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We present a method and a tool, OntoLearn, aimed at the extraction of domain ontologies from
Web sites, and more generally from documents shared among the members of virtual organiza-
tions. OntoLearn �rst extracts a domain terminology from available documents. Then, complex
domain terms are semantically interpreted and arranged in a hierarchical fashion. Finally, a
general-purpose ontology, WordNet, is trimmed and enriched with the detected domain concepts.
The major novel aspect of this approach is semantic interpretation, that is, the association of a
complex concept with a complex term. This involves �nding the appropriate WordNet concept
for each word of a terminological string and the appropriate conceptual relations that hold among
the concept components. Semantic interpretation is based on a new word sense disambiguation
algorithm, called structural semantic interconnections.

1. Introduction

The importance of domain ontologies is widely recognized, particularly in relation to
the expected advent of the Semantic Web (Berners-Lee 1999). The goal of a domain on-
tology is to reduce (or eliminate) the conceptual and terminological confusion among
the members of a virtual community of users (for example, tourist operators, commer-
cial enterprises, medical practitioners) who need to share electronic documents and
information of various kinds. This is achieved by identifying and properly de�ning a
set of relevant concepts that characterize a given application domain. An ontology is
therefore a shared understanding of some domain of interest (Uschold and Gruninger
1996). The construction of a shared understanding, that is, a unifying conceptual frame-
work, fosters

° communication and cooperation among people

° better enterprise organization

° interoperability among systems

° system engineering bene�ts (reusability, reliability, and speci�cation)

Creating ontologies is, however, a dif�cult and time-consuming process that involves
specialists from several �elds. Philosophical ontologists and arti�cial intelligence lo-
gicians are usually involved in the task of de�ning the basic kinds and structures
of concepts (objects, properties, relations, and axioms) that are applicable in every
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Figure 1
The three levels of generality of a domain ontology.

possible domain. The issue of identifying these very few “basic” principles, now often
referred to as foundational ontologies (FOs) (or top, or upper ontologies; see Figure 1)
(Gangemi et al. 2002), meets the practical need of a model that has as much generality
as possible, to ensure reusability across different domains (Smith and Welty 2001).

Domain modelers and knowledge engineers are involved in the task of identify-
ing the key domain conceptualizations and describing them according to the organi-
zational backbones established by the foundational ontology. The result of this effort
is referred to as the core ontology (CO), which usually includes a few hundred ap-
plication domain concepts. While many ontology projects eventually succeed in the
task of de�ning a core ontology,1 populating the third level, which we call the speci�c
domain ontology (SDO), is the actual barrier that very few projects have been able to
overcome (e.g., WordNet [Fellbaum 1995], Cyc [Lenat 1993], and EDR [Yokoi 1993]),
but they pay a price for this inability in terms of inconsistencies and limitations.2

It turns out that, although domain ontologies are recognized as crucial resources
for the Semantic Web, in practice they are not available and when available, they are
rarely used outside speci�c research environments.

So which features are most needed to build usable ontologies?

° Coverage: The domain concepts must be there; the SDO must be
suf�ciently (for the application purposes) populated. Tools are needed to
extensively support the task of identifying the relevant concepts and the
relations among them.

° Consensus: Decision making is a dif�cult activity for one person, and it
gets even harder when a group of people must reach consensus on a
given issue and, in addition, the group is geographically dispersed.
When a group of enterprises decide to cooperate in a given domain, they
have �rst to agree on many basic issues; that is, they must reach a
consensus of the business domain. Such a common view must be
re�ected by the domain ontology.

° Accessibility: The ontology must be easily accessible: tools are needed to
easily integrate the ontology within an application that may clearly show

1 Several ontologies are already available on the Internet, including a few hundred more or less
extensively de�ned concepts.

2 For example, it has been claimed by several researchers (e.g., Oltramari et al., 2002) that in WordNet
there is no clear separation between concept-synsets, instance-synsets, relation-synsets, and
meta-property-synsets.
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its decisive contribution, e.g., improving the ability to share and
exchange information through the web.

In cooperation with another research institution,3 we de�ned a general architecture
and a battery of systems to foster the creation of such “usable” ontologies. Consensus
is achieved in both an implicit and an explicit way: implicit, since candidate concepts
are selected from among the terms that are frequently and consistently employed in
the documents produced by the virtual community of users; explicit, through the use
of Web-based groupware aimed at consensual construction and maintenance of an
ontology. Within this framework, the proposed tools are OntoLearn, for the automatic
extraction of domain concepts from thematic Web sites; ConSys, for the validation
of the extracted concepts; and SymOntoX, the ontology management system. This
ontology-learning architecture has been implemented and is being tested in the con-
text of several European projects,4 aimed at improving interoperability for networked
enterprises.

In Section 2, we provide an overview of the complete ontology-engineering archi-
tecture. In the remaining sections, we describe in more detail OntoLearn, a system that
uses text mining techniques and existing linguistic resources, such as WordNet and
SemCor, to learn, from available document warehouses and dedicated Web sites, do-
main concepts and taxonomic relations among them. OntoLearn automatically builds
a speci�c domain ontology that can be used to create a specialized view of an exist-
ing general-purpose ontology, like WordNet, or to populate the lower levels of a core
ontology, if available.

2. The Ontology Engineering Architecture

Figure 2 reports the proposed ontology-engineering method, that is, the sequence of
steps and the intermediate outputs that are produced in building a domain ontol-
ogy. As shown in the �gure, ontology engineering is an iterative process involving
concept learning (OntoLearn), machine-supported concept validation (ConSys), and
management (SymOntoX).

The engineering process starts with OntoLearn exploring available documents
and related Web sites to learn domain concepts and detect taxonomic relations among
them, producing as output a domain concept forest. Initially, we base concept learning
on external, generic knowledge sources (we use WordNet and SemCor). In subsequent
cycles, the domain ontology receives progressively more use as it becomes adequately
populated.

Ontology validation is undertaken with ConSys (Missikoff and Wang 2001), a
Web-based groupware package that performs consensus building by means of thor-
ough validation by the representatives of the communities active in the application
domain. Throughout the cycle, OntoLearn operates in connection with the ontology
management system, SymOntoX (Formica and Missikoff 2003). Ontology engineers use
this management system to de�ne and update concepts and their mutual connections,
thus allowing the construction of a semantic net. Further, SymOntoX’s environment
can attach the automatically learned domain concept trees to the appropriate nodes of
the core ontology, thereby enriching concepts with additional information. SymOntoX

3 The LEKS-CNR laboratory in Rome.
4 The Fetish EC project, ITS-13015 (http://fetish.singladura.com/index.php) and the Harmonise EC

project, IST-2000-29329 (http://dbs.cordis.lu), both in the tourism domain, and the INTEROP Network
of Excellence on interoperability IST-2003-508011.

http://fetish.singladura.com/index.php
http://dbs.cordis.lu
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The ontology-engineering chain.

also performs consistency checks. The self-learning cycle in Figure 2 consists, then, of
two steps: �rst, domain users and experts use ConSys to validate the automatically
learned ontology and forward their suggestions to the knowledge engineers, who im-
plement them as updates to SymOntoX. Then, the updated domain ontology is used
by OntoLearn to learn new concepts from new documents.

The focus of this article is the description of the OntoLearn system. Details on
other modules of the ontology-engineering architecture can be found in the referenced
papers.

3. Architecture of the OntoLearn System

Figure 3 shows the architecture of the OntoLearn system. There are three main phases:
First, a domain terminology is extracted from available texts in the application domain
(specialized Web sites and warehouses, or documents exchanged among members of
a virtual community), and �ltered using natural language processing and statistical
techniques. Second, terms are semantically interpreted (in a sense that we clarify in
Section 3.2) and ordered according to taxonomic relations, generating a domain con-
cept forest (DCF). Third, the DCF is used to update the existing ontology (WordNet
or any available domain ontology).

In a “stand-alone” mode, OntoLearn automatically creates a specialized view of
WordNet, pruning certain generic concepts and adding new domain concepts. When
used within the engineering chain shown in Figure 2, ontology integration and up-
dating is performed by the ontology engineers, who update an existing core ontology
using SymOntoX.

In this article we describe the stand-alone procedure.

3.1 Phase 1: Terminology Extraction
Terminology is the set of words or word strings that convey a single (possibly complex)
meaning within a given community. In a sense, terminology is the surface appearance,
in texts, of the domain knowledge of a community. Because of their low ambiguity
and high speci�city, these words are also particularlyuseful for conceptualizing a knowledge
domain or for supporting the creation of a domain ontology. Candidate terminological
expressions are usually captured with more or less shallow techniques, ranging from
stochastic methods (Church and Hanks 1989; Yamamoto and Church 2001) to more
sophisticated syntactic approaches (Jacquemin 1997).
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Figure 3
The architecture of OntoLearn.

Obviously, richer syntactic information positively in�uences the quality of the
result to be input to the statistical �ltering. In our experiments we used the linguis-
tic processor ARIOSTO (Basili, Pazienza, and Velardi 1996) and the syntactic parser
CHAOS (Basili, Pazienza, and Zanzotto 1998). We parsed the available documents in
the application domain in order to extract a list Tc of syntactically plausible termino-
logical noun phrases (NPs), for example, compounds (credit card), adjective-NPs (local
tourist information of�ce), and prepositional-NPs (board of directors). In English, the �rst
two constructs are the most frequent.

OntoLearn uses a novel method for �ltering “true” terminology, described in detail
in (Velardi, Missikoff, and Basili 2001). The method is based on two measures, called
Domain Relevance (DR) and Domain Consensus (DC), that we introduce hereafter.
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High frequency in a corpus is a property observable for terminological as well as
nonterminological expressions (e.g., last week or real time). We measure the speci�city of
a terminological candidate with respect to the target domain via comparative analysis
across different domains. To this end a speci�c DR score has been de�ned. A quantita-
tive de�nition of the DR can be given according to the amount of information captured
within the target corpus with respect to a larger collection of corpora. More precisely,
given a set of n domains fD1, : : : , Dng and related corpora, the domain relevance of a
term t in class Dk is computed as

DRt,k =
P(tjDk)

max
1µjµn

P(tjDj)
(1)

where the conditional probabilities (P(tjDk)) are estimated as

E(P(tjDk)) =
ft,kX

t 0 2 Dk

ft0 ,k

where ft,k is the frequency of term t in the domain Dk (i.e., in its related corpus).
Terms are concepts whose meaning is agreed upon by large user communities in a

given domain. A more selective analysis should take into account not only the overall
occurrence of a term in the target corpus but also its appearance in single documents.
Domain terms (e.g., travel agent) are referred to frequently throughout the documents
of a domain, while there are certain speci�c terms with a high frequency within single
documents but completely absent in others (e.g., petrol station, foreign income). Dis-
tributed usage expresses a form of consensus tied to the consolidated semantics of a
term (within the target domain) as well as to its centrality in communicating domain
knowledge.

A second relevance indicator, DC, is then assigned to candidate terms. DC mea-
sures the distributed use of a term in a domain Dk. The distribution of a term t in
documents d 2 Dk can be taken as a stochastic variable estimated throughout all
d 2 Dk. The entropy of this distribution expresses the degree of consensus of t in Dk.
More precisely, the domain consensus is expressed as follows:

DCt,k =
X

d 2 Dk

Pt(d) log
1

Pt(d)
(2)

where

E(Pt(dj)) =
ft,jX

dj 2 Dk

ft,j

Nonterminological (or nondomain) candidate terms are �ltered using a combination
of measures (1) and (2).

For each candidate term the following term weight is computed:

TWt,k = ¬ DRt,k +  DCnorm
t,k

where DCnorm
t,k is a normalized entropy and ¬ ,  2 (0, 1). We experimented with several

thresholds for ¬ and  , with consistent results in two domains (Velardi, Missikoff, and
Basili 2001). Usually, a value close to 0.9 is to be chosen for ¬ . The threshold for
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Table 1
The �rst 10 terms from a tourism (left) and
�nance (right) domain.

tourism �nance

travel information vice president
shopping street net income
airline ticket executive of�cer
booking form composite trading
bus service stock market
car rental interest rate
airport transfer million share
contact detail holding company
continental breakfast third-quarter net
tourist information of�ce chief executive

service

ferry service
boat service

car ferry service

bus service
transport
service

public transport
service

coach
service

taxi service

express servicetrain service

car service customer
service

Figure 4
A lexicalized tree in a tourism domain.

 depends upon the number N of documents in the training set of Dk. When N is
suf�ciently large, “good” values are between 0.35 and 0.25. Table 1 shows some of the
accepted terms in two domains, ordered by TW.

3.2 Phase 2: Semantic Interpretation
The set of terms accepted by the �ltering method described in the previous section are
�rst arranged in subtrees, according to simple string inclusion.5 Figure 4 is an example
of what we call a lexicalized tree T . In absence of semantic interpretation, it is not
possible to fully capture conceptual relationships between concepts (for example, the
taxonomic relation between bus service and public transport service in Figure 4).

Semantic interpretation is the process of determining the right concept (sense) for
each component of a complex term (this is known as sense disambiguation) and then
identifying the semantic relations holding among the concept components, in order to
build a complex concept. For example, given the complex term bus service, we would
like to associate a complex concept with this term as in Figure 5, where bus#1 and
service#1 are unique concept names taken from a preexisting concept inventory (e.g.,
WordNet, though other general-purpose ontologies could be used), and INSTR is a
semantic relation indicating that there is a service, which is a type of work (service#1),
operated through (instrument) a bus, which is a type of public transport (bus#1).

5 Inclusion is on the right side in the case of compound terms (the most common syntactic construct for
terminology in English).
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bus#1 service#1
INSTR

Figure 5
A complex term represented as a complex concept.

This kind of semantic interpretation is indeed possible if the meaning of a new
complex concept can be interpreted compositionally from its components. Clearly, this
is not always possible. Furthermore, some of the component concepts may be absent
in the initial ontology. In this case, other strategies can be adopted, as sketched in
Section 6.

To perform semantic disambiguation, we use available lexical resources, like Word-
Net and annotated corpora, and a novel word sense disambiguation (WSD) algorithm
called structural semantic interconnection. A state-of-art inductive learner is used to
learn rules for tagging concept pairs with the appropriate semantic relation.

In the following, we �rst describe the semantic disambiguation algorithm (Sec-
tions 3.2.1 to 3.2.4). We then describe the semantic relation extractor (Section 3.2.5).

3.2.1 The Structural Semantic Interconnection Algorithm. OntoLearn is a tool for
extending and trimming a general-purpose ontology. In its current implementation,
it uses a concept inventory taken from WordNet. WordNet associates one or more
synsets (e.g., unique concept names) to over 120,000 words but includes very few
domain terms: for example, bus and service are individually included, but not bus
service as a unique term.

The primary strategy used by OntoLearn to attach a new concept under the ap-
propriate hyperonym of an existing ontology is compositional interpretation. Let
t = wn : : : w2 w1 be a valid multiword term belonging to a lexicalized tree T .
Let w1 be the syntactic head of t (e.g., the rightmost word in a compound, or the
leftmost in a prepositional NP). The process of compositional interpretation associates
the appropriate WordNet synset Sk with each word wk in t. The sense of t is hence
compositionally de�ned as

S(t) = [SkjSk 2 Synsets(wk), wk 2 t]

where Synsets(wk) is the set of senses provided by WordNet for word wk, for instance:

S (“transport company00) = [ftransportation#4, shipping#1, transport#3g,
fcompany#1g]

corresponding to sense 1 of company (an institution created to conduct business) and
sense 3 of transport (the commercial enterprise of transporting goods and materials).

Compositional interpretation is a form of word sense disambiguation. In this sec-
tion, we de�ne a new approach to sense disambiguation called structural semantic
interconnections (SSI).

The SSI algorithm is a kind of structural pattern recognition. Structural pattern
recognition (Bunke and Sanfeliu 1990) has proven to be effective when the objects to
be classi�ed contain an inherent, identi�able organization, such as image data and
time-series data. For these objects, a representation based on a “�at” vector of fea-
tures causes a loss of information that has a negative impact on classi�cation per-
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coachvehicle transport passenger
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(vehicle, passenger, transport) (a)

(b)

Figure 6
Two representations of the same concept: (a) as a feature vector and (b) as a semantic graph.

formances. The classi�cation task in a structural pattern recognition system is imple-
mented through the use of grammars that embody precise criteria to discriminate
among different classes. The drawback of this approach is that grammars are by their
very nature application and domain speci�c. However, automatic learning techniques
may be adopted to learn from available examples.

Word senses clearly fall under the category of objects that are better described
through a set of structured features. Compare for example the following two feature-
vector (a) and graph-based (b) representations of the WordNet de�nition of coach#5 (a
vehicle carrying many passengers, used for public transport) in Figure 6. The graph
representation shows the semantic interrelationships among the words in the de�ni-
tion, in contrast with the �at feature vector representation.

Provided that a graph representation for alternative word senses in a context is
available, disambiguation can be seen as the task of detecting certain “meaningful” intercon-
necting patterns among such graphs. We use a context-free grammar to specify the type
of patterns that are the best indicators of a semantic interrelationship and to select the
appropriate sense con�gurations accordingly.

In what follows, we �rst describe the method to obtain a graph representation
of word senses from WordNet and other available resources. Then, we illustrate the
disambiguation algorithm.

Creating a graph representation for word senses. A graph representation of word senses is
automatically built using a variety of knowledge source:

1. WordNet. In WordNet, in addition to synsets, the following information
is provided:

(a) a textual sense de�nition (gloss);
(b) hyperonymy links (i.e., kind-of relations: for example, bus#1

is a kind of public transport#1);
(c) meronymy relations (i.e., part-of relations: for example, bus#1

has part roof#2 and window#2);
(d) other syntactic-semantic relations, as detailed later, not

systematically provided throughout the lexical knowledge
base.

2. Domain labels6 extracted by a semiautomatic methodology described in
Magnini and Cavaglia (2000) for assigning domain information (e.g.,
tourism, zoology, sport) to WordNet synsets.

3. Annotated corpora providing examples of word sense usages in contexts:

6 Domain labels have been kindly made available by the IRST to our institution for research purposes.
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(a) SemCor7 is a corpus in which each word in a sentence is
assigned a sense selected from the WordNet sense inventory for
that word. Examples of a SemCor document are the following:

Color#1 was delayed#1 until 1935, the widescreen#1 until the early#1
�fties#1.

Movement#7 itself was#7 the chief#1 and often#1 the only#1
attraction#4 of the primitive#1 movies#1 of the nineties#1.

(b) LDC/DSO8 is a corpus in which each document is a collection of
sentences having a certain word in common. The corpus
provides a sense tag for each occurrence of the word within the
document. Examples from the document focused on the noun
house are the following:

Ten years ago, he had come to the house#2 to be interviewed.

Halfway across the house#1, he could have smelled her morning
perfume.

(c) In WordNet, besides glosses, examples are sometimes provided
for certain synsets. From these examples, as for the LDC and
SemCor corpora, co-occurrence information can be extracted.
Some examples are the following:

Overnight accommodations#4 are available.

Is there intelligent#1 life in the universe?

An intelligent#1 question.

The use of other semantic knowledge repositories (e.g., FrameNet9 and Verbnet10)
is currently being explored, the main problem being the need of harmonizing these
resources with the WordNet sense and relations inventory.

The information available in WordNet and in the other resources described in the
previous section is used to automatically generate a labeled directed graph (digraph)
representation of word senses. We call this a semantic graph.

Figure 7 shows an example of the semantic graphs generated for senses 1 (coach)
and 2 (conductor) of bus; in the �gure, nodes represent concepts (WordNet synsets)
and edges are semantic relations. In each graph in the �gure, we include only nodes
with a maximum distance of three from the central node, as suggested by the dashed
oval. This distance has been experimentally established.

The following semantic relations are used: hyperonymy (car is a kind of vehicle,

denoted with kind¡of¡ ! ), hyponymy (its inverse, has¡kind¡ ! ), meronymy (room has-part wall,
has¡part¡ ! ), holonymy (its inverse,

part¡of¡ ! ), pertainymy (dental pertains-to tooth,
pert¡ !), at-

tribute (dry value-of wetness,
att!), similarity (beautiful similar-to pretty, sim!), gloss (

gloss¡ !),

7 http://www.cs.unt.edu/¹rada/downloads.html#semcor
8 http://www.ldc.upenn.edu/
9 http://www.icsi.berkeley.edu/¹framenet/

10 http://www.cis.upenn.edu/verbnet/

http://www.cs.unt.edu/%7Erada/downloads.html%23semcor
http://www.ldc.upenn.edu/
http://www.icsi.berkeley.edu/%7Eframenet/
http://www.cis.upenn.edu/verbnet/
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Figure 7
Graph representations for (a) sense 1 and (b) sense 2 of bus.

topic (
topic¡ !), and domain ( dl!). All these relations are explicitly encoded in WordNet, ex-

cept for the last three. Topic, gloss, and domain are extracted from annotated corpora,
sense de�nitions, and domain labels, respectively. Topic expresses a co-occurrence rela-
tion between concepts in texts, extracted from annotated corpora and usage examples.
Gloss relates a concept to another concept occurring in its natural language de�ni-
tion. Finally, domain relates two concepts sharing the same domain label. In parsing
glosses, we use a stop list to eliminate the most frequent words.

The SSI algorithm. The SSI algorithm is a knowledge-based iterative approach to
word sense disambiguation. The classi�cation problem can be stated as follows:

° t is a term

° T (the context of t) is a list of co-occurring terms, including t.

° I is a structural representation of T (the semantic context).
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° St
1, St

2, : : : , St
n are structural speci�cations of the possible senses for t

(semantic graphs).

° G is a grammar describing structural relations (semantic
interconnections) among the objects to be analyzed.

° Determine how well the structure of I matches that of each of
St

1, St
2, : : : , St

n, using G.

° Select the best matching.

Structural representations are graphs, as previously detailed. The SSI algorithm con-
sists of an initialization step and an iterative step.

In a generic iteration of the algorithm, the input is a list of co-occurring terms
T = [t1, : : : , tn] and a list of associated senses I = [St1 , : : : , Stn ], that is, the semantic
interpretation of T, where Sti 11 is either the chosen sense for ti (i.e., the result of a
previous disambiguation step) or the empty set (i.e., the term is not yet disambiguated).
A set of pending terms is also maintained, P = ftijSti = ;g. I is referred to as the semantic
context of T and is used, at each step, to disambiguate new terms in P.

The algorithm works in an iterative way, so that at each stage either at least
one term is removed from P (i.e., at least one pending term is disambiguated) or
the procedure stops because no more terms can be disambiguated. The output is the
updated list I of senses associated with the input terms T.

Initially, the list I includes the senses of monosemous terms in T. If no monosemous
terms are found, the algorithm uses an initialization policy described later.

During a generic iteration, the algorithm selects those terms t in P showing an
interconnection between at least one sense S of t and one or more senses in I. The
likelihood that a sense S will be the correct interpretation of t, given the semantic
context I, is estimated by the function fI : Synsets £ T ! <, where Synsets is the set of
all the concepts in WordNet, and de�ned as follows:

fI(S, t) =
» (f¿ (S, S0)jS0 2 Ig) if S 2 Senses(t) » Synsets

0 otherwise

where Senses(t) is the subset of synsets in WordNet associated with the term t, and

¿ (S, S0) = » 0(fw(e1, e2, : : : , en)jS e1! S1
e2! : : :

en ¡ 1! Sn¡1
en! S0g), that is, a function ( » 0) of

the weights (w) of each path connecting S with S0, where S and S0 are represented
by semantic graphs. A semantic path between two senses S and S0, S e1! S1

e2! : : :
en ¡ 1!

Sn¡1
en! S0, is represented by a sequence of edge labels e1, e2, : : : , en. A proper choice

for both » and » 0 may be the sum function (or the average sum function).
A context-free grammar G = (E, N, SG, PG) encodes all the meaningful semantic

patterns. The terminal symbols (E) are edge labels, while the nonterminal symbols (N)
encode (sub)paths between concepts; SG is the start symbol of G, and PG the set of its
productions.

We associate a weight with each production A ! ¬ 2 PG, where A 2 N and
¬ 2 (N [ E) ¤ , that is, ¬ is a sequence of terminal and nonterminal symbols. If the
sequence of edge labels e1, e2, : : : , en belongs to L(G), the language generated by the
grammar, and G is not ambiguous, then w(e1, e2, : : : , en) is given by the sum of the

11 Note that with Sti we refer interchangeably to the semantic graph associated with a sense or to the
sense label (i.e., the synset).
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weights of the productions applied in the derivation SG )¤ e1, e2, : : : , en. (The grammar
G is described in the next subsection.)

Finally, the algorithm selects St =argmax
S2 Synsets

fI(S, t) as the most likely interpretation of

t and updates the list I with the chosen concept. A threshold can be applied to fI(S, t)
to improve the robustness of the system’s choices.

At the end of a generic iteration, a number of terms are disambiguated, and each
of them is removed from the set of pending terms P. The algorithm stops with output
I when no sense S0 can be found for the remaining terms in P such that fI(S0, t0) > 0,
that is, P cannot be further reduced. In each iteration, interconnections can be found
only between the sense of a pending term t and the senses disambiguated during the
previous iteration.

If no monosemous words are found, we explore two alternatives: either we provide
manually the synset of the root term h (e.g., service#1 in Figure 4: work done by one
person or group that bene�ts another), or we fork the execution of the algorithm into
as many processes as the number of senses of the root term h. Let n be such a number.
For each process i (i = 1, : : : , n), the input is given by Ii = [;, ;, : : : , Sh

i , : : : , ;], where
Sh

i is the ith sense of h in Senses(h). Each execution outputs a (partial or complete)
semantic context Ii. Finally, the most likely context Im is obtained by choosing

m = arg max
1µiµn

X

St 2 Ii

fIi(S
t, t)

Figure 8 provides pseudocode for the SSI algorithm.

3.2.2 The Grammar. The grammar G has the purpose of describing meaningful inter-
connecting patterns among semantic graphs representing concepts in the ontology. We
de�ne a pattern as a sequence of consecutive semantic relations e1 e2 : : : en where ei 2 E,
the set of terminal symbols, that is, the vocabulary of conceptual relations. Two rela-
tions ei ei+ 1 are consecutive if the edges labeled with ei and ei+ 1 are incoming and/or
outgoing from the same concept node, for example, ei! S

ei 1! , eiÁ S
ei 1Á , eiÁ S

ei 1! , ei! S
ei 1Á .

A meaningful pattern between two senses S and S0 is a sequence e1 e2 : : : en that
belongs to L(G).

In its current version, the grammar G has been de�ned manually, inspecting the
intersecting patterns automatically extracted from pairs of manually disambiguated
word senses co-occurring in different domains. Some of the rules in G are inspired
by previous work in the eXtended WordNet12 project. The terminal symbols ei are
the conceptual relations extracted from WordNet and other on-line lexical-semantic
resources, as described in Section 3.2.1.

G is de�ned as a quadruple (E, N, SG, PG), where E = f ekind-of, ehas-kind, epart-of,
ehas-part, egloss, eis-in-gloss, etopic, : : :g, N = f SG, Ss, Sg, S1, S2, S3, S4, S5, S6, E1, E2, : : :g, and
PG includes about 50 productions. An excerpt from the grammar is shown in Table 2.

As stated in the previous section, the weight w(e1, e2, : : : , en) of a semantic path
e1, e2, : : : , en is given by the sum of the weights of the productions applied in the
derivation SG ) ¤ e1, e2, : : : , en. These weights have been experimentally established on
standard word sense disambiguation data, such as the SemCor corpus, and have been
normalized so that the weight of a semantic path always ranges between 0 and 1.

The main rules in G are as follows (S1 and S2 are two synsets in I):

12 http://xwn.hlt.utdallas.edu/papers.html.

http://xwn.hlt.utdallas.edu/papers.html
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SSI(T : list of terms, I : initial list of interpretation synsets)
f

for each t 2 T
if (t is monosemous) I[t] = the only sense of t

P := ft 2 T : I[t] = ;g

f while there are more terms to disambiguate g
do
f

P0 := P
for each t 2 P0 f for each pending term g
f

bestSense := ;
maxValue := 0
f for each possible interpretation of t g
for each sense S of t in WordNet
f

f [S] := 0
for each synset S0 2 I
f

¿ := 0
for each semantic path e1e2 : : : en between S and S0

¿ := ¿ + w(e1e2 : : : en)

f [S] := f [S] + ¿
g
if (f [S] > maxValue)
f

maxValue := f [S]
bestSense := S

g
g
if (maxValue > 0)
f

I[t] := bestSense
P := P n ftg

g
g

g while(P 6= P0)

return I
g

Figure 8
The SSI algorithm in pseudocode.
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Table 2
Excerpt from the context-free grammar for the recognition of semantic
interconnections.

SG ! SsjSg (all the rules)
Ss ! S1jS2jS3 (simple rules)
S1 ! E1S1jE1 (hyperonymy/meronymy)
E1 ! ekind ¡ ofjepart ¡ of

S2 ! E2S2jE2 (hyponymy/holonymy)
E2 ! ehas ¡ kindjehas¡ part

S3 ! ekind ¡ ofS3ehas¡ kindjekind ¡ ofehas¡ kind (parallelism)
Sg ! eglossSsjS4jS5jS6 (gloss rules)
S4 ! egloss (gloss rule)
S5 ! etopic (topic rule)
S6 ! eglosseis ¡ in ¡ gloss (gloss + gloss ¡ 1 rule)

1. color, if S1 is in the same adjectival cluster as chromatic#3 and S2 is a
hyponym of a concept that can assume a color like physical object#1 and
food#1 (e.g., S1 ² yellow#1 and S2 ² wall#1)

2. domain, if the gloss of S1 contains one or more domain labels and S2 is a
hyponym of those labels (for example, white#3 is de�ned as “(of wine)
almost colorless,” therefore it is the best candidate for wine#1 in order to
disambiguate the term white wine)

3. synonymy, if

(a) S1 ² S2 or (b) 9N 2 Synsets : S1
pert
¡ ! N ² S2

(for example, in the term open air, both the words belong to synset
f open#8, air#2, : : : , outdoors#1 g)

4. hyperonymy/meronymy path, if there is a sequence of

hyperonymy=meronymy relations (for example, mountain#1
has-part¡ !

mountain peak#1 kind-of¡ ! top#3 provides the right sense for each word of
mountain top)

5. hyponymy=holonymy path, if there is a sequence of

hyponymy=holonymy relations (for example, in sand beach, sand#1
part-of¡ !

beach#1);

6. parallelism, if S1 and S2 have a common ancestor (for example, in
enterprise company, organization#1 is a common ancestor of both
enterprise#2 and company#1)

7. gloss, if S1
gloss¡ ! S2 (for example, in web site, the gloss of web#5 contains

the word site; in waiter service, the gloss of restaurant attendant#1,
hyperonym of waiter#1, contains the word service)

8. topic, if S1
topic¡ ! S2 (for example, in the term archeological site, in which

both words are tagged with sense 1 in a SemCor �le; notice that
WordNet provides no mutual information about them; also consider
picturesque village: WordNet provides the example “a picturesque village”
for sense 1 of picturesque)
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9. gloss+hyperonymy=meronymy path, if 9G 2 Synsets : S1
gloss¡ ! G and there

is a hyperonymy=meronymy path between G and S2 (for example, in
railway company, the gloss of railway#1 contains the word organization and

company#1 kind-of¡ ! institution#1 kind-of¡ ! organization#1)

10. gloss+parallelism, if 9G 2 Synsets : S1
gloss¡ ! G and there is a parallelism

path between G and S2 (for example, in transport company, the gloss of
transport#3 contains the word enterprise and organization#1 is a common
ancestor of both enterprise#2 and company#1)

11. gloss+gloss, if 9G 2 Synsets : S1
gloss
¡ ! G

gloss
Á¡ S2 (for example, in mountain

range, mountain#1 and range#5 both contain the word hill so that the
right senses can be chosen)

12. hyperonymy=meronymy+gloss path, if 9G 2 Synsets : G
glossÁ¡ S2 and there

is a hyperonymy/meronymy path between S1 and G

13. parallelism+gloss, if 9G 2 Synsets : G
glossÁ¡ S2 and there is a parallelism

path between S1 and G.

3.2.3 A Complete Example. We now provide a complete example of the SSI algorithm
applied to the task of disambiguating a lexicalized tree T . With reference to Figure 4,
the list T is initialized with all the component words in T , that is, [service, train, ferry,
car, boat, car-ferry, bus, coach, transport, public transport, taxi, express, customer].

Step 1. In T there are four monosemous words, taxi, car-ferry, public transport, and
customer; therefore, we have

I = [taxi#1, car ferry#1, public transport#1, customer#1]

P = fservice, train, ferry, car, boat, bus, coach, transport,expressg:

Step 2. During the second iteration, the following rules are matched:13

ftaxig kind-of¡ ! fcar, autog(hyper)

ftaxig kind-of¡ ! fcar, autog kind-of¡ ! fmotor vehicle,automotive vehicleg
kind-of¡ ! fvehicleg glossÁ¡ fbus, autobus, coachg(hyper + gloss)

ftaxig kind-of¡ ! fcar, autog kind-of¡ ! fmotor vehicle,automotive vehicleg kind-of¡ ! fvehicleg
glossÁ¡ fferry, ferryboatg(hyper + gloss)

fbus, autobus, coachg kind-of¡ ! fpublic transportg(hyper)

fcar ferryg kind-of¡ ! fferry, ferryboatg(hyper)

13 More than one rule may contribute to the disambiguation of a term. We list here only some of the
detected patterns.
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fcustomer, clientg topic¡ ! fserviceg(topic)

fserviceg gloss¡ ! fperson, someoneg has-kind¡ ! fconsumerg
has-kind¡ ! fcustomer, clientg(gloss + hypo)

ftrain, railroad traing kind-of¡ ! fpublic transportg(hyper)

fexpress, expressbusg kind-of¡ ! fbus, autobus, coachg kind-of¡ ! fpublic transportg(hyper)

fconveyance, transportg has-kind¡ ! fpublic transportg(hypo)

obtaining:

I = [taxi#1, car ferry#1, public transport#1, customer#1, car#1, ferry#1, bus#1,
coach#5, train#1, express#2, transport#1, service#1] 14

P = fboatg:

Step 3.

fboatg has-kind¡ ! fferry, ferryboatg(hypo)

I = [taxi#1, car ferry#1, public transport#1, customer#1, car#1, ferry#1, bus#1,
coach#5, train#1, express#2, boat#1, transport#1, service#1 ]

P = ;:

Then the algorithm stops since the list P is empty.

3.2.4 Creating Domain Trees. During the execution of the SSI algorithm, (possibly)
all the terms in a lexicalized tree T are disambiguated. Subsequently, we proceed as
follows:

a. Concept clustering: Certain concepts can be clustered in a unique
concept on the basis of pertainymy, similarity, and synonymy (e.g.,
manor house and manorial house, expert guide and skilled guide, bus service
and coach service, respectively); notice again that we detect semantic
relations between concepts, not words. For example, bus#1 and coach#5
are synonyms, but this relation does not hold for other senses of these
two words.

b. Hierarchical structuring: Taxonomic information in WordNet is used to

replace syntactic relations with kind-of relations (e.g., ferry service
kind-of¡ !

boat service), on the basis of hyperonymy, rather than string inclusion as
in T .

14 Notice that bus#1 and coach#5 belong to the same synset, therefore they are disambiguated by the same
rule.
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service

transport service

car service public transport service car service#2 boat service

coach service, bus service train servicebus service#2 taxi service

coach service#2

express service#2express service

coach service#3 ferry service

car-ferry service

customer service

Figure 9
Domain concept tree.

Each lexicalized tree T is �nally transformed into a domain concept tree ¨. Fig-
ure 9 shows the concept tree obtained from the lexicalized tree of Figure 4. For the
sake of legibility, in Figure 9 concepts are labeled with the associated terms (rather
than with synsets), and numbers are shown only when more than one semantic in-
terpretation holds for a term. In fact, it is possible to �nd more than one matching
hyperonymy relation. For example, an express can be a bus or a train, and both inter-
pretations are valid, because they are obtained from relations between terms within
the domain.

3.2.5 Adding Conceptual Relations. The second phase of semantic interpretation in-
volves �nding the appropriate semantic relations holding among concept components.
In order to extract semantic relations, we need to do the following:

° Select an inventory of domain-appropriate semantic relations.

° Learn a formal model to select the relations that hold between pairs of
concepts, given ontological information on these concepts.

° Apply the model to semantically relate the components of a complex
concept.

First, we selected an inventory of semantic relations types. To this end, we con-
sulted John Sowa’s (1984) formalization on conceptual relations, as well as other
studies conducted within the CoreLex,15 FrameNet, and EuroWordNet (Vossen 1998)
projects. In the literature, no systematic de�nitions are provided for semantic relations;
therefore we selected only the more intuitive and widely used ones.

To begin, we selected a kernel inventory including the following 10 relations,
which we found pertinent (at least) to the tourism and �nance16 domains: place (e.g.,

room PLACEÁ¡ service, which reads “the service has place in a room” or “the room is

the place of service”), time (afternoon
TIMEÁ¡ tea), matter (ceramics

MATTERÁ¡ tile), topic (art
TOPICÁ¡ gallery), manner (bus

MANNERÁ¡ service), bene�ciary (customer
BENEFÁ¡ service), purpose

(booking PURPOSEÁ¡ service), object (wine
OBJÁ¡ production), attribute (historical ATTRÁ¡ town),

15 http://www.cs.brandeis.edu/¹paulb/CoreLex/corelex.html
16 Financial terms are extracted from the Wall Street Journal.

http://www.cs.brandeis.edu/%7Epaulb/CoreLex/corelex.html
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characteristics (�rst-class
CHRCÁ¡ hotel). This set can be easily adapted or extended to

other domains.
In order to associate the appropriate relation(s) that hold among the components

of a domain concept, we decided to use inductive machine learning. In inductive
learning, one has �rst to manually tag with the appropriate semantic relations a subset
of domain concepts (this is called the learning set) and then let an inductive learner
build a tagging model. Among the many available inductive learning programs, we
experimented both with Quinlan’s C4.5 and with TiMBL (Daelemans et al. 1999).

An inductive learning system requires selecting a set of features to represent in-
stances in the learning domain. Instances in our case are concept-relation-concept

triples (e.g., wine
OBJÁ¡ production), where the type of relation is given only in the learning

set.
We explored several alternatives for feature selection. We obtained the best result

when representing each concept component by the complete list of its hyperonyms
(up to the topmost), as follows:

feature ¡ vector[[list of hyperonyms]
¤
modi�er[list of hyperonyms]head]

For example, the feature vector for tourism operator, where tourism is the modi�er and
operator is the head, is built as the sequence of hyperonyms of tourism#1: [tourism#1,
commercial enterprise#2, commerce#1, transaction#1, group-action#1, act#1, human-
action#1], followed by the sequence of hyperonyms for operator#2 [operator#2, capi-
talist#2, causal agent#1, entity#1, life form#1, person#1, individual#1].

Features are converted into a binary representation to obtain vectors of equal
length. We ran several experiments, using a tagged set of 405 complex concepts, a
varying fragment of which were used for learning, the remainder for testing (we used
two-fold cross-validation). Overall, the best experiment provided a 6% error rate over
405 examples and produced around 20 classi�cation rules.

The following are examples of extracted rules (from C4.5), along with their con�-
dence factor (in parentheses) and examples:

If in modi�er [knowledge domain#1, knowledge base#1 ]

= 1 then relation THEME(63%)

Examples : arts festival, science center

If in modi�er [building material#1 ] = 1 then relation MATTER(50%)

Examples : stave church, cobblestone street

If in modi�er [conveyance#3, transport#1] = 1 and in head[act#1,human act#1]

= 1 then relation MANNER(92:2%)

Examples : bus service, coach tour

Selection and extraction of conceptual relations is one of the active research areas in
the OntoLearn project. Current research is directed toward the exploitation of on-line
resources (e.g., the tagged set of conceptual relations in FrameNet) and the automatic
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generation of glosses for complex concepts (e.g., for travel service we have travel#1
PURPOSEÁ¡ service#1: “a kind of service, work done by one person or group that bene�ts
another, for travel, the act of going from one place to another”). Automatic generation
of glosses (see Navigli et al. [2004] for preliminary results) relies on the compositional
interpretation criterion, as well as the semantic information provided by conceptual
relations.

3.3 Phase 3: Ontology Integration
The domain concept forest generated by OntoLearn is used to trim and update Word-
Net, creating a domain ontology. WordNet is pruned and trimmed as follows:

° After the domain concept trees are attached to the appropriate nodes in
WordNet in either a manual or an automatic manner, all branches not
containing a domain node can be removed from the WordNet hierarchy.

° An intermediate node in WordNet is pruned whenever the following
conditions all hold:

1. It has no “brother” nodes.
2. It has only one direct hyponym.
3. It is not the root of a domain concept tree.
4. It is not at a distance greater than two from a WordNet unique

beginner (this is to preserve a “minimal” top ontology).

Figure 10 shows an example of pruning the nodes located over the domain concept
tree rooted at wine#1. The appendix shows an example of a domain-adapted branch
of WordNet in the tourism domain.

4. Evaluation

The evaluation of ontologies is recognized to be an open problem.17 Though the num-
ber of contributions in the area of ontology learning and construction has considerably
increased in the past few years, especially in relation to the forthcoming Semantic Web,
experimental data on the utility of ontologies are not available, other than those in Far-
quhar et al. (1998), in which an analysis of user distribution and requests is presented
for the Ontology Server system. A better performance indicator would have been the
number of users that access the Ontology Server on a regular basis, but the authors
mention that regular users account for only a small percentage of the total. Efforts
have recently being made on the side of ontology evaluation tools and methods, but
available results are on the methodological rather than on the experimental side. The
ontology community is still in the process of assessing an evaluation framework.

We believe that, in absence of a commonly agreed-upon schema for analyzing the
properties of an ontology, the best way to proceed is evaluating an ontology within
some existing application. Our current work is precisely in this direction: The results of
a terminology translation experiment appear in Navigli, Velardi, and Gangemi (2003),
while preliminary results on a query expansion task are presented in Navigli and
Velardi (2003).

17 OntoWeb D.1.3 Tools (2001), “Whitepaper: Ontology Evaluation Tools,” available at
http://www.aifb.unikarlsruhe.de/WBS/ysu/publications/eon2002 whitepaper.pdf

http://www.aifb.unikarlsruhe.de/WBS/ysu/publications/eon2002whitepaper.pdf
http://www.aifb.unikarlsruhe.de/WBS/ysu/publications/eon2002whitepaper.pdf
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Figure 10
Pruning steps over the domain concept tree for wine1.

In this evaluation section we proceed as follows: First, we provide an account of
the feedback that we obtained from tourism experts participating in the Harmonise
EC project on interoperability in the tourism domain. Then, we evaluate in detail the
SSI algorithm, which is the “heart” of the OntoLearn methodology.

4.1 OntoLearn as a Support for Ontology Engineers
During the �rst year of the Harmonise project, a core ontology of about three hundred
concepts was developed using ConSys and SymOntoX. In parallel, we collected a
corpus of about one million words from tourism documents, mainly descriptions of
travels and tourism sites. From this corpus, OntoLearn extracted an initial list of 14,383
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candidate terms (the �rst phase of terminology extraction in Section 3.1), from which
the system derived a domain concept forest of 3,840 concepts, which were submitted
to the domain experts for ontology updating and integration.

The Harmonise ontology partners lacked the requisite expertise to evaluate the
WordNet synset associations generated by OntoLearn for each complex term, therefore
we asked them to evaluate only the domain appropriateness of the terms, arranged in
a hierarchical fashion (as in Figure 9). We obtained a precision ranging from 72.9% to
about 80% and a recall of 52.74%.18 The precision shift is due to the well-known fact
that experts may have different intuitions about the relevance of a concept for a given
domain. The recall estimate was produced by manually inspecting 6,000 of the initial
14,383 candidate terms, asking the experts to mark all the terms judged as “good”
domain terms, and comparing the obtained list with the list of terms automatically
�ltered by OntoLearn (the phase of terminology �ltering described in Section 3.1).

As a result of the feedback obtained from the tourism experts, we decided that
experts’ interpretation dif�culties could indeed be alleviated by associating a textual
de�nition with each new concept proposed by OntoLearn. This new research (auto-
matic generation of glosses) was mentioned in Section 3.2.5. We still need to produce
an in-�eld evaluation of the improved readability of the ontology enriched with textual
de�nitions.

In any case, OntoLearn favored a considerable speed up in ontology development,
since shortly after we provided the results of our OntoLearn tool, the Harmonise
ontology reached about three thousand concepts. Clearly, the de�nition of an initial
set of basic domain concepts is suf�ciently crucial, to justify long-lasting and even
heated discussions. But once an agreement is reached, �lling the lower levels of the
ontology can still take a long time, simply because it is a tedious and time-consuming
task. Therefore we think that OntoLearn revealed itself indeed to be a useful tool
within Harmonise.

4.2 Evaluation of the SSI Word Sense Disambiguation Algorithm
As we will argue in Section 5, one of the novel aspects of OntoLearn with respect
to current ontology-learning literature is semantic interpretation of extracted terms.
The SSI algorithm described in section 3.2 was subjected to several evaluation exper-
iments by the authors of this article. The output of these experiments was used to
tune certain heuristics adopted by the algorithm, for example, the dimension of the
semantic graph (i.e., the maximum distance of a concept S0 from the central concept
S) and the weights associated with grammar rules. To obtain a domain-independent
tuning, tuning experiments were performed applying the SSI algorithm on standard
word sense disambiguation data,19 such as SemCor and Senseval all-words.20

However, OntoLearn’s main task is terminology disambiguation, rather than plain
word sense disambiguation. In complex terms, words are likely to be more tightly se-
mantically related than in a sentence; therefore the SSI algorithm seems more
appropriate.21 To test the SSI algorithm, we selected 650 complex terms from the set of
3,840 concepts mentioned in Section 4.1, and we manually assigned the appropriate

18 In a paper speci�cally dedicated to terminology extraction and evaluation (Velardi, Missikoff, and
Basili 2001) we performed an evaluation also on an economics domain, with similar results.

19 In standard WSD tasks, the list T in input to the SSI algorithm is the set of all words in a sentence
fragment to be disambiguated.

20 http://www.itri.brighton.ac.uk/events/senseval/ARCHIVE/resources.html#test
21 For better performance on a standard WSD task, it would be essential to improve lexical knowledge of

verbs (e.g. by integrating VerbNet and FrameNet, as previously mentioned), as well as to enhance the
grammar.

http://www.itri.brighton.ac.uk/events/senseval/ARCHIVE/resources.html%23test
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Figure 11
Different runs of the semantic disambiguation algorithm when certain rules in the grammar G
are removed.

WordNet synset to each word composing the term. We used two annotators to ensure
some degree of objectivity in the test set. In this task we experienced dif�culties al-
ready pointed out by other annotators, namely, that certain synsets are very similar, to
the point that choosing one or the other—even with reference to our speci�c tourism
domain—seemed a mere guess. Though we can’t say that our 650 tagged terms are
a “gold standard,” evaluating OntoLearn against this test set still produced interest-
ing outcomes and a good intuition of system performance. Furthermore, as shown by
the example of Section 3.2.3, OntoLearn produces a motivation for its choices, that
is, the detected semantic patterns. Though it was not feasible to analyze in detail all
the output of the system, we found more than one example in which the choices
of OntoLearn were more consistent22 and more convincing than those produced by
the annotators, to the point that OntoLearn could also be used to support human
annotators in disambiguation tasks.

First, we evaluated the effectiveness of the rules in G (Section 3.2.2) in regard to the
disambiguation algorithm. Since certain rules are clearly related (for example, rules 4
and 5, rules 9 and 11), we computed the precision of the disambiguation when adding
or removing groups of rules. The results are shown in Figure 11. The shaded bars in
the �gure show the results obtained when those terms containing unambiguous words
are removed from the set of complex terms.

We found that the grammar rules involving the gloss and hyperonym relations
contribute more than others to the precision of the algorithm. Certain rules (not listed
in 3.2.2 since they were eventually removed) were found to produce a negative effect.
All the rules described in 3.2.2 were found to give more or less a comparable positive
contribution to the �nal performance.

22 Consistent at least with respect to the lexical knowledge encoded in WordNet.
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Figure 12
Precision and recall for the terminology disambiguation task: manual disambiguation of the
head and fully automatic disambiguation.

The precision computed in Figure 11 refers to the case in which the head node of
each term tree is sense-tagged manually. In Figure 12 the light and dark bars represent
precision and recall, respectively, of the algorithm when the head (i.e., the root) of
a term tree is manually assigned and when the disambiguation is fully automatic.
The limited drop in performance (2%) of the fully automated task with respect to
manual head disambiguation shows that, indeed, the assumption of a strong semantic
interrelationship between the head and the other terms of the term tree is indeed
justi�ed.

Finally, we computed a baseline, comparing the performance of the algorithm with
that obtained by a method that always chooses the �rst synset for each word in a com-
plex term. (We remind readers that in WordNet, the �rst sense is the most probable.)
The results are shown in Figure 13, where it is seen, as expected, that the increment
in performance with respect to the baseline is higher (around 5%) when only polyse-
mous terms are considered. A 5% difference (3% with respect to the fully automatic
disambiguation) is not striking, however, the tourism domain is not very technical,
and often the �rst sense is the correct one. We plan in the future to run experiments
with more technical domains, for example, economics or software products.

5. Related Work

Comprehensive ontology construction and learning has been an active research �eld
in the past few years. Several workshops23 have been dedicated to ontology learning
and related issues. The majority of papers in this area propose methods for extending
an existing ontology with unknown words (e.g., Agirre et al. 2000 and Alfonseca and
Manandhar 2002). Alfonseca and Manandhar present an algorithm to enrich WordNet
with unknown concepts on the basis of hyponymy patterns. For example, the pattern
hypernism(N2, N1) : ¡ appositive(N2, N1) captures a hyponymy relation between Shake-
speare and poet in the appositive NP “Shakespeare, the poet.” This approach heavily

23 ECAI-2000 First Workshop on Ontology Learning (http://ol2000.aifb.uni-karlsruhe.de/) and
IJCAI-2001 Second Workshop on Ontology Learning (http://ol2001.aifb.uni-karlsruhe.de/).

http://ol2000.aifb.uni-karlsruhe.de/
http://ol2001.aifb.uni-karlsruhe.de/
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Figure 13
Comparison with a baseline.

depends upon the ability of discovering such patterns, however, it appears a useful
complementary strategy with respect to OntoLearn. OntoLearn, in fact, is unable to
analyze totally unknown terms (though ongoing research is in progress to remedy this
limitation). Berland and Charniak (1999) propose a method for extracting whole-part
relations from corpora and enrich an ontology with this information. Few papers pro-
pose methods of extensively enriching an ontology with domain terms. For example,
Vossen (2001) uses statistical methods and string inclusion to create lexicalized trees,
as we do (see Figure 4). However, no semantic disambiguation of terms is performed.
Very often, in fact, ontology-learning papers regard domain terms as concepts. A statis-
tical classi�er for automatic identi�cation of semantic roles between co-occuring terms
is presented in Gildea and Jurafsky (2002). In order to tag texts with the appropriate
semantic role, Gildea and Jurafsky use a training set of �fty thousand sentences man-
ually annotated within the FrameNet semantic labeling project. Finally, in Maedche
and Staab (2000, 2001), an architecture is presented to help ontology engineers in the
dif�cult task of creating an ontology. The main contribution of this work is in the
area of ontology engineering, although machine-learning methods are also proposed
to automatically enrich the ontology with semantic relations.

6. Conclusions and Ongoing Developments

We believe that the OntoLearn system is innovative in several respects:

1. in presenting an overall ontology development system.

2. in stressing the importance of appropriate terminology extraction to the
ontology-building enterprise.

3. in avoiding a common confusion between domain terms and domain
concepts, since it performs a semantic interpretation of terms. This is indeed
the strongest aspect of our method.
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4. in presenting a new structural approach to sense classi�cation (SSI). This
method is general and has been applied to other sense disambiguation
tasks, such as sense-based query expansion (Navigli and Velardi 2003)
and gloss disambiguation (Gangemi, Navigli, and Velardi 2003).

Ontology learning is a complex enterprise, and much is left to be done. We list
here some of the drawbacks and gaps of our method, along with hints for ongoing
and future developments. OntoLearn is in fact a fully active area of research within
our group.

1. The SSI method presupposes that each term component has at least one
synset in WordNet. In our ongoing research, we try to cope with this
limitation, parsing textual de�nitions in glossaries (e.g., in a computer
network application) whenever a term cannot be interpreted
compositionally in WordNet. Terms in glossaries are �rst arranged in
trees according to detected taxonomic relations, then the head terms of
each tree are attached to the appropriate node of WordNet, if an
appropriate node indeed exists. Rule-based and algebraic methods are
jointly used to construct term trees and to compute measures of the
similarity between the textual de�nitions in glossaries and those in
WordNet.

2. OntoLearn detects taxonomic relations between complex concepts and
other types of semantic relations among the components of a complex
concept. However, an ontology is more than a taxonomy. The result of
concept disambiguation in OntoLearn is more than an ordered list of
synsets, since we obtain semantic nets and intersecting patterns among
them (Section 3.2.2). This information is not currently exploited to
generate richer concept de�nitions. A preliminary attempt to generate
formal concept de�nitions from informal ones is described in Gangemi,
Navigli, and Velardi (2003). Furthermore, an automatic gloss generation
algorithm has been de�ned (Navigli et al. 2004).

3. A large-scale evaluation is still to be done. As we have already pointed
out, evaluation of ontologies is recognized as an open problem, and few
results are available, mostly on the procedural (“how to”) side. We partly
evaluated OntoLearn in an automatic translation task (Navigli, Velardi,
and Gangemi 2003), and the SSI algorithm in generic WSD tasks as
mentioned in item 4 of the previous list. In addition, it would be
interesting to run OntoLearn on different domains, in order to study the
effect of higher or lower levels of ambiguity and technicality on the
output domain ontology.

Appendix: A Fragment of Trimmed WordNet for the Tourism Domain

f activity%1 g
f work%1 g
f project:00508925%n g

f tourism project:00193473%n g
f ambitious project:00711113%a g

f service:00379388%n g
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f travel service:00191846%n g
f air service#2:00202658%n g
f air service#4:00194802%n g

f transport service:00716041%n g
f ferry service#2:00717167%n g
f express service#3:00716943%n g

f exchange service:02413424%n g
f guide service:04840928%n g
f restaurant service:03233732%n g
f rail service:03207559%n g
f customer service:07197309%n g

f guest service:07304921%n g
f regular service#2:07525988%n g
f outstanding customer service:02232741%a g

f tourism service:00193473%n g
f waiter service:07671545%n g
f regular service:02255650%a,scheduled service:02255439%a g
f personalized service:01703424%a,personal service:01702632%a g
f secretarial service:02601509%a g
f religious service:02721678%a g

f church service:00666912%n g
f various service:00462055%a g
f helpful service:02376874%a g
f quality service:03714294%n g

f air service#3:03716758%n g
f room service:03250788%n g

f maid service:07387889%n g
f laundry service:02911395%n g
f car service#5:02364995%n g
f hour room service:10938063%n g

f transport service#2:02495376%n g
f car service:02383458%n g

f bus service#2:02356871%n g
f taxi service:02361877%n g

f coach service#2:02459686%n g
f public transport service:03184373%n g

f bus service:02356526%n,coach service:02356526%n g
f express service#2:02653414%n g
f local bus service:01056664%a g

f train service:03528724%n g
f express service:02653278%n g

f car service#2:02384604%n g
f coach service#3:03092927%n g

f boat service:02304226%n g
f ferry service:02671945%n g

f car-ferry service:02388365%n g
f air service:05270417%n g

f support service:05272723%n g
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