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Abstract

In this paper we investigate the design and analysis of algorithms resilient to memory
faults. We focus on algorithms that, despite the corruption of some memory values during
their execution, are nevertheless able to produce a correct output at least on the set of
uncorrupted values. In this framework, we consider two fundamental problems: sorting
and searching. In particular, we prove that any O(n log n) comparison-based sorting
algorithm can tolerate the corruption of at most O((n log n)1/2) keys. Furthermore, we
present one comparison-based sorting algorithm with optimal space and running time
that is resilient to O((n log n)1/3) memory faults. We also prove polylogarithmic lower
and upper bounds on resilient searching.

Keywords: combinatorial algorithms, sorting, searching, memory faults, memory mod-
els, computing with unreliable information.

1 Introduction

Some of today’s applications run on computer platforms with large and inexpensive memories,
which are also error-prone. Physical defects and manufacturing errors can result in hard
memory faults, i.e., faults that can permanently affect the correct behavior of memory cells.
Environmental conditions such as cosmic rays and alpha particles can also temporarily affect
the memory behavior, resulting in unpredictable, random, independent failures known in
the literature as soft memory errors [26, 36, 38]. Tests have identified several specific design
factors which impact soft error rates, including higher density of memory chips, lower voltage,
and higher speed: all these factors are in line with the trend observed in the design of today’s
highest-speed memory technologies, and thus soft error rates are expected to rise continuously.
Implementing error checking and correction circuitry at the board level could contrast this
phenomenon, but would also impose non-negligible costs in terms of performance (as much as
33%), size (20% larger areas), and money (10% to 20% more expensive chips). Furthermore,
error recovery circuitry can typically correct single bit errors and detect - but not correct -
double bit errors: hence, it would not guarantee complete fault coverage.

Table 1 illustrates the mean time between failures of different computing platforms using
currently available memory technologies. The table shows an increasing number of failures as
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Main memory Failures in time Mean time
size per Mbit between failures

512 MB 1000 244 hours

1 GB 1000 122 hours

16 GB 1000 7.6 hours

64 GB 1000 1.9 hours

1 TB 1000 7 minutes

512 MB 5000 48.8 hours

1 GB 5000 24.4 hours

16 GB 5000 1.5 hours

64 GB 5000 22 minutes

1 TB 5000 1.4 minutes

Table 1: Mean time between failures of different computing platforms as a function of the
main memory size and of the number of failures in time: 1000 to 5000 failures in time per
Mbit (i.e., 1000 to 5000 errors per 109 hours of use of one Mbit) is the standard soft error
rate for modern memory devices [36].

the memory size becomes larger: a system with Terabytes of memory, such as a large cluster
of computing platforms with a few Gigabytes per node, would experience one bit error every
few minutes. The demand for larger capacities at low cost arises in many applications. For
instance, Web search engines use low cost memories to store their huge data sets (typically of
the order of Terabytes), including inverted indices which have to be maintained sorted for fast
document access: for such large data structures, even a small failure probability can result
in few bit flips in the index, that may become responsible of erroneous answers to keyword
searches [13, 20]. Another domain of interest is fault-based cryptanalysis: some novel optical
and electromagnetic perturbations attacks work by manipulating the non-volatile memory of
cryptographic devices, so as to induce very timing-precise controlled transient faults on given
individual bits [5, 32, 35]. This forces the device to output a wrong cipher text that may
allow the attacker to determine the secret key used during the encryption.

Computing in the presence of memory faults seems thus important in many practical
scenarios, when the correctness of the underlying algorithms may be jeopardized by the
appearance of even very few memory faults. Consider for instance mergesort: during the
merge step, errors may propagate due to corrupted keys (having value larger than the correct
one). Even in the presence of very few errors, in the worst case as many as Θ(n) keys
may be out of order in the output sequence, where n is the number of keys to be merged.
Informally, we say that an algorithm is resilient to memory faults if, despite the corruption
of some memory values before or during its execution, the algorithm is nevertheless able to
get a correct output on the set of uncorrupted values. In this paper we investigate the design
and analysis of algorithms which are resilient to memory faults, and present upper and lower
bounds for two basic problems: sorting and searching. Before presenting in detail our results,
we discuss the relevant related work and highlight our faulty memory model.
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1.1 Related work

The problem of computing with unreliable information has been investigated in a variety of
settings. In the liar model, started by Ulam–Rényi’s game [34, 37], an algorithm asks com-
parison questions answered by a possibly lying adversary. Many works address the problem
of searching with lies [2, 6, 12, 14, 22, 28, 29, 30]. Even when the number of lies grows pro-
portionally with the number of questions (linearly bounded model), searching can be solved
to optimality: Borgstrom and Kosaraju [6], improving over [2, 12, 29], designed an O(log n)
searching algorithm. Problems such as sorting and selection have instead drastically different
bounds. Lakshmanan et al. [23] proved that Ω(n log n + k · n) comparisons are necessary for
sorting when at most k lies are allowed. The best known O(n log n) algorithm tolerates only
O(log n/ log log n) lies, as shown by Ravikumar in [33]. In the linearly bounded model, an
exponential number of questions is necessary even to test whether a list is sorted [6]. Feige et
al. [14] studied a probabilistic model and presented a sorting algorithm correct with probabil-
ity ≥ 1−q that requires Θ(n log(n/q)) comparisons. Lies are well suited at modeling transient
ALU failures, such as comparator failures. Since memory data get never corrupted in the liar
model, fault-tolerant algorithms may exploit query replication strategies. We remark that
this is not the case in our faulty-memory model.

Other faults that have been considered in the literature are destructive faults, which have
been first investigated in the context of fault-tolerant sorting networks [3, 24, 25, 39]. In
this model, one assumes that comparators can be faulty and can possibly destroy one of
the input values. Assaf and Upfal [3] present an O(n log2 n)-size sorting network tolerant
(with high probability) to random destructive faults; this bound is tight, as proved later by
Leighton and Ma [24]. We note that the Assaf-Upfal network makes Θ(log n) copies of each
item, using fault-free data replicators. Using data replication or some kind of redundancy is
indeed a natural approach to protect against destructive memory faults. Redundant arrays
of inexpensive disks (RAID) [7] are a typical application of this technique. Aumann and
Bender [4] also use pointer redundancy to make pointer-based data structures resilient to
memory faults.

In general, using data replication can be very inefficient in highly dynamic scenarios
when the objects to be managed are large and complex, such as large database records or
long strings: copying such objects can indeed be very costly, and in some cases we might
not even know how to accomplish this task. For instance, common libraries of algorithmic
codes (e.g., the LEDA Library of Efficient Data Types and Algorithms [27] or the Standard
Template Library [31]) typically implement sorting algorithms by means of indirect addressing
methods: the objects to be sorted are accessed through pointers, which are moved around in
memory instead of the objects themselves, and the algorithm relies on user-defined comparator
functions. In these cases, the implementation of sorting algorithms assumes neither the
existence of ad hoc functions for data replication nor the definition of suitable encoding
mechanisms to maintain a reasonable storage cost.

Parallel models of computation with faulty memories have also been studied, e.g., in [8,
9, 10, 21]. Differently from this paper, these works assume the existence of a special fault-
detection register that makes it possible to recognize memory errors upon access to a memory
location. The aim is to design fast simulations of the fully operational parallel models on the
faulty ones: the simulations described in [8, 9, 10, 21] are either randomized or deterministic,
and operate with constant or logarithmic slowdown, depending on the model (PRAM or
Distributed Memory Machine), on the nature of faults (static or dynamic, deterministic or
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random), and on the number of available processors.

1.2 Our model

We have a memory fault when the correct value that should be stored in a memory location
gets altered because of a failure. In particular, the content of a location can change unex-
pectedly, i.e., faults may happen at any time: real memory faults are indeed highly dynamic
and unpredictable [19]. Faulty values may be everywhere in memory, i.e., faults may happen
at any place. Furthermore, since an entire memory bank may undergo a failure, more than
one fault can be introduced at the same time, i.e., faults may happen simultaneously. We
model this with a faulty-memory random access machine, i.e., a random access machine [1]
whose memory locations may suffer from memory faults and thus may possibly corrupt the
values they contain. We observe that in this model corrupted values are indistinguishable
from correct ones. We will assume that the algorithms can exploit only O(1) reliable memory
words, whose content gets never corrupted: this is not restrictive, since at least registers can
be considered fault-free. In particular, we assume throughout the paper that moving variables
around in memory is an atomic operation: i.e., whenever we read some memory location and
we copy it somewhere else immediately afterwards, the read operation will store that value
in reliable memory, so that the written value equals the read value.

In the faulty-memory model considered in this paper, if each value were replicated k times,
by majority techniques we could easily tolerate up to (k−1)/2 faults; however, the algorithm
would present a multiplicative overhead of Θ(k) in terms of both space and running time.
This implies, for instance, that in order to be resilient to O(

√
n ) faults, a sorting algorithm

would require O(n3/2 log n) time and O(n3/2) space. The space may be improved using error-
correcting codes, but at the price of a higher running time.

It seems thus natural to ask whether it is possible to design algorithms that do not exploit
data replication in order to achieve resilience to memory faults: i.e., algorithms that do
not wish to recover corrupted data, but simply to be correct on uncorrupted data, without
incurring any time or space overhead. E.g., is it possible to sort the correct data in O(n log n)
time and O(n) space in the presence of polynomially many memory faults? In this paper we
affirmatively answer this question.

1.3 Our results

Let δ ≤ n denote an upper bound on the number of memory faults that may occur throughout
the algorithm execution (note that δ may be a function of the input size n). We consider the
following problems:

• Resilient sorting. We are given a set of n keys that need to be sorted. The value
of some keys can be arbitrarily corrupted (either increased or decreased) during the
sorting process. A sorting algorithm is strongly resilient if it correctly orders the set of
uncorrupted keys. We remark that this is the best that we can achieve in the presence
of memory faults: if keys get corrupted at the very end of the algorithm execution, we
cannot prevent them from occupying wrong positions in the output sequence.

• Resilient searching. We are given a set of n keys on which we wish to perform mem-
bership queries. The keys are in increasing order, but some of them may be corrupted
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(even during the searching process) and thus occupy wrong positions in the sequence.
Let s be a key to be searched for. A resilient searching algorithm works as follows:

(1) if there is a correct key equal to s, it answers yes and returns the index of any
key equal to s;

(2) if there is no key (either correct or faulty) equal to s, it answers no;

(3) if there are only faulty keys equal to s, the answer may be either yes or no.

One of the main difficulties in designing efficient resilient sorting and searching algorithms
derives from the fact that positional information is no longer reliable in the presence of
memory faults: for instance, when we search an array whose correct keys are in increasing
order, it may be still possible that a faulty key in position x is smaller than some correct keys
in positions < x, thus guiding the search towards a wrong direction.

The main results of this paper can be summarized as follows:

• We prove that any strongly resilient O(n log n) comparison-based sorting algorithm can
tolerate the corruption of at most O((n log n)1/2) keys.

• We present a strongly resilient O(n log n) comparison-based sorting algorithm that tol-
erates O((n log n)1/3) memory faults.

Our lower bound implies that if we have to sort in the presence of ω((n log n)1/2) memory
faults, then we should be prepared to spend more than O(n log n) time. Both our lower
and upper bounds are in fact more general, as we will show in Section 3 and in Section 4,
respectively. Similarly, in Section 5 we prove polylogarithmic lower and upper bounds on
resilient searching: we design an O(log n) time searching algorithm that can tolerate up to
O((log n)1/2) memory faults, and we prove that any O(log n) time resilient searching algorithm
can tolerate at most O(log n) memory faults.

All our algorithms are deterministic, do not make use of data replication, and use only O(1)
reliable memory. We remark that a constant-size reliable memory may be even not sufficient
for a recursive algorithm to work properly: parameters, local variables, return addresses in
the recursion stack may indeed get corrupted. This is not a problem if the recursion can be
simulated by an iterative implementation using only a constant number of variables. The
algorithms presented in this paper have this property, and we will thus use their iterative
implementation.

The remainder of this paper is organized as follows. Section 2 introduces preliminary
terminology for characterizing the resilience of sorting algorithms with respect to memory
faults. In Section 3 we show how to sort in optimal space and running time in the presence of
a polynomial number of faults, and in Section 4 we prove a lower bound for strongly resilient
sorting in the comparison model. Section 5 presents the results for resilient searching, while
Section 6 lists some concluding remarks.

2 Unordered sequences and resilient sorting algorithms

In this section we introduce a framework for studying the resilience of sorting algorithms to
memory faults. We will denote by n the number of input keys, by δ ≤ n an upper bound
on the number of memory faults that can occur throughout the execution of the algorithm,
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130 12 200 80 85 90 50 100 120 70 15 163 190 200 280

130 12 80 85 90 50 100 120 70 163 190 200 280

12 80 85 90 100 120 163 190 200 280

S

Su

Su \ X

Figure 1: A sequence S with two corrupted keys (in boldface): S is 3-unordered since the
removal of keys 130, 50 and 70 makes the uncorrupted keys in the remaining subsequence
sorted.

and by α ≤ δ the actual number of faults that occur throughout a specific execution. We
characterize the resilience of sorting algorithms to memory faults both in terms of overhead
in their running times and in terms of quality of their solution.

Intuitively, the overhead is the additional time spent by the algorithm to cope with memory
faults. In order to characterize the quality of the produced solution, we note that even correct
keys may be not sorted in the output sequence due to the occurrence of memory faults, i.e.,
errors can propagate: we therefore characterize the quality of resilient sorting and merging
algorithms in terms of error propagation, which is going to be defined next. Given a sequence
of keys S, we denote by Su ⊆ S the subset of uncorrupted keys. The following definition will
be useful throughout.

Definition 1 Given an integer k ≥ 0, a sequence S is k-unordered if:

• there exists a set X ⊆ Su such that |X| = k and Su \ X is sorted;

• for any set Y ⊆ Su such that |Y | < k, Su \ Y is not sorted.

An example of k-unordered sequence for k = 3 is shown in Figure 1. We remark that,
according to Definition 1, a sequence in which only the corrupted keys appear in the wrong
order is 0-unordered. With a slight abuse of notation, in the remainder of this paper we
will say that a sequence is O(f(δ))-unordered, for some function f , to indicate that it is
k-unordered for k = O(f(δ)).

Given a k-unordered sequence X of length n, it is always possible to obtain a 0-unordered
subsequence of X in O(n) time by removing Θ(k) keys from X. This can be easily done with
the help of the Cook-Kim division algorithm [11]. We now show how to make this algorithm
resilient to memory faults, i.e., capable of operating during the occurrence of memory faults.

Algorithm Purify. While we scan the sequence X sequentially, we build a stack S and a
list D of discarded keys as follows. We maintain the top of stack S and the index i that
scans X in the O(1)-size reliable memory. Initially, we push X[1] onto the empty stack. At
the i-th step, with i > 1, if X[i] is larger than or equal to the top of S, we push X[i] onto
S. Otherwise, we have found an inversion and therefore either X[i] or the top of the stack
S must be out of order: in this case, we pop S, add the popped item and X[i] to the list D
of discarded keys, compute the maximum among the topmost t = min{δ + 1, |S|} stack keys,
and move it to the top of S. After n steps, we return S and D.

6



The reason for computing the maximum among the topmost stack keys when we pop stack
S is that the key below the discarded top may have been corrupted since it was pushed onto
S: namely, if its value was decreased since it was pushed, S could be no longer 0-unordered
at the end of the algorithm execution. More formally, we can prove that algorithm Purify

maintains the following invariant:

Invariant 1 (Stack Invariant) Throughout the algorithm execution, the key on the top of
stack S is larger than or equal to all the keys that have not been corrupted since they were
pushed onto S.

Proof. The proof proceeds by induction on the value of the index i that scans X. The base
step, with the stack containing just X[1], trivially holds. Assume that the invariant holds
by induction at the beginning of the i-th step, i > 1. If X[i] ≥ top, X[i] is pushed onto the
stack and the invariant still holds by transitivity: the top of stack S is indeed maintained
in reliable memory, and thus a key cannot get corrupted as long as it is at the top of S.
If X[i] < top, both X[i] and the top of the stack are added to the list of discarded keys.
Moreover, the algorithm moves to the top of S the maximum among the topmost t stack
keys, where t = min{δ + 1, |S|}. Let m be this maximum. Since m is larger than or equal
to the topmost t keys, the invariant remains true when t = |S| ≤ δ + 1. Let us now assume
that t = δ + 1 < |S|. In this case, at least one of the (δ + 1) keys considered must be correct,
since there can be at most δ errors: let x be any such correct key. At the time when x was at
the top of S, the invariant was true by induction, and therefore x must still be larger than or
equal to all the uncorrupted keys below its position. Since m ≥ x, the new top satisfies the
invariant with respect to the entire stack. 2

The running time of algorithm Purify is analyzed in the following lemma:

Lemma 1 Algorithm Purify computes a 0-unordered subsequence S of a k-unordered se-
quence X of length n in O(n + δ · (k + α)) worst-case time, where α ≤ δ is the actual number
of memory faults introduced during the execution of Purify. S has length ≥ n − 2(k + α),
and only the keys corrupted during the execution of Purify may be unordered in S.

Proof. By Invariant 1, the stack S contains a 0-unordered subsequence of X at the end of the
execution, because only keys corrupted after they have been pushed onto the stack may be
unordered. If ℓ is the number of pop operations performed, it is easy to see that the running
time of Purify is O(n + ℓ · δ) and that the final stack has size at least n − 2ℓ. To conclude
the proof, we are left to show that ℓ ≤ k + α. Assume by contradiction that ℓ > k + α.
For each pop operation performed, the algorithm must have met one distinct pair of inverted
keys: thus, the total number of inverted pairs encountered is at least ℓ. The assumption
ℓ > k + α would therefore imply either that X is not k-unordered or that more than α keys
get corrupted during the execution of Purify, clearly a contradiction. 2

In the rest of this section we show how to use the notion of k-unordered sequence in
order to characterize the quality of resilient sorting algorithms. In particular, we measure the
quality of the solution produced by a sorting/merging algorithm that runs in the presence of
memory faults with the following definition.

Definition 2 Let A be a sorting /merging algorithm that runs in the presence of α memory
faults, α > 0. We say that algorithm A has error propagation σ, with σ ≥ 0, if in the worst
case A produces (σ · α)-unordered sequences.
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We will call a sorting / merging algorithm that has error propagation σ = 0 (i.e., an
algorithm that does not propagate errors) strongly resilient: such an algorithm will produce
a 0-unordered sequence, i.e., a sequence in which only corrupted keys may be out of order.
Similarly, we will call an algorithm with error propagation σ > 0 weakly resilient.

We now characterize the overhead and the quality of the solution of two basic merging
algorithms.

Standard merging. Consider the classical merging algorithm, which repeatedly extracts the
minimum among the first items of the two sorted n-length sequences A and B to be merged.
The algorithm runs in O(n) time and has therefore no overhead. However, its error prop-
agation σ can be as large as Θ(n), as we are going to show next. Assume that all of the
keys in A are smaller than those in B and that, just before merging, the first key of A gets
corrupted and becomes larger than all the other values. Clearly, in this example we have
only one memory fault, i.e., α = 1. However, standard merging returns incorrectly all the n
keys of B before any key of A: the output sequence is therefore O(n)-unordered, even in the
presence of a single memory fault.

Naive strongly resilient merging. Consider the following variant of the classical merging
algorithm: at each merge step, instead of taking the minimum among two top keys, take the
minimum among the top (δ + 1) keys of each sequence, for a total of (2δ + 2) keys. Since
there can be at most δ memory faults, at least one correct key per sequence must be looked
up. This guarantees that the algorithm has error propagation σ = 0, at the price of a time
overhead of Θ(δ · n).

The first example shows that the standard mergesort algorithm has obviously no running
time overhead, but its error propagation σ can be Θ(n). At the other extreme, if we are
willing to pay a large overhead, we can easily obtain a strongly resilient sorting algorithm
with the help of naive strongly resilient merging. In order to avoid problems in the recursion
stack, we use the standard iterative bottom-up implementation of mergesort, i.e., we sort all
the sequences of length 2i before any sequence of length 2i+1, for i = 1, 2, . . . ⌈log n⌉1. In this
way we only need to maintain in O(1) reliable memory words the length of the subsequence
being sorted and the position of its left boundary. We will call Naive-SR-Mergesort this
iterative sorting algorithm, which is analyzed in the following lemma.

Lemma 2 Algorithm Naive-SR-Mergesort is strongly resilient and has overhead O(δ·n log n)
on the running time. The overhead becomes O(δ · n) when δ = Ω(nǫ), for some ǫ > 0.

Proof. The strong resilience of the iterative sorting algorithm derives from the strong re-
silience of the merging subroutine. The running time satisfies the recurrence

T (n) = T
(⌊n

2

⌋)

+ T
(⌈n

2

⌉)

+ Θ(δ · n)

that can be solved with standard techniques. 2

Table 2 summarizes the quality and overhead of these two basic algorithms.

1In this paper all logarithms are assumed to be to the base 2, unless explicitly noted otherwise.
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algorithm error propagation overhead

Standard-Mergesort Θ(n) 0

Naive-SR-Mergesort 0 O(δ · n log n)

Table 2: Quality of the solution and overhead of two basic sorting algorithms.

3 Strongly resilient sorting

In this section we describe a strongly resilient sorting algorithm that can tolerate up to δ
memory faults in O(n log n + α · δ2) worst-case running time, where α ≤ δ is the actual
number of keys corrupted during the sorting process. In particular, this yields an O(n log n)
time algorithm that can tolerate O((n log n)1/3) memory faults. The algorithm is based
on mergesort, and we first present two resilient merging subroutines with quite different
characteristics: the first, presented in Section 3.1, has no asymptotic overhead, but may be
unable to sort all of the correct keys; the second, presented in Section 3.2, is slower, yet
strongly resilient. We will use both subroutines as building blocks for our strongly resilient
sorting algorithm to be presented in Section 3.3. In the following, given a sequence S of n
keys, we will denote by S[i; j] the subsequence {S[i], S[i + 1], ... , S[j]}, with 1 ≤ i ≤ j ≤ n.

3.1 Merging in linear time with error propagation O(δ)

Let A and B be two n-length sequences to be merged. We assume that A and B are 0-
unordered and we denote by α their total number of corrupted values, with α ≤ δ. We
count in α the values corrupted both at the beginning and during the merging process. Our
weakly resilient merging, called WR-Merge, resembles the classical merging algorithm with the
following modifications.

Algorithm WR-Merge. The algorithm scans A and B sequentially. Let i and j be the
running indices on A and B, respectively. At each step, in addition to comparing A[i] and
B[j] and advancing one of the two indices, the algorithm updates two additional variables,
respectively called waitA and waitB , initialized to 0: waitA (resp. waitB) counts the number
of increments of index j (resp. i) since the last increment of index i (resp. j). If A[i] is added
to the output sequence, waitA is reset to 0 and waitB is incremented by 1; otherwise, if B[j]
is added to the output sequence, waitB is reset to 0 and waitA is incremented by 1. We let
the wait variables increase up to value (2δ + 1) at most. If this value is reached by either of
them we do the following. If waitA = 2δ + 1 (the case waitB = 2δ + 1 is symmetric), we
consider the window W = A[i + 1;min{i + 2δ + 1, n}]:

• if W contains less than (2δ + 1) values (i.e., if i + 2δ + 1 > n), we simply reset waitA to
0;

• if W contains (2δ +1) values (i.e., if i+2δ +1 ≤ n), we count the number t of its values
that are smaller than A[i]: if t ≥ δ + 1, we output A[i] and increment index i by 1.
Independently of the value of t, we also reset waitA to 0.

The indices i and j, the two wait variables, and the counter t are all stored in the O(1)-size
reliable memory.
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Analysis. We first note that at any time one of the two wait variables must be zero. The
merging process is thus divided into a sequence of A-bursts and B-bursts: during an A-burst,
the algorithm keeps on adding to the output sequence values from A, until either B[j] < A[i]
or (2δ + 1) values have been returned. Thus, during an A-burst waitA = 0, index i advances,
and waitB is incremented up to (2δ + 1). B-bursts are symmetric. If an A-burst is followed
by a B-burst in the sequence, we call it a final A-burst. If an A-burst is followed by another
A-burst in the sequence, we call the two bursts consecutive. The fact that bursts have length
≤ 2δ + 1 is crucial in proving that the algorithm has error propagation O(α · δ).

Lemma 3 Given two 0-unordered sequences of total length n, algorithm WR-Merge merges
the sequences in O(n) time and returns an O(α · δ)-unordered sequence, where α ≤ δ is the
number of corrupted keys at the end of the algorithm execution.

Proof. It is easy to see that the running time is O(n). At each step we spend constant time,
except when one of the wait variables gets value (2δ + 1): in this case we spend time O(δ),
which can be amortized against the time spent to output the last (2δ + 1) elements.

We now show that at most α · (2δ + 1) keys can be in the wrong position in the output
sequence. We charge the errors introduced during merging to the corrupted keys, showing
that when a corrupted key is added to the output sequence it can be charged at most (2δ +1)
errors. We analyze B-bursts only (the analysis of A-bursts is symmetric). Consider the end of
a final B-burst, i.e., the time when key A[i] is added to the output sequence. Notice that A[i]
may have prevented some elements of sequence A from being placed correctly in the output
sequence only if A[i] is corrupted and its value is larger than the correct one. If this is the
case, let β ≥ 0 be the number of consecutive keys of B that have been returned before A[i].
We distinguish the following two cases:

◮ β > 2δ + 1: in this case, since bursts have length ≤ (2δ + 1), the previous burst must
have been a (non-final) B-burst of length (2δ +1), at the end of which the algorithm must
have checked for possible errors. Let W = A[i + 1;min{i + 2δ + 1, n}] be the window
considered by the algorithm at that time.

• If W contains less than (2δ + 1) values (i.e., if i + 2δ + 1 > n), than A[i] in the worst
case may have prevented all those keys from A from being output at the right time:
we can charge those errors to the corrupted value A[i].

• If W contains (2δ+1) values (i.e., if i+2δ+1 ≤ n), the algorithm must have counted
the number t of values in W that were smaller than A[i]. Since A[i] was not returned
at that time, it must have been t ≤ δ. Thus, there must be at least one element of
W , say x, such that A[i] ≤ x and x is correct. Since A[i] ≤ x, by transitivity the
keys of B that have been output during all the ⌈β/(2δ + 1)⌉ consecutive B-bursts
are smaller than x, and thus they will appear in the output sequence in the correct
position with respect to x and to all the keys of sequence A that are larger than or
equal to x. Hence, A[i] may have prevented at most δ keys of sequence A (those
smaller than A[i]) from being output at the right time, and once again we can charge
those possible errors to A[i] itself.

◮ β ≤ 2δ +1: in this case it can be either (i) waitA = 2δ +1, i+2δ +1 ≤ n and t ≥ δ +1,
or (ii) waitA < 2δ + 1 and A[i] < B[j]. In the first case at least one of the t ≥ δ + 1
keys of W that are smaller than A[i] must be correct; the algorithm can deduce that A[i]
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is corrupted and return it immediately, in spite of the fact that it may be in a wrong
position. In both cases, the β keys of B that have been returned during the B-burst may
appear in the wrong position in the output sequence: those errors, which are at most
(2δ + 1), can be charged to the corrupted value A[i].

This shows that each corrupted key can be charged at most (2δ + 1) errors. Since correct
keys are never charged, this concludes the proof. 2

3.2 Merging in superlinear time without error propagation

Let A and B be two 0-unordered sequences of length n1 and n2, respectively, containing α
corrupted values, with α ≤ δ. Without loss of generality assume that n2 ≤ n1. Our strongly
resilient merging, called Unbalanced-SR-Merge, repeatedly extracts a key from the shorter
sequence B and places it in the correct position with respect to the longer sequence A.

Algorithm Unbalanced-SR-Merge. Let i and j be the running indices on A and B,
respectively. At each step, we extract the minimum in B[j;min{j + δ, n2}]: let b = B[h] be
such minimum, for j ≤ h ≤ min{j +δ, n2}. We shift right all the keys in B[j;h−1], move b to
B[j], and increase index j by 1. Then, we scan A sequentially, starting from position i, and
add the keys of A to the output sequence until we find a key such that A[i] > b. Since A[i]
may be corrupted, returning b just before A[i] may be wrong: we therefore count the number
t of keys smaller than A[i] in the window W = A[i + 1;min{i + 2δ + 1, n1}]. If t ≥ δ + 1, we
continue scanning A. Otherwise, we partition the window W into two groups: the keys ≤ b
and the keys > b. We rearrange W so that keys ≤ b appear before keys > b, while the relative
order of any two keys in the same group is maintained. We add to the output sequence the
keys of W that are ≤ b, followed by b itself, and start a new step.

Lemma 4 Let A and B be two 0-unordered sequences of length n1 and n2, respectively, with
n2 ≤ n1. Algorithm Unbalanced-SR-Merge merges the sequences in O(n1 +(n2 +α) · δ) time,
where α ≤ δ is the number of corrupted keys at the end of the algorithm execution. The output
of Unbalanced-SR-Merge is a 0-unordered sequence.

Proof. We first prove that the output sequence is 0-unordered. In spite of possible faults, the
correct keys of B are extracted in increasing order, because the element b extracted at each
step is certainly smaller than or equal to the minimum correct key in B[j;n2]. The choice of
the proper position of b with respect to sequence A is also resilient. Indeed, when a key A[i] > b
is encountered by the algorithm, a check on the window W = A[i + 1;min{i + 2δ + 1, n1}]
is performed before adding b to the output sequence. If W contains t ≥ δ + 1 keys smaller
than A[i], then A[i] is certainly corrupted and the algorithm correctly continues scanning A.
Otherwise, if t ≤ δ, we consider two cases, depending on whether i + 2δ + 1 ≤ n1 or not.

• i + 2δ + 1 ≤ n1: in this case, W has size (2δ + 1). Since t ≤ δ, at least (δ + 1) elements
from W are larger than or equal to A[i], and thus at least one of them must be correct.
Keys of W smaller than b are returned before b itself, and the fact that their relative
order is maintained guarantees that no error is introduced.

11
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Figure 2: The strongly resilient merging algorithm SR-Merge.

• i + 2δ + 1 > n1: in this case, all the keys of A not yet added to the output sequence are
in W , and only those larger than b are correctly not output before b itself.

We now discuss the running time. Extracting b, analyzing and rearranging W , can all be
implemented in time O(δ). Note that if A[i] is corrupted, we may continue scanning A, and
therefore more than one window may be analyzed before adding b to the output sequence: we
charge the analysis of all these windows to the corrupted element A[i] associated with each
of them. Since at most α elements are faulty, this contributes O(α · δ) to the total running
time. All the remaining operations require time O(n1 + n2 · δ). 2

3.3 The sorting algorithm

In this section we present and analyze a strongly resilient mergesort-based sorting algorithm,
that we call SR-Mergesort. As in Section 2, we assume an iterative bottom-up implementa-
tion in order to avoid problems due to a non fault-tolerant recursion stack.

The merging algorithm SR-Merge that will be used by SR-Mergesort is described in
Figure 2. The input sequences, A and B, are first merged using the linear-time subroutine
WR-Merge. The output sequence, C, may not be 0-unordered, i.e., some correct elements
may be in a wrong position. Such errors are recovered by the combined use of algorithms
Purify and Unbalanced-SR-Merge. Namely, the disordered list D of keys discarded by
Purify is first sorted using algorithm Naive-SR-Mergesort described in Section 2. The
slower strongly resilient subroutine Unbalanced-SR-Merge is then used on two 0-unorderded
unbalanced sequences, S and E, the shorter of which has length proportional to the actual

12



algorithm error propagation overhead

Standard-Merge Θ(n) 0

WR-Merge O(δ) 0

Naive-SR-Merge 0 O(δ · n)

Unbalanced-SR-Merge 0 O((n2 + α) · δ)
SR-Merge 0 O(α · δ2)

Table 3: Quality of the solution and overhead of different merging algorithms: δ, α, n, and
n2 denote the upper bound on the number of memory faults, the actual number of faults
that occur throughout a specific execution, the total number of input keys, and the number
of keys in the shorter input sequence, respectively.

number of corrupted keys (as we will see later). It is easy to see that the entire algorithm is
strongly resilient.

Analysis. Let ℓ be the total length of the 0-unordered sequences A and B to be merged.
Let in and thru denote the number of keys corrupted in the input and during merging,
respectively, and let α = in + thru. The running time of algorithm SR-Merge can be stated
in terms of ℓ, α and δ as follows:

Lemma 5 Algorithm SR-Merge takes time O(ℓ+α ·δ2) to merge two sequences of total length
ℓ, where α ≤ δ is the number of corrupted keys at the end of the algorithm execution.

Proof. By Lemma 3, WR-Merge returns an O(α · δ)-unordered sequence in time O(ℓ). By
Lemma 1, the list D of keys discarded by Purify has length O(α · δ). The running times of
Purify and Unbalanced-SR-Merge are both O(ℓ + α · δ2) by Lemmas 1 and 4, respectively.
Since |D| = O(α ·δ), then δ = Ω(|D|1/2) and Naive-SR-Mergesort on the set D requires time
O(|D| · δ) = O(α · δ2) (see Lemma 2). The total running time immediately follows. 2

The propagation of errors of algorithm SR-Merge satisfies the following property:

Lemma 6 Algorithm SR-Merge returns a 0-unordered sequence in which only the keys cor-
rupted while merging may be unordered.

Proof. Consider the 0-unordered sequence S returned by Purify: only keys corrupted during
the execution of Purify may be unordered in S (see Lemma 1). A similar consideration holds
for the sequence E returned by Naive-SR-Mergesort. Thus, any key corrupted before the
execution of algorithm SR-Merge will appear in the proper position in the sequences S and E
received as input by algorithm Unbalanced-SR-Merge: these corrupted, but correctly ordered
keys will be treated by Unbalanced-SR-Merge as if they were correct. This proves that only
the keys corrupted during the execution of algorithm SR-Merge may be unordered in the
output sequence F . 2

Table 3 compares the quality of the solution and the running time overhead of algorithm
SR-Merge with those of the merging algorithms described before. We are now ready to analyze
algorithm SR-Mergesort, that uses SR-Merge as a subroutine.

Theorem 1 Algorithm SR-Mergesort is strongly resilient and sorts n-length sequences in
O(n log n + α · δ2) worst-case time, where α ≤ δ is the total number of memory faults.
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algorithm error propagation overhead

Standard-Mergesort Θ(n) 0

Naive-SR-Mergesort 0 O(δ · n log n)

SR-Mergesort 0 O(n log n + α · δ2)

Table 4: Quality of the solution and overhead of algorithm SR-Mergesort, compared with
the basic sorting algorithms described in Section 2.

Proof. Without loss of generality assume that n is a power of 2. Consider the merge
tree associated with algorithm SR-Mergesort, whose nodes correspond to the invocations of
procedure SR-Merge: namely, the root of the merge tree corresponds to the last merge step
performed during the execution of SR-Mergesort, and the left and right subtrees are defined
recursively on the left and right half of the input sequence. Let x be any node of this tree at
level k, for 0 ≤ k < log2 n. Let ink(x) be the number of errors contained in the sequences to
be merged at node x, and let thruk(x) be the number of errors introduced while merging at
node x. By Lemma 5, the time required for merging at node x satisfies the following:

Tk(x) = O
( n

2k

)

+ (ink(x) + thruk(x)) δ2

By Lemma 6,
ink(x) = thruk+1(x1) + thruk+1(x2)

where x1 and x2 are the children of node x in the merge tree. Since α is the total number of
memory faults, we have

log n
∑

k=0

2k

∑

x=1

thruk(x) ≤ α

Thus, if we sum up the fault dependent contributions (ink(x) + thruk(x))δ2 on the entire
merge tree, we obtain O(α · δ2). With standard techniques we can then conclude that the
running time of algorithm SR-Mergesort is O(n log n + α · δ2). 2

A crucial point in the running time analysis is that the slowdown of the merge step de-
pends only on the actual number of faults in the sequence: the fewer the corrupted values,
the faster is merging and thus sorting. We remark that algorithm SR-Mergesort can ac-
tually work without knowledge of a tight upper bound on the number of faults: choosing
δ = Θ((n log n)1/3) yields an O(n log n) strongly resilient sorting algorithm that can tolerate
O((n log n)1/3) memory faults. Moreover, by Lemma 6, if no key is corrupted during the
last merge step (i.e., at the root of the merge tree), both correct and corrupted keys will be
ordered in the output sequence.

Table 4 summarizes the quality of the solution and the running time overhead of algorithm
SR-Mergesort and compares it with the basic sorting algorithms described in Section 2.

4 Lower bound on resilient sorting

In this section we prove lower bounds on strongly resilient merging and sorting in the compar-
ison model. We will assume that the basic comparisons are of the form “x < y?”: the results
can be easily generalized to other kinds of comparisons, such as “x ≤ y?” or “x > y?”. We
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first show that Ω(n + δ2−ǫ) comparisons are necessary to merge two 0-unordered sequences
of length n containing up to δ faulty values when δ ≤ n2/(3−2ǫ), for any ǫ, 0 ≤ ǫ ≤ 1/2. To
prove this claim, we use an adversary-based argument. A merging algorithm asks compari-
son questions that the adversary should answer consistently: if challenged at any time, the
adversary must exhibit two input sequences and at most δ memory faults such that all her
answers are correct (i.e., consistent with the memory image at the time when the comparison
was asked). Both the algorithm and the adversary know the fault upper bound δ.

Adversary’s strategy. Let A and B be two 0-unordered sequences of length n that need
to be merged. Without loss of generality we assume that n mod δ = 0. We divide A and B
into δ subsequences of n/δ consecutive elements, called A1, . . . Aδ and B1, . . . Bδ, respectively.
Namely, Ai = A[1 + (i − 1)n/δ; i(n/δ)], for 1 ≤ i ≤ δ. Bi is defined similarly. The adversary
answers the algorithm’s questions as if the sorted sequence were:

S = A1 B1 A2 B2 . . . Bδ−1 Aδ Bδ (1)

Analysis. We build a comparison graph G(V,E) as follows: V consists of 2n vertices, one for
each element of A and B; two vertices are connected by as many edges as the number of times
the corresponding elements have been compared. The vertices are grouped into 2δ clusters
associated with the subsequences Ai and Bi defined above. To prove the lower bound, we
will show that if this comparison graph has less than ⌊δ2−ǫ/4 − δ/2⌋ edges, then there must
be at least two possible orderings of the input sequences that are both consistent with all of
the adversary’s answers.

We say that two clusters Ai and Bj are consecutive if either j = i or j = i−1. A sequence
of consecutive clusters is called sparse if the elements in the clusters induce a subgraph with
less than ⌈δ/2⌉ edges. The length of a sequence of clusters is defined as the number of clusters
in the sequence. We first prove two lemmas about sparse sequences.

Lemma 7 If the algorithm performs less than ⌊δ2−ǫ/4 − δ/2⌋ comparisons, for some ǫ, 0 ≤
ǫ ≤ 1/2, then there must be at least one sparse sequence of length 2⌈δǫ⌉.
Proof. Let S be defined as in (1). Let ℓ be the maximum number of disjoint subsequences of
length 2⌈δǫ⌉ that can be obtained by dividing S into sets of 2⌈δǫ⌉ consecutive clusters. Then
ℓ = ⌊2δ/(2⌈δǫ⌉)⌋ ≥ δ/(δǫ + 1) − 1 ≥ δ1−ǫ/2 − 1. If none of the subsequences is sparse, the
number of comparisons should be at least ℓ · ⌈δ/2⌉ ≥ (δ1−ǫ/2− 1)(δ/2) = δ2−ǫ/4− δ/2, which
is a contradiction. 2

Lemma 8 Let δ ≤ n2/(3−2ǫ), for some ǫ, 0 ≤ ǫ ≤ 1/2. Let Y be a sparse sequence of length
2⌈δǫ⌉. Then Y must contain two clusters Ai and Bj such that at least one pair of elements
a ∈ Ai and b ∈ Bj has not been compared by the algorithm.

Proof. Assume by contradiction that each element of Ai is compared against each element
of Bj, for each Ai and Bj in Y . Recall that |Ai| = |Bj| = n/δ for each i and j, and that Y
consists of a total of 2⌈δǫ⌉ clusters, such that ⌈δǫ⌉ clusters are in B and ⌈δǫ⌉ clusters are in A.
Thus, each cluster Ai must have at least δǫ(n/δ)2 incident edges, and the total number of edges
in the subgraph induced by Y must be at least n2δ2ǫ−2. Since by assumption δ ≤ n2/(3−2ǫ),
we have n2δ2ǫ−2 ≥ δ3−2ǫδ2ǫ−2 = δ. Since Y is sparse, it should be also n2δ2ǫ−2 < ⌈δ/2⌉, which
is clearly a contradiction. 2
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Figure 3: Sparse sequence and elements a and b used in the proof of Lemma 9: dark grey
elements are corrupted, light grey elements in the sparse sequence have not been compared
against each other.

Lemma 9 Given any ǫ, 0 ≤ ǫ ≤ 1/2, any strongly resilient merging algorithm requires in the
worst-case Ω(n + δ2−ǫ) comparisons to merge two 0-unordered sequences of length n when up
to δ ≤ n2/(3−2ǫ) values may be corrupted.

Proof. We consider only the case where δ > n1/(2−ǫ), since the lower bound trivially holds
for δ ≤ n1/(2−ǫ). If δ > n1/(2−ǫ), we will show that the merging algorithm needs Ω(δ2−ǫ)
comparisons in order to determine the correct order of uncorrupted keys.

To prove this, assume that the algorithm performs less than ⌊δ2−ǫ/4 − δ/2⌋ compar-
isons. Then, by Lemma 7, there must be a sparse sequence of length 2⌈δǫ⌉, say Y =
AkBkAk+1 . . . Ak+⌈δǫ⌉−1Bk+⌈δǫ⌉−1. By Lemma 8, let a ∈ Ai and b ∈ Bj, for some k ≤
i, j < k + ⌈δǫ⌉, be two elements of Y that have not been directly compared by the algorithm
during its execution. Without loss of generality, assume that i ≤ j (the analysis when i > j is
similar). We will now show that the algorithm cannot determine the correct order of a and b
(even by transitivity). Namely, the adversary can exhibit at most δ memory faults such that
both the order in which a precedes b and the order in which b precedes a are consistent with
her answers. Consider the comparisons performed by the algorithm, and let “x < y?” be any
such comparison question. The adversary claims that:

(1) If either x 6∈ Y or y 6∈ Y , the question has been answered without introducing memory
faults.

(2) If x ∈ {a, b} and y ∈ Y \ {a, b}, then y has been corrupted.

(3) If y ∈ {a, b} and x ∈ Y \ {a, b}, then x has been corrupted.

(4) If x ∈ Y \ {a, b} and y ∈ Y \ {a, b}, then both x and y have been corrupted.

The comparisons “a < b?” and “b < a?” are not included in cases (1)–(4) since a and b
have not been compared by the algorithm. If the comparison “x < y?” involves at most one
element of Y (case (1) ), there are no memory faults. Otherwise (cases (2)–(4) ), at most two
values are corrupted: since Y is sparse, there are less than ⌈δ/2⌉ comparisons of type (2)–(4)
and thus the total number of corrupted values is at most δ.

We now show that, in accordance with cases (1)–(4), either a can precede b or b can
precede a in the final ordering. Let Y u ⊆ Y be the set of uncorrupted values in Y . Since a
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and b have never been corrupted, {a, b} ⊆ Y u. Note that the values in Y u ∩B have not been
compared against the values in Y u∩A: otherwise, they would be considered as corrupted and
would not belong to Y u. Furthermore, the comparisons with elements outside Y cannot be
used by transitivity to get information on the relative order of Y u ∩B and Y u ∩A: since the
adversary does not need to choose the values in advance, the sequences A and B can always
be stretched so that, for any t < k (t > k+⌈δǫ⌉), values in At and Bt are smaller (larger) than
values in Y . In the final ordering, the values in Y u ∩ B can therefore appear either before or
after the values in Y u ∩ A, and the algorithm cannot decide which of the two orders (a < b
or b < a) is correct.

Since neither a nor b is faulty, the algorithm must put them in the correct relative order
to get a 0-unordered sequence. We can therefore conclude that any strongly resilient merging
algorithm requires at least ⌊δ2−ǫ/4 − δ/2⌋ = Ω(δ2−ǫ) comparisons, for any ǫ, 0 ≤ ǫ ≤ 1/2. 2

Theorem 2 Given any ǫ, 0 ≤ ǫ ≤ 1/2, any strongly resilient sorting algorithm requires
in the worst-case Ω(n log n + δ2−ǫ) comparisons to sort a sequence of length n when up to
δ ≤ n2/(3−2ǫ) values may be corrupted.

Proof. If δ ≤ (n log n)1/(2−ǫ), the lower bound trivially holds. Otherwise, if (n log n)1/(2−ǫ) <
δ ≤ n2/(3−2ǫ), the lower bound on sorting follows from Lemma 9. Indeed, if Theorem 2 were
not true, using a sorting algorithm in order to solve the merging problem would contradict
the lower bound of Ω(δ2−ǫ) that derives from Lemma 9. 2

We can now characterize the resilience to memory faults of comparison-based strongly
resilient sorting algorithms with optimal running time.

Theorem 3 Any O(n log n) comparison-based strongly resilient sorting algorithm can tolerate
the corruption of at most O((n log n)1/2) values.

Proof. By Theorem 2, Ω(n log n + δ2−ǫ) is a lower bound on strongly resilient sorting when
the number δ of corrupted values is such that δ ≤ n2/(3−2ǫ), for any ǫ, 0 ≤ ǫ ≤ 1/2. We
consider three different choices for ǫ:

• ǫ = 1/2: this gives the weakest lower bound, i.e., Ω(n log n + δ3/2), that holds for each
δ ≤ n. An O(n log n) algorithm cannot therefore tolerate the corruption of γ values,
with γ ∈

(

(n log n)2/3, n
]

.

• ǫ = 1/6: this gives a lower bound of Ω(n log n + δ11/6) that holds for each δ ≤ n3/4.
An O(n log n) algorithm cannot therefore tolerate the corruption of γ values, with γ ∈
(

(n log n)6/11, n3/4
]

.

• ǫ = 0: this gives the strongest lower bound, i.e., Ω(n log n + δ2), that holds for
each δ ≤ n2/3. An O(n log n) algorithm cannot therefore tolerate the corruption of γ
values, with γ ∈

(

(n log n)1/2, n2/3
]

.

As shown in Figure 4:
(

(n log n)1/2, n2/3
]

∪
(

(n log n)6/11, n3/4
]

∪
(

(n log n)2/3, n
]

=
(

(n log n)1/2, n
]

Any optimal comparison-based sorting algorithm can thus tolerate the corruption of at most
O((n log n)1/2) values. 2
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Figure 4: Intervals used in the proof of Theorem 3.

5 Resilient binary search

In this section we consider the resilient binary search problem. Let X be an ordered sequence
of length n containing at most δ corrupted keys, which may be possibly out of order: the
occurrence of such memory faults may compromise the correctness of the classical binary
search algorithm, since it may be possible that a faulty key in position x is smaller than some
correct keys in positions < x, thus guiding the search towards a wrong direction. Let s be
a key to be searched in X. We expect from a resilient searching algorithm to answer yes if
there is a correct key equal to s, and no if there is no key (either correct or faulty) equal to
s. Note that, if there are only faulty keys equal to s, the answer may be either yes or no.

A naive resilient searching algorithm can be easily implemented by using a majority argu-
ment at each search step, i.e., by following the search direction suggested by the majority of
(2δ + 1) keys in consecutive array positions. However, such an algorithm would have a large
overhead of O(δ log n) on the running time. In Section 5.1 we describe an algorithm that
requires O(log n + α · δ) time, where α ≤ δ is the actual number of faulty keys in X. This
yields a resilient searching algorithm that can tolerate O((log n)1/2) memory faults in O(log n)
time in the worst case. We also prove in Section 5.2 that any comparison-based searching
algorithm that runs in O(log n) time can tolerate the corruption of at most O(log n) values.

5.1 The search algorithm

Our binary searching algorithm, called ResilientSearch, proceeds in a non-resilient way,
checking from time to time if it did some mistake. If this is the case, it corrects the search
direction using a resilient recovery procedure. Although we present a tail-recursive implemen-
tation of algorithm ResilientSearch, the recursion can be easily unrolled by storing just a
few array indices in O(1) words of reliable memory.

Let a and b denote the indices to the left and right boundaries of the array to be searched
for at a generic step. The recursive call ResilientSearch(X,a, b) works as follows.

Step 1: interval retrieval. If a = b, return yes if and only if s = X[a] and stop. Otherwise,
starting from X[(a + b)/2], perform h steps of non-resilient binary search (the value of
h will be determined later). Let ℓ and r be the indices to the left and right boundaries
of the interval I identified by this search.

Step 2: neighborhood search. Let Nℓ and Nr be two (2δ + 1)-size neighborhoods of X[ℓ]
and X[r], respectively: i.e., Nℓ = X[max{0, ℓ−2δ}; ℓ] and Nr = X[r;min{r+2δ, n−1}].
Check by exhaustive search if s ∈ Nℓ ∪Nr: if this is the case, return yes and stop.

Step 3: error recovery. If Nℓ contains at least (δ+1) keys larger than s, set r = max{a, ℓ−
2δ} and then ℓ = a. Otherwise, if Nr contains at least (δ + 1) keys smaller than s, set
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Figure 5: Resilient binary search with h = 5 and correspondence with a binary search tree:
ai’s and bi’s are the left and right boundary nodes, respectively.

ℓ = min{r + 2δ, b} and then r = b.

Step 4: recursive call. Return the result of ResilientSearch(X, ℓ, r).

Note that, if there were no faults, at the end of Step 1 the search would continue in interval
I = X[ℓ ; r]. On the other side, if we took a wrong search direction at some point during Step
1, then the search should continue either in X[a ; ℓ − 1] or in X[r + 1 ; b]. This is detected by
the error recovery procedure in Step 3, and implies updating the left and right boundaries
before performing the recursive call of Step 4.

Analysis. The keys considered during the non-resilient search of Step 1 correspond to the
nodes of a binary search tree, as shown in Figure 5. Call a1, . . . , ax and b1, . . . , by the nodes
where we turn right and left during the search, respectively (also called left boundary and right
boundary nodes). Clearly, a1 = X[a], ax = X[ℓ], by = X[r], and b1 = X[b]. In the following
we call a value misleading if it is faulty and guides the search towards a wrong direction during
Step 1. The following theorem analyzes the correctness and the running time of algorithm
ResilientSearch.

Theorem 4 Algorithm ResilientSearch correctly answers membership queries on a n-length
sequence X in O(log n + α · δ) worst-case time, where α ≤ δ is the number of faulty keys in
X at the end of the algorithm execution.

Proof. The algorithm answers yes only if it finds an index i such that X[i] equals the searched
key s. Thus, to show its correctness, we only need to prove that in case of a negative answer
there is no correct key equal to s. Assume that the algorithm has taken, at some point during
the execution of Step 1, a wrong search direction. In this case, however, one of the tests
in Step 3 succeeds, and the left and right boundaries are updated before the recursive call
of Step 4. We now prove that, if X contains a correct key equal to s, such a key must be
searched in X[ℓ; r], where ℓ and r are updated as in Step 3.

First, consider the case where Nℓ contains at least (δ + 1) keys larger than s: then, there
is at least a key λ ∈ Nℓ such that λ > s and λ is correct. The search of s should then continue
in X[a; p], with p ∈ [ℓ − 2δ, ℓ] and X[p] = λ. The exhaustive search performed in Step 2
guarantees that s 6∈ Nℓ, and thus proceeding in X[a; ℓ−2δ] is correct. A symmetric argument
holds if the test on Nr succeeds. This guarantees that the values ℓ and r are always properly
set before the recursive call of Step 4.
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We now discuss the running time. We first bound the time required for uncorrect searches.
Assume that, during the execution of Step 1, the algorithm encounters a misleading left
boundary node, say aj (the case of misleading right boundary nodes is symmetric). Then
all ak with k ≥ j must be misleading, and in particular ax = X[ℓ] is misleading, and thus
faulty. We charge the time O(h) spent for this uncorrect search to X[ℓ]. Since X[ℓ] is out of
the interval X[a; max{a, ℓ − 2δ}] in which the search proceeds further, each faulty key can
be charged at most once and we will have at most α uncorrect searches, whose total running
time is O(α · h).

We now analyze the running time for the other steps. It is easy to see that Steps 1, 2 and
3 require time O(δ + h). If the search in Step 1 is correct, the interval on which we recurse in
Step 4 has length (b − a)/2h, and thus the running time for the remaining steps is given by
the recurrence

T (n) = T
( n

2h

)

+ O(δ + h) = O

((

1 +
δ

h

)

log n

)

(2)

Choosing h = Θ(δ) and summing up the running time given by (2) with the contribution
O(α · δ) of the uncorrect searches, we obtain a total running time of O(log n + α · δ) in the
worst case for each membership query.

2

Theorem 4 implies that algorithm ResilientSearch can tolerate up to O((log n)1/2) mem-
ory faults while still running in O(log n) optimal time.

5.2 The lower bound

In this section we prove a lower bound on resilient searching in the comparison model. In
particular, we use an adversary-based argument to show that Ω(log n + δ) comparisons are
necessary to answer membership queries on an ordered sequence X of length n containing up
to δ faulty keys. We assume that the basic comparisons are of the form “x < y?”, where x
and y either are keys of X or coincide with the key s that we are searching for. The lower
bound holds also if the adversary does not know the fault upper bound δ. The adversary
strategy is as follows:

Let X be an ordered sequence of length n. Let xi, for 1 ≤ i ≤ n, denote the i-th
element of X, and let s be the key to be searched for. The algorithm may ask two
possible kinds of comparisons: either “s < xi?” or “xi < xj?”, for 1 ≤ i, j ≤ n.
If the question is of the former type, the adversary always answers yes. If the
question is of the latter type, the adversary answers yes if and only if i < j.

We will now prove the following theorem:

Theorem 5 Any comparison-based searching algorithm with optimal O(log n) search time
can tolerate the corruption of at most O(log n) values.

Proof. We start by proving a lower bound of Ω(log n+ δ) on resilient searching. It suffices to
prove that every resilient searching algorithm needs Ω(δ) comparisons: combining this with
the classical Ω(log n) lower bound (absence of faults), yields the desired result.

Assume that the searching algorithm asks less than (δ/2) comparisons and that the ad-
versary answers according to the strategy described above. Let C ⊆ X be the set of elements
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involved in at least one comparison. Note that |C| < 2(δ/2) = δ, because at most two ele-
ments per comparison are used. Since δ ≤ n, the subsequence X \ C is not empty, and the
comparisons provide no information about this subsequence. Based on this, the algorithm
cannot decide whether the answer to a membership query for a key s should be yes or no.
Indeed, the adversary can exhibit either a correct sequence not containing s or a faulty se-
quence containing s. This faulty sequence can be obtained as follows. Let xk be any element
in X \ C: the adversary claims that xk = s, all the keys in C are corrupted, and all of them
are larger than the keys in X \ C. In both cases, all of the adversary’s answers are consistent
with the sequence X.

This lower bound implies that no resilient searching algorithm with optimal running time
can tolerate the corruption of more than O(log n) values. 2

6 Conclusions and open problems

In this paper we have initiated the investigation of resilient sorting and searching algorithms,
i.e., algorithms that are able to produce a correct output despite the appearance of mem-
ory faults during their execution. By characterizing the running time as a function of the
maximum number of memory faults that may occur throughout the algorithm execution, we
have obtained several upper and lower bounds. We have proved that any strongly resilient
comparison-based sorting algorithm running in O(n log n) worst-case time can tolerate the cor-
ruption of at most O((n log n)1/2) values. We have also presented an algorithm with optimal
running time that tolerates up to O((n log n)1/3) memory faults. Similarly, we have designed
an O(log n) time searching algorithm that can tolerate the presence of up to O((log n)1/2)
corrupted values, and we have proved that any resilient searching algorithm with optimal
running time can tolerate at most O(log n) memory faults.

After this work, in [16] we have closed the gaps between our upper and lower bounds for
sorting designing a comparison-based resilient sorting algorithm that takes O(n log n) worst-
case time and can tolerate up to O((n log n)1/2) faults. A thorough experimental study [15]
has shown that our algorithms are not only theoretically efficient, but also fast in practice.
With respect to resilient searching, in [16] we have proved matching upper and lower bounds
Θ(log n + δ) for randomized algorithms, and we have presented an almost optimal determin-
istic algorithm that can tolerate up to O((log n)1−ǫ) faults, for any small positive constant
ǫ, in O(log n) worst-case time, thus getting arbitrarily close to the lower bound presented
in this paper. We have also addressed the searching problem in a dynamic setting, design-
ing a resilient version of binary search trees such that search operations, insertions of new
keys, and deletions of existing keys can be implemented in O(log n + δ2) amortized time per
operation [17].

As possible directions for future research, it would be interesting to improve the running
time of the search tree operations and to design other resilient data structures (e.g., priority
queues): we remark that classical data structures are highly non-resilient to memory faults,
due to either the heavy use of pointers (e.g., balanced binary search trees) or the dependence
upon structural and positional information (e.g., implicit heap-based priority queues). Other
interesting questions are whether a probabilistic fault model would make it possible to tolerate
an even larger number of memory faults than the more restrictive adversarial model considered
in this paper, and whether it would be possible to obtain resilient algorithms that do not

21



assume any knowledge on the maximum number δ of memory faults.
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