
Reactive Imperative Programming with Dataflow Constraints

Camil Demetrescu

Dept. of Computer and System Sciences

Sapienza University of Rome

demetres@dis.uniroma1.it

Irene Finocchi

Dept. of Computer Science

Sapienza University of Rome

finocchi@di.uniroma1.it

Andrea Ribichini

Dept. of Computer and System Sciences

Sapienza University of Rome

ribichini@dis.uniroma1.it

Abstract

Dataflow languages provide natural support for specifying

constraints between objects in dynamic applications, where

programs need to react efficiently to changes of their envi-

ronment. Researchers have long investigated how to take ad-

vantage of dataflow constraints by embedding them into pro-

cedural languages. Previous mixed imperative/dataflow sys-

tems, however, require syntactic extensions or libraries of

ad hoc data types for binding the imperative program to the

dataflow solver. In this paper we propose a novel approach

that smoothly combines the two paradigms without placing

undue burden on the programmer.

In our framework, programmers can define ordinary

statements of the imperative host language that enforce

constraints between objects stored in special memory lo-

cations designated as “reactive”. Differently from previous

approaches, reactive objects can be of any legal type in the

host language, including primitive data types, pointers, ar-

rays, and structures. Statements defining constraints are au-

tomatically re-executed every time their input memory lo-

cations change, letting a program behave like a spreadsheet

where the values of some variables depend upon the values

of other variables. The constraint solving mechanism is han-

dled transparently by altering the semantics of elementary

operations of the host language for reading and modifying

objects. We provide a formal semantics and describe a con-

crete embodiment of our technique into C/C++, showing

how to implement it efficiently in conventional platforms

using off-the-shelf compilers. We discuss common coding

idioms and relevant applications to reactive scenarios, in-

cluding incremental computation, observer design pattern,

and data structure repair. The performance of our imple-

mentation is compared to ad hoc problem-specific change

propagation algorithms, as well as to language-centric ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

proaches such as self-adjusting computation and subject/ob-

server communication mechanisms, showing that the pro-

posed approach is efficient in practice.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—Constraints

General Terms Algorithms, design, experimentation, lan-

guages.

Keywords Reactive programming, dataflow programming,

imperative programming, constraint solving, incremental

computation, observer design pattern, data structure repair.

1. Introduction

A one-way, dataflow constraint is an equation of the form

y = f(x1, . . . , xn) in which the formula on the right side

is automatically re-evaluated and assigned to the variable

y whenever any variable xi changes. If y is modified from

outside the constraint, the equation is left temporarily unsat-

isfied, hence the attribute “one-way”. Dataflow constraints

are recognized as a powerful programming methodology in

a variety of contexts because of their versatility and sim-

plicity [46]. The most widespread application of dataflow

constraints is perhaps embodied by spreadsheets [2, 36]. In

a spreadsheet, the user can specify a cell formula that de-

pends on other cells: when any of those cells is updated, the

value of the first cell is automatically recalculated. Rules in

a Makefile are another example of dataflow constraints: a

rule sets up a dependency between a target file and a list of

input files, and provides shell commands for rebuilding the

target from the input files. When the Makefile is run, if any

input file in a rule is discovered to be newer than the target,

then the target is rebuilt. The dataflow principle can also be

applied to software development and execution, where the

role of a cell/file is replaced by a program variable. This ap-

proach has been widely explored in the context of interac-

tive applications, multimedia animation, and real-time sys-

tems [13, 15, 29, 35, 41, 47].

Since the values of program variables are automatically

recalculated upon changes of other values, the dataflow com-

putational model is very different from the standard imper-

ative model, in which the memory store is changed explic-

itly by the program via memory assignments. The execution

407

flow of applications running on top of a dataflow environ-

ment is indeed data-driven, rather than control-driven, pro-

viding a natural ground for automatic change propagation in

all scenarios where programs need to react to modifications

of their environment. Implementations of the dataflow prin-

ciple share some common issues with self-adjusting compu-

tation, in which programs respond to input changes by up-

dating automatically their output [3–5, 30].

Differently from purely declarative constraints [7], data-

flow constraints are expressed by means of (imperative)

methods whose execution makes a relation satisfied. This

programming style is intuitive and readily accessible to a

broad range of developers [46]. The ability to smoothly com-

bine different paradigms in a unified framework makes it

possible to take advantage of different programming styles

in the context of the same application. The problem of in-

tegrating imperative and dataflow programming has already

been the focus of previous work in the context of specific

application domains [11, 40, 41, 46]. Previous mixed imper-

ative/dataflow systems are based on libraries of ad hoc data

types and functions for representing constraint variables and

for binding the imperative program to the constraint solver.

One drawback of these approaches is that constraint vari-

ables can only be of special data types provided by the run-

time library, causing loss of flexibility and placing undue

burden on the programmer. A natural question is whether the

dataflow model can be made to work with general-purpose,

imperative languages, such as C, without adding syntactic

extensions and ad hoc data types. In this paper we affirma-

tively answer this question.

Our Contributions. We present a general-purpose frame-

work where programmers can specify generic one-way con-

straints between objects of arbitrary types stored in reac-

tive memory locations. Constraints are written as ordinary

statements of the imperative host language and can be added

and removed dynamically at run time. Since they can change

multiple objects within the same execution, they are multi-

output. The main feature of a constraint is its sensitivity to

modifications of reactive objects: a constraint is automati-

cally re-evaluated whenever any of the reactive locations it

depends on is changed, either by the imperative program, or

by another constraint. A distinguishing feature of our ap-

proach is that the whole constraint solving mechanism is

handled transparently by altering the semantics of elemen-

tary operations of the imperative host language for reading

and modifying objects. No syntax extensions are required

and no new primitives are needed except for adding/remov-

ing constraints, allocating/deallocating reactive memory lo-

cations, and controlling the granularity of solver activations.

Differently from previous approaches, programmers are not

forced to use any special data types provided by the language

extension, and can resort to the full range of conventional

constructs for accessing and manipulating objects offered by

the host language. In addition, our framework supports all

the other features that have been recognized to be important

in the design of dataflow constraint systems [46], including:

Arbitrary code: constraints consist of arbitrary code that is

legal in the underlying imperative language, thus includ-

ing loops, conditionals, function calls, and recursion.

Address dereferencing: constraints are able to reference

variables indirectly via pointers.

Automatic dependency detection: constraints automatically

detect the reactive memory locations they depend on dur-

ing their evaluation, so there is no need for program-

mers to explicitly declare dependencies, which are also

allowed to vary over time.

We embodied these principles into an extension of C/C++

that we called DC. Our extension has the same syntax as

C/C++, but operations that read or modify objects have a dif-

ferent semantics. All other primitives, including creating and

deleting constraints and allocating and deallocating reactive

memory blocks, are provided as runtime library functions.

Our main contributions are reflected in the organization

of the paper and can be summarized as follows:

• In Section 2 we abstract our mechanism showing how

to extend an elementary imperative language to support

one-way dataflow constraints using reactive memory. We

formally describe our mixed imperative/dataflow compu-

tational model, provide a formal semantics, and discuss

convergence properties of our dataflow constraint solver

by modeling the computation as an iterative process that

aims at finding a common fixpoint for the current set of

constraints.

• In Section 3 we describe the concrete embodiment of our

technique into C/C++, introducing the main features of

DC.

• In Section 4 we give a variety of elementary and ad-

vanced programming examples and discuss how DC can

improve C/C++ programmability in three relevant appli-

cation scenarios: incremental computation, implementa-

tion of the observer software design pattern, and data

structure checking and repair. To the best of our knowl-

edge, these applications have not been explored before in

the context of dataflow programming.

• In Section 5 we describe how DC can be implemented

using off-the-shelf compilers on conventional platforms

via a combination of runtime libraries, hardware/operat-

ing system support, and dynamic code patching, without

requiring any source code preprocessing.

• In Section 6 we discuss the results of an extensive ex-

perimental analysis of DC in a variety of settings, show-

ing that our implementation is effective in practice. We

consider both interactive applications and computation-

ally demanding benchmarks that manipulate lists, grids,

trees, and graphs. We assess the performances of DC

408

against conventional C-based implementations as well

as against competitors that can quickly react to input

changes, i.e., ad hoc dynamic algorithms [20, 44], incre-

mental solutions realized in CEAL [30] (a state-of-the-

art C-based framework for self-adjusting computation),

and Qt’s signal-slot implementation of the subject/ob-

server communication mechanism [26].

Related work is discussed in Section 7 and directions for fu-

ture research are sketched in Section 8. An extended version

of this paper, including proofs and additional experiments,

can be found in the accompanying technical report [23].

2. Abstract Model

To describe our approach, we consider an elementary im-

perative language and we show how to extend it to support

one-way dataflow constraints. We start from WHILE [43], an

extremely simple language of commands including a sub-

language of expressions. Although WHILE does not sup-

port many fundamental features of concrete imperative lan-

guages (including declarations, procedures, dynamic mem-

ory allocation, type checking, etc.), it provides all the build-

ing blocks for a formal description of our mechanism, ab-

stracting away details irrelevant for our purposes. We dis-

cuss how to modify the semantics of WHILE to integrate a

dataflow constraint solver. We call the extended language

DWHILE. DWHILE is identical to WHILE except for a dif-

ferent semantics and additional primitives for adding/delet-

ing constraints dynamically and for controlling the granular-

ity of solver activations. As we will see in Section 3, these

primitives can be supported in procedural languages as run-

time library functions.

2.1 The DWHILE Language

The abstract syntax of DWHILE is shown in Figure 1. The

language distinguishes between commands (i.e., statements)

e ∈ Exp ::= ℓ | v | (e) | . . .

c ∈ Comm ::=

skip |
ℓ := e |
c1 ; c2 |
if e then c1 else c2 |
while e do c |
newcons c |
delcons c |
begin at c end at

Figure 1. Abstract syntax

of DWHILE.

and expressions. We use

c, c1, c2 as meta-variables

ranging over the set of

commands Comm, and e,

e1, e2 as meta-variables

ranging over the set of

expressions Exp. Canon-

ical forms of expressions

are either storage locations

ℓ ∈ Loc, or storable values

v over some arbitrary do-

main V al. Expressions can

also be obtained by apply-

ing to sub-expressions any

primitive operations defined over domain V al (e.g., plus, mi-

nus, etc.). Commands include:

• Assignments of values to storage locations (ℓ := e). These

commands are the basic state transformers.

normal
mode

⇒nc ⇒e

S=Ø S ≠Ø

⇒s

scheduling
mode

⇒cc ⇒ce

constraint
mode

write to reactive
memory location

constraint
termination

Figure 2. Transitions between different execution modes.

• Constructs for sequencing, conditional execution, and it-

eration, with the usual meaning.

• Two new primitives, newcons and delcons, for adding

and deleting constraints dynamically. Notice that a con-

straint in DWHILE is just an ordinary command.

• An atomic block construct, begin at c end at, that

executes a command c atomically so that any constraint

evaluation is deferred until the end of the block. This

offers fine-grained control over solver activations.

In Section 3 we will show a direct application of the con-

cepts developed in this section to the C/C++ programming

languages.

2.2 Memory Model and Execution Modes

Our approach hinges upon two key notions: reactive memory

locations and constraints. Reactive memory can be read and

written just like ordinary memory. However, differently from

ordinary memory:

1. If a constraint c reads a reactive memory location ℓ during

its execution, a dependency (ℓ, c) of c from ℓ is added to

a set D of dependencies.

2. If the value stored in a reactive memory location ℓ is

changed, all constraints depending on ℓ (i.e., all con-

straints c such that (ℓ, c) ∈ D) are automatically re-

executed.

Point 2 states that constraints are sensitive to modifications

of the contents of the reactive memory. Point 1 shows how to

maintain dynamically the set D of dependencies needed to

trigger the appropriate constraints upon changes of reactive

memory locations. We remark that re-evaluating a constraint

c may completely change the set of its dependencies: prior

to re-execution, all the old dependencies (−, c) ∈ D are

discarded, and new dependencies are logged in D during the

re-evaluation of c.

As shown in Figure 2, at any point in time the execution

can be in one of three modes: normal execution, constraint

execution, or scheduling. As we will see more formally later

in this section, different instructions (such as reading a re-

active memory location or assigning it with a value) may

have different semantics depending on the current execution

mode.

We assume eager constraint evaluation, i.e., out-of-date

constraints are brought up-to-date as soon as possible. This

choice is better suited to our framework and, as previous ex-

perience has shown, lazy and eager evaluators typically de-

409

liver comparable performance in practice [46]. Eager eval-

uation is achieved as follows. A scheduler maintains a data

structure S containing constraints to be first executed or re-

evaluated. As an invariant property, S is guaranteed to be

empty during normal execution. As soon as a reactive mem-

ory location ℓ is written, the scheduler queries the set D of

dependencies and adds to S all the constraints depending on

ℓ. These constraints are then run one-by-one in constraint

execution mode, and new constraints may be added to S
throughout this process. Whenever S becomes empty, nor-

mal execution is resumed.

An exception to eager evaluation is related to atomic

blocks. The execution of an atomic block c is regarded as an

uninterruptible operation: new constraints created during the

evaluation of c are just added to S. When c terminates, for

each reactive memory location ℓ whose value has changed,

all the constraints depending on ℓ are also added to S, and

the solver is eventually activated. Constraint executions are

uninterruptible as well.

We remark that any scheduling mechanism may be used

for selecting from S the next constraint to be evaluated: in

this abstract model we rely on a function pick that imple-

ments any appropriate scheduling strategy.

2.3 Configurations

Given a set X , we denote by 2X its power set. A configura-

tion of our system is a six-tuple

(ρ, a, σ, D, S, cself) ∈ R×Bool×Σ×Dep×2Cons×Cons

where:

• R is a set of Boolean store attributes of the form ρ :
Loc → { normal, reactive }, where function ρ ∈ R
specifies which memory locations are reactive.

• a ∈ {true, false} is a Boolean flag that is true inside

atomic blocks and is used for deferring solver activations.

• Σ = {σ : Loc → V al} is a set of stores mapping storage

locations to storable values.

• D ⊆ Loc×Cons is a set of dependencies, Cons is a set

of constraints, and Dep = 2Loc×Cons. A constraint can

be any command in DWHILE, i.e., Cons = Comm. We

use different names for the sake of clarity.

• S ⊆ Cons is the scheduling data structure.

• cself is a meta-variable that denotes the current constraint

(i.e., the constraint that is being evaluated) in constraint

execution mode, and is undefined otherwise. If the sched-

uler were deterministic, cself may be omitted from the

configuration, but we do not make this assumption in this

paper.

2.4 Operational Semantics

Most of the operational semantics of the DWHILE lan-

guage can be directly derived from the standard semantics

of WHILE. The most interesting aspects of our extension in-

clude reading and writing the reactive memory, adding and

deleting constraints, executing commands atomically, and

defining the behavior of the scheduler and its interactions

with the other execution modes. Rules for these aspects are

given in Figure 4 and are discussed below.

Let ⇒e ⊆ (Σ×Exp)×V al and ⇒c ⊆ (Σ×Comm)×Σ
be the standard big-step transition relations used in the oper-

ational semantics of the WHILE language [43]. Besides ⇒e

and ⇒c, we use additional transition relations for expression

evaluation in constraint mode (⇒ce), command execution

in normal mode (⇒nc), command execution in constraint

mode (⇒cc), and constraint solver execution in scheduling

mode (⇒s), as defined in Figure 3. Notice that expression

evaluation in normal mode can be carried on directly by

means of transition relation ⇒e of WHILE. As discussed

below, relation ⇒ce is obtained by appropriately modifying

⇒e. Similarly, relations ⇒nc and ⇒cc are obtained by ap-

propriately modifying ⇒c. All the rules not reported in Fig-

ure 4 can be derived in a straightforward way from the cor-

responding rules in the standard semantics of WHILE [43].

The evaluation of a DWHILE program is started by rule

EVAL, which initializes the atomic flag a to false and both

the scheduling queue S and the set D of dependencies to the

empty set.

Writing Memory. Assigning an ordinary memory loca-

tion in normal execution mode (rule ASGN-N1) just changes

the store as in the usual semantics of WHILE. This is also

the case when the new value of the location to be assigned

equals its old value or inside an atomic block. Otherwise, if

the location ℓ to be assigned is reactive, the new value dif-

fers from the old one, and execution is outside atomic blocks

(rule ASGN-N2), constraints depending on ℓ are scheduled

in S and are evaluated one-by-one. As we will see, the tran-

sition relation ⇒s guarantees S to be empty at the end of the

constraint solving phase. In conformity with the atomic ex-

ecution of constraints, assignment in constraint mode (rule

ASGN-C) just resorts to ordinary assignment in WHILE for

both normal and reactive locations. We will see in rule

SOLVER-2, however, that constraints can be nevertheless

scheduled by other constraints if their execution changes the

contents of reactive memory locations.

Reading Memory. Reading an ordinary memory location

in constraint execution mode (rule DEREF-C1) just evaluates

the location to its value in the current store: this is specified

by transition relation ⇒e of the WHILE semantics. If the

location ℓ to be read is reactive (rule DEREF-C2), a new

dependency of the active constraint cself from ℓ is also added

to the set D of dependencies.

Executing Atomic Blocks. To execute an atomic block

in normal mode (rule BEGINEND-N2), the uninterruptible

command c is first evaluated according to the rules defined

by transition ⇒nc. If the content of some reactive loca-

410

⇒⊆ (R× Σ × Comm) × Σ 〈ρ, σ, c〉 ⇒ σ′

⇒ce ⊆ (R× Σ × Cons × Dep × Exp) × (Dep × V al) 〈ρ, σ, cself , D, e〉 ⇒ce 〈D′, v〉

⇒nc ⊆ (R× Bool × Σ × Dep × 2Cons × Comm) × (Σ × Dep × 2Cons) 〈ρ, a, σ, D, S, c〉 ⇒nc 〈σ′, D′, S′〉

⇒cc ⊆ (R× Σ × Dep × 2Cons × Cons × Comm) × (Σ × Dep × 2Cons) 〈ρ, σ, D, S, cself , c〉 ⇒cc 〈σ′, D′, S′〉

⇒s ⊆ (R× Σ × Dep × 2Cons) × (Σ × Dep) 〈ρ, σ, D, S〉 ⇒s 〈σ′, D′〉

Figure 3. Transition relations for DWHILE program evaluation (⇒), expression evaluation in constraint mode (⇒ce),

command execution in normal mode (⇒nc), command execution in constraint mode (⇒cc), and constraint solver execution in

scheduling mode (⇒s).

〈ρ, a, σ, D, S, c〉 ⇒nc 〈σ′

, D
′

, S〉

〈ρ, σ, c〉 ⇒ σ
′

where:

8

<

:

a = false

D = ∅
S = ∅

〈ρ, σ, cself , D, e〉 ⇒ce 〈D′

, v〉 σ
′ = σ|ℓ 7→v

〈ρ, σ, D, S, cself , ℓ := e〉 ⇒cc 〈σ′

, D
′

, S〉

(EVAL) (ASGN-C)

σ ⊢ e ⇒e v σ
′ = σ|ℓ 7→v

〈ρ, a, σ, D, S, ℓ := e〉 ⇒nc 〈σ′

, D, S〉

S = ∅ S
′ = {c | (ℓ, c) ∈ D}

σ ⊢ e ⇒e v σ
′ = σ|ℓ 7→v 〈ρ, σ

′

, D, S
′〉 ⇒s 〈σ′′

, D
′〉

〈ρ, a, σ, D, S, ℓ := e〉 ⇒nc 〈σ′′

, D
′

, S〉

if ρ(ℓ) = normal or σ′(ℓ) = σ(ℓ) or a = true if ρ(ℓ) = reactive and σ′(ℓ) 6= σ(ℓ) and a = false

(ASGN-N1) (ASGN-N2)

σ ⊢ ℓ ⇒e v

〈ρ, σ, cself , D, ℓ〉 ⇒ce 〈D, v〉
if ρ(ℓ) = normal

σ ⊢ ℓ ⇒e v D
′ = D ∪ {(ℓ, cself)}

〈ρ, σ, cself , D, ℓ〉 ⇒ce 〈D′

, v〉
if ρ(ℓ) = reactive

(DEREF-C1) (DEREF-C2)

〈ρ, σ, D, S, cself , c〉 ⇒cc 〈σ′

, D
′

, S
′〉

〈ρ, σ, D, S, cself , begin at c end at〉 ⇒cc 〈σ′

, D
′

, S
′〉

〈ρ, a, σ, D, S, c〉 ⇒nc 〈σ′

, D, S
′〉

〈ρ, a, σ, D, S, begin at c end at〉 ⇒nc 〈σ′

, D, S
′〉

if a = true

(BEGINEND-C) (BEGINEND-N1)

S = ∅ a
′ = true 〈ρ, a

′

, σ, D, S, c〉 ⇒nc 〈σ′

, D, S
′〉

S
′′ = S

′ ∪ { c | (ℓ, c) ∈ D ∧ σ(ℓ) 6= σ
′(ℓ) } 〈ρ, σ

′

, D, S
′′〉 ⇒s 〈σ′′

, D
′〉

〈ρ, a, σ, D, S, begin at c end at〉 ⇒nc 〈σ′′

, D
′

, S〉
if a = false

(BEGINEND-N2)

S = ∅ S
′ = {c} 〈ρ, σ, D, S

′〉 ⇒s 〈σ′

, D
′〉

〈ρ, a, σ, D, S, newcons c〉 ⇒nc 〈σ′

, D
′

, S〉
if a = false

S
′ = S ∪ {c}

〈ρ, a, σ, D, S, newcons c〉 ⇒nc 〈σ,D, S
′〉

if a = true

(NEWCONS-N1) (NEWCONS-N2)

D
′ = D \ {(ℓ, x) ∈ D |x = c} S

′ = S \ {c}

〈ρ, a, σ, D, S, delcons c〉 ⇒nc 〈σ, D
′

, S
′〉

S
′ = S ∪ {c}

〈ρ, σ, D, S, cself , newcons c〉 ⇒cc 〈σ, D, S
′〉

(DELCONS-N) (NEWCONS-C)

D
′ = D \ {(ℓ, x) ∈ D |x = c} S

′ = S \ {c}

〈ρ, σ, D, S, cself , delcons c〉 ⇒cc 〈σ, D
′

, S
′〉 〈ρ, σ,D, S〉 ⇒s 〈σ,D〉

if S = ∅

(DELCONS-C) (SOLVER-1)

〈ρ, σ, D
′

, S \ {cself}, cself , cself 〉 ⇒cc 〈σ′

, D
′′

, S
′〉

〈ρ, σ
′

, D
′′

, S
′′〉 ⇒s 〈σ′′

, D
′′′〉

〈ρ, σ, D, S〉 ⇒s 〈σ′′

, D
′′′〉

where:

8

<

:

cself = pick(S)
D′ = D \ {(ℓ , x) ∈ D |x = cself}
S′′ = S′ ∪ {c | (ℓ, c) ∈ D′′ ∧ σ(ℓ) 6= σ′(ℓ) }

if S 6= ∅

(SOLVER-2)

Figure 4. DWHILE program evaluation.

411

tion changes due to the execution of c, the solver is then

activated at the end of the block. The begin at / end at

command has instead no effect when execution is already

atomic, i.e., in constraint mode (rule BEGINEND-C) and in-

side atomic blocks (rule BEGINEND-N1), except for execut-

ing command c.

Creating and Deleting Constraints. In non-atomic nor-

mal execution mode, rule NEWCONS-N1 creates a new con-

straint and triggers its first execution as specified by ⇒s.

In atomic normal execution and in constraint mode, rules

NEWCONS-N2 and NEWCONS-C simply add the constraint

to the scheduling queue. Similarly, rules DELCONS-N and

DELCONS-C remove the constraint from the scheduling

queue and clean up its dependencies from D.

Activating the Solver. Rules SOLVER-1 and SOLVER-2

specify the behavior of the scheduler, which is started by

rules ASGN-N2 and BEGINEND-N2. Rule SOLVER-1 de-

fines the termination of the constraint solving phase: this

phase ends only when there are no more constraints to be

evaluated (i.e., S = ∅). Rule SOLVER-2 has an inductive

definition. If S is not empty, function pick selects from S a

new active constraint cself , which is evaluated in constraint

mode after removing from D its old dependencies. The fi-

nal state (σ′′) and dependencies (D′′′) are those obtained by

applying the scheduler on the store σ′ obtained after the ex-

ecution of cself and on a new set S′′ of constraints. S′′ is

derived from S by adding any new constraints (S′) result-

ing from the execution of cself along with the constraints

depending on reactive memory locations whose content has

been changed by cself . The definition of S′′ guarantees that

constraints can trigger other constraints (even themselves),

even if each constraint execution is regarded as an atomic

operation and is never interrupted by the scheduler.

2.5 Convergence Properties

The approach we follow in our work consists of model-

ing dataflow constraint solving as an iterative process that

aims at finding a common fixpoint for the current set of

constraints. In our context, a fixpoint is a store that satis-

fies simultaneously all the relations between reactive mem-

ory locations specified by the constraints. As we will see

in Section 2.6, this provides a unifying framework for solv-

ing dataflow constraint systems with both acyclic and cyclic

dependencies. So far, we have assumed that the schedul-

ing order of constraint executions is specified by a function

pick given as a parameter of the solver. A natural question

is whether there are any general properties of a set of con-

straints that let our solver terminate and converge to a com-

mon fixpoint independently of the scheduling strategy used

by function pick.

We adapt the theory in [7, 17] to our framework, model-

ing constraint executions as the application of functions on

stores: let fc : Σ → Σ be the function computed by a con-

straint c ∈ Cons, where fc(σ) = σ′ if 〈σ, c〉 ⇒c σ′. A store

σ ∈ Σ is a FIXPOINT for fc if fc(σ) = σ. To simplify the

discussion, in this section we assume that constraints only

operate on reactive cells and focus our attention on stores

where all locations are reactive. The definition of inflation-

ary functions assumes that a partial ordering is defined on

the set of stores Σ:

DEFINITION 1 (INFLATIONARY FUNCTIONS). Let (Σ,�) be

any partial ordering over the set of stores Σ and let f :
Σ → Σ be a function on Σ. We say that f is inflationary

if σ � f(σ) for all σ ∈ Σ.

A relevant property of partial orderings in our context is the

finite chain property:

DEFINITION 2 (FINITE CHAIN PROPERTY). A partial order-

ing (Σ,�) over Σ satisfies the FINITE CHAIN PROPERTY if ev-

ery non-decreasing sequence of elements σ0 � σ1 � σ2 �
. . . from Σ eventually stabilizes at some element σ in Σ, i.e.,

if there exists j ≥ 0 such that σi = σ for all i ≥ j.

To describe the store modifications due to the execution

of the solver, we use the notion of iteration of functions

on stores. Let F = {f1, . . . , fn}, 〈a1, . . . , ak〉 ∈ [1, n]k,

and σ ∈ Σ be a finite set of functions on Σ, a sequence

of indices in [1, n], and an initial store, respectively. An

iteration of functions of F starting at σ is a sequence of

stores 〈σ0, σ1, σ2, . . .〉 where σ0 = σ and σi = fai
(σi−1)

for i > 0. We say that function fai
is activated at step i.

Iterations of functions that lead to a fixed point are called

regular:

DEFINITION 3 (REGULAR FUNCTION ITERATION). A func-

tion iteration 〈σ0, σ1, σ2, . . .〉 is REGULAR if it satisfies the

following property: for all f ∈ F and i ≥ 0, if σi is not a

fixpoint for f , then f is activated at some step j > i.

Using arguments from Chapter 7 of [7], it can be proved

that any regular iteration of inflationary functions starting at

some initial store stabilizes in a finite number of steps to a

common fixpoint. A relevant convergence property of our

solver is the following:

THEOREM 1. Let C = {c1, . . . , ch} be any set of con-

straints, let F = {fc1
, . . . , fch

} be the functions computed

by constraints in C, and let (Σ,�) be any partial ordering

over Σ satisfying the finite chain property. If functions in F
are inflationary on Σ and {f ∈ F | f(σ) 6= σ} ⊆ S ⊆ F ,

then 〈ρ, σ, D, S〉 ⇒s 〈σ′, D′〉 and σ′ is a common fixpoint

of the functions in F such that σ � σ′.

If functions in Theorem 1 are also monotonic (i.e., σ � σ′

implies f(σ) � f(σ′) for all σ, σ′ ∈ Σ), then the solver

always converges to the least common fixpoint [7], yielding

deterministic results independently of the scheduling order.

2.6 Cyclic vs. Acyclic Systems of Constraints

It is possible to prove that the class of inflationary constraints

discussed in Theorem 1 includes any program that can be de-

412

insert(u, v, w):

E := E ∪ {(u, v)}
w(u, v) := w

newcons(if d[u] + w(u, v) < d[v] then d[v] := d[u] + w(u, v)
| {z }

cuv

)

decrease(u, v, δ):

w(u, v) := w(u, v) − δ

Figure 5. Incremental shortest path updates in a mixed im-

perative/dataflow style.

scribed in terms of an acyclic dataflow graph, such as com-

putational circuits [6], non-circular attribute grammars [37],

and spreadsheets [36]. Hence, if a system of constraints is

acyclic, then our solver always converges to the correct re-

sult, without the need for programmers to prove any stabi-

lization properties of their constraints. This is the most com-

mon case in many applications [6, 19, 34], and several ef-

ficient techniques can be adopted by constraint solvers to

automatically detect cycles introduced by programming er-

rors [46].

In addition to the acyclic case, our abstract machine can

also handle the most general case of cyclic constraints em-

bedded within an imperative program. This opens up the

possibility to address problems that would not be solvable

using acyclic dataflow graphs. We exemplify this concept by

considering the well known algorithmic problem of main-

taining distances in a graph subject to local changes to its

nodes or edges. In the remainder of this section we show how

to specify an incremental variant of the classical Bellman-

Ford’s single-source shortest path algorithm [8] in terms of a

(possibly cyclic) system of one-way constraints. Compared

to purely imperative specifications [20], the formulation of

the incremental algorithm in our mixed imperative/dataflow

framework is surprisingly simple and requires just a few

lines of code.

Example. Let G = (V, E, w) be a directed graph with real

edge weights w(u, v), and let s be a source node in V . The

incremental shortest path problem consists of updating the

distances d[u] of all nodes u ∈ V from the source s after in-

serting any new edge in the graph, or decreasing the weight

of any existing edge. To solve this problem in our frame-

work, we keep edge weights and distances in reactive mem-

ory. Assuming to start from a graph with no edges, we initial-

ize d[s] := 0 and d[u] := +∞ for all u 6= s. The pseudocode

of update operations that insert a new edge and decrease the

weight of an existing edge by a positive amount δ are shown

in Figure 5. Operation insert(u, v, w) adds edge (u, v) to

the graph with weight w and creates a new constraint cuv for

the edge: cuv simply relaxes the edge if Bellman’s inequality

d[u] + w(u, v) ≥ d[v] is violated [8]. The constraint is im-

mediately executed after creation (see rule NEWCONS-N1

in Figure 4) and the three pairs (d[u], cuv), (d[v], cuv), and

(w(u, v), cuv) are added to the set of dependencies D. Any

later change to d[u], d[v] or w(u, v), which may violate the

inequality d[u]+w(u, v) ≥ d[v], will cause the re-execution

of cuv. Decreasing the weight of an existing edge (u, v) by

any positive constant δ with decrease(u, v, δ) can be done

by just updating w(u, v). In view of rule ASGN-N2 of Fig-

ure 4, the system reacts to the change and automatically re-

executes cuv and any other affected constraints.

Using the machinery developed in Section 2.5 and suit-

ably defining a partial order on Σ and an appropriate pick

function, it can be proved that our solver finds a correct so-

lution within the best known worst-case time bounds for the

problem. In Section 6.3 we will analyze experimentally our

constraint-based approach showing that in practice it can be

orders of magnitude faster than recomputing from scratch,

even when all weights are non-negative.

2.7 Glitch Avoidance

The performances of our solver depend on the ability to

minimize glitches [15], i.e., redundant evaluations of con-

straints. In the case of acyclic systems, glitch freedom can

be achieved by creating constraints in topological order and

by letting the pick function return the least recently creat-

ed/executed constraint. For cyclic systems, glitch avoidance

is problem-specific, and relies on the definition of appropri-

ate pick functions. In some cases, glitches may be entailed

by algorithmic properties of the program at hand, and there-

fore may be unavoidable. For instance, glitches may arise in

the shortest paths example discussed in Section 2.6 if multi-

ple edge insertions are performed as a batch inside an atomic

block. This is a consequence of the fact that each edge may

be relaxed up to |V | times by Bellman-Ford’s algorithm.

Defining a pick function that guarantees the glitch freedom

property in this situation would improve the long-standing

O(|V | · |E|) time bound of the shortest paths problem with

arbitrary edge weights.

3. Embodiment into C/C++

In this section we show how to apply the concepts devel-

oped in Section 2 to the C and C++ languages, deriving an

extension that we call DC. DC has exactly the same syntax

as C/C++, but operations that read or modify objects have

a different semantics. All other primitives, including creat-

ing/deleting constraints, allocating/deallocating reactive ob-

jects, and opening/closing atomic blocks, are provided as

runtime library functions1 (see Figure 6).

Reactive Memory Allocation. Similarly to other automatic

change propagation approaches (e.g., [5, 41]), in DC all ob-

jects allocated statically or dynamically are non-reactive by

default. Reactive locations are allocated dynamically using

library functions rmalloc and rfree, which work just like

malloc and free, but on a separate heap.

1 A detailed documentation of the DC application programming in-

terface, including stricter library naming conventions and several ad-

ditional features not covered in this paper, is available at the URL:

http://www.dis.uniroma1.it/~demetres/dc/

413

typedef void (*cons_t)(void*);

int newcons(cons_t cons, void* param);

void delcons(int cons_id);

void* rmalloc(size_t size);

void rfree(void* ptr);

void begin_at();

void end_at();

void arm_final(int cons_id, cons_t final);

void set_comp(int (*comp)(void*, void*));

Figure 6. Main functions of the DC language extension.

Opening and Closing Atomic Blocks. Atomic blocks are

supported in DC using two library functions begin at and

end at. Calling begin at opens an atomic block, which

should be closed with a matching call to end at. Nested

atomic blocks are allowed, and are handled using a counter

of nesting levels so that the solver is only resumed at the end

of the outer block, processing any pending constraints that

need to be first executed or brought up to date as a result of

the block’s execution.

Creating and Deleting Constraints. For the sake of sim-

plicity, in Section 2 constraints have been modeled as ordi-

nary statements. DC takes a more flexible approach: con-

straints are specified as closures formed by a function that

carries out the computation and a user-defined parame-

ter to be passed to the function. Different constraints may

therefore share the same function code, but have differ-

ent user-defined parameters. New constraint instances can

be created by calling newcons, which takes as parameters

a pointer cons to a function and a user-defined parame-

ter param. When invoked in non-atomic normal execution

mode, newcons executes immediately function cons with

parameter param, and logs all dependencies between the

created constraint and the reactive locations read during the

execution. If a constraint is created inside an atomic block

(or inside another constraint), its first evaluation is deferred

until the end of the execution of the current block (or con-

straint). All subsequent re-executions of the constraint trig-

gered by modifications of the reactive cells it depends on

will be performed with the same value of param specified

at the creation time. newcons returns a unique id for the

created constraint, which can be passed to delcons.

Reading and Modifying Objects. Reading and modifying

objects in reactive memory can be done in DC by evaluating

ordinary C/C++ expressions. We remark that no syntax ex-

tensions or explicit macro/function invocations are required.

Customizing the Scheduler. Differently from other ap-

proaches [41], DC allows programmers to customize the

execution order of scheduled constraints. While the default

pick function of DC (which gives higher priority to least

recently executed constraints) works just fine in practice

for a large class of problems (see Section 6), the ability

to replace it can play an important role for some specific

problems. DC provides a function set comp that installs a

struct robject {
void* operator new(size_t size) { return rmalloc(size); }
void operator delete(void* ptr) { rfree(ptr); }

};

static void con_h(void*), fin_h(void*);
class rcons {

int id;
public:
virtual void cons() = 0;
virtual void final() {}
rcons() { id = -1; }

~rcons() { disable(); }
void enable() { if (id == -1) id = newcons(con_h, this); }
void disable() { if (id != -1) { delcons(id); id = -1; } }
void arm_final() { if (id != -1) arm_final(id, fin_h); }
void unarm_final() { if (id != -1) arm_final(id, NULL); }

};

void con_h(void* p) { ((rcons*)p)->cons(); }
void fin_h(void* p) { ((rcons*)p)->final(); }

Figure 7. C++ wrapping of DC primitives.

user-defined comparator to determine the relative priority of

two constraints. The comparator receives as arguments the

user-defined parameters associated with the constraints to be

compared.

Final Handlers. An additional feature of DC, built on top

of the core constraint handling mechanisms described in

Section 4, is the ability to perform some finalization oper-

ations only when the results of constraint evaluations are

stable, i.e., when the solver has found a common fixpoint.

For instance, a constraint computing the attribute of a wid-

get in a graphic user interface may also update the screen by

calling drawing primitives of the GUI toolkit: if a redrawing

occurs at each constraint execution, this may cause unnec-

essary screen updates and flickering effects. Another usage

example of this feature will be given in Section 4.3.

DC allows users to specify portions of code for a con-

straint to be executed as final actions just before resuming

the underlying imperative program interrupted by the solver

activation. This can be done by calling function arm final

during constraint solving: the operation schedules a final

handler to be executed at the end of the current solving ses-

sion. The function takes as parameters a constraint id and a

pointer to a final handler, or NULL to cancel a previous re-

quest. A final handler receives the same parameter as the

constraint it is associated to, but no dependencies from re-

active locations are logged during its execution. All final

handlers are executed in normal execution mode inside an

atomic block.

C++ Wrapping of DC Primitives. The examples in the re-

mainder of this paper are based on a simple C++ wrapping

of the DC primitives, shown in Figure 7. We abstract the

concepts of reactive object and constraint using two classes:

robject and rcons. The former is a base class for objects

stored in reactive memory. This is achieved by overloading

the new and delete operators in terms of the correspond-

ing DC primitives rmalloc and rfree, so that all member

variables of the object are reactive. Class rcons is a virtual

414

base class for objects representing dataflow constraints. The

class provides a pure virtual function called cons, to be de-

fined in subclasses, which provides the user code for a con-

straint. An additional empty final function can be option-

ally overridden in subclasses to define the finalization code

for a constraint. The class also provides functions enable

and disable to activate/deactivate the constraint associated

with the object, and functions arm final and unarm final

to schedule/unschedule the execution of final handlers.

4. Applications and Programming Examples

In this section, we discuss how DC can improve C/C++

programmability in three relevant application scenarios. To

the best of our knowledge, these applications have not been

explored before in the context of dataflow programming. All

the code we show is real.

4.1 Incremental Computation

In many applications, input data is subject to continuous up-

dates that need to be processed efficiently. For instance, in a

networking scenario, routers must react quickly to link fail-

ures by updating routing tables in order to minimize commu-

nication delays. When the input is subject to small changes,

a program may incrementally fix only the portion of the out-

put affected by the update, without having to recompute the

entire solution from scratch. For many problems, efficient ad

hoc algorithms are known that can update the output asymp-

totically faster that recomputing from scratch, delivering in

practice speedups of several orders of magnitude [19, 21].

Such dynamic algorithms, however, are typically difficult to

design and implement, even for problems that are easy to

be solved from-scratch. A language-centric approach, which

was extensively explored in both functional and imperative

programming languages, consists of automatically turning a

conventional static algorithm into an incremental one, by se-

lectively recomputing the portions of a computation affected

by an update of the input. This powerful technique, known as

self-adjusting computation [3, 5], provides a principled way

of deriving efficient incremental code for several problems.

We now show that dataflow constraints can provide an effec-

tive alternative for specifying incremental programs. Later

in this section we discuss differences and similarities of the

two approaches.

Example. To put our approach into the perspective of pre-

vious work on self-adjusting computation, we revisit the

problem of incremental re-evaluation of binary expression

trees discussed in [30]. This problem is a special case of the

circuit evaluation: input values are stored at the leaves and

the value of each internal node is determined by applying a

binary operator (e.g., sum or product) on the values of its

children. The final result of the evaluation is stored at the

root. We start from the conventional node structure that a

programmer would use for a binary expression tree, contain-

ing the type of the operation computed at the node (only rel-

template<typename T> struct node : robject, rcons {
enum op_t { SUM, PROD };
T val;
op_t op;
node *left, *right;
node(T v): val(v), left(NULL), right(NULL) { enable(); }
node(op_t o): op(o), left(NULL), right(NULL) { enable(); }
void cons() {

if (left == NULL || right == NULL) return;
switch (op) {

case SUM: val = left->val + right->val; break;
case PROD: val = left->val * right->val; break;

}
}

};

Figure 8. Incremental evaluation of expression trees.

evant for internal nodes), the node’s value, and the pointers

to the subtrees. Our DC-based solution (see Figure 8) sim-

ply extends the node declaration by letting it inherit from

classes robject and rcons, and by providing the code of a

constraint that computes the value of the node in terms of the

values stored at its children. Everything else is exactly what

the programmer would have done anyway to build the input

data structure. An expression tree can be constructed by just

creating nodes and connecting them in the usual way:

node<int> *root = new node<int>(node<int>::SUM);

root->left = new node<int>(10);

root->right = new node<int>(node<int>::PROD);

root->right->left = new node<int>(2);

root->right->right = new node<int>(6);

The example above creates the tree shown in Figure 9 (left).

Since all fields of the node are reactive and each node

is equipped with a constraint that computes its value, at

any time during the tree construction, root->value con-

tains the correct result of the expression evaluation. We

remark that this value not only is given for free without

the need to compute it explicitly by traversing the tree,

but is also updated automatically after any change of the

tree. For instance, changing the value of the rightmost leaf

with root->right->right->val = 3 triggers the propaga-

tion chain shown in Figure 9 (right). Other possible updates

that would be automatically propagated include changing

the operation type of a node or even adding/removing entire

subtrees. Notice that a single change to a node may trigger

the re-execution of the constraints attached to all its ances-

tors, so the total worst-case time per update is O(h), where

h is the height of the tree. For a balanced expression tree,

this is exponentially faster than recomputing from scratch.

If a batch of changes are to be performed and only the final

value of the tree is of interest, performance can be improved

by grouping updates with begin at() and end at() so that

the re-execution of constraints is deferred until the end of

the batch, e.g.:

begin_at(); // put the solver to sleep

root->op = node<int>::SUM; // change node operation type

delete root->right->left // delete leaf

... // etc...

end_at(); // wake up the solver

415

node: robject, rcons
val

op

22

left

+

right

c
o
n
s
tra

in
t

val

op

10

NULL

left

n/a

NULL

right

c
o
n
s
tra

in
t

val

op

12

left

*

right

c
o
n
s
tra

in
t

val

op

2

NULL

left

n/a

NULL

right

c
o
n
s
tra

in
t

val

op

6

NULL

left

n/a

NULL

right

c
o
n
s
tra

in
t

cons depends
on reactive cell

cons writes
reactive cell

root

val

op

16

left

+

right

c
o
n
s
t
r
a
in
t

val

op

10

NULL

left

n/a

NULL

right

c
o
n
s
tra

in
t

val

op

6

left

*

right

c
o
n
s
t
r
a
in
t

val

op

2

NULL

left

n/a

NULL

right

c
o
n
s
tra

in
t

val

op

3

NULL

left

n/a

NULL

right

c
o
n
s
tra

in
t

root

root->right->right->val = 3;

tree update operation:

Figure 9. Reactive expression tree (left) and change propagation chain after a leaf value update (right).

Discussion. DC and imperative self-adjusting computa-

tion languages such as CEAL [30] share the basic idea of

change propagation, and reactive memory is very similar to

CEAL’s modifiables. However, the two approaches differ in

a number of important aspects. In CEAL, the solution is ini-

tially computed by a core component and later updated by a

mutator, which performs changes to the input. In DC there is

no explicit distinction between an initial run and a sequence

of updates, and in particular there is no static algorithm that

is automatically dynamized. Instead, programmers explicitly

break down the solution of a complex problem into a col-

lection of reactive code fragments that locally update small

portions of the program state as a function of other portions.

This implies a paradigm shift that may be less straightfor-

ward for the average programmer than writing static algo-

rithms, but it can make it easier to exploit specific properties

of the problem at hand, which can be crucial for coding al-

gorithms provably faster than recomputing from scratch.

4.2 Implementing the Observer Design Pattern

As a second example, we show how the reactive nature of

our framework can be naturally exploited to implement the

observer software design pattern. A common issue arising

from partitioning a system into a collection of cooperating

software modules is the need to maintain consistency be-

tween related objects. In general, a tight coupling of the

involved software components is not desirable, as it would

reduce their reusability. For example, graphical user inter-

face toolkits almost invariably separate presentational as-

pects from the underlying application data management, al-

lowing data processing and data presentation modules to

be reused independently. The observer software design pat-

tern [14] answers the above concerns by defining one-to-

many dependencies between objects so that when one ob-

ject (the subject) changes state, all its dependents (the ob-

servers) are automatically notified. A key aspect is that sub-

jects send out notifications of their change of state, without

having to know who their observers are, while any number

of observers can be subscribed to receive these notifications

(subjects and observers are therefore not tightly coupled). A

widely deployed embodiment of this pattern is provided by

the Qt application development framework [26].

Qt is based on a signal-slot communication mechanism:

a signal is emitted when a particular event occurs, whereas a

slot is a function that is called in response to a particular sig-

nal. An object acting as a subject emits signals in response

to changes of its state by explicitly calling a special mem-

ber function designated as a signal. Observers and subjects

can be explicitly connected so that any signal emitted by a

subject triggers the invocation of one or more observer slots.

Programmers can connect as many signals as they want to a

single slot, and a signal can be connected to as many slots

as they need. Since the connection is set up externally af-

ter creating the objects, this approach allows objects to be

unaware of the existence of each other, enhancing informa-

tion encapsulation and reuse of software components. Sub-

jects and observers can be created in Qt as instances of the

QObject base class. Qt’s signal-slot infrastructure hinges

upon an extension of the C++ language with three new key-

words: signal and slot, to designate functions as signals

or slots, and emit, to generate signals.

A Minimal Example: Qt vs. DC. To illustrate the concepts

discussed above and compare Qt and DC as tools for imple-

menting the observer pattern, we consider a minimal exam-

ple excerpted from the Qt 4.6 reference documentation. The

goal is to set up a program in which two counter variables a

and b are connected together so that the value of b is auto-

matically kept consistent with the value of a. The example

starts with the simple declaration shown in Figure 10(a) (all

except the framed box), which encapsulates the counter into

an object with member functions value/setValue for ac-

cessing/modifying it. Figure 10(b) shows how the Counter

class can be modified in Qt so that counter modifications

can be automatically propagated to other objects as pre-

scribed by the observer pattern. First of all, the class inherits

from Qt’s QObject base class and starts with the Q OBJECT

416

class Counter : public robject {

public:

Counter() { m_value = 0; }

int value() const { return m_value; }

void setValue(int value) { m_value = value; }

private:

int m_value;

};

(a) A counter class and its DC observer pattern version (framed box).

class Counter : public QObject {

Q_OBJECT

public:

Counter() { m_value = 0; }

int value() const { return m_value; }

public slots:

void setValue(int value);

signals:

void valueChanged(int newValue);

private:

int m_value;

};

void Counter::setValue(int value) {

if (value != m_value) {

m_value = value;

emit valueChanged(value);

}

}
(b) Qt observer pattern version of the counter class.

Figure 10. Observer pattern example excerpted from the Qt

4.6 reference documentation: DC vs. Qt implementation.

macro. Function setValue is declared as a slot and it is

augmented by calling explicitly the valueChanged signal

with the emit keyword every time an actual change occurs.

Since Qt Counter objects contain both signal and slot func-

tions they can act both as subjects and as observers. The fol-

lowing code snippet shows how two counters can be created

and connected so that each change to the former triggers a

change of the latter:

Counter *a = new Counter, *b = new Counter;

QObject::connect(a, SIGNAL(valueChanged(int)),

b, SLOT(setValue(int)));

a->setValue(12); // a->value() == 12, b->value() == 12

b->setValue(48); // a->value() == 12, b->value() == 48

The QObject::connect call installs a connection between

counters a and b: every time emit valueChanged(value)

is issued by a with a given actual parameter, setValue(int

value) is automatically invoked on b with the same param-

eter. Therefore, the call a->setValue(12) has as a side-

effect that the value of b is also set to 12. Conversely, the

call b->setValue(48) entails no change of a as no con-

nection exists from b to a.

The same result can be achieved in DC by just letting

the Counter class of Figure 10(a) inherit from the robject

base class of Figure 7. As a result, the m value member vari-

able is stored in reactive memory. The prescribed connection

between reactive counters can be enforced with a one-way

dataflow constraint that simply assigns the value of b equal

to the value of a:

Counter *a = new Counter, *b = new Counter;

struct C : rcons {

Counter *a, *b;

C(Counter *a, Counter *b) : a(a), b(b) { enable(); }

void cons() { b->setValue(a->value()); }

} c(a,b);

a->setValue(12); // a->value() == 12, b->value() == 12

b->setValue(48); // a->value() == 12, b->value() == 48

We notice that the role of the QObject::connect of the

Qt implementation is now played by a dataflow constraint,

yielding exactly the same program behavior.

Discussion. The example above shows that DC’s run-

time system handles automatically a number of aspects that

would have to be set up explicitly by the programmers using

Qt’s mechanism:

• there is no need to define slots and signals, relieving

programmers from the burden of extending the definition

of subject and observer classes with extra machinery (see

Figure 10);

• only actual changes of an object’s state trigger propaga-

tion events, so programmers do not have to make explicit

checks such as in Counter::setValue’s definition to

prevent infinite looping in the case of cyclic connections

(see Figure 10(b));

• DC does not require extensions of the language, and thus

the code does not have to be preprocessed before being

compiled.

We list below further points that make dataflow constraints

a flexible framework for supporting some aspects of compo-

nent programming, putting it into the perspective of main-

stream embodiments of the observer pattern such as Qt:

• in DC, only subjects need to be reactive, while observers

can be of any C++ class, even of third-party libraries dis-

tributed in binary code form. In Qt, third-party observers

must be wrapped using classes equipped with slots that

act as stubs;

• relations between Qt objects are specified by creating ex-

plicitly one-to-one signal-slot connections one at a time;

a single DC constraint can enforce simultaneously any

arbitrary set of many-to-many relations. Furthermore,

as the input variables of a dataflow constraint are de-

tected automatically, relations may change dynamically

depending on the state of some objects;

• Qt signal-slot connections let subjects communicate

copies of values to their observers; in contrast, DC con-

straints can compute the values received by the observers

as an arbitrary function of the state of multiple subjects,

encapsulating complex update semantics.

417

0 template<class T, class N> class snode : public rcons {
1 map<N**, snode<T,N>*> *m;
2 N *head, **tail;
3 snode *next;
4 int refc;
5 public:
6 snode(N *h, N **t, map<N**, snode<T,N>*> *m) :
7 m(m), head(h), tail(t), next(NULL), refc(0) {
8 (*m)[tail] = this;
9 enable();

10 }
11 ~snode() {
12 m->erase(tail);
13 if (next != NULL && --next->refc == 0) delete next;
14 }
15 void cons() {
16 snode<T,N>* cur_next;
17
18 if (*tail != NULL) {
19 typename map<N**, snode<T,N>*>::iterator it =
20 m->find(&(*tail)->next);
21 if (it != m->end())
22 cur_next = it->second;
23 else cur_next = new snode<T,N>(*tail,
24 &(*tail)->next, m);
25 } else cur_next = NULL;
26
27 if (next != cur_next) {
28 if (next != NULL && --next->refc == 0)
29 next->arm_final();
30 if (cur_next != NULL && cur_next->refc++ == 0)
31 cur_next->unarm_final();
32 next = cur_next;
33 }
34 if (head != NULL) T::watch(head);
35 }
36 void final() { delete this; }
37 };

38 template<class T, class N> class watcher {
39 snode<T,N> *gen;
40 map<N**, snode<T,N>*> m;
41 public:
42 watcher(N** h) { gen = new snode<T,N>(NULL, h, &m); }
43 ~watcher() { delete gen; }
44 };

Figure 11. Data structure checking and repair: list watcher.

4.3 Data Structure Checking and Repair

Long-living applications inevitably experience various forms

of damage, often due to bugs in the program, which could

lead to system crashes or wrong computational results.

The ability of a program to perform automatic consistency

checks and self-healing operations can greatly improve re-

liability in software development. One of the most common

causes of faults is connected with different kinds of data

structure corruptions, which can be mitigated using data

structure repair techniques [24].

In this section, we show how dataflow constraints can be

used to check and repair reactive data structures. We ex-

emplify this concept by considering the simple problem of

repairing a corrupt doubly-linked list [38]. We first show

how to build a generic list watcher, which is able to de-

tect any changes to a list and perform actions when modi-

fications occur. This provides an advanced example of DC

programming, where constraints are created and destroyed

by other constraints. Differently from the expression trees

of Section 4.1, where constraints are attributes of nodes, the

n
o
d
e
: ro

b
je

c
t

list

val 7

next

prev

val 11

next

prev

val 4

next

prevNULL

NULL

head tail

next

m refc
1

head tail

next

m refc
0

head tail

next

m refc
1

head tail

next

m refc
1

NULL

NULL

watched list

m m m

gen

m

map

watcher

s
n
o
d
e
: rc

o
n
s

m

map lookup

Figure 12. A reactive doubly-linked list, monitored by a

watcher.

main challenge here is how to let the watched list be com-

pletely unaware of the watcher, while still maintaining au-

tomatically a constraint for each node. The complete code

of the watcher is shown in Figure 11. The only assumption

our watcher makes on list nodes to be monitored (of generic

type N) is that they are reactive and contain a next field point-

ing to the successor. The main idea is to maintain a shadow

list of constraints that mirrors the watched list (Figure 12).

Shadow nodes are snode objects containing pointers to the

monitored nodes (head) and to their next fields (tail). A

special shadow generator node (gen) is associated to the re-

active variable (list) holding the pointer to the first node of

the input list. A lookup table (m) maintains a mapping from

list nodes to the corresponding shadow nodes. The heart of

the watcher is the constraint associated with shadow nodes

(lines 15–35). It first checks if the successor of the monitored

node, if any, is already mapped to a shadow node (lines 18–

21). If not, it creates a new shadow node (line 23). Lines

27–33 handle the case where the successor of the shadow

node has changed and its next field has to be updated. Line

34 calls a user-defined watch function (provided by template

parameter T), which performs any desired checks and repairs

for an input list node. To dispose of shadow nodes when the

corresponding nodes are disconnected from the list, we use

a simple reference counting technique, deferring to a final

handler the task of deallocating dead shadow nodes (line 36).

The following code snippet shows how to create a simple

repairer for a doubly-linked list based on the watcher of

Figure 11:

struct node : robject { int val; node *next, *prev; };

struct myrepairer {

static void watch(node* x) {

// check

if (x->next != NULL && x != x->next->prev)

// repair

x->next->prev = x;

}

};

// create reactive list head and repairer

node** list = ...;

watcher<myrepairer,node> rep(list);

// manipulate the list

...

418

The repairer object rep checks if the invariant property

x == x->next->prev is satisfied for all nodes in the list, and

recovers it to a consistent state if any violation is detected

during the execution of the program. We notice that several

different watchers may be created to monitor the same list.

5. Implementation

In this section we discuss how DC can be implemented via

a combination of runtime libraries, hardware/operating sys-

tem support, and dynamic code patching, without requiring

any source code preprocessing. The overall architecture of

our DC implementation, which was developed on a Linux

IA-32 platform, is shown in Figure 13. At a very high level,

the DC runtime library is stratified into two modules: 1) a

reactive memory manager, which defines the rmalloc and

rfree primitives and provides support for tracing accesses

to reactive memory locations; 2) a constraint solver, which

schedules and dispatches the execution of constraints, keep-

ing track of dependencies between reactive memory loca-

tions and constraints. We start our description by discussing

how to support reactive memory, which is the backbone of

the whole architecture.

5.1 Reactive Memory

Taking inspiration from transactional memories [1], we im-

plemented reactive memory using off-the-shelf memory pro-

tection hardware. Our key technique uses access violations

(AV) combined with dynamic binary code patching as a

basic mechanism to trace read/write operations to reactive

memory locations.

Access Violations and Dynamic Code Patching. Reactive

memory is kept in a protected region of the address space so

that any read/write access to a reactive object raises an AV.

Since access violation handling is very inefficient, we use it

just to incrementally detect instructions that access reactive

memory. When an instruction x first tries to access a reactive

location, a segmentation fault with offending instruction x
is raised. In the SIGSEGV handler, we patch the trace t
containing x by overwriting its initial 5 bytes with a jump

to a dynamically recompiled trace t′ derived from t, which

is placed in a code cache. In trace t′, x is instrumented

with additional inline code that accesses reactive locations

without generating AVs, and possibly activates the constraint

solver. Trace t′ ends with a jump that leads back to the

end of t so that control flow can continue normally in the

original code. Since t′ may contain several memory access

instructions, it is re-generated every time a new instruction

that accesses reactive memory is discovered. To identify

traces in the code, we analyze statically the binary code

when it is loaded and we construct a lookup table that maps

the address of each memory access instruction to the trace

containing it. To handle the cases where a trace in a function

f is smaller than 5 bytes and thus cannot be patched, we

overwrite the beginning of f with a jump to a new version

a
p

p
li
c
a
ti

o
n

 c
o
d

e memory access logger

constraint
scheduler

binary image analyzer

constraint solver

SIGSEGV

c
o
n
s dispatcher

c
o
d
e

c
a
c
h
e

s
h
a
d
o
w

m
e
m

o
ry

newcons/
delcons

reactive memory manager

DC runtime library
rmalloc/

rfree

S

reactive mem.
read/
write

p
r
o
c
e
s
s
 a

d
d

r
e
s
s
 s

p
a
c
e

D

W

E
L
F

binary code patcher

p
a
tc

h
e
d
 c

o
d
e

reactive memory allocator

trampoline insert.

constraint factory C

Figure 13. DC’s software architecture.

f ′ of f where traces are padded with trailing nop instructions

so that the smallest trace is at least 5-bytes long.

Shadow Memory and Address Redirecting. To avoid ex-

pensive un-protect and re-protect page operations at each ac-

cess to reactive memory, we mirror reactive memory pages

Text

Data

BSS

Stack

mmaps

Shadow
memory

Reactive
memory

info

Heap

Reactive
memory

31
2

31
2

30
2

+

32
2

k
e
rn

e
l
s
p
a
c
e

brk

0

o
ff

s
e
t

3
0

fi
x
e
d
 2

with unprotected shadow pages that contain the

actual data. The shadow memory region is kept

under the control of our reactive memory allo-

cator, which maps it onto the swap space with

the mmap system call. Any access to a reactive

object is transparently redirected to the corre-

sponding object in the shadow memory. As a

result, memory locations at addresses within

the reactive memory region are never actually

read or written by the program. To avoid wast-

ing memory without actually accessing it, re-

active memory can be placed within the Ker-

nel space, located in the upper 1GB of the

address space on 32-bit Linux machines with

the classical 3/1 virtual address split. Kernel

space is flagged in the page tables as exclu-

sive to privileged code (ring 2 or lower), thus

an AV is triggered if a user-mode instruction

tries to touch it. More recent 64-bit platforms

offer even more flexibility to accomodate reac-

tive memory in protected regions of the address

space. We let the reactive memory region start

at address 230 + 231 = 0xC000000 and grow

upward as more space is needed (see the fig-

ure on the right). The shadow memory region

starts at address 231 = 0x8000000 and grows

upward, eventually hitting the memory map-

ping segment used by Linux to keep dynamic

libraries, anonymous mappings, etc. Any reactive object at

address x is mirrored by a shadow object at address x − δ,

where δ = 230 = 0x4000000 is a fixed offset. This makes

address redirecting very efficient.

419

5.2 Constraint Solver

Our implementation aggregates reactive locations in 4-byte

words aligned at 32 bit boundaries. The solver is activated

every time such a word is read in constraint execution mode,

or its value is modified by a write operation. The main

involved units are (see Figure 13):

1. A dispatcher that executes constraints, maintaining a

global timestamp that grows by one at each constraint

execution. For each constraint, we keep the timestamp of

its latest execution.

2. A memory access logger that maintains the set of depen-

dencies D and a list W of all reactive memory words

written by the execution of the current constraint cself ,

along with their initial values before the execution. To

avoid logging information about the same word multi-

ple times during the execution of a constraint, the logger

stamps each word with the time of the latest constraint

execution that accessed it. Information is logged only if

the accessed word has a timestamp older than the current

global timestamp, which can only happen once for any

constraint execution. To represent D, the logger keeps for

each word v the address of the head node of a linked list

containing the id’s of constraints depending upon v.

3. A constraint scheduler that maintains the set of sched-

uled constraints S. By default S is a priority queue, where

the priority of a constraint is given by the timestamp of

its latest execution: the scheduler repeatedly picks and

lets the dispatcher execute the constraint with the highest

priority, until S gets empty. Upon completion of a con-

straint’s execution, words are scanned and removed from

W : for each v ∈ W whose value has changed since the

beginning of the execution, the constraint id’s in the list

of nodes associated with v are added to S, if not already

there.

Nodes of the linked lists that represent D and data struc-

tures S and W are kept in contiguous chunks allocated with

malloc. To support direct lookup, timestamps and depen-

dency list heads for reactive memory words are stored in a

contiguous reactive memory info region that starts at address

231 = 0x8000000 and grows downward, eventually hitting

the heap’s brk.

A critical aspect is how to clean up old dependencies in

D when a constraint is re-evaluated. To solve the problem

efficiently in constant amortized time per list operation, we

keep for each node its insertion time into the linked list.

We say that a node is stale if its timestamp is older than

the timestamp of the constraint it refers to, and up to date

otherwise. Our solver uses a lazy approach and disposes of

stale nodes only when the word they refer to is modified and

the linked list is traversed to add constraints to S. To prevent

the number of stale nodes from growing too large, we use an

incremental garbage collection technique.

6. Experimental Evaluation

In this section we present an experimental analysis of the

performances of DC in a variety of different settings, show-

ing that our implementation is effective in practice.

6.1 Benchmark Suite

We have evaluated DC on a set of benchmarks that includes

a variety of problems on lists, grids, trees, and graphs, as

well as full and event-intensive interactive applications.

Linked Lists. We considered several fundamental primitives

on linear linked data structures, which provide a variety of

data manipulation patterns. Our benchmarks include data

structures for: computing the sum of the elements in a list

(adder), filtering the items of a list according to a given

function (filter), randomly assigning each element of a

list to one of two output lists (halver), mapping the items

of a list onto new values according to a given mapping

function (mapper), merging two sorted lists into a single

sorted output list (merger), producing a sorted version of

an input list (msorter), producing a reversed version of an

input list (reverser), and splitting a list into two output

lists, each containing only elements smaller or, respectively,

greater than a given pivot (splitter). All benchmarks are

subject to operations that add or remove nodes from the input

lists.

Graphs and Trees. Benchmarks in this class include classi-

cal algorithmic problems for routing in networks and tree

computations:

• sp: given a weighted directed graph and a source node s,

computes the distances of all graph nodes from s. Graph

edges are subject to edge weight decreases.

• exptrees: computes the value of an expression tree sub-

ject to operations that change leaf values or operators

computed by internal nodes (see Section 4.1).

Interactive Applications. We considered both full real appli-

cations and synthetic worst-case scenarios, including:

• othello: full application that implements the well-

known board game in which two players in turn place

colored pieces on a square board, with the goal of revers-

ing as many of their opponent’s pieces as possible;

• buttongrid: event-intensive graphic user interface ap-

plication with a window containing n × n push buttons

embedded in a grid layout. This is an extreme artificial

scenario in which many events are generated, since a

quadratic number of buttons need to be resized and repo-

sitioned to maintain the prescribed layout at each interac-

tive resize event.

Some benchmarks, such as sp, are very computationally de-

manding. For all these benchmarks we have considered an

implementation based on DC, obtained by making the base

data structures (e.g., the input list) reactive, and a conven-

420

From-scratch time Propagation time Mem peak usage DC statistics

(secs) (msecs) (Mbytes)

Benchmark conv dc ceal dc
conv

ceal
conv

ceal
dc

dc ceal ceal
dc

dc ceal ceal
dc

avg cons
per update

instr
time

patched
instr

adder 0.10 1.44 1.40 14.40 14.00 0.97 0.68 85.80 126.17 211.54 232.87 1.10 1.5 0.030 26

exptrees 0.14 1.02 1.07 7.28 7.64 1.04 4.11 5.46 1.32 143.30 225.32 1.57 15.6 0.028 72

filter 0.19 2.08 1.11 10.94 5.84 0.53 0.63 2.49 3.95 265.78 189.47 0.71 0.5 0.032 39

halver 0.20 2.08 1.33 10.40 6.65 0.63 0.61 3.95 6.47 269.10 218.22 0.81 0.5 0.030 38

mapper 0.19 2.04 1.30 10.73 6.84 0.63 0.61 2.63 4.31 261.53 214.34 0.81 0.5 0.032 39

merger 0.19 2.12 1.37 11.15 7.21 0.64 0.66 4.43 6.71 284.41 218.21 0.81 0.5 0.031 57

msorter 0.91 5.18 3.91 5.69 4.29 0.75 5.55 15.91 2.86 689.59 820.14 1.18 37.6 0.031 75

reverser 0.18 2.04 1.30 11.33 7.22 0.63 0.62 2.63 4.24 267.45 214.34 0.80 0.5 0.030 37

splitter 0.18 2.27 1.31 12.61 7.27 0.57 1.54 3.92 2.54 344.60 222.34 0.64 1.5 0.031 56

Table 1. Performance evaluation of DC versus CEAL, for a common set of benchmarks. Input size is n = 1, 000, 000 for all

tests except msorter, for which n = 100, 000.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.0001 0.001 0.01 0.1 1 10 100

M
ill

is
e
c
o
n
d
s

Percentage of input changed

Update times - Mapper benchmark

DC
CEAL
conv

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5 6 7 8 9 10

S
e
c
o
n
d
s

Number of nodes x 100000

Total update times - Adder benchmark

CEAL
DC

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9 10

R
a
ti
o

Number of nodes x 100000

Performance ratio CEAL/DC - Adder benchmark

CEAL/DC

(a) (b) (c)

Figure 14. (a) Change propagation times on the mapper benchmark for complex updates with input size n = 100, 000; (b-c)

performance comparison of the change propagation times of DC and CEAL on the adder benchmark.

tional implementation in C based on non-reactive data struc-

tures. Interactive applications (othello and buttongrid)

are written in the Qt-4 framework: change propagation

throughout the GUI is implemented either using constraints

(DC versions), or using the standard signal-slot mechanism

provided by Qt (conventional versions). To assess the perfor-

mances of DC against competitors that can quickly respond

to input changes, we have also considered highly tuned

ad-hoc dynamic algorithms [20, 44] and incremental solu-

tions realized in CEAL [30], a state-of-the-art C-based lan-

guage for self-adjusting computation. Benchmarks in com-

mon with CEAL are adder, exptrees, filter, halver,

mapper, merger, msorter, reverser, and splitter. For

these benchmarks, we have used the optimized implementa-

tions provided by Hammer et al. [30].

6.2 Performance Metrics and Experimental Setup

We tested our benchmarks both on synthetic and on real test

sets, considering a variety of performance metrics:

Running times: we measured the time required to initialize

the data structures with the input data (from-scratch execu-

tion), the time required by change propagation, and binary

code instrumentation time. All reported times are wall-clock

times, averaged over three independent trials. Times were

measured with gettimeofday(), turning off any other pro-

cesses running in the background.

Memory usage: we computed the memory peak usage as

well as a detailed breakdown to assess which components

of our implementation take up most memory (constraints,

shadow memory, reactive memory, stale and non-stale de-

pendencies, etc.).

DC-related statistics: we collected detailed profiling infor-

mation including counts of patched instructions, stale de-

pendencies cleanups, allocated/deallocated reactive blocks,

created/deleted constraints, constraints executed per update,

and distinct constraints executed per update.

All DC programs considered in this section, except for sp

that will be discussed separately, use the default timestamp-

based comparator for constraint scheduling.

The experiments were performed on a PC equipped with

a 2.10 GHz Intel Core 2 Duo with 3 GB of RAM, running

Linux Mandriva 2010.1 with Qt 4.6. All programs were

compiled with gcc 4.4.3 and optimization flag -O3.

6.3 Incremental Computation

The reactive nature of our mixed imperative/dataflow frame-

work makes it a natural ground for incremental computa-

tion. In this section, we present experimental evidence that

421

Road network From-scratch Propagation Speedup Mem peak usage Statistics

time (msec) time (msec) (Mbytes)

Graph n · 103 m · 103 sq sp rr
sq
sp

sq
rr

sp rr sq sp cons
per update

rr node scans
per update

NY 264 733 50.99 0.16 0.07 318.6 728.4 76.75 26.62 26.19 143.9 143.9
BAY 321 800 59.99 0.15 0.07 399.9 857.0 84.84 30.21 29.82 170.6 170.5
COL 435 1, 057 79.98 0.28 0.17 285.6 470.4 108.61 39.09 38.97 378.3 378.2
FLA 1, 070 2, 712 192.97 0.63 0.35 306.3 551.3 251.26 93.42 93.29 687.5 687.3
NW 1, 207 2, 840 236.96 0.87 0.54 272.3 438.8 270.66 102.15 101.53 1002.4 1002.3
NE 1, 524 3, 897 354.94 0.27 0.16 1314.5 2218.3 350.86 132.85 132.15 320.2 320.1

Table 2. Performance evaluation of DC for incremental routing in US road networks using up to 1.5 million constraints.

 0.01

 0.1

 1

 10

 100

 1000

NY BAY COL FLA NW NE

A
v
e
ra

g
e
 t
im

e
 p

e
r

u
p
d
a
te

 (
m

s
e
c
)

Road network

Incremental routing - comparison

rr
sp (custom pick)
sp (default pick)

sq

Figure 15. Analysis of different pick function definitions

on the incremental routing problem.

a constraint-based solution in our framework can respond to

input updates very efficiently. We first show that the prop-

agation times are comparable to state of the art automatic

change propagation frameworks, such as CEAL [30], and

for some problems can be orders of magnitude faster than

recomputing from scratch. We then consider a routing prob-

lem on real road networks, and compare our DC-based so-

lution both to a conventional implementation and to a highly

optimized ad hoc dynamic algorithm supporting a class of

specific update operations.

Comparison to CEAL. Table 1 summarizes the outcome

of our experimental comparison with the conventional ver-

sion and with CEAL for all common benchmarks. Input

size is n = 1, 000, 000 for all tests (with the exception of

msorter, for which n = 100, 000), where n is the length

of the input list for the list-based benchmarks, and the num-

ber of nodes in the (balanced) input tree for exptrees. Ta-

ble 1 reports from-scratch execution times of both DC and

CEAL (compared to the corresponding conventional imple-

mentations), average propagation times in response to small

changes of the input, memory usage and some DC stats (av-

erage number of executed constraints per update, executable

instrumentation time, and total number of patched instruc-

tions). The experiments show that our DC implementation

performs remarkably well. From-scratch times are on aver-

age a factor of 1.4 higher than those of CEAL, while prop-

agation times are smaller by a factor of 4 on average for

all tests considered except the adder, yielding large speed-

ups over complete recalculation. In the case of the adder

benchmark, DC leads by a huge margin in terms of prop-

agation time (see Figure 14a and Figure 14b), which can

be attributed to the different asymptotic performance of the

algorithms handling the change propagation (constant for

DC, and logarithmic in the input size for the list reduc-

tion approach used by CEAL). We remark that the logarith-

mic bound of self-adjusting computation could be reduced

to constant by using a traceable accumulator [5]; however,

support for traceable data structures is not yet integrated in

CEAL.

We also investigated how DC and CEAL scale in the case

of batches of updates that change multiple input items si-

multaneously. The results are reported in Figure 14a for the

representative mapper benchmark, showing that the selec-

tive recalculations performed by DC and CEAL are faster

than recomputing from scratch for changes up to significant

percentages of the input.

Comparison to ad hoc Incremental Shortest Paths. We

now consider an application of the shortest path algorithm

discussed in Section 2.6 to incremental routing in road net-

works. We assess the empirical performance of a constraint-

based solution implemented in DC (sp) by comparing it

with Goldberg’s smart queue implementation of Dijkstra’s

algorithm (sq), a highly-optimized C++ code used as the

reference benchmark in the 9th DIMACS Implementation

Challenge [22], and with an engineered version of the ad hoc

incremental algorithm by Ramalingam and Reps (rr) [20,

44]. Our code supports update operations following the high-

level description given in Figure 5, except that we create

one constraint per node, rather than one constraint per edge.

We used as input data a suite of US road networks of size

up to n = 1.5 million nodes and m = 3.8 million edges

derived from the UA Census 2000 TIGER/Line Files [45].

Edge weights are large and represent integer positive travel

times. We performed on each graph a sequence of m/10 ran-

dom edge weight decreases, obtained by picking edges uni-

422

(a)

 0

 20

 40

 60

 80

 100

 120

8x8 12x12 16x16 20x20 24x24

A
v
e

ra
g

e
 t

im
e

 p
e

r
re

s
iz

e
 (

m
s
e

c
)

Grid size (n x n)

Total and change propagation times per resize event

buttongrid-DC (total)
buttongrid-Qt (total)

buttongrid-DC (change prop.)
buttongrid-Qt (change prop.)

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

8x8 12x12 16x16 20x20

A
v
e

ra
g

e
 t

im
e

 p
e

r
m

o
v
e

 (
m

s
e

c
)

Board size (n x n)

Total and change propagation times per move

othello-DC (total)
othello-Qt (total)

othello-DC (change prop.)
othello-Qt (change prop.)

Figure 16. Comparison with signal-slot mechanism in Qt: (a) buttongrid; (b) othello.

formly at random and reducing their weights by a factor of 2.

Updates that did not change any distances were not counted.

The results of our experiments are shown in Table 2 and

Figure 15. Both sp and rr were initialized with distances

computed using sq, hence we report from-scratch time only

for this algorithm. Due to the nature of the problem, the

average number of node distances affected by an update is

rather small and almost independent of the size of the graph.

Analogously to the incremental algorithm of Ramalingam

and Reps, the automatic change propagation strategy used

by our solver takes full advantage of this strong locality, re-

evaluating only affected constraints and delivering substan-

tial speedups over static solutions in typical scenarios. Our

DC-based implementation yields propagation times that are,

on average, a factor of 1.85 higher than the conventional ad

hoc incremental algorithm, but it is less complex, requires

fewer lines of code, is fully composable, and is able to re-

spond seamlessly to multiple data changes, relieving the pro-

grammer from the task of implementing explicitly change

propagation. We also tested sp with different types of sched-

ulers. By customizing the pick function of the default prior-

ity queue scheduler (giving highest priority to nodes closest

to the source), a noticeable performance improvement has

been achieved (see Figure 15). We also tried a simple stack

scheduler, which, however, incurred a slowdown of a factor

of 4 over the default scheduler.

6.4 Comparison to Qt’s Signal-slot Mechanism

Maintaining relations between widgets in a graphic user in-

terface is one of the most classical applications of dataflow

constraints [46]. We assess the performance of DC in event-

intensive interactive applications by comparing the DC im-

plementations of buttongrid and othello with the con-

ventional versions built atop Qt’s signal-slot mechanism.

In buttongrid, each constraint computes the size and

position of a button in terms of the size and position of

adjacent buttons. We considered user interaction sessions

with continuous resizing, which induce intensive schedul-

ing activity along several propagation chains in the acyclic

dataflow graph. In othello, constraints are attached to cells

of the game board (stored in reactive memory) and main-

tain a mapping between the board and its graphical repre-

sentation: in this way, the game logic can be completely un-

aware of the GUI backend, as prescribed by the observer

pattern (see Section 4.2). For both benchmarks, we experi-

mented with different grid/board sizes. Figure 16 plots the

average time per resize event (buttongrid) and per game

move (othello), measured over 3 independent runs. Both

the total time and the change propagation time are reported.

For all values of n, the performance differences of the DC

and Qt conventional implementations are negligible and the

curves are almost overlapped. Furthermore, the time spent

in change propagation is only a small fraction of the total

time, showing that the overhead introduced by access viola-

tions handling, instrumentation, and scheduling in DC can

be largely amortized over the general cost of widget man-

agement and event propagation in Qt and in its underlying

layers.

7. Related Work

The ability of a program to respond to modifications of its

environment is a feature that has been widely explored in a

large variety of settings and along rather different research

lines. While this section is far from being exhaustive, we

discuss some previous works that appear to be more closely

related to ours.

GUI and Animation Toolkits. Although dataflow pro-

gramming is a general paradigm, dataflow constraints have

gained popularity in the 90’s especially in the creation of

interactive user interfaces. Amulet [41] is a graphic user in-

terface toolkit based on the dataflow paradigm. It integrates

a constraint solver with a prototype-instance object model

implemented on top of C++, and is closely related to our

work. Each object, created by making an instance of a pro-

totype object, consists of a set of properties (e.g., appearance

or position) that are stored in reactive variables, called slots.

Constraints are created by assigning formulas to slots. Val-

ues of slots are accessed through a Get method that, when

invoked from inside of a formula, sets up a dependency be-

423

tween slots. A variety of approaches have been tested by the

developers to solve constraints [46].

FRAN (Functional Reactive Animation) provides a re-

active environment for composing multimedia animations

through temporal modeling [25]: graphical objects in FRAN

use time-varying, reactive variables to automatically change

their properties, achieving an animation that is function of

both events and time.

The data-driven Alpha language provided by the Leonardo

software visualization system [18] allows programmers to

specify declarative mappings between the state of a C pro-

gram and a graphical representation of its data structures.

Reactive Languages. The dataflow model of computation

can also be supported directly by programming languages.

Most of them are visual languages, often used in industrial

settings [10], and allow the programmer to directly man-

age the dataflow graph by visually putting links between the

various entities. Only a few non-visual languages provide a

dataflow environment, mostly for specific domains. Among

them, Signal [29] and Lustre [13] are dedicated to program-

ming real-time systems found in embedded software, and

SystemC [28] is a system-level specification and design lan-

guage based on C++.

Functional Reactive Programming (FRP) is a declara-

tive programming model for constructing interactive appli-

cations [25, 42, 47]. FRP offers two kinds of reactive in-

puts: behaviors (e.g., time-continuous variables whose value

changes are automatically propagated by the language), and

events (e.g., potentially infinite streams of discrete events,

each of which triggers additional computations). Early im-

plementations of FRP have been embedded in the program-

ming language Haskell [33]. FrTime [15] extends a purely

functional subset of PLT Scheme with an instantiation of

the FRP paradigm, supporting eager evaluation and benign

impurities (e.g., imperative commands for drawing, and for

creating and varying mutable references). Additionally, in

FrTime behaviors and events can be turned into one another

through the use of primitives such as hold and changes. The

former takes as input an initial value and an event stream,

and returns a behavior that starts with the initial value and

changes to the last event value every time a new event occurs.

The latter consumes a behavior and returns an event stream

that emits the value of the behavior whenever it changes. The

problem of integrating FrTime and object-oriented graphics

toolkits has also been the object of research [35]. Recently,

Meyerovich et al. [40] have introduced Flapjax, a reactive

extension to the JavaScript language targeted at Web ap-

plications, whose approach is mainly informed by FrTime.

Frappé [16] integrates the FRP model with the Java Beans

technology, allowing reactive programming in Java.

SugarCubes [12] and ReactiveML [39] allow reactive

programming (in Java and OCAML, respectively) by rely-

ing not on operating system and runtime support, as our ap-

proach does, but rather on causality analysis and a custom

interpreter/compiler. Both systems, however, track depen-

dencies between functional units, through the use of specific

language constructs, such as events, and explicit commands

for generating and waiting for events.

Several other systems with reactive capabilities have been

proposed in recent years, especially in the field of Web pro-

gramming. For a more comprehensive discussion on these

systems, we refer the interested reader to the paper by

Meyerovich et al. [40] and the references therein.

Constraint Programming. Dataflow constraints fit within

the more general field of constraint programming [7]. Terms

such as “constraint propagation” and “constraint solving”

have often been used in papers related to dataflow since the

early developments of the area [11, 41, 46]. However, the

techniques developed so far in dataflow programming are

quite distant from those appearing in the constraint program-

ming literature [9]. In constraint programming, relations be-

tween variables can be stated in the form of multi-way con-

straints, typically specified over restricted domains such as

real numbers, integers, or Booleans. Domain-specific solvers

use knowledge of the domain in order to forbid explicitly

values or combinations of values for some variables [9],

while dataflow constraint solvers are domain-independent.

Kaleidoscope [27] integrates imperative object-oriented

programming with constraint programming, by allowing the

specification of multi-way constraints between user defined

objects. Constraints are asserted by statements containing

a duration keyword (e.g., once, always), an optional con-

straint strength parameter (e.g., weak, strong, required),

effectively supporting constraint hierarchies, and an arbi-

trary object-oriented expression. Differently from our ap-

proach, constraint satisfaction is guaranteed by a specialized

compiler/interpreter pair.

In the field of Constraint Logic Programming, attributed

variables, a new data type that associates variables with

arbitrary attributes, have proven to be a powerful mech-

anism for extending logic programming systems with the

ability of constraint solving [31, 32]. Attributes may repre-

sent user-defined constraints, and extensible unifications are

supported: when an attributed variable is to be unified with

a term (possibly another attributed variable), a user-defined

unification handler is invoked to process the objects involved

and change the variables’ attributes. While being a relatively

low-level construct for constraint programming, attributed

variables have also served as a basis for Constraint Han-

dling Rules [32], a high level declarative language to write

constraint solvers. Recently, Action Rules [48] has extended

logic programming languages, such as Prolog, with the con-

cept of agents that can be used for both event-handling and

constraint propagation. Agents carry out specific actions and

are activated when certain events are posted.

Algorithms for Constraint Satisfaction. Moving from

early work on attribute grammars [19, 37], a variety of in-

cremental algorithms for performing efficient dataflow con-

424

straint satisfaction have been proposed in the literature and

integrated in dataflow systems such as Amulet. These algo-

rithms are based either on a mark-sweep approach [19, 34],

or on a topological ordering [6]. In contrast, DC uses a

priority-based approach, which allows users to customize

the constraint scheduling order. Mark-sweep algorithms are

preferable when the dataflow graph can change dynamically

during constraint evaluation: this may happen if constraints

use indirection and conditionals, and thus cannot be stat-

ically analyzed. With both approaches, if there are cyclic

dependencies between constraints, they are arbitrarily bro-

ken, paying attention to evaluate each constraint in a cycle

at most once. Compared to our iterative approach, this limits

the expressive power of constraints.

Self-adjusting Computation. A final related area, that we

have extensively discussed throughout the paper, is that of

self-adjusting computation, in which programs respond to

input changes by updating automatically their output. This is

achieved by recording data and control dependencies during

the execution of programs so that a change propagation

algorithm can update the computation as if the program

were run from scratch, but executing only those parts of the

computation affected by changes. We refer to [3–5, 30] for

recent progress in this field.

8. Future Work

The work presented in this paper paves the road to several

further developments. Although conventional platforms of-

fer limited support for implementing reactive memory effi-

ciently, we believe that our approach can greatly benefit from

advances in the hot field of transactional memories, which

shares with us the same fundamental need for a fine-grained,

highly-efficient control over memory accesses. Multi-core

platforms suggest another interesting direction. Indeed, ex-

posing parallelism was one of the motivations for dataflow

architectures, since the early developments of the area. We

regard it as a challenging goal to design effective models and

efficient implementations of one-way dataflow constraints in

multi-core environments.

Acknowledgments

We wish to thank Umut Acar and Matthew Hammer for

many enlightening discussions and for their support with

CEAL. We are also indebted to Alessandro Macchioni for

his contributions to the implementation of reactive memory,

and to Pietro Cenciarelli and Ivano Salvo for providing use-

ful feedback on the formal aspects of our work.

This work was supported in part by the Italian Ministry

of Education, University, and Research (MIUR) under PRIN

2008TFBWL4 national research project “AlgoDEEP: Algo-

rithmic Challenges for Data-Intensive Processing on Emerg-

ing Computing Platforms”.

References

[1] M. Abadi, T. Harris, and M. Mehrara. Transactional Memory

with Strong Atomicity Using Off-the-Shelf Memory Protec-

tion Hardware. In PPoPP, pages 185–196, 2009.

[2] R. Abraham, M. M. Burnett, and M. Erwig. Spreadsheet

Programming. In Wiley Encyclopedia of Computer Science

and Engineering. John Wiley & Sons, Inc., 2008.

[3] U. A. Acar. Self-Adjusting Computation: (an Overview). In

PEPM, pages 1–6, 2009.

[4] U. A. Acar, G. E. Blelloch, M. Blume, and K. Tangwongsan.

An Experimental Analysis of Self-Adjusting Computation. In

PLDI, pages 96–107, 2006.

[5] U. A. Acar, G. E. Blelloch, R. Ley-Wild, K. Tangwongsan,

and D. Türkoglu. Traceable Data Types for Self-Adjusting

Computation. In PLDI, pages 483–496, 2010.

[6] B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K.

Zadeck. Incremental Evaluation of Computational Circuits.

In SODA, pages 32–42, 1990.

[7] K. R. Apt. Principles of Constraint Programming. Cambridge

University Press, 2003.

[8] R. Bellmann. On a Routing Problem. Quarterly of Applied

Mathematics, 16:87–90, 1958.

[9] C. Bessiere. Constraint Propagation. In F. Rossi, P. van Beek,

and T. Walsh, editors, Handbook of Constraint Programming.

2006.

[10] P. A. Blume. The LabVIEW Style Book. Prentice Hall, 2007.

[11] A. Borning. The Programming Language Aspects of

ThingLab, a Constraint-Oriented Simulation Laboratory.

ACM Transactions on Programming Languages and Systems,

3(4):353–387, 1981.

[12] F. Boussinot and J.-F. Susini. The SugarCubes Tool Box: a Re-

active Java Framework. Software: Practice and Experience,

28(14):1531–1550, 1998.

[13] P. Caspi, P. Pilaud, N. Halbwachs, and J. Plaice. Lustre,

a Declarative Language for Programming Synchronous Sys-

tems. In POPL, pages 178–188, 1987.

[14] C. Chambers, B. Harrison, and J. Vlissides. A Debate on

Language and Tool Support for Design Patterns. In POPL,

pages 277–289, 2000.

[15] G. H. Cooper and S. Krishnamurthi. Embedding Dynamic

Dataflow in a Call-by-Value Language. In ESOP, pages 294–

308, 2006.

[16] A. Courtney. Frappé: Functional Reactive Programming in

Java. In PADL, pages 29–44, 2001.

[17] P. Cousot and R. Cousot. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construc-

tion or Approximation of Fixpoints. In POPL, pages 238–252,

1977.

[18] P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi.

Reversible Execution and Visualization of Programs with

Leonardo. Journal of Visual Languages and Computing, 11

(2):125–150, 2000.

[19] A. J. Demers, T. W. Reps, and T. Teitelbaum. Incremen-

tal Evaluation for Attribute Grammars with Application to

Syntax-Directed Editors. In POPL, pages 105–116, 1981.

425

[20] C. Demetrescu. Fully Dynamic Algorithms for Path Problems

on Directed Graphs. PhD thesis, Sapienza University of

Rome, 2001.

[21] C. Demetrescu, I. Finocchi, and G. Italiano. Handbook

on Data Structures and Applications, chapter 36: Dynamic

Graphs. D. Mehta and S. Sahni (eds.), CRC Press, 2005.

[22] C. Demetrescu, A. V. Goldberg, and D. S. Johnson, editors.

The Shortest Path Problem: Ninth DIMACS Implementation

Challenge. American Mathematical Society, 2009.

[23] C. Demetrescu, I. Finocchi, and A. Ribichini. Reactive Im-

perative Programming with Dataflow Constraints. Technical

Report arXiv:1104.2293, April 2011.

[24] B. Demsky and M. Rinard. Automatic Detection and Repair

of Errors in Data Structures. In OOPSLA, pages 78–95, 2003.

[25] C. Elliott and P. Hudak. Functional Reactive Animation. In

ICFP, pages 263–273, 1997.

[26] A. Ezust and P. Ezust. An Introduction to Design Patterns in

C++ with Qt 4. Prentice Hall, 2006.

[27] B. Freeman-Benson and A. Borning. Integrating Constraints

with an Object-Oriented Language. In ECOOP, pages 268–

286, 1992.

[28] T. Groetker, S. Liao, G. Martin, and S. Swan. System Design

with SystemC. Kluwer Academic Publishers, 2002.

[29] P. L. Guernic, A. Benveniste, P. Bournai, and T. Gautier. SIG-

NAL - A Data Flow-Oriented Language for Signal Processing.

IEEE Transactions on Acoustics, Speech and Signal Process-

ing, 34(2):362–374, 1986.

[30] M. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-based

Language for Self-Adjusting Computation. In PLDI, pages

25–37, 2009.

[31] C. Holzbaur. Metastructures vs. Attributed Variables in the

Context of Extensible Unification - Applied for the Implemen-

tation of CLP Languages. In PLILP, pages 260–268, 1992.

[32] C. Holzbaur and T. Frühwirth. Compiling Constraint Han-

dling Rules into Prolog with Attributed Variables. In PPDP,

pages 117–133. 1999.

[33] P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report

on the Programming Language Haskell, A Non-strict Purely

Functional Language (Version 1.2). ACM SIGPLAN Notices,

27(5), 1992.

[34] S. E. Hudson. Incremental Attribute Evaluation: A Flexible

Algorithm for Lazy Update. ACM Transactions on Program-

ming Languages and Systems, 13(3):315–341, 1991.

[35] D. Ignatoff, G. H. Cooper, and S. Krishnamurthi. Crossing

State Lines: Adapting Object-Oriented Frameworks to Func-

tional Reactive Languages. In FLOPS, pages 259–276, 2006.

[36] A. Kay. Computer software. Scientific American, 251(3):191–

207, 1984.

[37] D. E. Knuth. Semantics of Context-free Languages. Theory

of Computing Systems, 2(2):127–145, 1968.

[38] M. Z. Malik, K. Ghori, B. Elkarablieh, and S. Khurshid. A

Case for Automated Debugging Using Data Structure Repair.

In ASE, pages 620–624, 2009.

[39] L. Mandel and M. Pouzet. ReactiveML, a Reactive Extension

to ML. In PPDP, pages 82–93, 2005.

[40] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,

M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax: a

Programming Language for Ajax Applications. In OOPSLA,

pages 1–20, 2009.

[41] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency,

A. Faulring, B. D. Kyle, A. Mickish, A. Klimovitski, and

P. Doane. The Amulet Environment: New Models for Effec-

tive User Interface Software Development. IEEE Transactions

on Software Engineering, 23(6):347–365, 1997.

[42] H. Nilsson, A. Courtney, and J. Peterson. Functional Reactive

Programming, Continued. In HASKELL, pages 51–64, 2002.

[43] S. Prasad and S. Arun-Kumar. An Introduction to Operational

Semantics. In Compiler Design Handbook: Optimizations

and Machine Code, pages 841–890. CRC Press, Boca Raton,

2002.

[44] G. Ramalingam and T. Reps. An Incremental Algorithm for

a Generalization of the Shortest-Path Problem. Journal of

Algorithms, 21(2):267 – 305, 1996.

[45] U.S. Census Bureau, Washington, DC. UA Census 2000

TIGER/Line Files.

http://www.census.gov/geo/www/tiger/, 2002.

[46] B. T. Vander Zanden, R. Halterman, B. A. Myers, R. Mc-

Daniel, R. Miller, P. Szekely, D. A. Giuse, and D. Kosbie.

Lessons Learned about One-Way, Dataflow Constraints in the

Garnet and Amulet Graphical Toolkits. ACM Transactions on

Programming Languages and Systems, 23(6):776–796, 2001.

[47] Z. Wan and P. Hudak. Functional Reactive Programming from

First Principles. In PLDI, pages 242–252, 2000.

[48] N.-F. Zhou. Programming Finite-Domain Constraint Propa-

gators in Action Rules. Theory and Practice of Logic Pro-

gramming, 6:483–507, 2006.

426

