
Input-Sensitive Profiling

Emilio Coppa

Dept. of Computer and System Sciences
Sapienza University of Rome

ercoppa@gmail.com

Camil Demetrescu

Dept. of Computer and System Sciences
Sapienza University of Rome

demetres@dis.uniroma1.it

Irene Finocchi

Dept. of Computer Science
Sapienza University of Rome

finocchi@di.uniroma1.it

Abstract

In this paper we present a profiling methodology and toolkit for
helping developers discover hidden asymptotic inefficiencies in the
code. From one or more runs of a program, our profiler automati-
cally measures how the performance of individual routines scales
as a function of the input size, yielding clues to their growth rate.
The output of the profiler is, for each executed routine of the pro-
gram, a set of tuples that aggregate performance costs by input size.
The collected profiles can be used to produce performance plots
and derive trend functions by statistical curve fitting or bounding
techniques. A key feature of our method is the ability to automati-
cally measure the size of the input given to a generic code fragment:
to this aim, we propose an effective metric for estimating the input
size of a routine and show how to compute it efficiently. We discuss
several case studies, showing that our approach can reveal asymp-
totic bottlenecks that other profilers may fail to detect and charac-
terize the workload and behavior of individual routines in the con-
text of real applications. To prove the feasibility of our techniques,
we implemented a Valgrind tool called aprof and performed an
extensive experimental evaluation on the SPEC CPU2006 bench-
marks. Our experiments show that aprof delivers comparable per-
formance to other prominent Valgrind tools, and can generate infor-
mative plots even from single runs on typical workloads for most
algorithmically-critical routines.

Categories and Subject Descriptors D.2.8 [Software Engineer-
ing]: Metrics—performance measures

General Terms Algorithms, Measurement, Performance.

Keywords Performance profiling, asymptotic analysis, dynamic
program analysis, instrumentation.

1. Introduction

Performance profiling plays a crucial role in software development,
allowing programmers to test the efficiency of an application and
discover possible performance bottlenecks. Traditional profilers as-
sociate performance metrics to nodes or paths of the control flow
or call graph by collecting runtime information on specific work-
loads [2, 19, 27, 39]. These approaches provide valuable informa-
tion for studying the dynamic behavior of a program and guiding
optimizations to portions of the code that take most resources on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

the considered inputs. However, they may fail to characterize how
the performance of a program scales as a function of the input
size, which is crucial for the efficiency and reliability of software.
Seemingly benign fragments of code may be fast on some testing
workloads, passing unnoticed in traditional profilers, while all of
a sudden they can become major performance bottlenecks when
deployed on larger inputs. As an anecdotal example, we report a
story [8] related to the COSMOS circuit simulator, originally devel-
oped by Randal E. Bryant and his colleagues at CMU [10]. When
the project was adopted by a major semiconductor manufacturer,
it underwent a major performance tuning phase, including a mod-
ification to a function in charge of mapping signal names to elec-
trical nodes, which appeared to be especially time-consuming: by
just hashing on bounded-length name prefixes rather than on entire
names, the simulator became faster on all benchmarks. However,
when circuits later grew larger and adopted hierarchical naming
schemes, many signal names ended up sharing long common pre-
fixes, and thus hashed to the same buckets. As a result, the simu-
lator startup time became intolerable, taking hours for what should
have required a few minutes. Identifying the problem - introduced
several years before in an effort to optimize the program - required
several days of analysis. There are many other examples of large
software projects where this sort of problems occurred [9].

The problem of empirically studying the asymptotic behavior of
a program has been the target of extensive research in experimen-
tal algorithmics [14, 25, 30, 33]. Individual portions of algorithmic
code are typically analyzed on ad-hoc test harnesses, which repro-
duce real-world scenarios by performing multiple runs with dif-
ferent and determinable input parameters, collecting experimental
data for comparing the actual relative performance of algorithms
and studying their amenability for use in specific applications.
While this approach provides valuable information for comple-
menting theoretical analyses, it has several drawbacks as a perfor-
mance evaluation method in actual software development. Firstly,
it is typically difficult and time-consuming to manually extract por-
tions of code from an application and analyze them separately on
different input sizes to determine their performance growth rate.
Furthermore, asymptotic inefficiencies may be introduced by pro-
gramming errors in unexpected locations, whose detection requires
automated and systematic profiling methodologies, especially on
large-scale systems. As another point, by studying performance-
critical routines out of their context, we miss how they interact with
the overall application in which they are deployed, including cache
effects and branch mispredictions. We also notice that it may be
hard to collect real data about typical usage scenarios to be repro-
duced in experiments, in particular when the workloads of interest
are generated by intermediate steps of a computation.

Our contributions. Motivated by the observation that critical al-
gorithmic routines should be analyzed within the actual context of
the software projects in which they are deployed, this paper makes

a first step towards bridging the gap between the profiling prac-
tice and the methodologies used in experimental algorithmics. As a
main contribution, we devise a new automated profiling technique
for helping developers discover hidden asymptotic inefficiencies in
the code. To prove the effectiveness of our approach, we devel-
oped a Valgrind [34] tool called aprof: from one or more runs of
a program, aprof automatically measures how the performance of
individual routines scales as a function of the input size. Using sta-
tistical curve fitting [11] and curve bounding [31] techniques on the
collected profiles, developers can derive closed form expressions
that describe mathematical cost functions for program routines,
yielding clues to their growth rate. We discuss several case stud-
ies, showing that our approach can reveal asymptotic bottlenecks
that other profilers may fail to detect and characterize the workload
and behavior of individual routines in the context of real applica-
tions. In particular, we focus on applications included in prominent
Linux distributions as well as in the SPEC CPU2006 suite. A dis-
tinguishing feature of our approach is the ability to automatically
measure the size of the input given to a generic routine. This allows
us to explore a novel dimension in interprocedural context-sensitive
profiling where costs are associated to distinct input sizes of a rou-
tine, rather than to paths in the call graph as in traditional contex-
tual profiling [2, 16, 46]. To support this approach, which we call
input-sensitive profiling, we propose an effective metric for estimat-
ing the input size of a routine by counting the number of distinct
memory cells first accessed by the routine with a read operation,
and show how to compute it efficiently. An extensive experimental
evaluation on the SPEC CPU2006 benchmarks reveals that aprof
is as efficient as other prominent Valgrind tools, and can gener-
ate informative plots even from single runs on typical workloads
for most algorithmically-critical routines. The tool is available at
http://code.google.com/p/aprof/.

The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce our profiling methodology, discussing relevant
properties of our approach. In Section 3 we present case studies
that demonstrate the utility of input-sensitive profiling. Section 4
proposes an efficient profiling algorithm, Section 5 describes the
most relevant aspect of the implementation of aprof, and Section 6
presents our experimental results. Related work is discussed in Sec-
tion 7 and concluding remarks are given in Section 8.

2. Input-Sensitive Profiling

In this section we introduce our input-sensitive profiling method-
ology. Differently from the classical analysis of algorithms based
on theoretical cost models, where the input size of a procedure is
a parameter known a priori and clear from the abstract description
of the underlying algorithm, a key challenge of an automated ap-
proach is the ability to automatically infer the size of the input data
on which a function operates. We first propose a solution to this
basic problem.

2.1 Read Memory Size

We introduce a metric, which we call read memory size, for esti-
mating the input size of a routine invocation:

Definition 1. The read memory size (RMS) of the execution of a
routine f is the number of distinct memory cells first accessed by
f , or by a descendant of f in the call tree, with a read operation.

The main idea is that cells that are accessed by a function for the
first time with a read operation contain the input values of the
routine. Conversely, if a cell is first written and then read by the
routine, the read value is not part of the input as it was determined
by the routine itself. We notice that the RMS definition, which is
based on tracing low-level memory accesses made by the program,
supports memory dereferencing and pointers in a natural way.

Example 1. Consider the following trace of operations.

1. call f
2. read x
3. write y
4. call g
5. read x
6. read y
7. read z
8. write w
9. return
10. read w
11. return

Function g performs three first-read oper-
ations (lines 5 – 7) and its RMS is thus 3.
Function f performs five read operations,
three of which through its subroutine g.
However, its RMS is only 2: the read oper-
ations at line 5, line 6, and line 10 are not
first-reads with respect to f. Indeed, x has
been already read at line 2 and y and w are
written at lines 3 and 8, respectively, before
being read. Hence, only the read operations
at lines 2 and 7 contribute to the computa-

tion of the read memory size of function f.

In Section 4 we will propose an efficient algorithm for computing
the RMS of each routine invocation from a program execution trace.

2.2 Profiling Methodology

For each routine f , we determine the set Nf = {n1, n2, . . .} of
distinct RMS values on which f is called during the execution of a
program. For each ni ∈ Nf , which is an estimate of an input size,
we collect a tuple 〈ni, ci, maxi, mini, sumi, sqi〉, where:

• ci is the number of times the routine is called on input size ni;
• maxi and mini are the maximum and minimum costs required

by any execution of f on input size ni, respectively;
• sumi and sqi are the sum of the costs required by the execu-

tions of f on input size ni and the sum of the costs’ squares,
respectively.

We use the generic term cost to refer to any performance metric,
e.g., time, number of executed basic blocks, etc. The cost of a
routine execution is intended as a cumulative cost, i.e., it includes
the costs of all the routine’s descendants in the call tree.

Analysis metrics. The value avgi = sumi/ci is the average
cost per invocation on input size ni, while sqi is used for com-
puting the cost variance vari. The sets of points 〈ni, maxi〉,
〈ni, mini〉, and 〈ni, avgi〉 estimate how the worst-case, best-
case, and average-case costs of a routine grow as a function of
the input size (see Figure 1a for an example generated with our
technique). The total cost per input size, the variance between ex-
ecution costs, and the frequency distribution of the input sizes are
given by points 〈ni, sumi〉, 〈ni, vari〉, and 〈ni, ci〉, respectively
(see Figures 1b, 1c, and 1d).

Example 2. To exemplify our profiling methodology, we analyze

1: int get(int v[], int i) {
2: return v[i];
3: }

4: int mid(int v[], int n) {
5: int m = get(v, n/2);
6: return m;
7: }

the simple C code frag-
ment on the left. Any ex-
ecution of get has RMS

3. This accounts for the
addresses of lvalues v,
i, and v[i], which con-
tain the input values of
the function. Routine mid

reads 3 distinct addresses as well: v and n directly at line 5, and
v[n/2] indirectly via a call to get. Variable m is not counted in the
RMS of mid as it is first accessed by a write operation at line 5. In
this example, an input-sensitive profiler would just collect one per-
formance tuple for get and one for mid, i.e., |Nget| = |Nmid| = 1.

Example 3. Our next example illustrates the case where the size
of the input may vary at each call:

1: int count_zero(int v[], int n) {
2: int i, count = 0;
3: for (i=0; i<n; i++) count += (v[i]==0 ? 1:0);
4: return count;
5: }

(a)

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45

c
o

s
t

×
 1

0
0

 (
e

x
e

c
u

te
d

 B
B

)

read memory size × 10

Cost plot (order_moves)

max
average

min

(b)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 5 10 15 20 25 30 35 40 45

c
o

s
t

×
 1

0
6
 (

e
x
e

c
u

te
d

 B
B

)

read memory size × 10

Total cost plot (order_moves)

(c)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 5 10 15 20 25 30 35 40 45

c
o

s
t
v
a

ri
a

n
c
e

 ×
 1

0
5

read memory size × 10

Variance plot (order_moves)

(d)

10
0

10
1

10
2

10
3

10
4

10
5

 0 5 10 15 20 25 30 35 40 45

rm
s
 f
re

q
u

e
n

c
y

read memory size × 10

Frequency plot (order_moves)

Figure 1. Input-sensitive plots automatically computed by aprof. All plots are related to function order moves() of the sjeng chess playing
program included in the SPEC CPU2006 benchmarks [23], executed on a single reference workload.

The function, which counts the number of 0’s in the input array v,
has RMS n+ 2: it reads variables v and n, and the first n cells of the
array pointed to by v. An input-sensitive profiler would collect one
performance tuple for each distinct value of n on which count zero

is called during the execution of the program. In this case, the
number of tuples |Ncount zero| cannot exceed the number of
distinct calls of the function.

Example 4. We now show that even a single invocation of a
function made by a program can yield several performance tuples.
Consider a recursive variant of the count zero function:

1: int count_zero(int v[], int n) {
2: if (n<1) return 0;
3: return (v[n-1]==0 ? 1:0) + count_zero(v, n-1);
4: }

Observe that, just like the iterative version, the first invocation
of function count zero has RMS n1 = n + 2. However, calling
count zero on parameter n also results in n additional recursive
activations of the function for all size values ranging from n − 1
down to 0. Therefore, we collect n + 1 performance tuples from
just one starting activation, i.e., |Ncount zero| = n + 1. The read
memory size corresponding to the i-th invocation is ni = n− i+3,
for each i ∈ [1, n + 1].

2.3 Characterizing Asymptotic Behavior

The examples presented in Section 2.2 show that our profiling
approach allows a tool to automatically collect performance tuples
from an execution run, relating cost measures to the input size of a
routine. As exemplified in Figure 1, collected profiles can be used
to produce performance plots, providing effective visualizations of
the behavior of a program. A natural question we address in this
section is to which extent this methodology can help developers
assess the asymptotic cost of a piece of code.

Asymptotics vs. finite experiments. The ultimate goal of the com-
plexity analysis of algorithms is to find closed form expressions for
the running time or other measures of resource consumption (e.g.,
space usage, cache misses, or number of transmitted bits). Since
this may be too difficult, it is common to estimate the theoretical
complexity in an asymptotic sense, i.e., for arbitrarily large inputs.
To get insights on the asymptotic behavior from finite experiments,
it would be necessary to extrapolate trend data beyond the range of
experimentation. Unfortunately, no data analysis method for infer-
ring asymptotic trends can be guaranteed to be correct for all data
sets: as observed in [31], for any finite vector of problem sizes there
are functions of arbitrarily high degree that are indistinguishable
from the constant function at those sizes. Throughout this paper we
will exploit two main techniques: curve fitting and curve bound-
ing. Statistical curve fitting [11] is the process of constructing a
mathematical function that has the best fit to a series of data points.
Regression analysis techniques are widely used for this kind of pre-
dictions: in our examples, we used the curve fitting tools provided
by gnuplot [45]. Given a set of data points (Xi, Yi) obtained from
an experiment such that Yi = f(Xi) for some unknown function

f , curve bounding [31] makes it possible to estimate complexity
classes O(g1) and Ω(g2) such that f ∈ O(g1) and f ∈ Ω(g2). In
this paper we will perform curve bounding by “guess ratio”, which
works by considering a guess function h and analyzing the trend
of ratio f(n)/h(n): the ratio stabilizes to a nonnegative constant if
f ∈ O(h), while it (eventually) increases if f 6∈ O(h).

Number of collected tuples. The number of collected tuples plays
a fundamental role in characterizing the behavior of a routine. This
number depends on several factors, including the structure of the
routine, how it is used in the context of the program, and ultimately
the workload on which the program is tested. We have seen that
recursive functions allow it to collect several tuples with just one
initial call. In Section 6 we will provide a quantitative evaluation
of the number of distinct tuples that can be collected for each
routine in a variety of applications on typical workloads. As we
will discuss in Section 3, variety of input patterns in test workloads
is more important than their sheer size: small workloads can yield
large amounts of information, while large repetitive inputs may be
of little help. We also observe that profiles of the same program
collected from different runs can be naturally merged together to
generate profiles with a larger number of tuples.

Accuracy of the RMS metric. For functions that read their input
entirely at least once, the read memory size approximates within
constant factors the actual input size n: hence, if RMS = Ω(n),
the input-sensitive profile of a function f correctly estimates the
theoretical cost Tf (n) of the algorithm implemented by f . This
is not the case for sublinear functions. For instance, consider a
binary search over a sorted array, which reads only O(log n) cells
of the input array: in this case RMS = O(log n), so our approach
estimates T (log n) rather than T (n). Sublinear functions, however,
are unlikely to represent performance bottlenecks and are therefore
the less interesting from a profiling perspective.

We remark that the RMS is a measure of distinct accessed mem-
ory cells. Hence, it fails to characterize computations whose run-
ning time is determined by the value of some variable: e.g., the
RMS of the naive algorithm for computing the factorial of a number
n would be constant, regardless of the value of n. Aggregating per-
formance measurements by distinct values of function arguments is
an alternative approach that is explored, e.g., in [28].

Parameters passed in registers, which should be regarded as part
of a function’s input, are also not counted in the RMS. However,
they only account for small additive constants, and are therefore
negligible for estimating growth rates for sufficiently large inputs.
For instance, if parameters v and n of function count zero dis-
cussed in Section 2.2 are held by the compiler in registers rather
than on stack, the RMS would be exactly n rather than n+2.

3. Case Studies

In this section we describe scenarios where input-sensitive profiling
can provide valuable information to the programmer. Our examples
are based on the aprof tool described in Section 5 and use basic
block (BB) counts as performance metric.

index % time self children name
[1] 99.9 2.00 16.23 main [1]

(a) [2] 52.2 5.82 3.70 addword [2]
[3] 31.3 2.81 2.90 str tolower [3]
[4] 20.3 3.70 0.00 hash [4]

[1] 100.0 0.21 4.61 main [1]
(b) [2] 61.8 0.98 2.00 str tolower [2]

[3] 41.4 2.00 0.00 wf tolower [3]
[4] 32.6 0.07 1.50 addword [4]

Figure 2. Output of gprof for application wf on two different texts:
(a) Anna Karenina; (b) protein sequences.

Discovering hidden inefficiencies. As a first example, we show
that input-sensitive profiling makes it possible to discover perfor-
mance bottlenecks that may not be revealed by standard profil-
ing methods. Our discussion is based on wf-0.41 [15], a simple
word frequency counter included in the current development head
of Linux Fedora (Fedora 17–Beefy Miracle): wf scans a text file
and counts the frequency of words in the text. To efficiently count
repetitions, it adds words to a hash table using a function called
addword, and reimplements a variety of ad-hoc string utility func-
tions to handle the ISO Latin-1 representation, including a function
(str tolower) to convert all characters to lower case.

We analyzed wf with both gprof [19] and aprof on a text corpus
taken from the Gutenberg Project [22], considering several books
from classical literature. On all test sets, gprof ranked addword as
the hottest function. For instance, on Tolstoj’s “Anna Karenina”,
addword took roughly 52% of the total time, as shown in Figure 2a.
This was not surprising, as it appears to be algorithmically more
complex than all other basic text management functions. We also
profiled wf with gprof on larger and larger input texts from [22]
to study how the performance of individual routines scales as a
function of the size of the program’s input. Collected profiles con-
firmed that addword is consistently more expensive than all other
functions. Figure 3–left reports the performance trends of addword
and str tolower, obtained by extracting performance figures from
11 different gprof reports for input files of different size derived
from texts in [22]. Both curves seem to grow linearly as a function
of wf’s input size. The tests we made with gprof did not provide
any evidence of asymptotic bottlenecks in wf.

In contrast, aprof discovered a rather different scenario already
on the smaller workload, pinpointing a serious inefficiency in a
seemingly benign function: surprisingly, the cost of str tolower

turned out to grow quadratically with the length of the input string
(see Figure 3–middle). Conversely, aprof showed that addword

scales linearly (see Figure 3–right). By analyzing the source code
of str tolower:

1: void str_tolower(char *str) {
2: int i;
3: for (i=0; i < strlen(str); i++)
4: str[i] = wf_tolower(str[i]);
5: }

we noticed that strlen is redundantly called at each iteration, re-
sulting in a quadratic running time. Once we discovered the in-
efficiency using aprof, we made a second set of experiments on
carefully selected inputs with very long words, where the ineffi-
ciency in str tolower is most likely to impact significantly the
overall running time. In particular, we considered a data set con-
taining long protein sequences taken from the Genomics-96 data
set of the Genome Informatics Research Lab [17]. Indeed, on this
data set gprof showed that str tolower accounts for 61.8% of the
total time, while addword drops to 32.6% (Figure 2b).

The inefficiency found by aprof in wf is rather common [9] and
was very easy to fix by loop-invariant code motion. To complete
our investigation, we compared the wall-clock time required by the
original wf-0.41 code included in the Fedora RPM, and a new
version where strlen(str) was moved out of the loop: fixing
the code improved the total running time of wf by 6% on Anna
Karenina and by 30% on protein sequences.

Discussion. The wf example shows that repeating classic gprof-
style profiling at scale to assess the computational complexity of
individual routines can yield misleading results: gprof failed to re-
veal the quadratic trend of str tolower, even making several tests
on workloads of different size, because the input of str tolower

are single words of the input text, not the entire document given as
input to the application. In general, the input of a routine is often
produced by other routines (e.g., wf’s text tokenizer feeds strings
to str tolower) and may be unpredictably related to the input of
the overall application. Hence, setting up a collection of test work-
loads for an application to expose the asymptotic behavior of in-
dividual routines can be rather difficult with traditional profilers.
Also, different input families may be needed to characterize dif-
ferent routines, making this approach largely impractical. Since a
typical text contains words of different lengths and aprof collects
separate performance measurements for each distinct input size, it
could correctly pinpoint the quadratic trend of str tolower’s cost
function even on a single run on a small input.

Workload characterization. The most realistic program execu-
tions are on deployed systems. A benefit of our profiling methodol-
ogy is that it can give insights on the typical workloads on which a
function is called in the context of real applications. This informa-
tion might be very useful not only for code optimization, but also
for algorithmic improvements, even theoretical, in specific scenar-
ios. For instance, routing algorithms for GPS navigation systems
are specifically designed to take advantage of the sparsity of the in-
put road networks on which they are deployed. Similarly, if an ap-
plication always needs to sort arrays with less than 16 items, it may
be convenient to use a non-optimal sorting algorithm with runtime
n2 instead of an asymptotically optimal one with runtime 4n log n.

Figure 4 provides a concrete example where the workload of a
function can be rather different depending on the specific applica-
tion scenario and data set, showing that our profiler can highlight
such differences. In particular, we ran the word frequency counter
wf discussed above on two different inputs (Anna Karenina and
protein sequences), and analyzed the strlen function used by wf.
Notice that the read memory size of strlen is an indirect measure
of the length of the strings on which it is invoked: the maximum
RMS is about 20 for Anna Karenina and larger than 900 for protein
sequences, highlighting the structural difference between these two
data sets. Even more significant is the fact that the frequency curves
shown on the left of Figure 4 have opposite trends: decreasing on
Anna Karenina, as we would expect for a natural language text,
and increasing on protein sequences. Since long protein sequences
tend to be very frequent, on this data set strlen will likely have a
tangible impact on the execution cost.

Exposing empirical asymptotics. Input-sensitive profiles can
characterize the empirical asymptotic behavior of program rou-
tines in realistic execution scenarios, often yielding more precise
results than theoretical cost models. For instance, the gg sort rou-
tine included in SPEC CPU2006 component gobmk [23] imple-
ments the combsort algorithm [1], a variant of bubblesort that
compares items at distance larger than 1. Combsort is known to
have at least quadratic running time in the worst case, but can ri-
val fast algorithms like quicksort in many practical cases. This is
confirmed by the guess ratio plot of gg sort, which stabilizes to
a constant value when divided by the guess function n log n, as

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

ti
m

e
 (

s
e

c
s
)

wf input size (MB)

Time plot (addword, str_tolower)

addword

str_tolower

T(n)=0.1 n
1.0

-0.02
T(n)=0.06 n

1.0
-0.07

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35

c
o

s
t

×
 1

0
0

 (
e

x
e

c
u

te
d

 B
B

)

read memory size

Cost plot (str_tolower)

T(n)=0.2 n
2.2

+17
average cost

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90

c
o

s
t

×
 1

0
0

 (
e

x
e

c
u

te
d

 B
B

)

read memory size

Cost plot (addword)

T(n)=2.2 n
1.0

-17
average cost

Figure 3. Profiling of wf’s functions addword and str tolower on texts from classical literature: cost trends derived from the profiles
produced by 11 runs of gprof on input files of different size (left); cost trends derived by a single run of aprof on the smallest workload
(middle and right). Regression curves are obtained by least-squares fitting.

10
2

10
3

10
4

10
5

10
6

10
7

 5 10 15 20

fr
e

q
u

e
n

c
y

read memory size

Frequency plot (strlen - AK)

10
3

10
4

10
5

10
6

 0 200 400 600 800 1000

fr
e

q
u

e
n

c
y

read memory size

Frequency plot (strlen - PR)

Figure 4. Workload characterization of function strlen used by
application wf on two different texts: Anna Karenina (AK) and
protein sequences (PR).

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30 35 40

g
u

e
s
s
 r

a
ti
o

read memory size × 10

Guess ratio (gg_sort)

gg_sort / n log n

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 1 2 3 4 5 6c
o

s
t

×
 1

0
0

0
0

 (
e

x
e

c
u

te
d

 B
B

)

read memory size × 10000

Cost plot (cSubModIterator::operator++)

(a) (b)

Figure 5. Input-sensitive profiles excerpted from two SPEC
CPU2006 benchmarks: (a) routine gg sort from the SPEC com-
ponent gobmk (curve bounding is based on guess function n log n);
(b) routine cSubModIterator::operator++ from the SPEC compo-
nent omnetpp.

shown in Figure 5(a). In other cases, the asymptotic trends em-
pirically observed by aprof can direct the programmer’s attention
to critical routines that may otherwise pass unnoticed. As an ex-
ample, the chart in Figure 5(b) shows that the cost trend of rou-
tine cSubModIterator::operator++ defined in SPEC benchmark
omnetpp [23] is linear, differently from what one might expect
from a ++ operator. Actually, after profiling omnetpp with aprof,
we found in cSubModIterator’s source code the comment: “this
should be replaced with something faster”.

4. Algorithms

In this section we describe an efficient algorithm for computing
the read memory size and the input-sensitive profile of a routine.
An input-sensitive profiler is given as input a trace of program
operations, including routine activations (call), routine comple-
tions (return), and read/write memory accesses (see Example 1
in Section 2.1). Additional operations might be traced, depending
on the specific performance metrics to be computed. For each op-
eration, the profiler must update RMS and cost information. Before

describing our algorithm, we discuss a simple-minded approach as
a warm-up for the reader.

4.1 A Simple-Minded Approach

Each activation of a routine f has its own read memory size, which
is part of the set Nf of input sizes on which f is invoked during the
execution of the program (see Section 2.2). Computing the RMS

of an activation of f requires to monitor the set of locations that
are read during that activation (not only by f itself, but also by its
descendants in the call tree) before being written. A simple-minded
approach is to maintain a list Af of all memory locations accessed
(both read and written) during the activation of f . Immediately after
entering f , this list is empty and the RMS is equal to 0. When f
accesses a location w for the first time, then w is added to Af

and, if the access is a read operation, the RMS is increased by 1.
The same check and update must be performed for all pending
routine activations in the call stack, which are implicitly accessing
location w through their descendant f . If we start from the most
recent activations, it is possible to stop stack-walking when the
first routine h is encountered such that w already belongs to Ah.
However, h may be the program root in the worst case, making
updates based on stack-walking prohibitively time-consuming. The
space usage of this approach is also quite demanding: in the worst
case, each distinct memory location could be stored in all lists Ah

of pending routine activations, and in that case the space would be
proportional to the memory size times the maximum stack depth.

4.2 The Latest-Access Algorithm

We now describe a more space- and time-efficient algorithm,
sketched in Figure 6. The main idea is to avoid maintaining ex-
plicitly the RMS and the lists Af of accessed locations, but to store
only partial information that can be updated quickly during the
computation and from which the RMS can be easily derived upon
the completion of a routine. In more detail, for each pending acti-
vation of a routine f , we store the set Lf of locations whose latest
access was done by f (either directly or by its completed subrou-
tines). It is not difficult to see that each memory location is stored
in exactly one set, i.e., at any time during the execution of the pro-
gram the sets Lf partition the locations accessed so far. The sets Lf

of latest accesses are stored implicitly by associating timestamps to
routines and memory locations, as described below.

Data structures. The algorithm uses a shadow run-time stack S,
whose top is indexed by variable top. For each i ∈ [1, top], the i-th
stack entry S[i] stores:

• The id S[i].rtn of the i-th pending routine activation.

• The timestamp S[i].ts of the i-th pending activation, i.e., the
time at which the routine was entered.

• The cumulative cost S[i].cost of the activation.

procedure call(r):
1: count + +
2: top + +
3: S[top].rtn← r
4: S[top].ts← count

5: S[top].rms← 0
6: S[top].cost← get cost()

procedure return():
1: collect(S[top].rtn,

S[top].rms,
get cost() – S[top].cost)

2: S[top – 1].rms += S[top].rms
3: top – –

procedure read(w):
1: if ts[w] < S[top].ts then
2: S[top].rms + +
3: if ts[w] 6= 0 then
4: let i be the max index in S

such that S[i].ts ≤ ts[w]
5: S[i].rms – –
6: end if
7: end if

8: ts[w]← count

procedure write(w):
1: ts[w]← count

Figure 6. Algorithm for RMS computation and input-sensitive pro-
filing: procedures for processing execution trace events.

• The partial read memory size S[i].rms of the activation, de-
fined so that the following invariant property holds throughout
the execution:

∀i, 1 ≤ i ≤ top : RMS(i) =

top
X

j=i

S[j].rms (1)

where RMS(i) denotes the current RMS value of the i-th pending
activation on the portion of the execution trace already seen.

It can be proved that Invariant 1 is equivalent to the following
equality:

S[i].rms = RMS(i) − RMS(i + 1)

i.e., that the partial read memory size maintained by our algorithm
is the difference between the RMS of an activation and the RMS of
its pending child (if any). Moreover, it follows from Invariant 1 that
the RMS and the partial RMS of the topmost routine coincide:

RMS(top) = S[top].rms (2)

In particular, this is true upon completion of a routine, and guaran-
tees that any algorithm able to maintain Invariant 1 will correctly
compute the RMS of any routine activation.

Besides the shadow stack S, our algorithm also maintains, for
each memory location w, a timestamp ts[w] containing the time
of the latest access (read or write) to w. Memory timestamps are
initialized to 0 and time is measured by a global counter count,
that maintains the total number of routine activations.

Algorithm and analysis. The partial read memory size can be
maintained more efficiently than the RMS, as shown in Figure 6.
To prove the correctness of our approach, in the following we show
that all procedures correctly preserve Invariant 1.

When a routine r is invoked (see procedure call(r)), the time
counter is incremented by 1 and a new shadow stack entry asso-
ciated with r is appropriately initialized. Upon completion of the
routine, its partial RMS is added to the partial RMS of its parent (see
line 2 of procedure return). It is not difficult to see that this oper-
ation preserves Invariant 1. Performance metrics of the completed
routine are also collected (line 1): these metrics are associated with
the RMS value S[top].rms, which at this point coincides with the
true RMS (see Equation 2).

Memory access operations on a location w update the times-
tamp ts[w] with the current counter value (line 1 of procedure
write and line 8 of procedure read). The read operation might
also update the partial memory sizes of two distinct routine activa-
tions (lines 2 and 5). Namely, if location w has never been accessed
by the topmost routine or by any of its completed descendants (con-
dition tested in line 1), then the current access is a first read to w
with respect to the topmost routine, whose partial RMS is increased
by 1. We have now two cases:

• If the timestamp of location w is still 0 (test at line 3), this is
the first access to w in the entire execution of the program, and
no other counter needs to be changed. Notice that Invariant 1 is
maintained by the execution of line 2, since in this case the RMS

of all pending routines increases by 1.

• If the timestamp of location w is not 0, location w has been ac-
cessed before during the execution and, in view of the inequality
in line 1, the last access happened in some ancestor v of the top-
most routine (or in one of v’s completed descendants). In this
case, the algorithm finds the deepest ancestor that has accessed
w (line 4) and decreases its partial RMS by 1: this restores In-
variant 1 for all pending activations j such that 1 ≤ j ≤ i,
whose RMS must not be affected by the current read operation.

The running time of all operations is constant, except for line 4 of
procedure read. Since the timestamps S[i].ts of routine activations
on any call path are increasing, line 4 can be implemented with a
binary search and requires O(log d) time in the worst case, where
d is the maximum stack depth during the execution of the program.

We also designed and implemented an asymptotically faster al-
gorithm based on disjoint-sets data structures [40], but in our ex-
periments it was slower and required more space than the solution
we presented in this section.

5. Implementation

In this section we discuss our implementation of aprof based on
the Valgrind [34] framework. Valgrind provides a dynamic instru-
mentation infrastructure that translates the binary code into an
architecture-neutral intermediate representation (VEX). Analysis
tools provide callbacks for events generated by the stream of VEX
executed instructions.

Instrumentation. While tracing memory accesses is relatively
simple in Valgrind, reliably instrumenting function calls and re-
turns is instead rather complex. aprof uses a similar approach
as the callgrind profiling tool [42]: we maintain a shadow run-
time stack and cover a wide range of exotic cases to detect
function entry/exit events, including jumps to different ELF sec-
tions/objects, special handling for dynamically linked functions via
dl runtime resolve, etc. Our tool takes advantage of the flexi-

ble infrastructure of Valgrind and provides full support for mul-
tithreaded applications by generating separate profiles for each
thread.

Shadow memory. To maintain the timestamps ts of memory cells
needed for computing the RMS values, we shadow each memory
location accessed by the program with a 32-bit counter. Similarly
to the memcheck tool [38], we use a two-levels lookup table. The
address space is divided in 64 K chunks of 64 KB each (on 64-
bit machines, we extend address space coverage to 256 GB). So,
the primary table indexes all 64 KB chunks. When an address is
referenced by a program, if not already done, we allocate a new
secondary table for covering that chunk and we update the primary
table for future references. The secondary table contains the set of
32-bit timestamps of addresses covered by the chunk.

Memory tracing resolution: space-accuracy tradeoffs. To re-
duce the space needed by the lookup table, aprof allows users
to configure the resolution of distinct observable memory objects,
trading space for accuracy. This can potentially impact the number
of distinct RMS values observed by aprof, and therefore the number
of collected performance tuples. We denote by k the size in bytes
of the smallest observable objects, which we assume to be aligned
to addresses multiple of k. For k = 1, we have the finest resolution,
shadowing the addresses of all accessed individual memory bytes.
For k = 2, we trace accesses to 2-bytes words aligned at 16-bit

TIME SPACE

secs slowdown MB overhead

native
mem callgrind callgrind

aprof native
mem callgrind callgrind

aprof
check base cache check base cache

perlbench 585 34.8 98 178.3 55.4 757 2.1 1.1 1.1 2.1
bzip2 852 11.0 32 90.1 28.7 959 1.3 1.1 1.1 2.0
gcc 523 17.5 47 97.5 33.8 488 2.7 2.1 2.3 3.9
mcf 504 5.8 15 35.1 12.2 1,785 1.3 1.0 1.0 2.0
gobmk 645 28.2 72 135.7 44.8 138 1.8 1.5 1.6 2.1
hmmer 1,153 10.8 23 90.7 27.6 137 1.9 1.4 1.5 1.9
sjeng 798 28.4 94 149.3 45.8 279 1.4 1.2 1.2 1.9
libquantum 790 8.0 31 80.2 21.3 171 1.7 1.5 1.6 2.5
h264ref 903 28.4 85 193.5 67.5 173 1.7 1.4 1.4 2.0
omnetpp 517 16.1 45 82.9 28.8 280 2.8 1.3 1.2 2.0
astar 698 11.8 26 67.1 22.8 444 1.5 1.2 1.2 2.0
xalancbmk 341 35.0 95 171.3 78.3 536 1.8 1.2 1.2 2.3

bwaves 1,239 15.7 17.2 79.1 24.3 982 1.3 1.1 1.1 2.0
gamess 1,161 28.3 42.1 147.4 40.9 748 1.1 1.1 1.1 1.1
milc 520 13.8 12.3 60.9 18.5 795 1.3 1.1 1.1 2.0
gromacs 727 21.1 14.0 76.0 21.5 153 1.5 1.2 1.3 1.5
cactusADM 1.934 14.2 6.4 52.7 17.4 1,111 1.2 1.1 1.1 1.6
leslie3d 745 16.4 12.9 83.2 24.3 231 1.5 1.3 1.3 1.9
namd 640 20.3 15.7 89.5 21.5 161 1.8 1.4 1.4 1.8
soplex 355 11.1 25.6 73.4 26.3 738 1.3 1.2 1.2 2.2
povray 298 41.3 81.0 166.0 55.2 118 2.7 1.6 1.6 1.8
calculix 1,880 24.1 22.1 104.3 27.0 232 1.6 1.9 1.9 2.5
GemsFDTD 610 20.3 10.4 86.8 26.1 937 1.3 1.1 1.1 2.0
tonto 770 31.0 48.1 136.7 42.3 147 2.0 1.5 1.6 2.0
lbm 452 25.4 10.4 85.2 26.6 517 1.3 1.1 1.1 2.0
wrf 996 24.6 27.9 108.4 29.9 809 1.6 1.2 1.2 2.1
sphinx3 800 30.8 39.6 109.5 38.7 159 2.0 1.4 1.4 2.1

geometric mean 19.1 29.4 97.3 30.6 1.6 1.3 1.3 2.0

Table 1. Performance comparison of aprof and other Valgrind tools on the SPEC CPU2006 benchmarks.

boundaries, halving the universe of timestamps. The larger k, the
smaller the RMS accuracy for routines working on small objects
(e.g., strings of characters) and the smaller the size of the shadow
memory. By default, k = 4 in aprof.

Optimizations. aprof performs several optimizations at instru-
mentation time. For instance, we reduce the number of traced
memory accesses by coalescing into a single event each pair of
load/store events (caused by the same guest instruction) operating
on the same object. We also discard all other events related to ob-
jects already referenced within the same basic block.

A performance-critical operation is the timestamp search of line
4 in the read procedure of Figure 6. As we observed in Section 4.2,
implementing this operation with a binary search on the shadow
stack guarantees a worst-case bound of O(log d), where d is the
current depth of the stack. However, our experiments revealed that
a sequential scan tends to be faster in practice, as on average it
performs a very small number of iterations.

Performance metric. We count basic blocks as performance mea-
sure: we observed that, compared to running time measurements,
this adds a light burden to the analysis time overhead, and im-
proves accuracy in characterizing asymptotic behavior even on
small workloads. The choice of counting basic blocks rather than
measuring time for studying asymptotic trends has several other
advantages, very well motivated in [18].

Other issues. We noticed that calls to dynamically linked li-
braries made via dl runtime resolve generate spurious memory
accesses that may introduce some noise in the collected perfor-
mance tuples. To improve reliability of RMS computations, we han-
dled dl runtime resolve as a special case by disabling its cost and
RMS propagation to the ancestors.

Finally, to handle overflows of the main routine activations
counter (count) in long-running applications, aprof performs a
periodical global renumbering of timestamps in its data structures.

6. Experimental Evaluation

In this section we discuss the results of an extensive experimen-
tal evaluation of aprof on the CPU2006 benchmarks of the Stan-
dard Performance Evaluation Corporation [23]. Our experiments
aim both at studying the resources required by our tool compared
to other prominent heavyweight dynamic program analysis tools,
and at analyzing relevant properties of the input-sensitive profiles
generated for the considered benchmarks.

6.1 Experimental Setup

Benchmarks. Our experiments are mainly based on the SPEC
CPU2006 v1.1 suite, considering both integer (CINT) and floating-
point (CFP) components. All of them were run on the SPEC refer-
ence workloads in 64-bit mode. For CINT, we successfully tested
all 12 components. In the case of CFP, we omitted zeusmp due to
a known Valgrind issue, and dealII as it failed to terminate on all
evaluated tools. We could successfully test all remaining 15 com-
ponents. For the sake of completeness, we also included in our tests
the wf-0.41 [15] word frequency counter discussed in Section 3 on
a 117 MB input text file consisting of the concatenation of several
copies of Anna Karenina [22] and protein sequences [17].

Platform. Experiments were performed on a cluster machine
with two nodes, each equipped with eight 64-bit Intel Xeon CPU
E5520 at 2.27 GHz, with 48 GB of RAM running Linux kernel
2.6.18 with gcc 4.1.2 and Valgrind 3.7.0 – SVN rev. 12129.

Evaluation metrics. We collected running times reported by
specrun, the execution engine of the CPU2006 test harness, and
the peak virtual memory space required over all tested workloads
for each benchmark. We also collected all the profiling reports
generated by aprof on the CPU2006 suite, measuring relevant pa-
rameters such as the number of collected tuples for each routine.
Profiled functions covered both the executable binary and all dy-
namically linked libraries.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

p
e
rc

e
n
ta

g
e
 o

f
ro

u
ti
n
e
s

number of collected tuples

bzip2
astar

gobmk
gcc

sjeng
h264

omnetpp

(a) integer benchmarks

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

p
e
rc

e
n
ta

g
e
 o

f
ro

u
ti
n
e
s

number of collected tuples

calculix
gamess

gromacs
namd

povray
soplex
sphinx

(b) floating-point benchmarks

Figure 7. Percentage of routines for which aprof collected at least
a given number of performance tuples for a representative set of
SPEC CPU2006 benchmarks.

Evaluated tools. We compared the performance of aprof to two
prominent and widely used Valgrind tools: memcheck [38], a tool for
detecting memory-related errors, and callgrind [42], a call-graph
generating cache and branch prediction profiler. We considered two
settings for callgrind: the basic call-graph generating tool and the
tool extended with cache simulation, calling them callgrind-base

and callgrind-cache, respectively. Although the considered tools
solve different analysis problems, all of them share the same in-
strumentation infrastructure provided by Valgrind, which accounts
for a significant fraction of the execution times: memcheck does not
trace function calls/returns and mainly relies on memory read/write
events; callgrind-base instruments function calls/returns, but not
memory accesses, while callgrind-cache traces both kinds of
events like aprof. In our experiments with aprof, we also consid-
ered different values of the memory tracing resolution k discussed
in Section 5. Unless otherwise stated, we used aprof with k = 4.

6.2 Experimental Results

Performance results. Performance figures of our evaluated tools
on the SPEC CPU2006 benchmarks are summarized in Table 1.
Compared to native execution, aprof’s mean slowdown factor is
30.6× (31.9× on CINT and 27.9× on CFP), with a peak slow-
down of 78.3× for xalancbmk, an XSLT engine for XML pro-
cessing. callgrind-cache, which is most similar to aprof from a
tracing perspective, is up to 4.2× slower than aprof, with a mean
slowdown of 3.2×. callgrind-base is 1.5× slower than aprof

on CINT and 1.4× faster on CFP: overall, the two tools deliver
comparable performance, even if callgrind-base does not trace
memory accesses. Compared to memcheck, which is the less heavy-
weight of all considered tools, aprof is about 1.6× slower. How-
ever, memcheck does not trace function calls/returns, which account
for a significant fraction of aprof’s performance.

The mean memory requirements of aprof are within a factor of
2 of native execution, with a peak of 3.9× for gcc. This is needed
for shadowing accessed memory cells with 32-bit timestamps and
for maintaining the performance tuples. Compared to memcheck,
which also uses a memory shadowing approach, aprof requires
about 20% more space. However, the current version of aprof does
not use any shadow memory compression scheme as memcheck

does, and the amount of generated profile data is higher. Both
versions of callgrind, which do not use shadow values, require
less space than aprof and memcheck (30% overhead compared to
native execution). Performance figures on wf-0.41 are similar, with
a slowdown of 43.1× and a space overhead of 1.9×.

Analysis of input-sensitive profiles. Our second set of experi-
ments aims at evaluating some relevant properties of the profiling
data generated by aprof on the SPEC CPU2006 benchmarks. A
first natural question is how many performance tuples can be auto-
matically collected for each routine from a single run of a program

 0

 20

 40

 60

 80

 100

2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

p
e
rc

e
n
ta

g
e
 o

f
p
o
o
r

ro
u
ti
n
e
s

cost (executed BB)

bzip2
astar

gobmk
gcc

sjeng
h264ref

omnetpp

(a) integer benchmarks

 0

 20

 40

 60

 80

 100

2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

p
e
rc

e
n
ta

g
e
 o

f
p
o
o
r

ro
u
ti
n
e
s

cost (executed BB)

calculix
gamess

gromacs
namd

povray
soplex
sphinx

(b) floating-point benchmarks

Figure 8. Percentage of routines with less than 10 collected tuples
and at least a given maximum cost for a representative set of SPEC
CPU2006 benchmarks.

on a typical workload. Charts in Figure 7 plot the percentage of
routines that have at least a given number of tuples for a repre-
sentative set of programs and workloads from both the integer and
floating-point suites. The experiment shows that the results can sig-
nificantly vary across different benchmarks, ranging from programs
where the fraction of routines drops quickly with the number of col-
lected tuples such as bzip2, which does most of the work in a hand-
ful of hot routines, to larger-scale programs containing a wealth of
algorithmic-intensive functions such as gcc, with several rich rou-
tines having many tuples. For instance, the fraction of routines with
at least 10 tuples ranges from a minimum of 7.8% for bzip2 to a
maximum of 49.1% for gcc, with an average value of 18.1% for all
benchmarks. This observation draws an interesting parallel with the
well-known Pareto principle, which accounts most of a program’s
cost to a small fraction of the routines. Notice that for some func-
tions aprof collected hundreds of thousands of tuples. To assess the
potential relevance of “poor” routines, for which we may not have
enough tuples to produce informative plots, we studied their cost
distribution, reported in Figure 8. The chart shows that the maxi-
mum cost per invocation of most poor functions with less than 10
tuples is small (e.g., 70% of poor functions never execute more than
100 basic blocks per invocation), and therefore they are unlikely to
be of any asymptotic interest in the context of the application in
which they are deployed.

Space-accuracy tradeoffs. As a final experiment, we analyzed
the impact of the memory tracing resolution k (see Section 5)
on the performance of aprof and on the profiles it generated on
a representative subset of CINT and CFP benchmarks. Our tests,
reported in Figure 9, show that the mean running time for the
considered benchmarks is barely affected by varying k, while space
usage decreases with k as expected. We also studied how the
percentage of routines with at least 10 tuples varies with k, showing
that the loss of accuracy for lower resolutions is small compared to
the space savings, hence it is reasonable to use k > 1.

7. Related Work

Performance profiling. Performance profiling has been the sub-
ject of extensive research since the early 70’s [27]. In early pro-
filers, performance measurements were associated to isolated syn-
tactic units of a program, such as procedures or statements. The
importance of contextual information was recognized early and pi-
oneered by gprof’s call graph profiles [19]. Since a single level
of context sensitivity may be inaccurate [36, 39], Ammons, Ball,
and Larus introduced the calling context tree (CCT), a compact
data structure to associate performance metrics with entire paths
through a program’s call graph [2]. A variety of techniques have
later been proposed to reduce the slowdown incurred by CCT-based
profilers that work by exhaustive instrumentation, including sam-
pling [16, 21, 43] and bursting [3, 24, 46]. Since the CCT can be

 0

 15

 30
 45

 60

 75

 1 2 4 8 16

s
lo

w
d
o
w

n

k

 0

 1

 2

 3

 4

 1 2 4 8 16

s
p
a
c
e
 o

v
e
rh

e
a
d

k

 0
 5

 10
 15
 20
 25

 1 2 4 8 16

%
 r

tn
 >

 9
 t
u
p
le

s

k

Figure 9. Impact of memory tracing resolution k on time, space
and accuracy, as geometric mean computed over SPEC CPU2006
benchmarks bzip2, gobmk, astar, gcc, sphinx3, and gamess.

very large and difficult to analyze, a different set of works targets
space issues in context-sensitive profiling [7, 13, 20].

At the intraprocedural level, context information is encoded
by path profiles [4], that determine how many times each path in
the control flow graph executes. The seminal work of Ball and
Larus [4] has spawned much research on flow-sensitive profiling:
see, e.g., [2, 5, 6, 26, 32, 37, 41].

All these works on context-sensitive profiling aim at associat-
ing performance metrics to distinct paths traversed either in the call
graph or in the control flow graph during a program’s execution, but
do not explore input-sensitivity issues that are the target of this pa-
per. Context- and input-sensitivity represent two orthogonal aspects
of program profiles and can be naturally combined. The method
proposed by Goldsmith, Aiken, and Wilkerson [18] allows it mea-
sure the empirical computational complexity of a program and is
much closer in spirit to our work: the program is run on different
workloads (possibly spanning several orders of magnitude in size),
the performance of its routines is measured, and all the observa-
tions are fit to a model that predicts performance as a function of
the workload size. Differently from aprof, however, the workload
size of the program’s routines is not computed automatically, but
numerical features characterizing the different workloads must be
explicitly specified by the user.

Performance prediction. Performance prediction provides means
to estimate the running time of a program on different platforms.
Profile-based prediction tools, which are most closely related to
our work, first run benchmark programs once under lightweight in-
strumentation tools in order to generate average statistics for a pro-
gram run, and then feed these statistics to analysis tools that com-
pute an estimate of the run time on a specific machine. While the
instrumentation phase runs the entire program, the analysis phase
runs in a time roughly proportional to the number of static instruc-
tions, which is typically several orders of magnitude smaller than
the number of instructions actually executed. It has been shown
in [35] that this technique can accurately predict the performance
of a detailed out-of-order issue processor model, largely improving
over earlier static analysis methods. Differently from our work, the
goal in [35] is to predict the performance of the same benchmark
on different platform models, and not how the performance scales
with the input size: repeated runs of the instrumentation phase on
different inputs are necessary to pinpoint scalability issues.

The problem of understanding how an application’s perfor-
mance scales given different problem sizes is addressed in [29], de-
scribing a methodology for constructing semi-automatically mod-
els of an application’s characteristics parameterized by problem
size. In [29], data from multiple runs with different and deter-
minable input parameters are first collected and then used to com-
pute a curve parameterized by a parameter related to the problem
size. This is quite different from our approach, where the input
size of each routine activation is automatically computed by the
profiler and the analysis of data extracted from a single program
run may be sufficient to determine the growth rate of the routines’
performance: with our methodology, we cannot predict how an en-
tire program will scale with different problem sizes, but we can

rather automatically discover hidden asymptotic inefficiencies of
different program’s components.

WCET (Worst-Case Execution Time) analysis tools [44] used
in the development of real-time systems also address the prob-
lem of estimating execution times depending on the input data.
In particular, measurement-based methods need to direct input-
data generation in search for worst-case or long program execution
times. This is fundamentally different from input-sensitive profil-
ing, which does not aim at identifying worst-case instances, but
rather at understanding how the execution cost scales on specific
workloads as the input size grows.

Experimental algorithmics. Although worst-case asymptotic
analysis provides a strong mathematical framework for the anal-
ysis of algorithms, predicting the actual behavior of an algorithmic
code may still be a very difficult task [14, 30, 33], since general
theoretical models and techniques do not directly fit to actual ex-
isting machines and to real-world problem instances. Experimental
algorithmics complements and reinforces theoretical analyses with
empirical studies aimed at discovering easy and hard instances
for a problem and measuring practical indicators (implementation
constant factors, locality of references, cache and communication
complexity effects) that may be difficult to predict theoretically.
The problem of inferring asymptotic bounds from experimental
data is rather difficult and there is no sound and generally accepted
solution. Some researchers have nevertheless proposed heuristics
for the “empirical curve bounding” problem, showing their effec-
tiveness for several synthetic and real datasets [31].

Performance profilers are especially useful in the experimental
analysis of algorithmic code. In particular, input-sensitive profiling
conjugates asymptotic algorithmic theory with profiling practice,
and we believe that it may represent a useful tool in this domain,
providing valuable hints to experimenters about asymptotic ineffi-
ciencies and typical usage scenarios of critical subroutines. More-
over, papers in experimental algorithmics only rarely analyze algo-
rithms in situ, i.e., within the actual context of applications they are
deployed in. Our approach makes in situ analysis viable (and easy),
thus exposing possible performance effects (e.g., a larger number
of cache misses) due to the interaction with the overall application.

8. Conclusions

We have proposed a novel approach to performance profiling in-
spired by asymptotic cost models. The running time of an algo-
rithm is typically estimated by theoretical means as a function re-
lating the size of the input to the number of steps of the algorithm.
On the other side, profilers collect runtime information on a single
run on a specific input: this kind of information, although useful,
does not provide insights on code scalability with respect to the
input size. Our profiler relates the measured cost required by the
execution of each code fragment to the size of the processed in-
put data. In this way, it can induce an estimated growth rate of the
running time, pinpointing scalability problems more precisely than
traditional code profiling. We have shown that our approach is both
methodologically sound and practical.

Measuring automatically the size of the input given to a generic
code fragment raises a variety of interesting questions. Namely, the
RMS metric is a measure of distinct accessed memory cells, but
does not consider data that are not stored in the process memory at
the beginning of a function’s execution. For instance, data received
on-line (e.g., reads from external devices such as the network,
keyboard, or timer) or non-deterministic input values read from
I/Os (e.g., input items read in a loop over a file iterator) are not
counted in the input size. A possible solution to these issues could
hinge upon the techniques for logging non-determinism described
in [12]. We regard extending our model towards this direction as an
interesting open issue.

Acknowledgements

We would like to thank Randal Bryant and David O’Hallaron for
their feedback on the difficulty of discovering asymptotic ineffi-
ciencies in large software applications, and to Matthew Hammer
for many useful discussions. We are also indebted to Umberto Fer-
raro Petrillo for hosting our experiments on the Intel Xeon cluster
machine described in Section 6.1 and to Bruno Aleandri for devel-
oping an earlier version of aprof.

This work was supported in part by the Italian Ministry of Ed-
ucation, University, and Research (MIUR) under PRIN 2008TF-
BWL4 national research project “AlgoDEEP: Algorithmic Chal-
lenges for Data-Intensive Processing on Emerging Computing Plat-
forms”.

References

[1] An efficient variation of bubble sort. Information Processing Letters,
11(1):5 – 6, 1980.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware perfor-
mance counters with flow and context sensitive profiling. SIGPLAN

Not., 32(5):85–96, 1997.

[3] M. Arnold and B. Ryder. A framework for reducing the cost of
instrumented code. In PLDI, pages 168–179. ACM, 2001.

[4] T. Ball and J. R. Larus. Efficient path profiling. In MICRO 29:

Proceedings of the 29th annual ACM/IEEE international symposium

on Microarchitecture, pages 46–57, 1996.

[5] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path profiling:
the showdown. In POPL, pages 134–148. ACM, 1998.

[6] M. D. Bond and K. S. McKinley. Practical path profiling for dynamic
optimizers. In CGO, pages 205–216. IEEE Computer Society, 2005.

[7] M. D. Bond and K. S. McKinley. Probabilistic calling context. SIG-

PLAN Not. (Proc. OOPSLA 2007), 42(10):97–112, 2007.

[8] R. E. Bryant. Personal communication, September 2011.

[9] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Program-

mer’s Perspective. Pearson Education, 2010.

[10] R. E. Bryant, D. L. Beatty, K. S. Brace, K. Cho, and T. J. Sheffler.
COSMOS: A Compiled Simulator for MOS Circuits. In DAC, pages
9–16, 1987.

[11] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A. Tukey. Graph-

ical Methods for Data Analysis. Chapman and Hall, New York, 1983.

[12] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In USENIX 2008

Annual Technical Conference, pages 1–14, 2008.

[13] D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining hot calling
contexts in small space. In M. W. Hall and D. A. Padua, editors, PLDI,
pages 516–527. ACM, 2011.

[14] C. Demetrescu, I. Finocchi, and G. F. Italiano. Algorithm engineering.
Bulletin of the EATCS (algorithmics column), 79:48–63, 2003.

[15] Fedora Project. wf: simple word frequency counter. http://
rpmfind.net//linux/RPM/fedora/devel/rawhide/src/w/wf
-0.41-6.fc17.src.html.

[16] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call
path profiling of unmodified, optimized code. In Proc. 19th Annual

International Conf. on Supercomputing, pages 81–90. ACM, 2005.

[17] Genome bioinformatics research laboratory. Resources and datasets.
http://genome.crg.es/main/databases.html.

[18] S. Goldsmith, A. Aiken, and D. S. Wilkerson. Measuring empirical
computational complexity. In ESEC/SIGSOFT FSE, pages 395–404,
2007.

[19] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a call graph
execution profiler (with retrospective). In K. S. McKinley, editor, Best

of PLDI, pages 49–57. ACM, 1982.

[20] R. J. Hall. Call path refinement profiles. IEEE Trans. Softw. Eng., 21
(6):481–496, 1995.

[21] R. J. Hall and A. J. Goldberg. Call path profiling of monotonic pro-
gram resources in UNIX. In Proc. Summer 1993 USENIX Technical

Conference, pages 1–19. USENIX Association, 1993.

[22] M. Hart. Gutenberg Project. http://www.gutenberg.org/.

[23] J. L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH

Comput. Archit. News, 34:1–17, 2006.

[24] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for
low-overhead temporal profiling. In Proc. 4th ACM Workshop on

Feedback-Directed and Dynamic Optimization, 2001.

[25] D. Johnson. A theoretician’s guide to the experimental analysis of al-
gorithms. In Data Structures, Near Neighbor Searches, and Method-

ology, pages 215–250. American Mathematical Society, 2002.

[26] R. Joshi, M. D. Bond, and C. Zilles. Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems. In
CGO, pages 239–250. IEEE Computer Society, 2004.

[27] D. E. Knuth and F. R. Stevenson. Optimal measurement points for
program frequency counts. BIT, 13:313–322, 1973.

[28] T. Küstner, J. Weidendorfer, and T. Weinzierl. Argument controlled
profiling. In Euro-Par’09, pages 177–184, 2010.

[29] G. Marin and J. M. Mellor-Crummey. Cross-architecture performance
predictions for scientific applications using parameterized models. In
Proc. SIGMETRICS 2004, pages 2–13, 2004.

[30] C. C. McGeoch. Experimental algorithmics. Communications of the

ACM, 50(11):27–31, 2007.

[31] C. C. McGeoch, P. Sanders, R. Fleischer, P. R. Cohen, and D. Pre-
cup. Using finite experiments to study asymptotic performance. In
Experimental Algorithmics, LNCS 2547, pages 93–126, 2002.

[32] D. Melski and T. W. Reps. Interprocedural path profiling. In Proc. 8th

Int. Conf. on Compiler Construction, LNCS 1575, pages 47–62, 1999.

[33] B. M. E. Moret. Towards a discipline of experimental algorithmics.
In Data Structures, Near Neighbor Searches, and Methodology, pages
197–250. American Mathematical Society, 2002.

[34] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In PLDI, pages 89–100, 2007.

[35] D. Ofelt and J. L. Hennessy. Efficient performance prediction for
modern microprocessors. In SIGMETRICS, pages 229–239, 2000.

[36] C. Ponder and R. J. Fateman. Inaccuracies in program profilers. Softw.,

Pract. Exper., 18(5):459–467, 1988.

[37] S. Roy and Y. N. Srikant. Profiling k-iteration paths: A generalization
of the ball-larus profiling algorithm. In CGO, pages 70–80, 2009.

[38] J. Seward and N. Nethercote. Using Valgrind to detect undefined value
errors with bit-precision. In USENIX Annual Technical Conference,
pages 17–30. USENIX, 2005.

[39] J. M. Spivey. Fast, accurate call graph profiling. Softw., Pract. Exper.,
34(3):249–264, 2004.

[40] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2):215–225, 1975.

[41] K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferential path profil-
ing: compactly numbering interesting paths. In POPL, pages 351–362.
ACM, 2007.

[42] J. Weidendorfer, M. Kowarschik, and C. Trinitis. A tool suite for
simulation based analysis of memory access behavior. In Int. Conf.

on Computational Science, LNCS 3038, pages 440–447, 2004.

[43] J. Whaley. A portable sampling-based profiler for Java virtual ma-
chines. In Proc. ACM 2000 Conf. on Java Grande, pages 78–87, 2000.

[44] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. B.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. P. Puschner, J. Staschulat, and P. Stenström. The worst-case
execution-time problem - overview of methods and survey of tools.
ACM Trans. Embedded Comput. Syst., 7(3), 2008.

[45] T. Williams and C. Kelley. Gnuplot: command-driven interactive
function plotting program. http://www.gnuplot.info/.

[46] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate,
efficient, and adaptive calling context profiling. In PLDI, pages 263–
271, 2006.

