page like www.yahoo.com if it were

10Interestingly, mutually reinforcing relationships have been identified and exploited for other
Web tasks, see for instance Brin [1998].
11In Kleinberg [1999], Altavista is used to construct the root set in the absence of a local text
index.

Searching the Web • 35

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

to appear in the root set.12 The expanded set S should be rich in authori-
ties, since it is likely that an authority is pointed to by at least one page in
the root set. Likewise, a lot of good hubs are also likely to be included in S.

Link analysis. The link analysis phase of the HITS algorithm uses the
mutually reinforcing property to identify the hubs and authorities from the
expanded set S. (Note that this phase is oblivious to the query that was
used to derive S.) Let the pages in the focused subgraph S be denoted 1,
2, . . . , n. Let B~i! denote the set of pages that point to page i. Let F~i!

denote the set of pages that the page i points to. The link analysis
algorithm produces an authority score ai and a hub score hi for each page
in set S. To begin with, the authority scores and the hub scores are
initialized to arbitrary values. The algorithm is an iterative one and it
performs two kinds of operations in each step, called I and O. In the I
operation, the authority score of each page is updated to the sum of the hub
scores of all pages pointing to it. In the O step, the hub score of each page is
updated to the sum of authority scores of all pages that it points to. That is,

I step: ai 5 O
j[B~i!

hj

O step: hi 5 O
j[F~i!

aj

The I and the O steps capture the intuition that a good authority is
pointed to by many good hubs and a good hub points to many good
authorities. Note incidentally that a page can be, and often is, both a hub
and an authority. The HITS algorithm just computes two scores for each
page, the hub score and the authority score. The algorithm iteratively
repeats the I and O steps, with normalization, until the hub and authority
scores converge:

(1) Initialize ai, hi ~1 # i # n! to arbitrary values

(2) Repeat until convergence
(a) Apply the I operation
(b) Apply the O operation
(c) Normalize O iai

2 5 1 and O ihi
2 5 1

(3) End

An example of hub and authority calculation is shown in Figure 14. For
example, the authority score of node 5 can be obtained by adding the hub
scores of nodes that point to 5 (i.e., 0.408 1 0.816 1 0.408) and dividing
this value by Î~816!2 1 ~1.632!2 1 ~.816!2.

12Several heuristics can also be used to eliminate nonuseful links in the focused subgraph. The
reader is referred to Kleinberg [1999] for more details.

36 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

The hub and authority values have interesting mathematical properties
just as in the case of PageRank. Let Am3m be the adjacency matrix of the
focused subraph. The ~i, j! th entry of A equals 1 if page i points to page j,
and 0 otherwise. Let a be the vector of authority scores @a1, a2, . . . , an#,
and h the vector of hub scores @h1, h2, . . . , hn#. Then the I and O
operations can be expressed as, a 5 Ah and h 5 ATa respectively. A
simple substitution shows that the final converged hub and authority
scores satisfy a 5 c1AATa and h 5 c2ATAh (the constants being added to
account for the normalizing step). Thus the vector of authority scores and
the vector of hub scores are the eigenvectors of the matrices AAT and ATA
respectively. The link analysis algorithm presented above is a simple power
iteration that multiplies the vectors a and h by AAT and ATA respectively
without explicitly materializing them. Thus the vectors a and h are the
principal eigenvectors of AAT and ATA respectively. Just as in the case of
PageRank, the rate of convergence of the hub and authority scores depends
on the eigenvalue gap. The order of hubs and authority pages induced by
the hub scores and the authority scores converges much faster (around 10
iterations) than the actual values themselves.

Interestingly, the idea of using the hubs to identify the authorities does
not have a close analog in other hyperlinked research communities like
bibliometrics [Egghe and Rousseau 1990; Garfield 1972; Pinski and Narin
1976]. Kleinberg [1999] argues that in bibliometrics one authority typically
acknowledges the existence of other authorities. But the situation is very
different in the case of the Web. One would scarcely expect the homepage of
Toyota to point to the homepage of Honda. However, there are likely to be
many pages (hubs) that point to both Honda and Toyota homepages, and
these hub pages can be used to identify that Honda and Toyota homepages
are authorities in the same topic, say “automobile companies.”

h= 0.408 h= 0.816 h= 0.408

a =0.408 a =0.816 a =0.408

2

5

1 3

64

a = 0a = 0 a = 0

h = 0 h = 0 h = 0

Fig. 14. HITS Algorithm.

Searching the Web • 37

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

We conclude our discussion of HITS algorithm with a sample result for
the query “java”, borrowed from Kleinberg [1999].

Authorities
www.gamelan.com/

Gamelan
java.sun.com/

Javasoft homepage
www.digitalfocus.com/digitalfocus/faq/howdoi.html

Java Developer: How do I . . .
lightyear.ncsu.uiuc.edu/ srp/java/javabooks.html

The Java Book Pages
sunsite.unc.edu/javafaq/javafaq.html

comp.lang.java FAQ

5.3 Other Link-Based Techniques

We have looked at two different link-based algorithms that can be used for
supporting keyword-based querying. Similar link-based techniques have
been proposed for other tasks on the Web. We briefly mention some of
them.

Identifying communities. The Web has a lot of online communities—a
set of pages created and used by people sharing a common interest. For
instance, there is a set of pages devoted to database research, forming the
database research community. There are thousands of such communities on
the Web, ranging from the most exotic to the mundane. An interesting
problem is to identify and study the nature and evolution of the online
communities—not only are the communities useful information resources
for people with matching interests, but also because such a study sheds
light on the sociological evolution of the Web. Gibson et al. [1998] observe
that the communities are characterized by a central “core” of hub and
authority pages. Kumar et al. [1999] note that this dense, nearly bipartite,
graph that is induced by the edges between the hubs and the authorities is
very likely to contain a bipartite core—a completely connected bipartite
graph. They have discovered over 100,000 online communities by enumer-
ating such bipartite cores, a process they call trawling.

Finding related pages. A problem with keyword searching is that users
have to formulate their queries using keywords, and may have difficulty in
coming up with the right words to describe their interests. Search engines
can also support a different kind of query, called the find related query, or
query by example. In this kind of query, users give an instance, typically a
Web page, of the kind of information that they seek. The search engine
retrieves other Web pages that are similar to the given page. This kind of
query is supported, for instance, by Google and Netscape’s What’s Related
service.

A find-related query could be answered with traditional IR techniques
based on text similarity. However, on the Web we can again exploit link
structure. The basic idea is cocitation. If a page A points to two pages B
and C, then it is more likely that B and C are related. Note that the HITS

38 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

algorithm implicitly uses cocitation information (a hub “cocites” authori-
ties). Kleinberg [1999] suggests that a simple modification of the HITS
algorithm can be used to support the find related query. Dean and Henz-
inger [1999] propose two algorithms for the find related query, namely the
Companion algorithm, which extends Kleinberg’s idea, and the Cocitation
algorithm, which uses a simple cocitation count to determine related pages.
They find that both these link-based algorithms perform better than
Netscape’s service, with the Companion algorithm being the better of the
two.

Classification and resource compilation. Many search portals like Ya-
hoo! and Altavista have a hierarchical classification of (a subset of) Web
pages. Users can browse the hierarchy to locate the information of interest
to them. These hierarchies are typically manually compiled. The problem of
automatically classifying documents based on some example classifications
was well studied in IR. Chakrabarti et al. [1998b] extended the IR tech-
niques to include hyperlink information. The basic idea is to use not only
the words in the document but also the categories of the neighboring pages
for classification. They have shown experimentally that their technique
enhances the accuracy of classification.

A related problem studied is that of automatic resource compilation
[Chakrabarti et al. 1998c; 1998a]. The emphasis in this case is to identify
high-quality pages for a particular category or topic. The algorithms
suggested are variations of the HITS algorithm that make use of the
content information in addition to the links.

5.4 Conclusion and Future Directions

The link structure of the Web contains a lot of useful information that can
be harnessed to support keyword searching and other information retrieval
tasks on the Web. We discussed two interesting link analysis techniques in
this section. PageRank is a global ranking scheme that can be used to rank
search results. The HITS algorithm identifies, for a given search query, a
set of authority pages and a set of hub pages. A complete performance
evaluation of these link-based techniques is beyond the scope of this paper.
The interested reader is referred to Amento et al. [2000] for a comparison of
the performance of different link-based ranking techniques.

There are many interesting research directions to be explored. One
promising direction is to study how other sources of information, like query
logs and click streams, can be used for improving Web searching. Another
important research direction is to study more sophisticated text analysis
techniques (such as Latent Semantic Indexing [Dumais et al. 1988]) and
explore enhancements for them in a hyperlinked setting.

6. CONCLUSION

Searching the World-Wide Web successfully is the basis for many of our
information tasks today. Hence, search engines are increasingly being
relied upon to extract just the right information from a vast number of Web

Searching the Web • 39

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

pages. The engines are being asked to accomplish this task with minimal
input from users, usually just one or two keywords.

In Figure 1 we show how such engines are put together. Several main
functional blocks make up the typical architecture. Crawlers travel the
Web, retrieving pages. These pages are stored locally, at least until they
can be indexed and analyzed. A query engine then retrieves URLs that
seem relevant to user queries. A ranking module attempts to sort these
returned URLs such that the most promising results are presented to the
user first.

This simple set of mechanisms requires a substantial underlying design
effort. Much of the design and implementation complexity stems from the
Web’s vast scale. We explained how crawlers, with their limited resources
in bandwidth and storage, must use heuristics to ensure that the most
desirable pages are visited and that the search engine’s knowledge of
existing Web pages stays current.

We have shown how the large-scale storage of Web pages in search
engines must be organized to match a search engine’s crawling strategies.
Such local Web page repositories must also enable users to access pages
randomly and have the entire collection streamed to them.

The indexing process, while studied extensively for smaller, more homo-
geneous collections, requires new thinking when applied to the many
millions of Web pages that search engines must examine. We discussed how
indexing can be parallelized and how needed statistics can be computed
during the indexing process.

Fortunately, the interlinked nature of the Web offers special opportuni-
ties for enhancing search engine performance. We introduced the notion of
PageRank, a variant of the traditional citation count. The Web’s link graph
is analyzed and the number of links pointing to a page is taken as an
indicator of that page’s value. The HITS algorithm, or “Hubs and Authori-
ties” is another technique that takes advantage of Web linkage. This
algorithm classifies the Web into pages that primarily function as major
information sources for particular topics (authority pages) and other pages
that primarily point readers to authority pages (hubs). Both PageRank and
HITS are used to boost search selectivity by identifying “important” pages
through link analysis.

A substantial amount of work remains to be accomplished, as search
engines hustle to keep up with the ever expanding Web. New media, such
as images and video, pose new challenges for search and storage. We offer
an introduction into current search engine technologies and point to several
upcoming new directions.

ACKNOWLEDGMENTS

We would like to thank Gene Golub and the referees for many useful
suggestions that improved the paper.

40 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

REFERENCES

AHO, A., HOPCROFT, J., AND ULLMAN, J. 1983. Data Structures and Algorithms.
Addison-Wesley, Reading, MA.

ALBERT, R., BARABASI, A.-L., AND JEONG, H. 1999. Diameter of the World Wide Web. Nature
401, 6749 (Sept.).

AMENTO, B., TERVEEN, L., AND HILL, W. 2000. Does authority mean quality? Predicting expert
quality ratings of web documents. In Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New
York, NY.

ANH, V. N. AND MOFFAT, A. 1998. Compressed inverted files with reduced decoding overheads.
In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’98, Melbourne, Australia, Aug. 24–28), W. B.
Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, Chairs. ACM Press, New
York, NY, 290–297.

BAR-YOSSEF, Z., BERG, A., CHIEN, S., AND WEITZ, J. F. D. 2000. Approximating aggregate
queries about web pages via random walks. In Proceedings of the 26th International
Conference on Very Large Data Bases.

BARABASI, A.-L. AND ALBERT, R. 1999. Emergence of scaling in random networks. Science 286,
5439 (Oct.), 509–512.

BHARAT, K. AND BRODER, A. 1999. Mirror, mirror on the web: A study of host pairs with
replicated content. In Proceedings of the Eighth International Conference on The World-
Wide Web.

BHARAT, K., BRODER, A., HENZINGER, M., KUMAR, P., AND VENKATASUBRAMANIAN, S. 1998. The
connectivity server: fast access to linkage information on the Web. Comput. Netw. ISDN
Syst. 30, 1-7, 469–477.

BRIN, S. 1998. Extracting patterns and relations from the world wide web. In Proceedings of
the Sixth International Conference on Extending Database Technology (Valencia, Spain,
Mar.), H. -J. Schek, F. Saltor, I. Ramos, and G. Alonso, Eds.

BRIN, S. AND PAGE, L. 1998. The anatomy of a large-scale hypertextual Web search engine.
Comput. Netw. ISDN Syst. 30, 1-7, 107–117.

BRODER, A., KUMAR, R., MAGHOUL, F., RAGHAVAN, P., RAJAGOPALAN, S., STATA, R., TOMKINS, A.,
AND WIENER, J. 2000. Graph structure in the web: experiments and models. In Proceedings
of the Ninth International Conference on The World Wide Web.

CHAKRABARTI, S., DOM, B., GIBSON, D., KUMAR, S. R., RAGHAVAN, P., RAJAGOPALAN, S., AND

TOMKINS, A. 1998a. Spectral filtering for resource discovery. In Proceedings of the ACM
SIGIR Workshop on Hypertext Information Retrieval on the Web (Melbourne,
Australia). ACM Press, New York, NY.

CHAKRABARTI, S., DOM, B., AND INDYK, P. 1998b. Enhanced hypertext categorization using
hyperlinks. SIGMOD Rec. 27, 2, 307–318.

CHAKRABARTI, S., DOM, B., RAGHAVAN, P., RAJAGOPALAN, S., GIBSON, D., AND KLEINBERG, J.
1998c. Automatic resource compilation by analyzing hyperlink structure and associated
text. In Proceedings of the Seventh International Conference on The World Wide Web
(WWW7, Brisbane, Australia, Apr. 14–18), P. H. Enslow and A. Ellis, Eds. Elsevier Sci.
Pub. B. V., Amsterdam, The Netherlands, 65–74.

CHAKRABARTI, S. AND MUTHUKRISHNAN, S. 1996. Resource scheduling for parallel database and
scientific applications. In Proceedings of the 8th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’96, Padua, Italy, June 24–26), G. E. Blelloch,
Chair. ACM Press, New York, NY, 329–335.

CHAKRABARTI, S., VAN DEN BERG, M., AND DOM, B. 1999. Focused crawling: A new approach to
topic-specific web resource discovery. In Proceedings of the Eighth International Conference
on The World-Wide Web.

CHO, J. AND GARCIA-MOLINA, H. 2000a. Estimating frequency of change. Submitted for
publication.

Searching the Web • 41

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

CHO, J. AND GARCIA-MOLINA, H. 2000b. The evolution of the web and implications for an
incremental crawler. In Proceedings of the 26th International Conference on Very Large
Data Bases.

CHO, J. AND GARCIA-MOLINA, H. 2000c. Synchronizing a database to improve freshness. In
Proceedings of the ACM SIGMOD Conference on Management of Data (SIGMOD ’2000,
Dallas, TX, May). ACM Press, New York, NY.

CHO, J., GARCIA-MOLINA, H., AND PAGE, L. 1998. Efficient crawling through URL
ordering. Comput. Netw. ISDN Syst. 30, 1-7, 161–172.

COFFMAN, E. J., LIU, Z., AND WEBER, R. R. 1997. Optimal robot scheduling for web search
engines. Tech. Rep. INRIA, Rennes, France.

DEAN, J. AND HENZINGER, M. R. 1999. Finding related pages in the world wide web. In
Proceedings of the Eighth International Conference on The World-Wide Web.

DILIGENTI, M., COETZEE, F. M., LAWRENCE, S., GILES, C. L., AND GORI, M. 2000. Focused
crawling using context graphs. In Proceedings of the 26th International Conference on Very
Large Data Bases.

DOUGLIS, F., FELDMANN, A., AND KRISHNAMURTHY,, B. 1999. Rate of change and other metrics:
a live study of the world wide web. In Proceedings of the USENIX Symposium on
Internetworking Technologies and Systems. USENIX Assoc., Berkeley, CA.

DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., DEERWESTER, S., AND HARSHMAN, R. 1988.
Using latent semantic analysis to improve access to textual information. In Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI ’88, Washington, DC,
May 15–19), J. J. O’Hare, Ed. ACM Press, New York, NY, 281–285.

EGGHE, L. AND ROUSSEAU, R. 1990. Introduction to Informetrics. Elsevier Science Inc., New
York, NY.

FALOUTSOS, C. 1985. Access methods for text. ACM Comput. Surv. 17, 1 (Mar.), 49–74.
FALOUTSOS, C. AND CHRISTODOULAKIS, S. 1984. Signature files: An access method for

documents and its analytical performance evaluation. ACM Trans. Inf. Syst. 2, 4 (Oct.),
267–288.

GARFIELD, E. 1972. Citation analysis as a tool in journal evaluation. Science 178, 471–479.
GIBSON, D., KLEINBERG, J., AND RAGHAVAN, P. 1998. Inferring Web communities from link

topology. In Proceedings of the 9th ACM Conference on Hypertext and Hypermedia: Links,
Objects, Time and Space—Structure in Hypermedia Systems (HYPERTEXT ’98, Pittsburgh,
PA, June 20–24), R. Akscyn, Chair. ACM Press, New York, NY, 225–234.

GOLUB, G. AND VAN LOAN, C. F. 1989. Matrix Computations. 2nd ed. Johns Hopkins
University Press, Baltimore, MD.

HAVELIWALA, T. 1999. Efficient computation of pagerank. Tech. Rep. 1999-31. Computer
Systems Laboratory, Stanford University, Stanford, CA. http://dbpubs.stanford.edu/
pub/1999-31.

HAWKING, D., CRASWELL, N., AND THISTLEWAITE, P. 1998. Overview of TREC-7 very large
collection track. In Proceedings of the 7th Conference on Text Retrieval (TREC-7).

HIRAI, J., RAGHAVAN, S., GARCIA-MOLINA, H., AND PAEPCKE, A. 2000. Webbase: A repository of
web pages. In Proceedings of the Ninth International Conference on The World Wide
Web. 277–293.

HUBERMAN, B. A. AND ADAMIC, L. A. 1999. Growth dynamics of the world wide web. Nature
401, 6749 (Sept.).

KLEINBERG, J. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 6
(Nov.).

KOSTER, M. 1995. Robots in the web: trick or treat? ConneXions 9, 4 (Apr.).
KUMAR, R., RAGHAVAN, P., RAJAGOPALAN, S., AND TOMKINS, A. 1999. Trawling the web for

emerging cyber-communities. In Proceedings of the Eighth International Conference on The
World-Wide Web.

LAWRENCE, S. AND GILES, C. 1998. Searching the world wide web. Science 280, 98–100.
LAWRENCE, S. AND GILES, C. 1999. Accessibility of information on the web. Nature 400,

107–109.
MANBER, U. AND MYERS, G. 1993. Suffix arrays: a new method for on-line string searches.

SIAM J. Comput. 22, 5 (Oct.), 935–948.

42 • A. Arasu et al.

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

MACLEOD, I. A., MARTIN, P., AND NORDIN, B. 1986. A design of a distributed full text retrieval
system. In Proceedings of 1986 ACM Conference on Research and Development in Informa-
tion Retrieval (SIGIR ’86, Palazzo dei Congressi, Pisa, Italy, Sept. 8—10), F. Rabitti,
Ed. ACM Press, New York, NY, 131–137.

MELNIK, S., RAGHAVAN, S., YANG, B., AND GARCIA-MOLINA, H. 2000. Building a distributed
full-text index for the web. Tech. Rep. SIDL-WP-2000-0140, Stanford Digital Library
Project. Computer Systems Laboratory, Stanford University, Stanford, CA.
http://www-diglib.stanford.edu/cgi-bin/get/SIDL-WP-2000-0140.

MELNIK, S., RAGHAVAN, S., YANG, B., AND GARCIA-MOLINA, H. 2001. Building a distributed
full-text index for the web. In Proceedings of the Tenth International Conference on The
World-Wide Web.

MOFFAT, A. AND BELL, T. A. H. 1995. In situ generation of compressed inverted files. J. Am.
Soc. Inf. Sci. 46, 7 (Aug.), 537–550.

MOTWANI, R. AND RAGHAVAN, P. 1995. Randomized Algorithms. Cambridge University Press,
New York, NY.

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1998. The pagerank citation ranking:
Bringing order to the web. Tech. Rep.. Computer Systems Laboratory, Stanford University,
Stanford, CA.

PINSKI, G. AND NARIN, F. 1976. Citation influence for journal aggregates of scientific
publications: Theory, with application to the literature of physics. Inf. Process. Manage. 12.

PITKOW, J. AND PIROLLI, P. 1997. Life, death, and lawfulness on the electronic frontier. In
Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI ’97,
Atlanta, GA, Mar. 22–27), S. Pemberton, Ed. ACM Press, New York, NY, 383–390.

RIBEIRO-NETO, B. A. AND BARBOSA, R. A. 1998. Query performance for tightly coupled
distributed digital libraries. In Proceedings of the Third ACM Conference on Digital
Libraries (DL ’98, Pittsburgh, PA, June 23–26), I. Witten, R. Akscyn, and F. M. Shipman,
Eds. ACM Press, New York, NY, 182–190.

ROBOTS EXCLUSION PROTOCOL. 2000. Robots Exclusion Protocol. http://info.webcrawler.com/
mak/projects/robots/exclusion.html.

SALTON, G., ED. 1988. Automatic Text Processing. Addison-Wesley Series in Computer
Science. Addison-Wesley Longman Publ. Co., Inc., Reading, MA.

TOMASIC, A. AND GARCIA-MOLINA, H. 1993. Performance of inverted indices in distributed text
document retrieval systems. In Proceedings of the 2nd International Conference on Parallel
and Distributed Systems (Dec.). 8–17.

VILES, C. L. AND FRENCH, J. C. 1995. Dissemination of collection wide information in a
distributed information retrieval system. In Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’95,
Seattle, WA, July 9–13), E. A. Fox, P. Ingwersen, and R. Fidel, Eds. ACM Press, New York,
NY, 12–20.

WILLS, C. E. AND MIKHAILOV, M. 1999. Towards a better understanding of web resources and
server responses for improved caching. In Proceedings of the Eighth International Confer-
ence on The World-Wide Web.

WITTEN, I., MOFFAT, A., AND BELL, T. 1999. Managing Gigabytes: Compressing and Indexing
Documents and Images. 2nd ed. Morgan Kaufmann Publishers Inc., San Francisco, CA.

Received: November 2000; revised: March 2001; accepted: March 2001

Searching the Web • 43

ACM Transactions on Internet Technology, Vol. 1, No. 1, August 2001.

