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Abstract

We investigate the problem of reliable computation in the presence of faults that may
arbitrarily corrupt memory locations. In this framework, we consider the problems of
sorting and searching in optimal time while tolerating the largest possible number of
memory faults. In particular, we design an O(n log n) time sorting algorithm that can
optimally tolerate up to O(

√
n log n ) memory faults. In the special case of integer sorting,

we present an algorithm with linear expected running time that can tolerate O(
√

n )
faults. We also present a randomized searching algorithm that can optimally tolerate up
to O(log n) memory faults in O(log n) expected time, and an almost optimal deterministic
searching algorithm that can tolerate O((log n)1−ǫ) faults, for any small positive constant
ǫ, in O(log n) worst-case time. All these results improve over previous bounds.

Keywords: combinatorial algorithms, sorting, searching, memory faults, memory models,
computing with unreliable information.

1 Introduction

The need for reliable computations in the presence of memory faults arises in many important
applications. In fault-based cryptanalysis, for instance, some optical and electromagnetic
perturbation attacks [6, 32] work by manipulating the non-volatile memories of cryptographic
devices, so as to induce very timing-precise controlled faults on given individual bits: this
forces the devices to output wrong ciphertexts that may allow the attacker to determine
the secret keys used during the encryption. Induced memory errors have been effectively
used in order to break cryptographic protocols [6, 7, 35], smart cards and other security
processors [1, 2, 32], and to take control over a Java Virtual Machine [19].

Applications that make use of large memory capacities at low cost also incur problems of
memory faults and reliable computation. Indeed, soft memory errors due to power failures,
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radiation and cosmic rays tend to increase with memory size and speed [20, 27, 33], and
can therefore have a harmful effect on memory reliability. Although the number of these
faults could be reduced by means of error checking and correction circuitry, this imposes non-
negligible costs in terms of performance (as much as 33%), size (20% larger areas), and money
(10% to 20% more expensive chips). For these reasons, this is not typically implemented in
low-cost memories. Data replication is a natural approach to protect against destructive
memory faults. However, it can be very inefficient in highly dynamic contexts or when the
objects to be managed are large and complex: copying such objects can indeed be very
costly, and in some cases we might not even know how to do that (for instance, when the
data is accessed through pointers, which are moved around in memory instead of the data
itself, and the algorithm relies on user-defined access functions). In these cases, we cannot
assume either the existence of ad hoc functions for data replication or the definition of suitable
encoding mechanisms to maintain a reasonable storage cost. As an example, consider Web
search engines, which need to store and process huge data sets (of the order of Terabytes),
including inverted indices which have to be maintained sorted for fast document access: for
such large data structures, even a small failure probability can result in bit flips in the index,
that may become responsible of erroneous answers to keyword searches [13, 21]. In all these
scenarios, it makes sense to assume that it must be the algorithms themselves, rather than
specific hardware/software fault detection and correction mechanisms, that are responsible
for dealing with memory faults. Informally, we have a memory fault when the correct value
that should be stored in a memory location gets altered because of a failure, and we say that
an algorithm is resilient to memory faults if, despite the corruption of some memory values
before or during its execution, the algorithm is nevertheless able to get a correct output (at
least) on the set of uncorrupted values.

The problem of computing with unreliable information has been investigated in a variety
of different settings, including the liar model [3, 8, 14, 23, 24, 28, 29, 30, 31, 34], fault-
tolerant sorting networks [4, 25, 26, 36], resiliency of pointer-based data structures [5], parallel
models of computation with faulty memories [11, 12, 22]. In [18], we introduced a faulty-
memory random access machine, i.e., a random access machine whose memory locations may
suffer from memory faults. In this model, an adversary may corrupt up to δ memory words
throughout the execution of an algorithm. The algorithm cannot distinguish corrupted values
from correct ones and can exploit only O(1) safe memory words, whose content never gets
corrupted. Furthermore, whenever it reads some memory location, the read operation will
temporarily store its value in the safe memory. The adversary is adaptive, but has no access
to information about future random choices of the algorithm: in particular, loading a random
memory location into safe memory can be considered an atomic operation. More details about
the model are contained in [16].

In this paper we address the problems of resilient sorting and searching in the faulty-
memory random access machine. In the resilient sorting problem we are given a sequence of
n keys that need to be sorted. The value of some keys can be arbitrarily corrupted (either
increased or decreased) during the sorting process. The resilient sorting problem is to order
correctly the set of uncorrupted keys. This is the best that we can achieve in the presence
of memory faults, since we cannot prevent keys corrupted at the very end of the algorithm
execution from occupying wrong positions in the output sequence. In the resilient searching
problem we are given a sequence of n keys on which we wish to perform membership queries.
The keys are stored in increasing order, but some keys may be corrupted (at any instant of
time) and thus may occupy wrong positions in the sequence. Let x be the key to be searched
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for. The resilient searching problem is either to find a key equal to x, or to determine that
there is no correct key equal to x. Also in this case, this is the best we can hope for, because
memory faults can make x appear or disappear in the sequence at any time.

In [18] we contributed a first step in the study of resilient sorting and searching. In
particular, we proved that any resilient O(n log n) comparison-based sorting algorithm can
tolerate the corruption of at most O(

√
n log n ) keys and we presented a resilient algorithm

that tolerates O(
3√
n log n ) memory faults. With respect to searching, we proved that any

O(log n) time deterministic searching algorithm can tolerate at most O(log n) memory faults
and we designed an O(log n) time searching algorithm that can tolerate up to O(

√
log n )

memory faults.
The main contribution of this paper is to close the gaps between upper and lower bounds

for resilient sorting and searching. In particular:

• We design a resilient sorting algorithm that takes O(n log n+ δ2) worst-case time to run
in the presence of δ memory faults. This yields an algorithm that can tolerate up to
O(

√
n log n ) faults in O(n log n) time: as proved in [18], this bound is optimal.

• In the special case of integer sorting, we present a randomized algorithm with expected
running time O(n + δ2): thus, this algorithm is able to tolerate up to O(

√
n ) memory

faults in expected linear time.

• We prove an Ω(log n+δ) lower bound on the expected running time of resilient searching
algorithms: this extends the lower bound for deterministic algorithms given in [18].

• We present an optimal O(log n + δ) time randomized algorithm for resilient searching:
thus, this algorithm can tolerate up to O(log n) memory faults in O(log n) expected
time.

• We design an almost optimal O(log n + δ1+ǫ′) time deterministic searching algorithm,
for any constant ǫ′ ∈ (0, 1]: this improves over the O(log n + δ2) bound of [18] and
yields an algorithm that can tolerate up to O((log n)1−ǫ) faults, for any small positive
constant ǫ.

Notation. We recall that δ is an upper bound on the total number of memory faults. We
also denote by α the actual number of faults that happen during a specific execution of an
algorithm. Note that α ≤ δ. We say that a key is faithful if its value is never corrupted by
any memory fault, and faulty otherwise. A sequence is faithfully ordered if its faithful keys are
sorted, and k-unordered if there exist k (faithful) keys whose removal makes the remaining
subsequence faithfully ordered (see Figure 1). Given a sequence X of length n, we use X[a ; b],
with 1 ≤ a ≤ b ≤ n, as a shortcut for the subsequence {X[a],X[a + 1], . . . ,X[b]}. Two keys
X[p] and X[q], with p < q, form an inversion in the sequence X if X[p] > X[q]. Note that,
for any two keys forming an inversion in a faithfully ordered sequence, at least one of them
must be faulty. A sorting or merging algorithm is called resilient if it produces a faithfully
ordered sequence.

Organization. The remainder of this paper is organized as follows. In Section 2 we present
our improved comparison-based sorting algorithm: the key-ingredient of the algorithm is a
refined merging procedure, which is described in Subsection 2.1. Section 3 is devoted to
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Figure 1: An input sequence X, where white and gray locations indicate faithful and faulty
values, respectively. Sequence X is not faithfully ordered, but it is 2-unordered since the
subsequence X ′ obtained by removing elements X[4] = 1 and X[5] = 2 from X is faithfully
ordered. Elements X ′[1] = 4 and X ′[2] = 3 form an inversion in X ′.

integer sorting, and shows how to derive both deterministic (Subsection 3.1) and randomized
(Subsection 3.2) algorithms. Searching is discussed in Section 4: we prove a lower bound on
randomized searching (Subsection 4.1), and then we provide an optimal randomized algorithm
(Subsection 4.2) and an almost-optimal deterministic algorithm (Subsection 4.3). The paper
ends with a list of concluding remarks.

2 Optimal Resilient Sorting in the Comparison Model

In this section we describe a resilient sorting algorithm that takes O(n log n + δ2) worst-case
time to run in the presence of δ memory faults. This yields an O(n log n) time algorithm
that can tolerate up to O(

√
n log n ) faults: as proved in [18], this bound is optimal if we

wish to sort in O(n log n) time, and improves over the best known resilient algorithm, which
was able to tolerate only O(

3√
n log n ) memory faults [18]. We first present a fast resilient

merging algorithm, that may nevertheless fail to insert all the input values in the faithfully
ordered output sequence. We next show how to use this algorithm to solve the resilient sorting
problem within the claimed O(n log n + δ2) time bound.

2.1 The Purifying Merge Algorithm

Let X and Y be the two faithfully ordered sequences of length n to be merged. The merging
algorithm that we are going to describe produces a faithfully ordered sequence Z and a
disordered fail sequence F in O(n + α δ) worst-case time. It will be guaranteed that |F | =
O(α), i.e., that only O(α) keys can fail to get inserted into Z.

The algorithm, called PurifyingMerge, uses two auxiliary input buffers of size (2δ + 1)
each, named X and Y, and an auxiliary output buffer of size δ, named Z. The merging process
is divided into rounds: the algorithm maintains the invariant that, at the beginning of each
round, input buffer X (Y) is filled with the first values of the corresponding input sequence
X (Y ), while the output buffer is empty. Note that in the later rounds of the algorithm an
input sequence might not contain enough values to fill in completely the corresponding input
buffer, which thus can contain less than (2δ + 1) values.

Each round consists of merging the content of the input buffers into the output buffer, until
either the output buffer becomes full, or the input buffers become empty, or an inconsistency
in the input keys is found. In the latter case, we perform a purifying step, where two keys are
moved to the fail sequence F , and then we restart the round from scratch. Otherwise, the
content of Z is appended to Z, and a new round is started.

We now describe a generic round in more detail. By i′ and j′ we denote the number of
elements in X and Y at the beginning of the round, respectively. The algorithm fills buffer
Z by scanning the input buffers X and Y sequentially. Let i, j, and p be the running indices
on X , Y, and Z. Initially i = j = p = 1. We call X [i], Y[j], and Z[p] the top keys of X , Y,
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and Z, respectively. All the indices and the top keys are stored in the O(1) size safe memory.
In each merging step we perform the following operations. If X and Y are both empty (i.e.,
i > i′ and j > j′), or Z is full (i.e., p > δ), the round ends. Otherwise, assume X [i] ≤ Y[j] or
Y is empty (the other case being symmetric). If i = i′, X [i] is the last value remaining in X ,
and thus also in X: in this case we copy X [i] into Z[p], and we increment i and p. Otherwise
(i < i′), we check whether X [i] ≤ X [i + 1] (inversion check). If the check succeeds, X [i] is
copied into Z[p] and indices i and p are incremented. If the check fails, i.e., X [i] > X [i + 1],
we perform a purifying step on X [i] and X [i + 1]:

(1) we move these two keys to the fail sequence F ,

(2) we append two new keys (if any) from X at the end of buffer X , and

(3) we restart the merging process of the buffers X and Y from scratch by resetting all the
buffer indices properly (in particular, the output buffer Z is emptied).

Thanks to the comparisons between the top keys and to the inversion checks, the top key of
Z is always smaller than or equal to the top keys of X and Y (considering their values stored
in safe memory): we call this top invariant.

At the end of the round, we check whether all the remaining keys in X and Y are larger
than or equal to the top key of Z (safety check). If the safety check fails on X , the top
invariant guarantees that there is an inversion between the current top key X [i] of X and
another key remaining in X : in that case, we execute a purifying step on those two keys. We
proceed analogously if the safety check fails on Y. If all the checks succeed, the content of
Z is flushed to the output sequence Z and the input buffers X and Y are refilled with an
appropriate number of new keys taken from X and Y , respectively.

Lemma 1 The output sequence Z is faithfully ordered.

Proof. We say that a round is successful if it terminates by flushing the output buffer into Z,
and failing if it terminates by adding keys to the fail sequence F . Since failing rounds do not
modify Z, it is sufficient to consider successful rounds only. Let X ′ and X ′ be the remaining
keys in X and X, respectively, at the end of a successful round. The definition of Y ′ and Y ′

is similar. We will show that:

(1) buffer Z is faithfully ordered, and

(2) all the faithful keys in Z are smaller than or equal to the faithful keys in X ′ ∪ X ′ and
Y ′ ∪ Y ′.

The lemma will then follow by induction on the number of successful rounds.

Let us first show (1). We denote by Z̃ the ordered sequence of values inserted into Z
at the time of their insertion. The sequence Z̃ must be sorted. In fact, consider any two
consecutive elements Z̃[h] and Z̃[h + 1] of Z̃. It is sufficient to show that Z̃[h] ≤ Z̃ [h + 1].
Let X [i] and Y[j] be the top keys of X and Y, respectively, right before Z̃[h] is inserted into
Z. Without loss of generality, let us assume X [i] ≤ Y[j] (the other case being symmetric).
As a consequence, X [i] is copied into Z, the algorithm verifies that X [i] ≤ X [i+1] (otherwise
the corresponding inversion check would fail), and X [i + 1] becomes the next top key of X .
Then

Z̃[h] = X [i] = min{X [i],Y[j]} ≤ min{X [i + 1],Y[j]} = Z̃ [h + 1].
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It then follows that Z is faithfully ordered, being Z̃[h] = Z[h] for each faithful key Z[h].

Consider now (2). Let z = Z̃[k] be the largest faithful key in Z, and x be the smallest
faithful key in X ′ ∪X ′. We will show that z ≤ x (if one of the two keys does not exist, there
is nothing to prove). Note that x must belong to X ′. In fact, all the faithful keys in X ′ are
smaller than or equal to the faithful keys in X ′. Moreover, either X ′ contains at least (δ + 1)
keys (and thus at least one faithful key), or X ′ is empty. All the keys in X ′ are compared with
Z̃[δ] during the safety check. In particular, x ≥ Z̃[δ] since the safety check was successful.
From the order of Z̃, we obtain Z̃[δ] ≥ Z̃[k] = z, thus implying x ≥ z. A symmetric argument
shows that z is smaller than or equal to the smallest faithful key y in Y ′ ∪ Y ′. 2

We now summarize the performance of algorithm PurifyingMerge.

Lemma 2 Given two faithfully ordered sequences of length n, algorithm PurifyingMerge

merges the sequences in O(n+α δ) worst-case time. The algorithm returns a faithfully ordered
sequence Z and a fail sequence F such that |F | = O(α).

Proof. The faithful order of Z follows from Lemma 1. The two values discarded in each
failing round form an inversion in one of the input sequences, which are faithfully ordered.
Thus, at least one of such discarded values must be corrupted, proving that the number of
corrupted values in F at any time is at least |F |/2. This implies that |F |/2 ≤ α and that
the number of failing rounds is bounded above by α. Note that at each round we spend time
Θ(δ). When the round is successful, this time can be amortized against the time spent to
flush δ values to the output sequence. We therefore obtain a total running time of O(n+α δ).

2

2.2 The Sorting Algorithm

We first notice that a naive resilient sorting algorithm can be easily obtained from a bottom-
up iterative implementation of mergesort by taking the minimum among (δ + 1) keys per
sequence at each merge step. We call this NaiveSort.

Lemma 3 [18] Algorithm NaiveSort faithfully sorts n keys in O(δ n log n) worst-case time.
The running time becomes O(δ n) when δ = Ω(nǫ), for some ǫ > 0.

In order to obtain a more efficient sorting algorithm, we will use the following merging
subroutine, called ResilientMerge (see also Figure 2). We first merge the input sequences
using algorithm PurifyingMerge: this produces a faithfully ordered sequence Z and a disor-
dered fail sequence F . We sort F with algorithm NaiveSort and produce a faithfully ordered
sequence F ′. We finally merge Z and F ′ using the algorithm UnbalancedMerge of [18], which
has the following time bound:

Lemma 4 [18] Two faithfully ordered sequences of length n1 and n2, with n2 ≤ n1, can be
merged faithfully in O(n1 + (n2 + α) δ) worst-case time.

We now analyze the running time of algorithm ResilientMerge.

Lemma 5 Algorithm ResilientMerge, given two faithfully ordered sequences of length n,
faithfully merges the sequences in O(n + α δ) worst-case time.
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Figure 2: Our resilient merging algorithm.

Proof. By Lemma 2, algorithm PurifyingMerge requires time O(n + α δ) and produces
a disordered fail sequence F of length O(α). Since δ = Ω(α), the total time required by
algorithm NaiveSort to produce a faithfully sorted sequence F ′ from F is O(α δ) by Lemma 3.
Finally, by Lemma 4 algorithm UnbalancedMerge takes time O(|Z|+(|F ′|+α) δ) = O(n+α δ)
to merge Z and F ′. The total running time immediately follows. 2

Algorithm ResilientMerge has the property that only the keys corrupted while merging
may be out of order in the output sequence. Hence, if we plug this algorithm into an iterative
bottom-up implementation of mergesort, we obtain the following:

Theorem 1 There is a resilient algorithm that faithfully sorts n keys in O(n log n + α δ)
worst-case time and linear space.

This yields an O(n log n) time resilient sorting algorithm that can tolerate up to O(
√

n log n )
memory faults. As shown in [18], no better bound is possible.

3 Resilient Integer Sorting

In this section we consider the problem of faithfully sorting a sequence of n integers in the
range [0, nc − 1], for some constant c ≥ 0. We will present a randomized algorithm with
expected running time O(n + δ2): thus, this algorithm is able to tolerate up to O(

√
n )

memory faults in expected linear time. Our algorithm is a resilient implementation of (least
significant digit) RadixSort, which works as follows. Assume that the integers are represented
in base b, with b ≥ 2. At the i-th step, for 1 ≤ i ≤ ⌈c logb n⌉, we sort the integers according
to their i-th least significant digit using a linear-time, stable bucket sorting algorithm (with
b buckets).

We can easily implement RadixSort in faulty memory whenever the base b is constant:
we keep an array of size n for each bucket and store the address of those arrays and their
current length (i.e., the current number of items in each bucket) in the O(1)-size safe memory.
Since there is only a constant number of buckets, we can conclude:
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Lemma 6 There is a resilient algorithm that faithfully sorts n polynomially bounded integers
in O(n log n) worst-case time and linear space, while tolerating an arbitrary number of memory
faults.

Proof. The value vi of the i-th digit of a given integer v influences the position of the integer
itself only in the i-th step, when we have to determine to which bucket v must be appended.
Let us call the value of vi at that time its virtual value. Clearly, the algorithm correctly sorts
the sequence according to the virtual values of the digits. The claim follows by observing that
the real and virtual values of faithful elements are equal. 2

In order to make RadixSort run in linear time, we need b = Ω(nγ), for some constant
γ ∈ (0, 1]. Unfortunately, if the number of buckets is not constant, the trivial approach above
does not work. In fact, we would need more than linear space to store the arrays. More
important, O(1) safe memory words would not be sufficient to store the initial address and
the current length of the b arrays. We will next show how to overcome both problems.

Consider the i-th round of RadixSort. Assume that, at the beginning of the round, we are
given a sequence of integers faithfully sorted up to the (i − 1)-th least significant digit. The
problem is to fill in each bucket j, j ∈ {0, 1, . . . , b− 1}, with the faithfully sorted subsequence
of values with the i-th digit equal to j. Eventually, the ordered concatenation of the buckets’
content gives the input sequence (faithfully sorted up to the i-th digit) for the next round.

The core of our method is the way we fill in the buckets. We achieve this task by asso-
ciating to each bucket a hierarchy of intermediate buffers. Each time, during the scan of the
input sequence, we find an integer κ bounded to the j-th bucket, we execute a bucket-filling
procedure that copies κ into one of the buffers associated to that bucket. Only from time to
time our procedure moves the values from the buffers to the bucket.

Observe that we cannot store the address and current length of the buffers and of the
buckets in safe memory (since this would take Ω(b) safe memory words). We solve the
problem with the addresses by packing variables in the faulty memory so as that a unique
address β, kept in safe memory, is sufficient to reach any variable in our data structure. In
order to circumvent the problem with buffers’ and buckets’ lengths, we will use redundant
variables, defined as follows. A redundant |p|-index p is a set of |p| positive integers. The
value of p is the majority value in the set (or an arbitrary value if no majority value exists).
Assigning a value x to p means assigning x to all its elements: note that both reading and
updating p can be done in linear time and constant space (using, e.g., the algorithm in [9]). If
|p| ≥ 2δ + 1, we say that p is reliable (i.e., we can consider its value faithful even if p is stored
in faulty memory). A redundant |p|-pointer p is defined analogously, with positive integers
replaced by pointers.

We periodically restore the ordering inside the buffers by means of a (bidirectional)
BubbleSort, which works as follows: we compare adjacent pairs of keys, swapping them if
necessary, and alternately pass through the sequence from the beginning to the end (forward
pass) and from the end to the beginning (backward pass), until no more swaps are performed.
Interestingly enough, bidirectional BubbleSort is resilient to memory faults and its running
time depends only on the disorder of the input sequence and on the actual number of faults
occurring during its execution.

Lemma 7 Given a sequence of length n containing at most k values which are out of order,
algorithm BubbleSort faithfully sorts the sequence in O(n+(k+α)n) worst-case time, where
α is the number of memory faults happening during the execution of the algorithm.
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Proof. Let us call scan of the input sequence the execution of a forward pass followed by a
backward pass, and let αi be the number of memory faults happening during the i-th scan.
Recall that, in safe-memory systems, bidirectional BubbleSort reduces the number of out-of-
order values at least by one at each scan (while this does not hold for standard BubbleSort).
By essentially the same arguments, after the j-th scan, at most k +

∑j
i=1 αi − j (faithful and

faulty) values are out of order. Thus, the algorithm halts within at most (k + α + 1) scans.
When this happens, all the faithful values are sorted. 2

The rest of this section is organized as follows. In Section 3.1 we describe a deterministic
integer sorting algorithm of running time O(n + b δ + α δ1+ǫ), and space complexity O(n +
b δ). In Section 3.2 we describe a randomized integer sorting algorithm with the same space
complexity, and expected running time O(n + b δ + α δ).

3.1 A Deterministic Algorithm

Consider the subsequence of ñ integer keys which need to be inserted into a given bucket
j during the i-th iteration of RadixSort. We remark that such subsequence is faithfully
sorted up to the i-th digit (since the i-th digit is equal for all the keys considered, and the
remaining digits are faithfully sorted by the properties of the algorithm). From the discussion
above, it is sufficient to describe how the bucket considered is filled in. In this section we will
describe a procedure to accomplish this task in O(ñ + δ + α̃δ1+ǫ) time and O(ñ + δ) space,
for any given constant ǫ > 0, where α̃ is the actual number of faults affecting the procedure
considered. Filling in each bucket with this procedure yields an integer sorting algorithm
with O(n + b δ + α δ1+ǫ) running time and O(n + b δ) space complexity.

For the sake of simplicity, let us first describe a bucket-filling procedure of running time
O(ñ + δ + α̃δ1.5). Moreover, let us implement the bucket considered with an array B0 of
length (n + δ). We will later show how to reduce the space usage to O(ñ + δ) by means of
doubling techniques. Besides the output array B0, we use two buffers to store temporarily
the input keys: a buffer B1 of size |B1| = 2δ + 1, and a buffer B2 of size |B2| = 2

√
δ + 1. All

the entries of both buffers are initially set to a value, say +∞, that is not contained in the
input sequence. We associate a redundant index pi to each Bi, where |p0| = |B1| = 2δ + 1,
|p1| = |B2| = 2

√
δ + 1, and |p2| = 1 (see Figure 3). Index pi points to the first free position

of bucket Bi. Note that only p0 is reliable, while p1 and p2 could assume faulty values.
We store all the Bi’s and pi’s consecutively in the unsafe memory in a given order, so that

we can derive the address of each element from the address of the first element. Observe that
this is possible since each buffer and index occupies a fixed number of memory words. We pack
analogously the Bi’s and pi’s corresponding to different buckets. This way, a unique address
β is sufficient to derive the addresses of all the items in our data structure: we maintain such
address β in the safe memory.

The bucket-filling procedure works as follows. Let κ be the current key which needs to
be inserted in the bucket considered. Key κ is initially appended to B2. Whenever B2 is full
(according to index p2), we flush it as follows:

(1) we remove any +∞ from B2 and sort B2 with BubbleSort considering the i least sig-
nificant digits only;

(2) we append B2 to B1, and we update p1 accordingly;

(3) we reset B2 and p2.
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|B0| = n + δ

|B1| = 2δ + 1

|B2| = 2
√

δ + 1

2δ + 1 = |p0|

2
√

δ + 1 = |p1|

1 = |p2|

Figure 3: Indexes (on the left) and buckets (on the right) in the bucket-filling procedure.

Whenever B1 is full, we flush it in a similar way, moving its keys to B0. We flush buffer Bj,
j ∈ {1, 2}, also whenever we realize that the index pj points to an entry outside Bj or to an
entry of value different from +∞ (which indicates that a fault happened either in pj or in Bj

after the last time Bj was flushed). Note that, because of faults, the total number of elements
moved to B0 can be larger than ñ. However, there can be at most one extra value per fault
affecting the buffers. This is the reason why we set the size of B0 to n + δ.

In order to ensure that each faithful value is eventually contained in the corresponding
bucket, we force the flushing of all the buffers when the very last element in the input sequence
is scanned. Since this last step does not increase the asymptotic running time, we will not
mention it any further.

Notice that all the faithful input keys eventually appear in B0, faithfully sorted up to the
i-th digit. In fact, all the faithful keys in Bj , j ∈ {1, 2}, at a given time precede the faithful
keys not yet copied into Bj. Moreover we sort Bj before flushing it. This guarantees that the
faithful keys are moved from Bj to Bj−1 in a first-in-first-out fashion.

Lemma 8 The bucket-filling procedure above takes O(ñ + δ + α̃ δ1.5) worst-case time, where
ñ is the number of keys inserted and α̃ the actual number of faults affecting the procedure.

Proof. Consider the cost paid by the algorithm between two consecutive flushes of B1. Let
α′ and α′′ be the number of faults in B1 and p1, respectively, during the phase considered.
If no fault happens in either B1 or p1 (α′ + α′′ = 0), flushing buffer B1 costs O(|B1|) = O(δ)
time. If the value of p1 is faithful, the sequence is O(α′)-unordered: in fact, removing the
corrupted values from B1 produces a sorted subsequence. Thus sorting B1 costs O((1 + α′)δ)
time. Otherwise (α′′ >

√
δ), the sequence B1 can be O(δ)-unordered and sorting it requires

O((1 + δ + α′)δ) = O(δ2) time. Thus, the total cost of flushing buffer B1 is O(ñ + δ +
α̃/

√
δ δ2 + α̃ δ) = O(ñ + δ + α̃ δ1.5). By a similar argument, the total cost of flushing buffer

B2 is O(ñ +
√

δ + α̃(
√

δ)2 + α̃
√

δ) = O(ñ +
√

δ + α̃δ). The claimed running time immediately
follows. 2

Saving Space. The bucket-filling procedure described above uses O(n + δ) space. The
space usage can be easily reduced to O(ñ+δ) via doubling, without increasing the asymptotic
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running time. We replace B0 in our data structure with a (2δ + 1)-pointer p to B0. By the
same argument used before, the address of p can be derived from the unique address β stored
in safe memory. We initially impose |B0| = δ. When B0 is full, we create a new array B′

0

of size |B′
0| = 2|B0|, we copy B0 into the first |B0| entries of B′

0, and we make p point to
B′

0. The amortized cost per update does not increase, and the space complexity of the new
bucket-filling procedure is O(ñ + δ).

Multi-Level Buffering. The deterministic running time can be improved by increasing
the number of buffers and by choosing more carefully the buffer sizes: specifically, with k ≥ 2
buffers, we can achieve a O(k ñ+δ+α δ2k/(2k−1)) running time. This yields an integer sorting
algorithm with O(n+ b δ +α δ1+ǫ) worst-case running time, for any small positive constant ǫ.

In more detail, instead of two buffers, we use a constant number k ≥ 2 of buffers, B1,
B2,. . . , Bk, each one with its own redundant-index. The size of buffer Bi, i = 1, 2, . . . , k, is:

|Bi| = 2δ(2k−2i−1)/(2k−1) + 1.

The size of the redundant-indexes is |pk| = 1, and |pi| = |Bi+1| for i = 0, 1, . . . , k − 1. The
bucket-filling procedure works analogously: the elements are first stored in Bk, and then
gradually moved to larger and larger buffers, up to B0.

Let αi be the total number of faults occurring in pi and Bi. In particular, by α′
i and α′′

i we
denote the faults occurring in Bi and pi, respectively. Consider the cost paid by the algorithm
between two consecutive flushes of Bi. Following the analysis of Section 3.1, if no fault occurs,
such cost is O(|Bi|). Otherwise (αi > 0), if pi is faithful, the cost is O(|Bi|+α′

i|Bi|) = O(αi|Bi|).
In the remaining case (α′′

i ≥ |pi|/2), such cost is O(|Bi|2 + α′
i|Bi|), but it can be amortized

over the Ω(|pi|) faults in pi. Altogether, flushing buffer Bi, i ∈ {1, 2, . . . , k}, costs

O(ñ + |Bi| + αi(|Bi| + |Bi|2/|pi|)) = O(ñ + (1 + αi)δ
(2k−2i−1)/(2k−1)).

O(ñ + |Bi| + αi(|Bi| + |Bi|2/|pi|)) = O(ñ + δ(2k−2i−1)/(2k−1) + αi δ
2k/(2k−1)).

Thus the time complexity of the algorithm is

O(k ñ + δ +

k∑

i=1

(1 + αi)δ
(2k−2i−1)/(2k−1)) = O(k ñ + δ + α̃ δ2k/(2k−1)).

Lemma 9 For every k ≥ 2, there is a deterministic bucket-filling procedure of time complexity
O(k ñ + δ + α̃ δ2k/(2k−1)), where ñ is the number of keys inserted and α̃ the actual number of
faults affecting the procedure.

Note that, for k = 2, we improve over the result of Lemma 8. Indeed, the size of the buffers in
that case has been chosen so as to minimize the time complexity of the randomized procedure
of next section.

Theorem 2 For any constant ǫ ∈ (0, 1), and assuming δ = O(n1−γ) for some constant
γ > 0, there is a deterministic resilient algorithm that faithfully sorts n polynomially bounded
integers in O(n + α δ1+ǫ) time and O(n) space.
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Proof. It is sufficient to implement RadixSort with base b = Θ(nγ), via the randomized
bucket-filling procedure mentioned above with k = ⌈log2

1+ǫ
ǫ ⌉. Consider the i-th step of

RadixSort. Let nj denote the number of integers copied into bucket j, and let αj be the
actual number of memory faults affecting the execution of the j-th instance of the bucket-
filling procedure. The running time of the i-th step is O(

∑b−1
j=0(nj + δ + αj δ2k/(2k−1))) =

O(n + b δ + α δ1+ǫ) = O(n + α δ1+ǫ). The claim on the running time follows by observing
that the total number of such steps is O(logb nc) = O(lognγ n) = O(1). The space usage is
O(
∑b−1

j=0(nj + δ)) = O(n + b δ) = O(n). 2

3.2 A Randomized Algorithm

We now show how to reduce the (expected) running time of the bucket-filling procedure
to O(ñ + δ + α̃ δ), by means of randomization. We build up on the simple deterministic
bucket-filling procedure of running time O(ñ + δ + α̃ δ1.5) described before. Notice that a
few corruptions in p1 can lead to a highly disordered sequence B1. Consider for instance the
following situation: we corrupt p1 twice, in order to force the algorithm to write first δ faithful
keys in the second half of B1, and then other (δ + 1) faithful keys in the first half of B1. This
way, with 2(

√
δ +1) corruptions only, one obtains an O(δ)-unordered sequence, whose sorting

requires O(δ2) time. This can happen O(α/
√

δ) times, thus leading to the O(α δ1.5) term in
the running time.

The idea behind the randomized algorithm is to try to avoid pathological situations.
Specifically, we would like to detect early the fact that many values after the last inserted key
are different from +∞. In order to do that, whenever we move a key from B2 to B1, we select
an entry uniformly at random in the portion of B1 after the last inserted key: if the value of
this entry is not +∞, the algorithm flushes B1 immediately.

Lemma 10 The bucket-filling procedure above takes O(ñ+ δ + α̃ δ) expected time, where ñ is
the number of keys inserted and α̃ the actual number of faults affecting the procedure.

Proof. Let α′ and α′′ be the number of faults in B1 and p1, respectively, between two
consecutive flushes of buffer B1. Following the proof of Lemma 8 and the discussion above, it
is sufficient to show that, when we sort B1, the sequence to be sorted is O(α′ +α′′)-unordered
in expectation. In order to show that, we will describe a procedure which obtains a sorted
subsequence from B1 by removing an expected number of O(α′ + α′′) keys.

First remove the α′ corrupted values in B1. Now consider what happens either between
two consecutive corruptions of p1 or between a corruption and a reset of p1. Let p̃1 be the
value of p1 at the beginning of the phase considered. By A and B we denote the subset
of entries of value different from +∞ in B1 at index larger than p̃1, and the subset of keys
added to B1 in the phase considered, respectively. Note that, when A is large, the expected
cardinality of B is small (since it is more likely to select randomly an entry in A). More
precisely, the probability of selecting at random an entry of A is at least |A|/|B1|. Thus the
expected cardinality of B is at most |B1|/|A| = O(δ/|A|).

The idea behind the proof is to remove A from B1 if |A| <
√

δ, and to remove B otherwise.
In both cases the expected number of keys removed is O(

√
δ ). At the end of the process, we

obtain a sorted subsequence of B1. Since p1 can be corrupted at most O(α′′/
√

δ ) times, the
total expected number of keys removed is O(α′ +

√
δ α′′/

√
δ ) = O(α′ + α′′). 2
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By essentially the same arguments as in the proof of Theorem 2, we obtain the following
result.

Theorem 3 Assuming δ = O(n1−γ) for some constant γ > 0, there is a randomized resilient
algorithm that faithfully sorts n polynomially bounded integers in O(n + α δ) expected time
and O(n) space.

4 Resilient Searching in the Comparison Model

In this section we prove upper and lower bounds on the resilient searching problem in the
comparison model. Namely, we first prove an Ω(log n+δ) lower bound on the expected running
time, and then we present an optimal O(log n + δ) expected time randomized algorithm.
Finally, we describe an O(log n + δ1+ǫ′) time deterministic algorithm, for any constant ǫ′ ∈
(0, 1]. Both our algorithms improve over the O(log n + δ2) deterministic bound of [18].

4.1 A Lower Bound for Randomized Searching

We now show that every comparison-based searching algorithm, even randomized ones, which
tolerates up to δ memory faults must have expected running time Ω(log n + δ) on sequences
of length n, with n ≥ δ.

Theorem 4 Every (randomized) resilient searching algorithm must have expected running
time Ω(log n + δ).

Proof. An Ω(log n) lower bound holds even when the entire memory is safe. Thus, it is
sufficient to prove that every resilient searching algorithm takes expected time Ω(δ) when
log n = o(δ). Let A be a resilient searching algorithm. Consider the following (feasible) input
sequence I: for an arbitrary value x, the first (δ + 1) values of the sequence are equal to x
and the others are equal to +∞. Let us assume that the adversary arbitrarily corrupts δ of
the first (δ + 1) keys before the beginning of the algorithm. Since a faithful key x is left, A
must be able to find it.

Observe that, after the initial corruption, the first (δ + 1) elements of I form an arbitrary
(unordered) sequence. Suppose by contradiction that A takes o(δ) expected time. Then we
can easily derive from A an algorithm to find a given element in an unordered sequence of
length Θ(δ) in sub-linear expected time, which is not possible (even in a safe-memory system).

2

4.2 Optimal Randomized Searching

In this section we present a resilient searching algorithm with optimal O(log n + δ) expected
running time. Let I be the sorted input sequence and x be the key to be searched for. At each
step, the algorithm considers a subsequence I[ℓ; r]. Initially I[ℓ; r] = I[1;n] = I. Let C > 1
and 0 < c < 1 be two constants such that cC > 1. The algorithm has a different behavior
depending on the length of the current interval I[ℓ; r]. If r − ℓ > Cδ, the algorithm chooses
an element I[h] uniformly at random in the central subsequence of I[ℓ; r] of length (r − ℓ)c,
i.e., in I[ℓ′; r′] = I[ℓ + (r − ℓ)(1 − c)/2; ℓ + (r − ℓ)(1 + c)/2] (for the sake of simplicity, we
neglect ceilings and floors). If I[h] = x, the algorithm simply returns the index h. Otherwise,
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it continues searching for x either in I[ℓ;h − 1] or in I[h + 1; r], according to the outcome of
the comparison between x and I[h].

Consider now the case r − ℓ ≤ Cδ. Let us assume that there are at least 2δ values to the
left of ℓ and 2δ values to the right of r (otherwise, it is sufficient to assume that X[i] = −∞
for i < 1 and X[i] = +∞ for i > n). If x is contained in I[ℓ−2δ; r+2δ], the algorithm returns
the corresponding index. Else, if both the majority of the elements in I[ℓ − 2δ; ℓ] are smaller
than x and the majority of the elements in I[r; r+2δ] are larger than x, the algorithm returns
no. Otherwise, at least one of the randomly selected values must be faulty: in that case the
algorithm simply restarts from the beginning.

Note that the variables needed by the algorithm require total constant space, and thus
they can be stored in safe memory.

Theorem 5 The algorithm above performs resilient searching in O(log n + δ) expected time.

Proof. Consider first the correctness of the algorithm. We will later show that the algorithm
halts with probability one. If the algorithm returns an index, the answer is trivially correct.
Otherwise, let I[ℓ; r] be the last interval considered before halting. According to the majority
of the elements in I[ℓ − 2δ; ℓ], x is either contained in I[ℓ + 1;n] or not contained in I. This
is true since the mentioned majority contains at least (δ + 1) elements, and thus at least one
of them must be faithful. A similar argument applied to I[r; r + 2δ] shows that x can only be
contained in I[1; r−1]. Since the algorithm did not find x in I[ℓ+1;n]∩I[1; r−1] = I[ℓ+1; r−1],
there is no faithful key equal to x in I.

Now consider the time spent in one iteration of the algorithm (starting from the initial
interval I = I[1;n]). Each time the algorithm selects a random element, either the algorithm
halts or the size of the subsequence considered is decreased by at least a factor of 2/(1+c) > 1.
So the total number of selection steps is O(log n), where each step requires O(1) time. The
final step, where a subsequence of length at most 4δ +Cδ = O(δ) is considered, requires O(δ)
time. Altogether, the worst-case time for one iteration is O(log n + δ).

Thus, it is sufficient to show that in a given iteration the algorithm halts (that is, it either
finds x or answers no) with some positive constant probability P > 0, from which it follows
that the expected number of iterations is constant. Let I[h1], I[h2], . . . , I[ht] be the sequence
of randomly chosen values in a given iteration. If a new iteration starts, this implies that at
least one of those values is faulty. Hence, to show that the algorithm halts, it is sufficient to
prove that all those values are faithful with positive probability.

Let P k denote the probability that I[hk] is faulty. Consider the last interval I[ℓ; r] in
which we perform random sampling. The length of this interval is at least C δ. So the value
I[ht] is chosen in a subsequence of length at least cC δ > δ, from which we obtain

P t ≤ δ/(cC δ) = 1/(cC).

Consider now the previous interval. The length of this interval is at least 2Cδ/(1 + c). Thus

P t−1 ≤ (1 + c)/(2 cC).

More generally, for each i = 0, 1, . . . , (t − 1), we have

P t−i ≤ ((1 + c)/2)i/ (cC).
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Altogether, the probability P that all the values I[h1], I[h2], . . . , I[ht] are faithful is equal to

t−1∏

i=0

(1 − P t−i)

and thus

P ≥
t−1∏

i=0

(
1 − 1

cC

(
1 + c

2

)i
)

≥
(

1 − 1

cC

)Pt−1

i=0
( 1+c

2
)i

≥
(

1 − 1

cC

) 2

1−c

> 0,

where we used the fact that (1 − xy) ≥ (1 − x)y for every x and y in [0, 1]. 2

4.3 Almost Optimal Deterministic Searching

In this section we describe a deterministic resilient searching algorithm that requires O(log n+
α δǫ) worst-case time, for any constant ǫ ∈ (0, 1]. We first present and analyze a simpler
version with running time O(log n + α

√
δ). By refining this simpler algorithm we will obtain

the claimed result.
Let I be the faithfully ordered input sequence and let x be the key to be searched for.

Before describing our deterministic algorithm, which we refer to as DetSearch, we introduce
the notion of k-left-test and k-right-test over a position p, for k ≥ 1 and 1 ≤ p ≤ n. In a
k-left-test over p, we consider the neighborhood of p of size k defined as I[p−k ; p−1]: the test
fails if the majority of keys in this neighborhood is larger than the key x to be searched for,
and succeeds otherwise. A k-right-test over p is defined symmetrically on the neighborhood
I[p + 1 ; p + k]. Note that in the randomized searching algorithm described in the previous
section we execute a (2δ + 1)-left-test and a (2δ + 1)-right-test at the end of each iteration.
The idea behind our improved deterministic algorithm is to design less expensive left and
right tests, and to perform them more frequently.

The O(log n + α
√

δ) algorithm. The basic structure of the algorithm is as in the classical
deterministic binary search: at each step, the algorithm considers an interval I[ℓ; r] and
updates it as suggested by the central value I[(ℓ + r)/2]. The algorithm may terminate
returning the position (ℓ + r)/2 if I[(ℓ + r)/2] = x. The left and right boundaries ℓ and r
are kept in safe memory. Initially I[ℓ; r] = I[1;n] = I. At appropriate times, the algorithm
performs (2

√
δ + 1)-tests and (2δ + 1)-tests. During the tests, the algorithm takes care of

checking by exhaustive search whether any of the considered keys is equal to x: if this is the
case, it terminates returning the position of that key. Otherwise, the outcome of the tests is
used for updating the following four additional indexes, which are also stored in safe memory:

• Two left and right boundaries, ℓ1 and r1, witnessed by (2
√

δ + 1)-tests: these indexes
are such that, at the time when the tests were performed, they suggested that x should
belong to I[ℓ1; r1]. Namely, the majority of the values in I[ℓ1 − (2

√
δ + 1) ; ℓ1 − 1] were

smaller than x and the majority of the values in I[r1 + 1 ; r1 + (2
√

δ + 1)] were larger
than x.

• Two left and right boundaries, ℓ2 and r2, witnessed by (2δ + 1)-tests: these indexes are
such that, if x ∈ I, then we are guaranteed that x ∈ I[ℓ2; r2].
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Initially, I[ℓ1; r1] = I[ℓ2; r2] = I[ℓ, r] = I[1;n] = I. We now describe how the indexes are
updated after each test.

Every
√

δ searching steps, we perform a (2
√

δ + 1)-left-test over the left boundary ℓ and
a (2

√
δ + 1)-right-test over the right boundary r of the current interval I[ℓ; r]. We have the

following cases:

1. Both tests succeed: we set ℓ1 = ℓ and r1 = r (see Figure 4a).

2. Exactly one test fails: we revert to the smallest interval suggested by the failed test and
by the last (2

√
δ + 1)-tests previously performed. Say, e.g., that the (2

√
δ + 1)-left-test

over position ℓ fails: in that case we set r = r1 = max{ℓ1, ℓ− (2
√

δ +1)− 1} and ℓ = ℓ1,
as shown in Figure 4b (note that the value of ℓ1 remains the same). The case when a
(2
√

δ + 1)-right-test fails is symmetric.

3. Both tests fail: in this case the two tests contradict each other, and we perform (2δ+1)-
tests over positions ℓ and r. Notice that at least one the (2

√
δ + 1)-tests must disagree

with the corresponding (2δ + 1)-test, since (2δ + 1)-tests cannot be misleading. If both
the (2

√
δ + 1)-left-test and the (2

√
δ + 1)-right-test disagree with their corresponding

(2δ + 1)-tests, we set ℓ2 = ℓ1 = ℓ and r2 = r1 = r (see Figure 4c). If only the left tests
disagree, we set ℓ = ℓ1 = ℓ2 = min{r +(2δ +1)− 1, r2} and r = r1 = r2 (see Figure 4d).
The case where only the right tests disagree is symmetric.

Every δ searching steps during which no contradicting (2
√

δ +1)-tests are performed, besides
the final (2

√
δ +1)-tests, we also perform (2δ +1)-tests and appropriately update the indexes

ℓ2 and r2. Two (2δ + 1)-tests are finally performed when the algorithm is about to terminate
with a negative answer, i.e., when ℓ = r and I[ℓ] 6= x: in this case, if both the left and
the right test over position ℓ succeed, the algorithm terminates returning no, otherwise the
indexes are updated and the search continues as described above.

Analysis. In order to analyze the correctness and the running time of algorithm DetSearch,
we will say that a position p (or, equivalently, a value I[p]) is misleading if I[p] is faulty and
guides the search towards a wrong direction. A k-left-test over a position p is misleading
if the majority of the values in I[p − k ; p − 1] are misleading. Misleading k-right-tests are
defined similarly. We note that (2δ + 1)-tests cannot be misleading, because there can be at
most δ faulty values.

Theorem 6 Algorithm DetSearch performs resilient searching in O(log n+α
√

δ ) worst-case
time.

Proof. To show correctness, it is sufficient to prove that, in case of a negative answer, there is
no correct key equal to x. The algorithm may return no only if ℓ = r and if both the (2δ +1)-
tests over position ℓ succeed: since (2δ + 1)-tests cannot be misleading, if the tests over ℓ
succeed and x ∈ I, then x must be necessarily found in I[ℓ− (2δ +1) ; n]∩ I[1 ; ℓ+(2δ +1)] =
I[ℓ − (2δ + 1); ℓ + (2δ + 1)]. The correctness follows by noting that during the (2δ + 1)-tests
the algorithm checks by exhaustive search whether any of the considered keys is equal to x
(in that case, it would have terminated with a positive answer).

We now discuss the running time. We consider the search process as divided into δ-
steps: at the end of a δ-step, two (2δ + 1)-tests over the current left and right boundaries are
performed and all the indexes are appropriately updated. The time spent in a δ-step includes
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Figure 4: Index update after (a) two successful (2
√

δ + 1)-tests over positions ℓ and r; (b) a
failing (2

√
δ +1)-left-test over position ℓ and a successful (2

√
δ +1)-right-test over position r;

(c) two failing (2
√

δ + 1)-tests over positions ℓ and r, both contradicted by the corresponding
(2δ + 1)-tests; (d) two failing (2

√
δ + 1)-tests over positions ℓ and r, such that only the left

test is contradicted by the corresponding (2δ + 1)-test. The missing cases are symmetric.
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the O(1) time for each standard searching step, the O(
√

δ) time for each (2
√

δ + 1)-test, and
the O(δ) time for the final (2δ + 1)-tests. Since (2

√
δ + 1)-tests take place every

√
δ searching

steps and the number of searching steps is at most δ, the total time for the δ-step is O(δ).
Since (2δ +1)-tests cannot be misleading, at the end of any δ-step the proper search direction
is always recovered. Notice that a δ-step ends either due to two contradicting (2

√
δ +1)-tests

or because δ standard searching steps have been performed.
We first bound the time spent in δ-steps that terminate due to contradicting (2

√
δ + 1)-

tests. Let ℓ and r be the left and right boundaries on which the contradicting (2
√

δ + 1)-
tests are performed. Then, at least one of the (2

√
δ + 1)-tests must be misleading and the

interval checked during the test must contain Θ(
√

δ) faulty values. If the (2
√

δ + 1)-left-test
is misleading, the search proceeds either in I[ℓ ; r] (see Figure 4c) or in I[min{r + (2δ + 1) −
1, r2} ; r2] (see Figure 4d). In both cases, the Θ(

√
δ) faulty values in I[ℓ − (2

√
δ + 1) ; ℓ − 1]

are eliminated from the interval in which the search proceeds. We can therefore charge the
O(δ) time spent in the δ-step to these faulty values. The case where the (2

√
δ + 1)-right-test

is misleading is symmetric. We will therefore have at most O(α/
√

δ ) δ-steps of this kind,
requiring O(δ) time each, and the total running time for these steps will be O(α

√
δ ).

We now bound the time spent in δ-steps that terminate because δ standard searching steps
have been performed. In these δ-steps, no contradicting (2

√
δ + 1)-tests are ever performed.

We assume that the algorithm takes at some point a wrong search direction (mislead search)
and we bound the running time for a mislead search, i.e., the cost of the sequence of steps
performed by the algorithm before the recovery.

We first analyze the running time for a mislead search assuming that the proper search
direction is recovered by a (2

√
δ+1)-test. It is enough to consider the case where the algorithm

encounters a misleading value I[p] that guides the search towards positions larger than p:
then, p will become a misleading left boundary (the case of a misleading right boundary is
symmetric). Consider the time when the next (2

√
δ + 1)-left-test is performed, and let ℓ be

the left boundary involved in the test. Note that it must be p ≤ ℓ and, since p is misleading,
then ℓ must be a misleading left boundary, as well. Due to the hypothesis that the proper
search direction is recovered by a (2

√
δ + 1)-test, the (2

√
δ + 1)-left-test over ℓ cannot be

misleading, and it must have failed detecting the error. This implies that the incorrect search
wasted only O(

√
δ ) time, which can be charged to the faulty value I[ℓ]. Since I[ℓ] is out of

the interval on which the search proceeds (see Figure 4b), each faulty value can be charged
at most once due to this kind of error, and we will have at most α incorrect searches of this
kind. The total running time for these mislead searches will thus be O(α

√
δ ).

We next analyze the running time for a mislead search when the (2
√

δ + 1)-tests are
not able to recover the proper search direction, i.e., when during the search we encounter a
misleading (2

√
δ + 1)-test. In this case, the error will be detected at most δ steps later, when

the next (2δ + 1)-tests are performed. Using arguments similar to the previous case, we will
now show that there must exist Θ(

√
δ ) faulty values that are eliminated from the interval

in which the search proceeds. We only consider the case where the algorithm encounters a
misleading (2

√
δ+1)-left-test over a left boundary p (the case of a misleading (2

√
δ+1)-right-

test is symmetric). Assume without loss of generality that the test guides the search towards
positions larger than p, and consider the time when the next (2δ + 1)-left-test is performed:
let ℓ be the left boundary involved in the test (it must be p ≤ ℓ). As far as the algorithm
works, the (2δ + 1)-left-test over position ℓ is performed just after a (2

√
δ + 1)-test. Since

the (2
√

δ + 1)-left-test over p was misleading, and since ℓ is still a left boundary immediately
before the (2δ+1)-left-test, also the (2

√
δ+1)-test over ℓ must have been misleading. Instead,
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the (2δ + 1)-left-test over ℓ cannot guide the search towards a wrong direction, and thus it
must fail, detecting the error. We can charge the O(δ) time spent for the incorrect search
to the Θ(

√
δ) faulty values in I[ℓ − (2

√
δ + 1) ; ℓ − 1], that are out of the interval on which

the search proceeds. We will therefore have at most O(α/
√

δ ) incorrect searches of this kind,
requiring O(δ) time each, and the total running time will be again O(α

√
δ ).

By a simple amortization, it is not difficult to see that the time for the correct searches is
O(log n), from which the claimed bound of O(log n + α

√
δ ) follows. 2

The bound in Theorem 6 yields a deterministic resilient searching algorithm that can
tolerate up to O((log n)2/3) memory faults in O(log n) worst-case time. This improves over
the algorithm described in [18], that can tolerate only O((log n)1/2) faults, but does not match
yet the lower bound Ω(log n + δ) [18]. As we will see in the remainder of this section, we can
further reduce the overhead due to coping with memory faults, getting arbitrarily close to the
lower bound.

A faster algorithm. The running time can be reduced to O(log n + α δǫ), for any constant
ǫ ∈ (0, 1], by refining the algorithm that we have described above. In particular, we exploit
the use of (2δi ǫ + 1)-tests, with i = 1, 2, . . . , (1/ǫ), performed every δi ǫ steps. As an example,
for ǫ = 1 we obtain the algorithm presented in [18], for ǫ = 1/2 we obtain the previous
algorithm, while for ǫ = 1/3 the algorithm will perform (2δ1/3 + 1)-tests every δ1/3 steps,
(2δ2/3 + 1)-tests every δ2/3 steps, and (2δ + 1)-tests every δ steps. Note that the tests may
be misleading for each i < 1/ǫ. However, the degree of “unreliability” decreases as i becomes
larger.

Besides the indexes ℓ and r of the current interval, the refined algorithm stores in safe
memory (1/ǫ) additional pairs of indexes witnessed by the different tests. In total we have a
constant number of indexes when ǫ is a constant, and we can store them in safe memory. We
will call the indexes in each pair ℓi and ri, for i = 1, 2, . . . , (1/ǫ). The indexes in the i-th pair
are such that, at the time when the last (2δi ǫ + 1)-tests were performed, they suggested that
x should belong to I[ℓi; ri]. Every δi ǫ steps the algorithm performs (2δi ǫ + 1)-tests over the
boundaries of the current interval and appropriately updates the indexes ℓj and rj , for every
j ∈ [1, i], according to the outcome of the tests. This guarantees that, at any time during the
execution of the algorithm, the indexes associated to less reliable tests never disagree with
the indexes associated to more reliable tests, i.e., I[ℓj ; rj ] ⊆ I[ℓi; ri] for every j ≤ i. Similarly
to the previous algorithm, if two left and right tests contradict each other, we perform more
and more reliable tests over the same boundaries, until two non-contradicting tests are found.
Furthermore, two (2δ +1)-tests are performed when the algorithm is about to terminate with
a negative answer.

We now generalize the analysis carried out in Theorem 6, proving the following:

Theorem 7 The refined algorithm DetSearch performs resilient searching in O(log n+α δǫ)
worst-case time, for any constant ǫ ∈ (0, 1].

Proof. The correctness follows from the same argument discussed in the proof of Theorem 6.
Consider now the running time. As in Theorem 6, we think of the search process as divided
into δ-steps. We first bound the running time for the mislead searches taking place in δ-steps
that terminate because δ standard searching steps have been performed: in these δ-steps,
no contradicting tests are ever performed. Let i ∈ [1, 1/ǫ] be the smallest integer such that
the proper search direction is recovered after performing a (2δi ǫ + 1)-test. Such an integer
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certainly exists, because (2δ + 1)-tests cannot be misleading: thus, in the worst case i = 1/ǫ.
We distinguish two cases according to the value of i (either equal to or larger than 1).

We first analyze the running time for a mislead search when i = 1. In this case, the search
direction is recovered by a (2δǫ + 1)-test after at most δǫ search steps. Let ℓ be the boundary
involved in the (2δǫ + 1)-test that recovers the search direction. As in Theorem 6, we can
argue that ℓ is a misleading boundary and charge the O(δǫ) time spent for the mislead search
to I[ℓ]. Since I[ℓ] is out of the interval on which the search proceeds, each faulty value can be
charged at most once due to this kind of error, and we will have at most α incorrect searches
of this kind. The total running time for these mislead searches will thus be O(α δǫ).

We next analyze the running time for mislead searches when i > 1. In this case, the time
wasted due to a mislead search is O(δi ǫ), that is the time between consecutive (2δi ǫ +1)-tests.
Using arguments similar to the previous case, we can show that there must exist Θ(δ(i−1) ǫ)
faulty values that are eliminated from the interval in which the search proceeds. Indeed, as
far as the algorithm works, the (2δi ǫ + 1)-test that recovers the search direction is performed
immediately after a (2δ(i−1) ǫ + 1)-test, that must be misleading by definition of i. Thus, at
least (δ(i−1) ǫ + 1) values considered in that test must be faulty. We can charge the O(δi ǫ)
time spent for the mislead search to these values, all of which are out of the interval on which
the search proceeds. We will therefore have at most O(α/δ(i−1) ǫ) incorrect searches of this
kind, requiring O(δi ǫ) time each. The total running time will be again O(α δǫ).

A similar analysis can be carried out to prove that δ-steps that terminate due to contra-
dicting tests also give an O(α δǫ) contribution to the running time. The claimed bound of
O(log n + α δǫ) follows by noticing that the time for the correct searches is O(log n). 2

The bound in Theorem 7 yields a deterministic resilient searching algorithm that can
tolerate up to O((log n)1−ǫ′) memory faults, for any small positive constant ǫ′, in O(log n)
worst-case time, thus getting arbitrarily close to the lower bound.

5 Conclusions and Open Problems

In this paper we have presented sorting and searching algorithms resilient to memory faults
that may happen during their execution. We have designed a comparison-based resilient
sorting algorithm that takes O(n log n) worst-case time and can tolerate up to O(

√
n log n )

faults: as proved in [18], this bound is optimal. In the special case of integer sorting, we have
presented a randomized algorithm able to tolerate up to O(

√
n ) memory faults in expected

O(n) time. A thorough experimental study [15] has shown that the algorithms presented here
are not only theoretically efficient, but also fast in practice.

With respect to resilient searching, we have proved matching upper and lower bounds
Θ(log n+δ) for randomized algorithms, and we have presented an almost optimal deterministic
algorithm that can tolerate up to O((log n)1−ǫ) faults, for any small positive constant ǫ, in
O(log n) worst-case time, thus getting arbitrarily close to the lower bound.

After this work, we have addressed the searching problem in a dynamic setting, designing
a resilient version of binary search trees such that search operations, insertions of new keys,
and deletions of existing keys can be implemented in O(log n + δ2) amortized time per op-
eration [17]. Later, Brodal et al. have proposed an optimal deterministic static dictionary
supporting searches in Θ(log n + δ) worst-case time (thus improving on the bounds given in
Section 4.3), and have shown how to use it in a dynamic setting in order to support searches
in Θ(log n + δ) worst-case time, updates in O(log n + δ) amortized time and range queries in
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O(log n + δ + k) worst-case time, where k is the size of the output [10].
Possible directions for future research include proving lower bounds for the resilient integer

sorting problem and for the amortized time required by insertions and deletions in a resilient
binary search tree, as well as improving the upper bound for deterministic integer sorting.
Investigating whether it is possible to obtain resilient algorithms that do not assume any
knowledge on the maximum number δ of memory faults also deserve additional investigation.
Finally, we remark that in this paper we focused on a faulty variant of the standard RAM
model: an interesting research direction is designing resilient algorithms for more complex
memory hierarchies.

Acknowledgments. We are indebted to the anonymous referees for many useful comments.
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