
Clustering and Diversifying Web Search
Results with Graph-Based Word
Sense Induction

Antonio Di Marco∗

Sapienza University of Rome

Roberto Navigli∗
Sapienza University of Rome

Web search result clustering aims to facilitate information search on the Web. Rather than the
results of a query being presented as a flat list, they are grouped on the basis of their similarity
and subsequently shown to the user as a list of clusters. Each cluster is intended to represent
a different meaning of the input query, thus taking into account the lexical ambiguity (i.e.,
polysemy) issue. Existing Web clustering methods typically rely on some shallow notion of
textual similarity between search result snippets, however. As a result, text snippets with no
word in common tend to be clustered separately even if they share the same meaning, whereas
snippets with words in common may be grouped together even if they refer to different meanings
of the input query.

In this article we present a novel approach to Web search result clustering based on the
automatic discovery of word senses from raw text, a task referred to as Word Sense Induction.
Key to our approach is to first acquire the various senses (i.e., meanings) of an ambiguous
query and then cluster the search results based on their semantic similarity to the word senses
induced. Our experiments, conducted on data sets of ambiguous queries, show that our approach
outperforms both Web clustering and search engines.

1. Introduction

The Web is by far the largest information archive available worldwide. This vast pool of
text contains information of the most wildly disparate kinds, and is potentially capable
of satisfying virtually any conceivable user need. Unfortunately, however, in this setting
retrieving the precise item of information that is relevant to a given user search can be
like looking for a needle in a haystack. State-of-the-art search engines such as Google
and Yahoo! generally do a good job at retrieving a small number of relevant results from
such an enormous collection of data (i.e., retrieving with high precision, low recall).
Such systems today, however, still find themselves up against the lexical ambiguity issue

∗ Dipartimento di Informatica, Sapienza Università di Roma, Via Salaria, 113, 00198 Roma Italy.
E-mail: {dimarco,navigli}@di.uniroma1.it.

Submission received: 25 April 2012; revised submission received: 26 July 2012; accepted for publication:
12 September 2012.

doi:10.1162/COLI a 00148

© 2013 Association for Computational Linguistics

Computational Linguistics Volume 39, Number 3

(Furnas et al. 1987; Navigli 2009), that is, the linguistic property due to which a single
word may convey different meanings.

Recently, the degree of ambiguity of Web queries has been studied using WordNet
(Miller et al. 1990; Fellbaum 1998) and Wikipedia1 as sources of ambiguous words.2

It has been estimated that around 4% of Web queries and 16% of the most frequent
queries are ambiguous (Sanderson 2008), as also confirmed in later studies (Clough et
al. 2009; Song et al. 2009). An example of an ambiguous query is Butterfly effect, which
could refer to either chaos theory, a film, a band, an album, a novel, or a collection of
poetry. Similarly, black spider could refer to either an arachnid, a car, or a frying pan, and
so forth.

Lexical ambiguity is often the consequence of the low number of query words that
Web users, on average, tend to type (Kamvar and Baluja 2006). This issue could be
solved by expanding the initial query with unequivocal cue words. Interestingly, the
average query length is continually growing. The average number of words per query is
now estimated around three words per query,3 a number that is still too low to eradicate
polysemy.

The fact that there may be different informative needs for the same user query has
been tackled by diversifying search results, an approach whereby a list of heterogene-
nous results is presented, and Web pages that are similar to ones already near the top
are prevented from ranking too highly in the list (Agrawal et al. 2009; Swaminathan,
Mathew, and Kirovski 2009). Today even commercial search engines are starting to
rerank and diversify their results. Unfortunately, recent work suggests that diversity
does not yet play a primary role in ranking algorithms (Santamarı́a, Gonzalo, and
Artiles 2010), but it undoubtedly has the potential to do so (Chapelle, Chang, and Liu
2011).

Another mainstream approach to the lexical ambiguity issue is that of Web cluster-
ing engines (Carpineto et al. 2009), such as Carrot4 and Yippy.5 These systems group
search results by providing a cluster for each specific meaning of the input query. Users
can then select the cluster(s) and the pages therein that best answer their information
needs. These approaches, however, do not perform any semantic analysis of search
results, clustering them solely on the basis of their lexical similarity.

For instance, given the query snow leopard, Google search returns, among others,
the snippets reported in Table 1.6 In the third column of the table we provide the correct
meanings associated with each snippet (i.e., either the operating system or the animal
sense). Although snippets 2, 4, and 5 all refer to the same meaning, they have no content
word in common apart from our query words. As a result, a traditional Web clustering
engine would most likely assign these snippets to different clusters. Moreover, snippet
6 shares words with snippets referring to both query meanings (i.e., snippets 1, 2, and
3 in Table 1), thus making it even harder for Web clustering engines to group search

1 http://www.wikipedia.org.
2 Note that we focus here on the ambiguity of queries in terms of their polysemy, rather than on the

identification of aspects or subsenses of a given meaning of a query, as was done in recent work on topic
identification (Wang, Chakrabarti, and Punera 2009; Xue and Yin 2011; Wu, Madhavan, and Halevy
2011). We discuss this point further in Section 2.6.

3 See Hitwise on 2008–2009 Google data: http://www.hitwise.com/us/press-center/press-releases/
google-searches-apr-09.

4 http://search.carrot2.org/stable/search.
5 http://search.yippy.com.
6 Results retrieved in May 2011.

710

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Table 1
Some of the top-ranking snippets returned for snow leopard by Google search.

Snippet Meaning

1 To advance Mac OS X Leopard, Apple engineers... SOFTWARE
2 The snow leopard (Uncia uncia or Panthera uncia) is a moderately

large cat native to the mountain ranges
ANIMAL

3 Mac OS X Snow Leopard (version 10.6) is the seventh and current major... SOFTWARE
4 Get the facts on snow leopards. Endangered Species Act (ESA): the

snow leopard is listed as endangered...
ANIMAL

5 Snow leopards are exceptional athletes capable of making huge leaps over
ravines.

ANIMAL

6 Snow Leopard. Even the name seems to underpromise – it’s the
first ‘big cat’ OS X codename to reference

SOFTWARE

results effectively. Finally, none of the top-ranking snippets refers to The Snow Leopard,
a popular 1978 book by Peter Matthiessen.

In this article, we present a novel approach to Web search result clustering that
explicitly addresses the language ambiguity issue. Key to our approach is the use of
Word Sense Induction (WSI), that is, techniques aimed at automatically discovering the
different meanings of a given term (i.e., query). Each sense of the query is represented
as a cluster of words co-occurring in raw text with the query. Each search result snippet
returned by a Web search engine is then mapped to the most appropriate meaning
(i.e., cluster) and the resulting clustering of snippets is returned.

This article provides four main contributions:

� We present a general evaluation framework for Web search result
clustering, which we also exploit to perform a large-scale end-to-end
experimental comparison of several graph-based WSI algorithms. In fact,
the output of WSI (i.e., the automatically discovered senses) is evaluated
in terms of both the quality of the corresponding search result clusters
and the resulting ability to diversify search results. This is in contrast with
most literature in the field of Word Sense Induction, where experiments
are mainly performed in vitro (i.e., not in the context of an everyday
application; Matsuo et al. 2006; Manandhar et al. 2010).

� In order to test whether our results were strongly dependent on
the evaluation measures we implemented in the framework, we
complemented our extrinsic experimental evaluation with a qualitative
analysis of the automatically induced senses. This study was performed
via a manual evaluation carried out by several human annotators.

� We present novel versions of previously proposed WSI graph-based
algorithms, namely, SquaT++ and Balanced Maximum Spanning Tree
(B-MST) (the former is an enhancement of the original SquaT algorithm
[Navigli and Crisafulli 2010], and the latter is a variant of MST [Di Marco
and Navigli 2011] that produces more balanced clusters).

� We show how, thanks to our framework, WSI can be successfully
integrated into real-world applications, such as Web search result

711

Computational Linguistics Volume 39, Number 3

Table 2
The top five categories returned by the Open Directory Project for the query snow leopard.

ODP Category # pages

Science: Biology: Flora and Fauna: . . . Felidae: Uncia 6
Kids and Teens: School Time: Science: . . . Leopards: Snow Leopards 4
Science: Environment: Biodiversity: Conservation: Mammals: Felines 3
Kids and Teens: School Time: Science: . . . Animals: Endangered Species 1
Computers: Emulators: Apple: Macintosh: SheepShaver 1

clustering, so as to outperform non-semantic state-of-the-art Web
clustering systems. To the best of our knowledge, with the exception
of some very preliminary results (Véronis 2004; Basile, Caputo,
and Semeraro 2009), this is the first time that unsupervised text
understanding techniques have been shown to considerably boost
an Information Retrieval task in a solid evaluation framework.

This article extends previous conference work (Navigli and Crisafulli 2010;
Di Marco and Navigli 2011) by performing a novel, in-depth study of the interactions
between different corpora and several different WSI algorithms, including novel ones,
within the same framework, and, additionally, by providing a comparison with a state-
of-the-art search result clustering engine.

The article is structured as follows: in Section 2 we present related work, in
Section 3 we illustrate our approach, end-to-end experiments are reported in Section 4,
and in vitro experiments are discussed in Section 5. We present a time performance
analysis in Section 6, and conclude the paper in Section 7.

2. Related Work

Our work is aimed at addressing the difficulties arising within the different approaches
to the issue of lexical ambiguity in Web Information Retrieval. Given the large body
of work in this field, in this section we summarize the main research directions on
the topic.

2.1 Web Directories

In Web 1.0—mainly based on static Web pages—the solution to clustering search results
was that of manually organizing and categorizing Web sites. The resulting repositories
are called Web directories and list Web sites by category and possible subcategories.
These categories are sometimes organized as taxonomies (like in the Open Directory
Project, ODP7).

Although Web directories are not search engines, information can be searched
therein. So, given a query, the returned search results are organized by category. For
instance, given the query snow leopard the ODP returns the categories shown in Table 2

7 http://www.dmoz.org.

712

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

(the number of matching Web pages is reported in the second column). As can be seen
from this example, the Web directory approach has evident limits:

1. It is static, thus it needs manual updates to cover new pages and new
meanings (e.g., the book sense of snow leopard is not considered in ODP).

2. It covers only a small portion of the Web (e.g., we only have one Web page
categorized with the computing sense of snow leopard, cf. the last row of
Table 2).

3. It classifies Web pages using coarse categories. This latter feature of
Web directories makes it difficult to distinguish between instances of the
same kind (e.g., pages about artists with the same surname classified as
Arts:Music:Bands and Artists).

Although methods for the automatic classification of Web documents have been
proposed (Liu et al. 2005; Xue et al. 2008, inter alia) and some problems have been
tackled effectively (Bennett and Nguyen 2009), these approaches are usually supervised
and still suffer from reliance on a predefined taxonomy of categories. Finally, it has been
reported that directory-based systems are among the most ineffective solutions to Web
information retrieval (Bruza, McArthur, and Dennis 2000).

2.2 Semantic Information Retrieval

A second approach to query ambiguity consists of associating explicit semantics (i.e.,
word senses or concepts) with queries and documents, that is, performing Semantic
Information Retrieval (SIR). SIR is performed by indexing and searching concepts
rather than terms, that is, by means of Word Sense Disambiguation (WSD; Navigli 2009),
thus potentially coping with two linguistic phenomena: expressing a single meaning
with different words (synonymy) and using the same word to express various different
meanings (polysemy). The main idea is that assigning concepts to words can potentially
overcome these two issues, enabling a shift from the lexical to the semantic level to be
achieved.

Over the years, various methods for SIR have been proposed (Krovetz and Croft
1992; Voorhees 1993; Mandala, Tokunaga, and Tanaka 1998; Gonzalo, Penas, and Verdejo
1999; Kim, Seo, and Rim 2004; Liu, Yu, and Meng 2005, inter alia). Contrasting results
have been reported on the benefits of these techniques, however: It has been shown
that WSD has to be very accurate to benefit Information Retrieval (Sanderson 1994)—a
result that was later debated (Gonzalo, Penas, and Verdejo 1999; Stokoe, Oakes, and Tait
2003). Also, it has been reported that WSD has to be very precise on minority senses and
uncommon terms, rather than on frequent words (Krovetz and Croft 1992; Sanderson
2000).

The main drawback of SIR is that it relies on the existence of a reference dictionary
to perform WSD (typically, WordNet) and thus suffers this dictionary’s static nature and
its inherent paucity of most proper nouns. This latter problem is particularly important
for Web searches, as users tend to retrieve more information about named entities
(e.g., singers, artists, cities) than concepts (such as abstract information about singers or
artists). Although lexical knowledge resources that integrate lexicographic senses with
named entites on a large scale have recently been created (Navigli and Ponzetto 2012),

713

Computational Linguistics Volume 39, Number 3

it is still to be shown that their use for SIR is beneficial. Moreover, these resources do
not yet tackle the dynamic evolution of language.

In contrast, our WSI approach to search result clustering automatically discovers
both lexicographic and encyclopedic senses of a query (including new ones), thus taking
into account all of the mentioned issues.

2.3 Search Result Clustering

A more popular approach to query ambiguity is that of search result clustering. Typ-
ically, given a query, the system starts from a flat list of text snippets returned from
one or more commonly available search engines and clusters them on the basis of some
notion of textual similarity. At the root of the clustering approach lies van Rijsbergen’s
cluster hypothesis (van Rijsbergen 1979, page 45): “closely associated documents tend
to be relevant to the same requests,” whereas results concerning different meanings of
the input query are expected to belong to different clusters.

Approaches to search result clustering can be classified as data-centric or
description-centric (Carpineto et al. 2009). The former focus more on the problem of
data clustering than on presenting the results to the user. A pioneering example is
Scatter/Gather (Cutting et al. 1992), which divides the data set into a small number
of clusters and, after the selection of a group, performs clustering again and proceeds
iteratively. Developments of this approach have been proposed that improve on cluster
quality and retrieval performance (Ke, Sugimoto, and Mostafa 2009). Other data-centric
approaches use agglomerative hierarchical clustering (e.g., LASSI [Maarek et al. 2000]),
rough sets (Ngo and Nguyen 2005), or exploit link information (Zhang, Hu, and Zhou
2008).

Description-centric approaches are, instead, more focused on the description to
produce for each cluster of search results. Among the most popular and successful
approaches are those based on suffix trees. Suffix trees are rooted directed trees that
contain all the suffixes of a string s. The label of each edge is a non-empty substring of
s and each vertex v is labeled with the concatenation of the edge labels on the path
from the root to v. If we view the search result snippets to be clustered as a set of
strings (i.e., their bag of words), each vertex of the corresponding suffix tree can be
considered as a set of documents that share a phrase (i.e., the label of the vertex itself)
and therefore the vertices represent a set of base clusters B = (b1, b2, . . . , bn). The original
Suffix Tree Clustering (STC; Zamir et al. 1997; Zamir and Etzioni 1998) algorithm obtains
the final clustering by merging the clusters in B with a high overlap in the documents
they contain. A scoring function is defined, based on both the number of documents in
the base cluster and the length of the common phrase, with the aim of returning only
the top k clusters.

Later developments improved the performance of the STC algorithm using
document–document similarity scores in order to overcome the low scalability of the
original approach (Branson and Greenberg 2002). Crabtree, Gao, and Andreae (2005)
identified an issue in the original scoring function whereby unreasonably high scores
tend to be assigned to clusters obtained as a result of the merging of very similar
base clusters. To solve this problem, they proposed the Extended Suffix Tree Clustering
algorithm (ESTC) with a novel scoring function and a new procedure for selecting the
top k clusters to be returned.

More recent approaches based on suffix trees extract relevant keyphrases from
generalized suffix trees (i.e., trees which contain suffixes of a set of strings

714

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

S = {s1, s2, . . . , s|S|}) in order to choose meaningful labels for the output clusters
(Bernardini, Carpineto, and D’Amico 2009; Carpineto, D’Amico, and Bernardini 2011).

Other approaches to description-centric search result clustering in the literature
are based on formal concept analysis (Carpineto and Romano 2004), singular value
decomposition (Osinski and Weiss 2005), spectral clustering (Cheng et al. 2005), spectral
geometry (Liu et al. 2008), link analysis (Gelgi, Davulcu, and Vadrevu 2007), and graph
connectivity measures (Di Giacomo et al. 2007). Search result clustering has also been
viewed as a supervised salient phrase ranking task (Zeng et al. 2004).

Whereas search result clustering has heretofore been performed without the explicit
use of lexical semantics, in our work we show how to exploit search result clustering
as the common evaluation framework of both semantic and non-semantic clustering
engines.

2.4 Diversification

Rather than clustering the top search results by their similarity, one can aim at reranking
them on the basis of criteria that maximize their diversity, so as to present top results
which are as different from each other as possible. This technique, called diversification
of search results, is a recent research topic that, yet again, deals with the query ambiguity
issue. To some extent, today’s search engines, such as Google and Yahoo!, apply some
diversification technique to their top-ranking results.

One of the first examples of diversification algorithms was based on the use of
similarity functions to measure the diversity between documents and between docu-
ment and query (Carbonell and Goldstein 1998). Other diversification techniques use
conditional probabilities to determine which document is most different from higher-
ranking ones (Chen and Karger 2006), or use affinity ranking (Zhang et al. 2005), based
on topic variance and coverage.

An algorithm called Essential Pages (Swaminathan, Mathew, and Kirovski 2009)
has been proposed that aims to reduce information redundancy and returns Web pages
that maximize coverage with respect to the input query. In this approach the Web
search results for a query q are transformed into bags of words containing the terms
occurring in the corresponding Web page. Frequency information from raw corpora is
then used to find relevant words for q, that is, words which are generally infrequent,
but occur often in the results retrieved for q. The coverage score of a search result r is
then calculated as a function of the number of terms relevant for q and contained in
r. Another interesting approach reformulates the problem explicitly in terms of how
to minimize the risk of dissatisfaction for the average user (Agrawal et al. 2009). A
greedy algorithm is proposed that balances between relevance and diversity of the
search results. The algorithm is evaluated using generalizations of classical Information
Retrieval metrics that are based on statistical considerations and take into account the
intentions of the user.

More recently, vector space model representations have been explored to improve
diversity in search results (Santamarı́a, Gonzalo, and Artiles 2010). Web page results
are represented as vectors and compared against vector representations of encyclopedic
entries available from Wikipedia using cosine similarity. Search results are diversified
accordingly.

Finally, in the last few years the specific structure of the Web has been exploited
to perform diversification, as proposed by Ma, Lyu, and King (2010), who make use of
Markov random walks on query-URL bipartite graphs, and Chandar and Carterette

715

Computational Linguistics Volume 39, Number 3

(2010), who cluster search results by exploiting the links in Web pages in order to
identify the subtopics of the returned documents.

2.5 Word Sense Induction

A fifth solution to the query ambiguity issue is Word Sense Induction (WSI), namely, the
automatic discovery of word (i.e., query) senses from raw text (see Navigli [2009, 2012]
for a survey). WSI allows us to go beyond the surface similarity of Web snippets (which
hampers the performance of Web search result clustering) by dynamically acquiring an
inventory of senses of the input query. The core idea is to then use these query senses to
cluster the Web snippets returned by a traditional search engine.

Very little work on this topic exists: Vector-based WSI was successfully shown to
improve bag-of-words ad hoc Information Retrieval (Schütze and Pedersen 1995) and
preliminary studies (Udani et al. 2005; Chen, Zaı̈ane, and Goebel 2008) have provided
interesting insights into the use of WSI for Web search result clustering. A more recent
attempt at automatically identifying query meanings is based on the use of hidden
topics (Nguyen et al. 2009). In this approach, however, topics (estimated from a uni-
versal data set) are query-independent and thus their number needs to be established
beforehand. In contrast, we aim to cluster snippets on the basis of a dynamic and finer-
grained notion of sense.

An exploratory study on ten query words has shown that the majority of relevant
uses of query words can be identified using graph-based WSI (Véronis 2004). In the
present work we take this preliminary finding to the next level, by studying the impact
of several graph-based WSI algorithms on a large scale and by integrating them into a
Web search result clustering framework. As a result, we are able not only to perform
an end-to-end evaluation of WSI approaches, but also to compare them with traditional
search result clustering techniques, which instead lack explicit semantics for the query
meanings.

2.6 Aspect Identification

Over recent years a line of research has been developed in the field of Information
Retrieval that makes use of query logs and clickthrough information to identify and
model the aspects of a given query in terms of the user intents for that query. Aspects
can be identified by exploiting those queries in the past that enabled the user to retrieve
documents that are close to the current input query (Wang and Zhai 2007). A different
approach aims, instead, at extracting related queries from query logs as candidate
aspects and discarding duplicate and redundant aspects using search results. Wikipedia
InfoBoxes are used to cluster candidate aspects into classes (Wu, Madhavan, and Halevy
2011). Latent aspects of queries can also be extracted from query reformulations within
historical search session logs (Wang, Chakrabarti, and Punera 2009). More recently, a
topic modeling approach based on query logs and click data has been proposed that
aims at discovering generic aspects pervading manually fixed categories of named
entities (Xue and Yin 2011). The implicit user-specific aspect of a query can be obtained
from short query log sessions of other users using a Markov logic learning model. This
results in the documents that best model the user’s intentions when entering a query
(Mihalkova and Mooney 2009). Finally, a semi-supervised approach has recently been
applied to create class labels that are later assigned to latent clusters of queries using a
Hierarchical Dirichlet Process (Reisinger and Pasca 2011).

716

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

This line of research has some points of contact with WSI, but also important
differences:

� Most important, aspect identification aims at discriminating between
very fine-grained facets of a given query, such as those of rental, pricing,
and accidents of a car, in contrast to WSI whose goal is that of inducing
different meanings of the given query, such as car as a motor vehicle,
railroad car, song, novel, or even primitive in the LISP programming
language. In this respect, the two tasks are complementary, because
once WSI has discovered the different senses of a query, then one can
apply aspect identification to detect subsenses of each meaning.

� Much work based on query logs and click data requires reliable statistics,
which are not always available in all languages. WSI relies instead on
raw text corpora, which can easily be obtained for any language. This
difference also holds for custom search engines not working on the Web,
which might not have enough statistics from their users, but could instead
resort to raw (domain) corpora.

� Privacy and availability issues are often mentioned in connection with
query logs and clickthrough data, therefore making research on this topic
hard to replicate and evaluate objectively, especially in comparison with
other systems.

The framework presented in this article focuses on the ambiguity of queries at the
meaning level, leaving the further application of aspect identification techniques to
future work, in the hope that the previously mentioned issues of privacy and availability
will somehow be mitigated.

3. Semantically Enhanced Search Result Clustering

Web search result clustering is usually performed in three main steps:

1. Given a query q, a search engine is used to retrieve a list of results
R = (r1, . . . , rn).

2. A clustering C = (C1, . . . , Cm) of the results in R is obtained by means
of a clustering algorithm.

3. The clusters in C are optionally labeled with an appropriate algorithm
(e.g., Zamir and Etzioni 1998; Carmel, Roitman, and Zwerdling 2009)
for visualization purposes.

First, we preprocess the set R of search results returned by the search engine
(Section 3.1). Next, to inject semantics into search result clustering, we propose
improving Step 2 by means of a WSI algorithm: Given a query q, we first dynamically
induce, from a text corpus, the set of word senses of q (Section 3.2); next, we cluster the
Web results on the basis of the word senses previously induced (Section 3.3). We show
our framework in Figure 1.

3.1 Preprocessing of Web Search Results

As a result of submitting our query q to a search engine, we obtain a list of relevant
search results R = (r1, . . . , rn). In order to make this list usable by a clustering algorithm,

717

Computational Linguistics Volume 39, Number 3

Figure 1
The workflow of semantically enhanced Web search result clustering.

each result ri is processed by means of four steps aimed at transforming it into a bag of
words bi:

1. We obtain the snippet si corresponding to the result ri.

2. We apply tokenization to si, thus splitting the string into tokens and
setting them to lowercase.

3. We augment the current token set with multi-word expressions obtained
by compounding subsequent word tokens up to φ words (a parameter
whose tuning is described later in Section 4.1.4). The terms in the resulting
token set are lemmatized using WordNet as reference lexicon. We remove
tokens that are not in the WordNet lexicon (e.g., the, esa).

4. We remove the stopwords (e.g., get, on, be, as) and the target query words
(e.g., snow, leopard, snow leopard) from the token set.

An example of the application of the four steps to a snippet returned for the query snow
leopard is shown in Table 3. As a result of this process, we obtain a list of bags of words
B = (b1, . . . , bn), where bi is the bag of words of the search result ri.

3.2 Graph-Based Word Sense Induction

The next step is to dynamically discover the senses of the input query q and provide a
representation for them that will later be used for semantically clustering the snippets
preprocessed in the previous step. WSI algorithms are unsupervised techniques aimed
at automatically identifying the set of senses denoted by a word. These methods induce
word senses from text by clustering word occurrences on the basis of the idea that a

Table 3
Processing steps for one of the search results of the query snow leopard.

step output

initial snippet “Get the facts on snow leopards. Endangered Species Act (ESA): the
snow leopard is listed as endangered”

tokenization { get, the, facts, on, snow, leopards, endangered, species, act, esa,
leopard, is, listed, as }

compounding and
lemmatization

{ get, fact, on, snow, leopard, snow leopard, endangered, species,
endangered species, act, be, listed, as }

stopword and query
words removal

{ fact, endangered, species, endangered species, act, listed }

718

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

given word—used in a specific sense—tends to co-occur with the same neighboring
words (Harris 1954). Several approaches to WSI have been proposed in the literature
(see Navigli [2009, 2012] for a survey), ranging from clustering based on context vectors
(e.g., Schütze 1998) and word similarity (e.g., Lin 1998) to probabilistic frameworks
(Brody and Lapata 2009), latent semantic models (Van de Cruys and Apidianaki 2011),
and co-occurrence graphs (e.g., Widdows and Dorow 2002).

In our work, we chose to focus on approaches based on co-occurrence graphs for
two reasons:

i) They have been shown to achieve state-of-the-art performance in standard
evaluation tasks (Agirre et al. 2006b; Agirre and Soroa 2007; Korkontzelos
and Manandhar 2010).

ii) Other approaches are either based on syntactic dependency statistics (Lin
1998; Van de Cruys and Apidianaki 2011), which are hard to obtain on a
large scale for many domains and languages, or based on large matrix
computation methods such as context-group discrimination (Schütze
1998), non-negative matrix factorization (Van de Cruys and Apidianaki
2011) and Clustering by Committee (Lin and Pantel 2002). Instead, in our
approach we aim to exploit the relational structure of word co-occurrences
with lower requirements (i.e., using just a stopword list, a lemmatizer,
and a compounder, cf. Section 3.1), assuming that the semantics of a word
are represented by means of a co-occurrence graph whose vertices are
co-occurrences and whose edges are co-occurrence relations.

We therefore integrated the following algorithms into our framework:

� Curvature clustering (Dorow et al. 2005), an algorithm based on the
participation ratio of words in graph triangles, that is, complete graphs
with three vertices.

� Squares, Triangles, and Diamonds (SquaT++), an algorithm that
integrates two graph patterns previously exploited in the literature
(Navigli and Crisafulli 2010), namely, squares and triangles, with a novel
pattern called diamond.

� Balanced Maximum Spanning Tree Clustering (B-MST), an extension of
a WSI algorithm based on the calculation of a Maximum Spanning Tree
(Di Marco and Navigli 2011) that aims at balancing the number of
co-occurrences in each sense cluster.

� HyperLex (Véronis 2004), an algorithm based on the identification of hubs
(representing basic meanings) in co-occurrence graphs.

� Chinese Whispers (Biemann 2006), a randomized algorithm that
partitions the graph vertices by iteratively transferring the mainstream
message (i.e., word sense) to neighboring vertices.

All of these graph algorithms for WSI consist of a common step, namely, co-
occurrence graph construction (described in Section 3.2.1) and a second step, namely,
the discovery of word senses, whose implementation depends on the specific algorithm
adopted. We discuss the second phase of each algorithm separately (Section 3.2.2).

719

Computational Linguistics Volume 39, Number 3

Table 4
Example co-occurrences of word w = lion.

word w′ c(w′) c(w, w′) Dice(w, w′)

animal 213,414 5,109 0.2534
videogame 201,342 4,945 0.2042
mac 194,056 4,940 0.1568
africa 189,011 4,521 0.1961
feline 167,487 4,548 0.1472
cat 161,980 4,493 0.1214
savannah 159,693 3,535 0.1091
predator 145,239 3,643 0.1065
apple 140,670 3,261 0.1043
tiger 134,702 2,147 0.1024
technology 129,483 2,017 0.0097
software 113,045 1,846 0.0084
iPod 112,100 1,803 0.0070
simulation 93,899 1,367 0.0031

3.2.1 Step 1: Graph Construction. Given a target query q, we build a co-occurrence graph
Gq = (V, E) such that V is the set of words8 co-occurring with q, and E is the set of
undirected edges, each denoting a co-occurrence between pairs of words in V. We
harvest the statistics for co-occurring words V from a text corpus (we used two different
corpora, see Section 4.1.2), which was previously tokenized and lemmatized.

First, for each word w we calculate the total number c(w) of its occurrences and
the number of times c(w, w′) that w occurs together with some word w′ in the same
context (to this end, we use the lemmas corresponding to inflected forms in the text).
For instance, in Table 4, assuming w = lion, we show the absolute count c(w′) of some
words (second column) together with the joint co-occurrence count c(w, w′) of words w′

occurring with w = lion in the same context (third column). Note that the co-occurrences
w′ may refer to different senses of word w—for example, africa and savannah refer to
the animal sense of lion, whereas technology and software to the operating system sense.
Moreover, w′ may be ambiguous itself in the context of w (e.g., tiger as either an animal
or an operating system).

Second, we calculate the Dice coefficient to determine the strength of co-occurrence
between any two words w and w′:9

Dice(w, w′) = 2c(w, w′)
c(w) + c(w′)

. (1)

Table 4 reports the Dice coefficients in the fourth column for the example words.
The rationale behind the use of the Dice coefficient, as opposed to, for example, a
simple co-occurrence count such as c(w, w′), is that dividing by the average of the total

8 Because our application (i.e., Web search result clustering) typically deals with nominal senses,
and to avoid overly large graphs, we restrict our vocabulary to nouns only.

9 We note that the Dice coefficient can have a probabilistic interpretation in terms of the conditional
probabilities P(w|w′) and P(w′|w) or, alternatively, the joint probability P(w, w′) and the marginal
probabilities P(w) and P(w′) (Smadja, McKeown, and Hatzivassiloglou 1996).

720

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

counts of the two words drastically decreases the ranking of words that tend to co-occur
frequently with many other words (home, page, etc.).

Finally, we use the occurrence and co-occurrence counts just collected to construct
the co-occurrence graph Gq = (V, E) for the input query q. The pseudocode of our
graph construction procedure is shown in Algorithm 1 and consists of the following
steps:

a. Initialization with snippet words (lines 1–2): Initially we set V to
contain all the content words from the bags of words obtained from
the snippet results of query q, that is, V :=

⋃n
j=1 bj, where bj is the bag

of words corresponding to the search result rj ∈ R as obtained after the
preprocessing step (see Section 3.1). We also set E := ∅, that is, the
edge set is initially empty.

b. Adding first-order co-occurrences (lines 3–5): We augment V with the
highest-ranking words co-occurring with query q in the selected text
corpus, that is, those words w for which the following equations are
satisfied:

⎧⎨
⎩

c(q, w)
c(q) ≥ δ

Dice(q, w) ≥ δ′
(2)

where δ and δ′ are experimentally tuned thresholds (cf. Section 4.1.4).

c. Adding second-order co-occurrences (lines 6–11): Optionally, we create an
auxiliary copy V(0) of V. For each word w ∈ V(0) we augment V with those
words w′ which are strongly related to w in the text corpus. In other words
we add w′ to V if both Equations (2) are satisfied for the pair of words w
and w′.

Algorithm 1 The graph construction algorithm.
Input: query q, the bag of words (b1, · · · , bn) for q
Output: a graph Gq = (V, E)

1: V :=
⋃n

j=1 bj

2: E := ∅
3: for each word w in the corpus
4: if c(q, w)/c(q) ≥ δ and Dice(q, w) ≥ δ′ then
5: V := V ∪ {w}
6: if second order = true then
7: V(0) := V
8: for each word w ∈ V(0)

9: for each word w′ in the corpus
10: if c(w, w′)/c(w) ≥ δ and Dice(w, w′) ≥ δ′ then
11: V := V ∪ {w′}
12: for each (w, w′) ∈ V × V s. t. w �= w′

13: if Dice(w, w′) ≥ θ then
14: E := E ∪ {{w, w′}}
15: remove all disconnected vertices from V
16: return Gq = (V, E)

721

Computational Linguistics Volume 39, Number 3

d. Creating the co-occurrence graph (lines 12–15): For each pair of words
(w, w′) ∈ V × V, we add the corresponding edge {w, w′} to E with weight
Dice(w, w′) if the following condition is satisfied:

Dice(w, w′) ≥ θ (3)

where θ is a confidence threshold for the co-occurrence relation. Note
that we use a threshold δ′ to select which vertices to add to the graph Gq
(Step [b]) and we use a potentially different threshold θ for the selection of
which edges to add to Gq. Finally, we remove from V all the disconnected
vertices (i.e., those with degree 0).

As a result of this algorithm a co-occurrence graph Gq for the query q is pro-
duced. Consider again the target word lion and let us assume that the words in
Table 4 are the only co-occurrences of lion. In Figure 2 we show the execution of the
four steps of our graph construction algorithm for the input query lion, assuming

(a) videogame mac

feline

animal

(b) videogame

software

mac
tiger

apple

animal

feline

savannah

africa
predator

(c) videogame

simulation

software

technology

java

mac
tiger

iPod
apple

animal

feline

cat

savannah

africa
predator malawi

(d) videogame

simulation

software

technology

mac
tiger

iPod
apple

animal

feline

cat

savannah

africa
predator

0.015

0.
00

9

0.
04

0.
00

5

0.003

0.0015

0.002

0.001

0.027

0.05
0.

00
7

0.0012

0.045

0.06

0.038

0.017

0.
05

9

0.00740.0034

0.0023

0.0013

0.
04

2

Figure 2
Graph construction for the lion example: (a) initializing V with the snippets words (lines 1–2);
(b) adding first-order co-occurrences to V (lines 3–5); (c) adding second-order co-occurrences
to V (lines 6–11); (d) adding the edges corresponding to strong relations and removing
disconnected vertices (lines 12–15).

722

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

δ = 0.38, δ′ = θ = 0.003, and c(lion) = 350, 727. First, we initialize the graph with the
words in the snippets returned for lion (Figure 2a), next we add the words co-
occurring with the query (Figure 2b), then second-order co-occurrences, that is, words
co-occurring with those just added to the graph (Figure 2c), and finally we add those
edges between word pairs whose Dice value is above a threshold (Figure 2d).

3.2.2 Step 2: Sense Discovery. All the graph-based WSI algorithms that we implemented
in our framework are designed to discover the senses of an input term, which in
our specific application is the query q. This process of meaning discovery is carried
out through the use of the relational and structural information contained in the co-
occurrence graph we have just created. In fact, a co-occurrence graph Gq = (V, E) for
a query q contains: (i) vertices w ∈ V corresponding to words highly related to q, and
(ii) edges e ∈ E representing co-occurrence relations between vertices (i.e., words) in V.
The key idea behind graph-based WSI is to obtain a partition S = (S1, . . . , Sm) of Gq
such that each component Si = (Vi, Ei) contains structurally (i.e., semantically) related
vertices (i.e., words). In other words, each vertex set Vi is intended to contain only words
related to a specific sense of q. As a result S is the sense inventory for the query q and
each Si is a sense cluster.

We now introduce each graph-based WSI algorithm in detail.

Curvature. The curvature algorithm aims at quantifying how strongly the neighbors of
a vertex are related to each other. To measure this degree of correlation, the curvature
coefficient for a vertex w is calculated as follows:

curv(w) =
triangles w participates in

triangles w could participate in (4)

where a triangle is a cycle of length 3. The numerator of Equation (4) is trivially calcu-
lated as the number of links between neighbors of w, and the denominator is calculated
by counting all the possible pairs of neighbors. According to Equation (4), the curvature
coefficient can assume values between 0 and 1. A vertex whose neighbors are highly
connected (i.e., with a high value of curvature) is assumed to be part of a component
that represents a specific meaning of the target query. Conversely, a vertex with low
curvature acts as a connection between different meanings.

The curvature algorithm is designed to identify the meaning components by means
of the removal of all vertices whose curvature is below a certain threshold σ. For ex-
ample, we can attribute two different meanings to the word Napoleon, namely, a French
emperor and an American city. By looking at the graph in Figure 3 we can easily find

Napoleon

France

revolution

Ohio

America

Figure 3
Example of curvature for Napoleon.

723

Computational Linguistics Volume 39, Number 3

that Napoleon participates in two triangles (represented by continuous lines) and it po-
tentially could also participate in four additional triangles (i.e., those including dashed
lines). It follows that curv(Napoleon) = 2

6 = 0.33. The deletion of the vertex Napoleon
results in two components (respectively, containing the vertices { France, revolution }
and { Ohio, America }) representing the two mentioned meanings.

SquaT++. The curvature clustering algorithm is based on the hunch that local connec-
tivity is correlated with meaning consistency. We take this idea to the next level by
proposing a more elaborate local connectivity approach that exploits three different
graph patterns, namely: triangles (i.e., cycles of length 3, like in curvature clustering),
squares (i.e., cycles of length 4) and diamonds (i.e., graphs with 4 vertices and 5 edges,
forming a square with a diagonal), hence the name SquaT++ (Squares, Triangles, and
“more”). We determine the strength of the three patterns for a vertex w in the co-
occurrence graph as follows:

Tri(w) =
triangles w participates in

triangles w could participate in (5)

Sqr(w) =
squares w participates in

squares w could participate in (6)

Dia(w) =
diamonds w participates in

diamonds w could participate in (7)

where w is a vertex. Then we linearly combine the three measures as follows:

SquaT++(w) = α · Tri(w) + β · Sqr(w) + γ · Dia(w) (8)

where α+ β+ γ = 1. Similarly to the curvature algorithm, the sense clusters are ob-
tained by removing all those vertices whose SquaT++ value is below a threshold σ. In
Figure 4(a) we show in bold the vertices selected for removal, and in Figure 4(b) the
sense clusters obtained after removal, namely: { videogame, simulation, software }, { iPod,
apple, mac }, and { cat, animal, predator, africa, savannah }.

SquaT++ is a generalization of the curvature algorithm in that: (i) it uses the triangle
pattern to calculate curvature, and (ii) it disconnects the graph using the same algorithm
as curvature. SquaT++ is a novel algorithm, however, that extends the previously
proposed SquaT (Navigli and Crisafulli 2010), based on triangles and squares, by in-
troducing a new pattern, namely, the diamond, whose clustering coefficient is linearly
combined with the other two. Moreover, in our experiments we tested two versions of
SquaT++: the traditional one in which the coefficient is calculated on vertices (like in
Equation (8)), and a variant calculated on edges. Our hunch here is that removing low-
ranking edges rather than vertices might produce more informative clusters, because
no word is removed from the original graph. In what follows, we refer to the vertex
version as SquaT++V and to the variant on edges as SquaT++E, and we refer to the
general algorithm as SquaT++.

B-MST. A more global approach to the identification of sense components is the
Balanced Maximum Spanning Tree (B-MST), which is based on the computation of

724

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

(a) videogame

simulation

software

technology

mac
tiger

iPod apple
feline

cat

animal savannah

africa
predator

(b) videogame

simulation

software

mac

iPod
apple

animal

cat

savannah

africa
predator

(c) videogame

simulation

software

technology

mac
tiger

iPod
apple

animal

feline

cat

savannah

africa
predator

(d) videogame

simulation

software

technology

mac
tiger

iPod
apple

animal

feline

cat

savannah

africa
predator

(e)

lion

videogame

simulation

software

technology

mac
tiger

iPod
apple

animal

feline

cat

savannah

africa
predator

(f) videogame

simulation

software

technology

mac
tiger

iPod
apple

animal

feline

cat

savannah

africa
predator

(g) videogame

simulation

software

technology

mac
tiger

iPod
apple

animal

feline

cat

savannah

africa
predator

0.015

0.
00

9

0.
04

0.
00

5

0.003

0.0015

0.002

0.001

0.027

0.05
0.

00
7

0.0012

0.045

0.06

0.038

0.017

0.
05

9

0.00740.0034

0.0023

0.0013

0.
04

2

∞
∞

∞

0.015

0.
00

9

0.
04

0.
00

5

0.003

0.0015

0.002

0.001

0.027

0.05
0.

00
7

0.0012

0.045

0.06

0.038

0.017

0.
05

9

0.00740.0034

0.0023

0.0013

0.
04

2

Figure 4
The lion example: (a) SquaT++ selection and (b) removal of edges below the threshold; (c) B-MST
spanning tree calculation and (d) edge removal; (e) HyperLex hub selection and (f) identification
of word senses; (g) Chinese Whispers cluster creation.

725

Computational Linguistics Volume 39, Number 3

the Maximum Spanning Tree (MST) of the co-occurrence graph. Cluster meanings are
identified by iteratively removing the edges which represent structurally weak rela-
tions, i.e., those with lower weight in the MST. The procedure is as follows:

� Eliminate from Gq all vertices whose degree is 1.
� Calculate the maximum spanning tree TGq of the graph Gq (e.g., the bold

edges in Figure 4(c) represent the maximum spanning tree for our initial
graph).

� The original MST algorithm for WSI, proposed by Di Marco and Navigli
(2011), iteratively eliminates the minimum-weight edge e ∈ TGq whose
degree ≥ 2, until N connected components (i.e., word clusters) are
obtained or there are no more edges to eliminate. The problem with this
approach is that it can generate unbalanced clusters (i.e., a few very large
clusters and several small clusters); for this reason we developed the
B-MST variant which calculates an appropriate cluster mean cardinality10

and removes an edge e ∈ TGq if its elimination does not lead to connected
components with cardinality less than half of the calculated mean value.
This additional constraint prevents the creation of very small clusters,
while at the same time avoiding artificial equal-size clusters.

Following our lion example, and assuming that the value of the only parameter of
B-MST (i.e., the maximum number N of meanings to be identified) is set to 3, we obtain
the clusters in Figure 4(d).

HyperLex. Another option for sense discovery is that of HyperLex, which identifies the
most interconnected vertices in the graph Gq, called hubs. Each hub acts as the “root”
of a specific component of Gq and, correspondingly, a meaning of the target query q.

First, a list L of the vertices w′ of the graph Gq is created and sorted by their absolute
count c(w′) in decreasing order. Each vertex w′ ∈ L is then selected as hub if it satisfies
the following conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

degree(w′)
maxw′′∈V degree(w′′)

≥ σ

∑
{w′,w′′}∈E Dice(w′, w′′)

degree(w′)
≥ σ′

(9)

that is, the normalized degree of vertex w′ and the average weight of the edges in-
cident on w′ must be, respectively, above the thresholds σ and σ′. Once it has been
selected, the hub and all its neighbors are removed from L so as to avoid neighboring
vertices from also being selected as hubs. The hub selection process stops when the
next vertex in the sorted list does not satisfy either of the Equations (9) or if the list L
is empty.

As an example, consider the co-occurrence graph in Figure 2(d). A list of the vertices
in the graph is created, sorted by c(w′), as shown in Table 4. For the purpose of our

10 We calculate the mean cardinality of a cluster by dividing the total number of vertices in the graph by the
maximum number N of clusters that we want to obtain.

726

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

example, let us assume σ = 0.5 and σ′ = 0.015. The first hub to be selected is animal.
All its neighbors (tiger, feline, cat, predator, africa, and savannah in our example) are also
removed from the list. The next hub is videogame (its neighbors simulation, software, and
technology are also removed from the list). The last hub is mac; after the removal of its
neighbor from the list (apple) the last vertex to be examined is iPod, which cannot be
selected as hub because it does not satisfy the second condition of Equation (9). The
selected hubs are shown as rectangles in Figure 4(e).

Once the hub selection process is complete, the target query q is added to the set
of vertices V of graph Gq and each hub is connected to q with an infinite-weight edge
(see vertex lion and its edges added to the graph in Figure 4(e)). Then, a maximum
spanning tree Tq of the graph is calculated starting from vertex q (see the bold edges
in Figure 4(e)). As a result, Tq will include all the infinite-weight edges from q to its
direct descendants, namely, the hubs. Vertex q is then removed from the graph so that
each subtree rooted at a hub in Tq represents a word sense for the target query q (see
Figure 4(f)). In our example, three clusters are produced: { videogame, simulation, software,
technology }, { mac, apple, iPod }, and { animal, feline, tiger, cat, predator, africa, savannah }.
Note that, in our example, HyperLex and SquaT++ found the same meanings for the
query word lion (namely, the animal, the operating system, and the videogame), but
produced different clusters (e.g., HyperLex assigns the word tiger to the animal cluster
whereas SquaT++ removes it from the graph). Finally, notice that in HyperLex the
number of senses is dynamically chosen on the basis of the co-occurrences of q and
the algorithm’s thresholds.

An alternative approach to hub selection as performed in HyperLex consists of
using the PageRank algorithm to sort the vertices of the co-occurrence graph and choose
the best ranking ones as hubs of the target word (Agirre et al. 2006b). Given that the
performance of this variant is comparable to that of HyperLex, in this work we focus on
the original version of the induction algorithm.

Chinese Whispers. All the previously presented algorithms work in a top–down fashion,
that is, they iteratively remove edges or vertices from an initial co-occurrence graph
until a number of partitions are obtained. The last algorithm we consider, called Chinese
Whispers, works, instead, bottom–up. The pseudocode, shown in Algorithm 2, consists
of the following two steps:

1. First, the algorithm assigns a distinct class i to each vertex vi and creates a
clustering C containing the singleton clusters Ci (lines 1–4 of the
algorithm).

2. Second, a series of iterations is performed aimed at merging the clusters
(lines 5–11). Specifically, at each iteration the algorithm analyzes each
vertex v in random order and assigns it to the majority class among those
associated with its neighbors. In other words, it assigns each vertex v to the
class c that maximizes the sum of the weights of the edges {u, v} incident
on v such that c is the class of u, according to the following formula:

class(v) := argmax
c

∑
{u,v}∈E(Gq)

s.t. class(u)=c

Dice(u, v) (10)

727

Computational Linguistics Volume 39, Number 3

Algorithm 2 The Chinese Whispers algorithm.
Input: a graph Gq = (V, E) to be clustered
Output: a clustering C of the vertices in V

1: for each vi ∈ V
2: class(vi) := i
3: Ci := {vi}
4: C := {Ci : i = 1, . . . , |V|}
5: repeat
6: C′ := C
7: for each v ∈ V, randomized order
8: class(v) := argmax

c

∑
{u,v}∈E(Gq)

s.t. class(u)=c

Dice(u, v)

9: for each i do Ci := {v ∈ V : class(v) = i}
10: C := {Ci : Ci �= ∅}
11: until C �= C′

12: return C

As soon as an iteration produces no change in the clustering (line 11), the algorithm
stops and outputs the final clustering (line 12). In contrast to the previous algorithm,
Chinese Whispers is parameter-free. Figure 4(g) shows an output example for this
algorithm on the lion co-occurrence graph.

3.3 Clustering of Web Search Results

We are now ready to semantically cluster our Web search results R, which we previously
transformed into bags of words B (cf. Section 3.1). To this end we use the automatically
discovered senses for our input query q (cf. Section 3.2). We adopt different measures,
each of which calculates the similarity between a bag of words bi ∈ B and the sense
clusters {S1, . . . , Sm} acquired as a result of Word Sense Induction.

Given a result bi, the sense cluster closer to bi will be selected as the most likely
meaning of ri. Formally:

Sense(ri) =

⎧⎪⎨
⎪⎩

argmax
j=1,...,m

sim(bi, Sj) if max
j=1,...,m

sim(bi, Sj) > 0

0 else
(11)

where sim(bi, Sj) is a generic similarity value between bi and Sj (0 denotes that no sense
is assigned to result ri). As a result of sense assignment for each ri ∈ R, we obtain a
clustering C = (C1, . . . , Cm) such that:

Cj = {ri ∈ R : Sense(ri) = j} (12)

that is, Cj contains the search results classified with the j-th sense of query q.
We now present three different similarity measures between snippet bags of words

and sense clusters (cf. Equation (11)), which we implemented in our framework.

728

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Word Overlap. It calculates the size of the intersection between the two word sets:

simWO(bi, Sj) =
|bi ∩ Vj|

|bi|
(13)

where Sj = (Vj, Ej) as defined in Section 3.2.2.

Degree Overlap. It calculates the sum of the degrees in the co-occurrence graph compo-
nent of Sj of the snippet’s words in bi:

simDO(bi, Sj) =

∑
w∈bi∩Vj

degree(w, Sj)

|bi| · |Ej|
(14)

where degree(w, Sj) is the number of edges incident on w in the Sj component of the
co-occurrence graph.

Token Overlap. The third measure is similar in spirit to Word Overlap, but takes into
account each token occurrence in the snippet bag of words bi:

simTO(bi, Sj) =

∑
w∈bi∩Vj

c(w, ri)∑
w∈bi

c(w, ri)
(15)

where c(w, ri) is the number of occurrences of the word w in the result ri.

3.4 Cluster Sorting

As a natural consequence of the different similarity values between snippet results and
a given cluster, first, not all the snippets will have the same degree of relevance for the
cluster, and second, the produced clusters will show a different “quality” depending on
the relevance of the search results therein. We thus sort the clusters in our clustering
C using a similarity-based notion of cluster “quality.” For each cluster Cj ∈ C, we de-
termine its similarity with the corresponding meaning Sj by calculating the following
formula:

avgsim(Cj, Sj) =

∑
ri∈Cj

sim(bi, Sj)

|Cj|
(16)

The formula determines the average similarity between the bags of words bi of
the search results ri in cluster Cj and the corresponding sense cluster Sj. The similarity
function sim is the same as that stated in Equation (11) and defined in Section 3.3.

Finally, we rank the elements ri within each cluster Cj by their similarity sim(bi, Sj).
We note that the ranking and optimality of clusters can be improved with more sophis-
ticated techniques (e.g., Crabtree, Gao, and Andreae 2005; Kurland 2008; Kurland and
Domshlak 2008; Lee, Croft, and Allan 2008). This is beyond the scope of this article,
however.

729

Computational Linguistics Volume 39, Number 3

4. In Vivo Experiments: Web Search Result Clustering

We now present two extrinsic experiments aimed at determining the impact of WSI
when integrated into Web search result clustering. We first describe our experimental
set-up (Section 4.1). Next, we present a first experiment focused on the quality of the
output search result clusters (Section 4.2) and a second experiment on the degree of
diversification of semantically enhanced versus non-semantic search result clustering
algorithms (Section 4.3).

4.1 Experimental Set-up

4.1.1 Lexicon. In all our experiments our lexicon was given by the entire WordNet
vocabulary (Miller et al. 1990; Fellbaum 1998) augmented with the set of queries in our
test data sets.

4.1.2 Corpora. To calculate the co-occurrence strength between words we need a large
corpus to extract co-occurrence counts and calculate the Dice values (cf. Equation (1)). To
this end we performed separate experiments on two different corpora and constructed
the corresponding co-occurrence databases:

� Google Web1T (Brants and Franz 2006): This corpus is a large
collection of n-grams (n = 1, . . . , 5)—namely, windows of n consecutive
tokens—occurring in one terabyte of Web documents as collected by
Google. We consider all the co-occurrences for lemmas which appear in
the same n-gram (we applied the WordNet lemmatizer to obtain the
canonical form of any word sequence).

� ukWaC (Ferraresi et al. 2008): This corpus was constructed by crawling
the .uk domain and obtaining a large sample of Web pages that were
automatically part-of-speech tagged using the TreeTagger tool. For this
corpus we considered all the co-occurrences of WordNet lemmas that
appear in the same sentence.

We selected these two corpora for their very different natures, namely: Google
Web1T is a very large corpus, but with very narrow contexts (5-grams) with a mini-
mum occurrence frequency; ukWaC represents a smaller portion of the Web, but with
larger contexts. This enabled us to observe the behavior of WSI algorithms when co-
occurrences were extracted from different kinds of textual source. In Table 5 we show
examples of the contexts available in the two corpora for the same word (i.e., lion) and
the content words that are found to co-occur with it (shown in italics in Table 5).

Table 5
Example of contexts for the word lion in the Web1T and ukWaC corpora (target word in bold,
co-occurring words in italics).

corpus context example

Web1T roar of the lion in
ukWaC Wilson’s Zoo and its sad lion had given way to the brave attempt to create an early

“Safari Park”.

730

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Table 6
The pseudoword data set.

pseudoword

1 pizza*blog
2 banana*plush
3 kalashnikov*mollusk*sky
4 hurricane*glue*modem
5 pistol*stair*yacht*semantics
6 potassium*razor*walrus*calendula
7 monarchy*archery*google*locomotive*beach
8 hyena*helium*soccer*ukulele*wife
9 human*orchid*candela*colosseum*movie*guitar

10 journey*harmonica*vine*mustache*rhino*police
11 glossary*river*dad*kitchen*aikido*geranium*italy
12 microbe*hug*ship*skull*beer*giraffe*mathematics

4.1.3 Tuning Set. Given that our graph construction step and our WSI algorithms have
parameters, we created a data set to perform tuning. In order to fix the parameter values
independently of our application we created this data set by means of pseudowords
(Schütze 1992; Yarowsky 1993). A pseudoword is an ambiguous artificial word created
by concatenating two or more monosemous words. Each monosemous word represents
a meaning of the pseudoword. For example, given the words pizza and blog we can
create the pseudoword pizza*blog. The list of pseudowords we used is reported in
Table 6.

The powerful property of pseudowords is that they enable the automatic construc-
tion of sense-tagged corpora with virtually no effort. In fact, we automatically created
our tuning data set as follows:

1. First, we collected the top 100 results retrieved by Yahoo! for each meaning
(i.e., monosemous word) of the pseudoword (e.g., pizza and blog for
pizza*blog).

2. We created a set of 100 snippets for the “pseudoword” query (e.g.,
pizza*blog) by selecting snippets from each meaning of the pseudoword
in a number that was proportional to their total occurrence count. For
instance, if pizza and blog occur, respectively, 73,000 and 27,000 times in the
reference corpus (e.g., ukWaC), we selected 73 snippets from pizza and 27
from blog. As a result we simulated the distribution of the two senses of
the pseudoword within the retrieved snippets.

3. Finally, within each of the 100 snippets, we replaced each monosemous
word occurrence (e.g., pizza and blog) with the pseudoword itself (i.e.,
pizza*blog). As a result we obtained a set of 100 snippets for each
ambiguous pseudoword.

4.1.4 Parameters. We used our tuning set to select, first, the optimal values of the pa-
rameters needed to perform graph construction, and, second, to choose the parameter
values specific to each graph-based WSI algorithm. To find the best configurations we
performed tuning by combining the three evaluation measures of Adjusted Rand Index,
Jaccard Index, and F1 (introduced in Section 4.2.1).

731

Computational Linguistics Volume 39, Number 3

Table 7
The optimal parameter values for graph creation obtained as a result of tuning.

Web1T ukWaC

parameter C
ur

va
tu

re

Sq
ua

T
++

V

Sq
ua

T
++

E

B-
M

ST

H
yp

er
Le

x

C
hi

ne
se

W
hi

sp
er

s

C
ur

va
tu

re

Sq
ua

T
++

V

Sq
ua

T
++

E

B-
M

ST

H
yp

er
Le

x

C
hi

ne
se

W
hi

sp
er

s

max comp. length (φ) 2 2 2 2 2 2 2 2 2 2 2 2
min co-occurr. (δ) 5E-2 5E-2 5E-2 5E-2 5E-2 2E-1 2E-1 5E-1 2E-1 2E-1 2E-1 2E-1
min Dice (δ′) 1E-2 1E-2 1E-2 1E-2 5E-2 5E-2 1E-4 1E-4 1E-2 1E-2 1E-4 5E-2
min edge weight (θ) 9E-4 9E-4 9E-4 9E-4 9E-4 9E-4 6E-3 3E-3 3E-3 3E-3 7E-3 3E-3
co-occurrence order 1 1 1 1 1 1 1 1 1 1 1 1

Graph construction. Because all our WSI algorithms draw on the co-occurrence graph,
we first tuned the parameters for graph construction for each of the two corpora
(cf. Section 3.2.1), namely: the maximum length of the compounds extracted from the
corpus (φ), the minimum number of co-occurrences (δ) and minimum Dice value (δ′)
for vertex addition, and the minimum weight for a graph edge (θ) and vertex addition
using first versus second-order co-occurrences. In Table 7 we show the values for these
parameters that optimize the performance of each WSI algorithm on the two corpora.11

In all our runs we used the Word Overlap as a similarity measure for Web search result
clustering.

We observed that the optimal values for many of the parameters used for graph
construction were stable across algorithms, whereas they changed across corpora due
to the different scales of the two corpora. Instead, the maximum compound length and
the co-occurrence order were fixed for all configurations. For the former we observed no
performance increase with longer compound lengths. For the latter we found negligible
improvements with second-order co-occurrences, at the cost, however, of increasing the
size of the resulting graph exponentially. Given the large number of experiments that
would be involved, we decided to avoid this additional workload and use first-order
co-occurrences in all our experiments.

WSI algorithms. Next, for each graph-based WSI algorithm, we kept the given optimal
values fixed for building the co-occurrence graphs for the tuning set queries, while
varying the parameter values of the WSI algorithm, using Word Overlap as similar-
ity measure for Web search result clustering. In Table 8 we show the optimal values
for each algorithm when using Web1T (third column) and ukWaC (fourth column)
to build the co-occurrence graph. Chinese Whispers is not shown as it is parameter-
free (cf. Section 3.2.2). For SquaT++, together with the σ threshold, we also tuned the
three coefficient values α, β, and γ, that is, we needed to find the best values for the
coefficients in Equation (8). The optimal coefficient combinations are shown in Table 9
for SquaT++ on vertices and edges, when using the two corpora for graph construction.
The values indicate that all the three graph patterns provide a positive contribution to
the algorithm’s performance, with the same coefficients for SquaT++ on vertices and

11 To this end we used empirically chosen parameters for each WSI algorithm, while delaying the optimal
choice of these parameters to the next paragraph.

732

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Table 8
The WSI algorithms’ parameters.

Web1T ukWaC

Curvature removal threshold (σ) 0.25 0.35

SquaT++ vertex removal threshold (σ) 0.07 0.2
edge removal threshold (σ) 0.2 0.25

B-MST number of clusters (N) 4 4

HyperLex min hub degree (σ) 0.05 0.06
min edge weight (σ′) 0.004 0.01

Table 9
Optimal values for the three graph patterns used in SquaT++.

Web1T ukWaC
α β γ α β γ

SquaT++V 0.34 0.16 0.50 0.34 0.50 0.16
SquaT++E 0.34 0.16 0.50 0.34 0.50 0.16

edges. Interestingly, we observe that, whereas the contribution of triangles (weighted
by α) is the same across corpora, the respective weights of squares (β) and diamonds
(γ) are flipped. After inspection we found that the graphs obtained with Web1T are less
interconnected than those produced with ukWac. Consequently, diamonds are sparser
but more reliable in the Web1T setting, whereas they are much more frequent, and thus
noisier, in the ukWaC setting.

4.1.5 Test Sets. We conducted our in vivo experiments on two test sets of ambiguous
queries:

� AMBIENT (AMBIguous ENTries), a data set that contains 44 ambiguous
queries.12 The sense inventory for the meanings (i.e., subtopics)13 of
queries is given by Wikipedia disambiguation pages. For instance, given
the beagle query, its disambiguation page in Wikipedia provides the
meanings of dog, Mars lander, computer search service, beer brand, and so
forth. The top 100 Web results of each query returned by the Yahoo! search
engine were tagged with the most appropriate query senses according to
Wikipedia (amounting to 4,400 sense-annotated search results). To our
knowledge, this is currently the largest data set of ambiguous queries
available on-line. In fact, other existing data sets, such as those from the
TREC Interactive Tracks, are not focused on distinguishing the subtopics
of a query.

12 http://credo.fub.it/ambient.
13 In the following we use the terms subtopic and word sense interchangeably. As stated in the Introduction,

this work focuses on query disambiguation along the lines of Word Sense Induction and Disambiguation
(Navigli 2009), rather than aspect identification, which concerns subtle distinctions within the same
meaning of a query.

733

Computational Linguistics Volume 39, Number 3

Table 10
Statistics on the AMBIENT and MORESQUE data sets.

data set queries queries by length average
1 2 3 4 subtopics

AMBIENT 44 35 6 3 0 17.9
MORESQUE 114 0 47 36 31 6.6

� MORESQUE (MORE Sense-tagged QUEry results), a data set that we
developed as an integration of AMBIENT following guidelines provided
by its authors.14 In fact, our aim was to study the behavior of Web search
algorithms on queries of different lengths, ranging from one to four words.
The AMBIENT data set, however, is composed in the main of one-word
queries. MORESQUE provides dozens of queries of length 2, 3, and 4,
together with the top 100 results from Yahoo! for each query annotated
precisely as was done in the AMBIENT data set. We decided not to
discontinue the use of Yahoo! mainly for homogeneity reasons.

Wikipedia has already been used as a sense inventory by, among others, Bunescu
and Pasca (2006), Mihalcea (2007), and Gabrilovich and Markovitch (2009). Santamarı́a,
Gonzalo, and Artiles (2010) have investigated in depth the benefit of using Wikipedia
as the sense inventory for diversifying search results, showing that Wikipedia offers
much more sense coverage for search results than other resources such as WordNet.

We report the statistics on the composition of the two data sets in Table 10. Given
that the snippets could possibly be annotated with more than one Wikipedia subtopic,
we also determined the average number of subtopics per snippet. This amounted to
1.01 for AMBIENT and 1.04 for MORESQUE for snippets with at least one subtopic
annotation. We can thus conclude that multiple subtopic annotations are infrequent.
Finally, we analyzed how the different subtopics are distributed over the snippet results
for each query. To do this we calculated the standard deviation of the subtopic popula-
tion for each individual query, which we show in Figure 5. We observed a considerable
difference in the standard deviations of shorter and longer queries (e.g., between those
from the AMBIENT data set [from 1 to 44 in the figure] and the MORESQUE data set
[from 45 to 158]). We further calculated the average standard deviation over the two
data sets’ queries, obtaining 6.5 for AMBIENT and 13.1 for MORESQUE. Therefore we
anticipate that the longer the query length, the more unbalanced will be the distribution
of its subtopics over the top-ranking results.

In line with previous experiments on search result clustering, our data set does
not contain monosemous queries for two reasons: (i) we are interested in queries with
multiple meanings, and (ii) monosemous queries would increase the performance of
our experiments because no diversification would be needed for them.

4.1.6 Systems. We performed a comparison of our semantically enhanced search result
clustering systems with nonsemantic ones.

14 http://lcl.uniroma1.it/moresque.

734

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160

st
d

de
v

query ID

Figure 5
Standard deviations for the subtopic population of the AMBIENT queries (1–44) and the
MORESQUE queries (45–158).

Semantically enhanced systems. We integrated our graph-based WSI algorithms (Curva-
ture, SquaT++, B-MST, HyperLex, and Chinese Whispers; cf. Section 3.2) into our search
result clustering framework. We tested each algorithm when combined with any of the
snippet-to-sense similarity measures introduced in Section 3.3.

Nonsemantic systems. We compared our semantically enhanced systems with four Web
clustering engines, namely:

� Lingo (Osinski and Weiss 2005): A Web clustering engine implemented
in the Carrot open-source framework15 that clusters the most frequent
phrases extracted using suffix arrays.

� Suffix Tree Clustering (STC) (Zamir and Etzioni 1998): The original Web
search clustering approach based on suffix trees.

� KeySRC (Bernardini, Carpineto, and D’Amico 2009): A state-of-the-art
Web clustering engine built on top of STC with part-of-speech pruning
and dynamic selection of the cut-off level of the clustering dendrogram.

� Yippy16 (formerly Clusty): A state-of-the-art metasearch engine developed
by Vivı́simo aimed at clustering search results into meaningful topics.

For Lingo and STC we used the Carrot implementation which we integrated into
our framework. Conversely, for Yippy we used the on-line output provided by the Web
search engine.

15 http://project.carrot2.org.
16 http://search.yippy.com.

735

Computational Linguistics Volume 39, Number 3

4.1.7 Baselines. We compared the four systems against three baselines:

� Singletons: Each snippet is clustered as a separate singleton (i.e., the
cardinality of the resulting clustering C is |C| = |R|).

� All-in-one: All the snippets are clustered into a single cluster (i.e., |C| = 1).
� Wikipedia clustering: Given an input query q, we apply Equation (13) to

match the bag of content words of each snippet against that of each
Wikipedia page representing a meaning of q (we use the disambiguation
page of q as its sense inventory). The snippet is then added to the cluster
corresponding to the best-matching Wikipedia page. Given q, we obtain a
clustering whose size is determined by the number of meanings in the
Wikipedia disambiguation page of q.

The first two baselines help us determine whether the evaluation measures have
a bias towards very small (singletons) or big clusters (all-in-one). The third baseline,
based on Wikipedia, is a tough one in that—in contrast to our systems—it relies on a
predefined sense inventory (which is the same as that used in the manual classification
of the test set) to cluster the snippets. Consequently the baseline does not “induce”
the senses, but just classifies (or labels) each snippet with the best-matching Wikipedia
sense of the input query.

4.2 Experiment 1: Evaluation of the Clustering Quality

4.2.1 Evaluation Measures. In this first experiment our goal is to evaluate the quality
of the output produced by our search result clustering systems. Unfortunately, the
clustering evaluation problem is a notably hard issue, and one for which there exists no
unequivocal solution. Many evaluation measures have been proposed in the literature
(Rand 1971; Zhao and Karypis 2004; Rosenberg and Hirschberg 2007; Geiss 2009, inter
alia) so, in order to get exhaustive results, we tested three different clustering quality
measures, namely, Adjusted Rand Index, Jaccard Index, and F1-measure, which we
introduce hereafter. Each of these measures M(C,G) calculates the quality of a clustering
C, output for a given query q, against the gold standard clustering G for that query. We
then determine the overall results on the entire set of queries Q in the test set according
to the measure M by averaging the values of M(C,G) obtained for each single test
query q ∈ Q.

Adjusted Rand Index. Given a gold standard clustering G, the Rand Index (RI; Rand 1971)
of a clustering C is a measure of clustering agreement commonly used in the literature,
calculated as follows:

RI(C,G) = TP + TN
TP + FP + FN + TN (17)

where TP is the number of true positives (i.e., snippet pairs) that are in the same cluster
both in C and G, TN is the number of true negatives (i.e., pairs which are in different
clusters in both clusterings), and FP and FN are, respectively, the number of false
positives and false negatives. For the gold standard G we use the clustering induced
by the sense annotations provided in our data sets for each snippet (i.e., each cluster
contains the snippets manually associated with a particular Wikipedia page, that is,
subtopic, of the query).

736

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Rand Index determines the percentage of snippet pairs that are in the same con-
figuration in both C and G, but its main weakness is that it does not take chance into
account. In fact, the expected value of the RI of two random clusterings is not a constant
value (e.g., 0). This issue is addressed by the Adjusted Rand Index (ARI; Hubert and
Arabie 1985), which corrects the RI for chance agreement and makes it vary according
to expectation:

ARI(C,G) = RI(C,G) − E(RI(C,G))
max RI(C,G) − E(RI(C,G)) (18)

where E(RI(C,G)) is the expected value of the RI. Given two clusterings C = (C1, . . . , Cm)
and G = (G1, G2, . . . , Gg), we first quantify the degree of overlap between C and G using
the contingency table reported in Table 11, where nij denotes the number of objects in
common between Gi and Cj (i.e., nij = |Gi ∩ Cj|) and ai and bj represent, respectively,
the number of objects in Gi and Cj. Now, Equation (18) can be reformulated as follows
(Steinley 2004):

ARI(C,G) =

∑
ij
(nij

2

)
− [

∑
i
(ai

2

)∑
j
(bj

2

)
]/
(N

2
)

1
2 [
∑

i
(ai

2

)
+
∑

j
(bj

2

)
] − [

∑
i
(ai

2

)∑
j
(bj

2

)
]/
(N

2
) (19)

Differently from the original RI (which ranges between 0 and 1), the ARI ranges
between −1 and +1 and is 0 when the index equals its expected value. Given the issues
with RI, in our experiments we focused on ARI.

Jaccard Index. The ARI compares a clustering C with a gold standard G both in terms
of the snippets occurring in the same cluster (TP) and those which are assigned to
different clusters (TN). There are typically many TN in a clustering, however; therefore
this measure tends to overweight the usefulness of snippets placed in different clusters.
The Jaccard Index (JI) is a measure that addresses this issue. JI is calculated as follows:

JI(C,G) = TP
TP + FP + FN (20)

In fact, in contrast to RI (cf. Equation (17)), neither the numerator nor the denomi-
nator of JI include the TN term.

Table 11
Contingency table for the clusterings G and C.

����G
C C1 C2 · · · Cm Sums

G1 n11 n12 · · · n1m a1
G2 n21 n22 · · · n2m a2
...

...
...

. . .
...

...
Gg ng1 ng2 · · · ngm ag

Sums b1 b2 · · · bm N

737

Computational Linguistics Volume 39, Number 3

F1-Measure. The ARI and the JI calculate the clustering quality using snippet pairs as
the basic unit. Instead, a clustering C can be evaluated by focusing on the precision of
the single clusters and the topics recalled by them, that is, we evaluate C according to
its precision (P) and recall (R) against a gold standard G. Precision determines how
accurately the clusters of C represent the topics in the gold standard G, and recall
measures how accurately the topics in G are covered by the clusters in C.

The precision of a cluster Cj ∈ C can be calculated as follows (Crabtree, Gao, and
Andreae 2005):

P(Cj) =
|Ct

j |
|Cj|

(21)

where t is the majority topic in Cj for a given query,17 and Ct
j is the set of snippets in

Cj which are tagged with subtopic t in the gold standard G. The recall of a topic t is,
instead, calculated as:

R(t) =
|
⋃

Cj∈Ct Ct
j |

nt
(22)

where Ct is the subset of clusters of C whose majority topic is t, and nt is the number of
snippets tagged with subtopic t in the gold standard. The total precision and recall of
the clustering C are then calculated as:

P =

∑
Cj∈C P(Cj)|Cj|∑

Cj∈C |Cj|
; R =

∑
t∈T R(t)nt∑

t∈T nt
(23)

where T is the set of subtopics in the gold standard G for the given query. The two
values of P and R are then combined into their harmonic mean, namely, the F1 measure
(van Rijsbergen 1979):

F1(C,G) = 2PR
P + R (24)

Note that, in contrast with ARI, in calculating precision and recall we do not
consider untagged gold standard snippets.

4.2.2 Results and Discussion. We show the results of the WSI algorithms in Table 12.
With few exceptions, the results obtained on the two corpora are comparable. SquaT++,
which extends Curvature with the Square and Diamond patterns, obtains higher perfor-
mance. Although integrating three different graph patterns is beneficial, the difference
between using edges and vertices to do so is mostly marginal.

The first important insight is that the best results, shown in bold in Table 12, are
consistent across corpora and similarity measures (i.e., WO, DO, and TO), thus showing
the robustness of the WSI algorithms when co-occurrences are extracted from different
textual sources. The pairwise evaluation measures (i.e., ARI and JI), however, rank the

17 The majority topic for a cluster Cj ∈ C is the topic t for which there exists the maximum number of
snippets in Cj tagged with t.

738

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Table 12
Results of graph-based WSI algorithms with Web1T and ukWaC and various similarity measures
(Word Overlap, Degree Overlap, and Token Overlap). The reported measures are Adjusted Rand
Index (ARI), Jaccard Index (JI), and F1 (percentages). We also show the average number of
clusters per query produced by each algorithm.

Algorithm Sim. Web1T ukWaC
ARI JI F1 # cl. ARI JI F1 # cl.

Curvature
WO 67.03 74.10 58.34 2.3 64.86 72.74 58.84 3.5
DO 66.88 73.76 58.67 2.3 64.02 71.04 59.85 3.5
TO 67.14 74.04 58.36 2.3 65.03 72.46 58.73 3.5

SquaT++V

WO 69.65 75.69 59.19 2.1 69.27 75.55 59.18 2.3
DO 69.21 75.45 59.19 2.1 68.73 75.14 59.75 2.3
TO 69.67 75.69 59.19 2.1 69.33 75.55 59.23 2.3

SquaT++E

WO 69.88 75.82 59.39 2.7 69.84 75.74 59.70 3.9
DO 69.63 75.74 60.99 2.7 69.86 75.35 63.00 3.9
TO 69.88 75.83 59.40 2.7 69.86 75.70 59.78 3.9

B-MST
WO 60.76 71.51 64.56 5.0 61.15 72.24 65.57 5.0
DO 66.48 69.37 64.84 5.0 67.60 70.02 67.41 5.0
TO 63.17 71.21 64.04 5.0 64.18 71.93 65.46 5.0

HyperLex
WO 60.86 72.05 65.41 13.0 56.59 72.00 70.69 17.0
DO 66.27 68.00 71.91 13.0 65.92 67.31 76.88 17.0
TO 62.82 70.87 65.08 13.0 61.64 70.61 70.42 17.0

Chinese Whispers
WO 67.75 75.37 60.25 12.5 68.77 75.45 59.66 6.5
DO 65.95 69.49 70.33 12.5 67.86 72.34 66.16 6.5
TO 67.57 74.69 60.50 12.5 68.97 75.28 59.79 6.5

WSI algorithms differently from the F1 measure. In fact, when we focus on pairwise
evaluation measures, SquaT++ outperforms all other systems on both corpora, with
Chinese Whispers ranking second. B-MST and HyperLex obtain lower results. When we
look into the precision of the output clusters and the recall of the gold-standard topics
(i.e., we calculate F1), however, we observe an inverse trend: HyperLex, B-MST and, to
a lesser extent, Chinese Whispers achieve the best performance, whereas Curvature and
SquaT++ obtain lower F1. This is because, assuming comparable precision, producing
more clusters (as is done by HyperLex, B-MST, and Chinese Whispers) implies more
chances to obtain higher recall, thus better diversifying among the topics of the retrieved
search results. More specifically, B-MST and, especially, HyperLex benefit from the use
of ukWaC in terms of F1 performance, with HyperLex gaining around 5% when moving
from Web1T to ukWaC.

Finally, in most cases we observe negligible differences between the three different
similarity measures (i.e., WO, DO, TO, cf. Section 3.3), with some exceptions concerning
B-MST, HyperLex, and Chinese Whispers.

We now report the best results for our WSI algorithms in Table 13, compared against
those of nonsemantic systems (i.e., Lingo, STC, and KeySRC, cf. Section 4.1.6) and our
three baselines (i.e., all-in-one, singleton, and Wikipedia, cf. Section 4.1.7). For the WSI
algorithms we show the results when using the WO measure, because, first, DO uses
graph information and thus cannot be applied to nonsemantic systems, and, second, in

739

Computational Linguistics Volume 39, Number 3

Table 13
A comparison between different search result clustering approaches (percentages). The best
results for each of the three classes of algorithms is shown in bold.

Algorithm Web1T ukWaC
ARI JI F1 #cl. ARI JI F1 # cl.

WSI-based

Curvature 67.03 74.10 58.34 2.3 64.86 72.74 58.84 3.5
SquaT++V 69.65 75.69 59.19 2.1 69.27 75.55 59.18 2.3
SquaT++E 69.88 75.82 59.39 2.7 69.84 75.74 59.70 3.9
B-MST 60.76 71.51 64.56 5.0 61.15 72.24 65.57 5.0
HyperLex 60.86 72.05 65.41 13.0 56.59 72.00 70.69 17.0
Chinese Whispers 67.75 75.37 64.25 12.5 68.77 75.45 59.66 6.5

SRC systems
Lingo −0.53 36.36 16.73 2.0 −0.53 36.36 16.73 2.0
STC −7.90 38.23 14.96 2.0 −7.90 38.23 14.96 2.0
KeySRC 14.34 27.77 63.11 18.5 14.34 27.77 63.11 18.5

Baselines
All-in-one 0.00 47.12 42.40 1.0 0.00 47.12 42.40 1.0
Singleton 0.00 0.00 68.17 100.0 0.00 0.00 68.17 100.0
Wikipedia 13.83 56.02 14.33 5.7 13.83 56.02 14.33 5.7

most cases (as remarked earlier) there are negligible differences between the two other
similarity measures (i.e., WO and TO, see Table 12).

Our first finding here is that WSI-based search result clustering outperforms all
other approaches across all evaluation measures on the two corpora, except for KeySRC
and the singleton baseline when using the F1 measure. We note, however, that although
KeySRC outperforms the WSI algorithms based on graph patterns in terms of F1, it
attains very low ARI and JI results. Even worse, the singleton baseline produces trivial,
meaningless clusterings, as measured by ARI and JI. The all-in-one baseline, instead,
obtains non-zero JI (thanks to the true positives taken into account), but again zero ARI.
Further, its F1 is lower than singleton, because of its lower recall. The Wikipedia baseline
fares well compared with the other baselines in terms of ARI and JI, but achieves lower
F1, again because of low recall. Finally, KeySRC consistently outperforms the other SRC
systems in terms of ARI and F1.

In order to perform a fair comparison of our systems with Yippy we used a modified
version of our test set that retains only the Yahoo! results that were also returned by
Yippy. The average number of results over all queries in the resulting data set is 24.4,
with a minimum and maximum number of 3 and 56 results per query, respectively.

We report the results on the reduced data set in Table 14. Among the classical search
result clustering systems, Yippy performs worse in terms of ARI and JI. Instead, when
we focus on the precision and recall of the output clusters, Yippy outperforms all other
nonsemantic systems, while lagging behind all WSI algorithms (which use Web1T). One
finding here is that, even in the presence of a smaller number of snippets per query,
semantic systems perform best, whereas other approaches, which rely (like KeySRC) on
the availability of a sufficient number of snippets, fall short.

4.3 Experiment 2: Evaluation of the Clustering Diversity

4.3.1 Evaluation Measure. Most of today’s search engines return a flat list of search results.
We thus performed a second experiment aimed at quantifying the impact of our Web
search result clustering systems on flat-list search engines. In other words, our goal was

740

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Table 14
A comparison of different SRC approaches, including Yippy (on a reduced version of the
AMBIENT+MORESQUE data set; WSI systems use Web1T).

Algorithm ARI JI F1 # cl.

WSI-based

Curvature 63.21 75.22 64.86 2.1
SquaT++V 64.25 75.29 64.99 2.0
SquaT++E 64.13 75.96 65.30 2.3
B-MST 53.72 76.51 70.82 5.0
HyperLex 55.93 76.63 72.04 7.9
Chinese Whispers 55.41 74.83 70.52 8.4

SRC systems

Lingo −1.58 35.65 17.00 2.0
STC 7.91 38.34 15.04 2.0
KeySRC −0.01 31.80 32.90 3.3
Yippy 3.80 14.81 64.52 14.9

Baselines
All-in-one 0.00 45.66 48.30 1.0
Singleton 0.00 0.00 72.19 24.4†
Wikipedia 10.00 52.05 15.60 5.8

† Corresponding to the average number of snippet results in the reduced data set.

to determine how many different meanings of a query are covered in the top-ranking
results shown to the user. One natural way of measuring such performance is given
by S-recall@K (Subtopic recall at rank K) and S-precision@r (Subtopic precision at
recall r) (Zhai, Cohen, and Lafferty 2003). S-recall@K counts the number of different sub-
topics retrieved for q in the top K results returned:

S-recall@K =
| ∪K

i=1 subtopics(ri)|
m (25)

where subtopics(ri) is the set of subtopics manually assigned to the search result ri and
m is the number of subtopics for query q in the gold standard. In order to cut out some
noise, we calculated the S-recall@K considering only the subtopics assigned to at least
two snippets.

S-precision@r instead determines the ratio of different subtopics retrieved for q in
the first Kr documents, where Kr is the minimum number of top results for which the
system achieves recall r. Formally:

S-precision@r =
| ∪Kr

i=1 subtopics(ri)|
Kr

(26)

So whereas S-recall@K aims at determining the performance of a system at
retrieving the largest number of topics for the query q in the K top-ranking results,
S-precision@r quantifies the ratio of distinct subtopics covered by the minimal set of
results returned for which the system obtains a specific recall r. Note that unambiguous
queries would perform with S-precision@r = S-recall@K = 1 for all values of r and K.18

18 Here again we focus on the polysemy of queries in the traditional (computational) linguistic sense. See
Section 2.6 for a discussion.

741

Computational Linguistics Volume 39, Number 3

Table 15
S-recall@K on all queries (percentages). The results for WSI algorithms are reported for both
Web1T and ukWaC.

K

System 3 4 5 6 7 8 9 10 15 20

W
eb

1T

Curvature 48.2 53.5 57.1 60.5 64.6 67.4 69.4 72.6 81.5 86.2
SquaT++V 47.1 52.0 55.5 59.3 61.9 65.6 68.4 70.4 79.4 86.2
SquaT++E 47.6 51.9 56.2 59.6 62.6 64.5 67.0 69.0 78.5 84.4
B-MST 49.1 55.8 59.4 62.5 65.6 67.8 70.0 72.3 80.0 85.5
HyperLex 50.4 55.5 60.5 63.4 66.2 69.3 71.2 72.9 78.9 84.9
Chinese Whispers 48.8 53.3 58.3 62.2 65.4 68.5 70.8 72.8 78.9 84.5

uk
W

aC

Curvature 47.2 51.8 56.8 59.5 62.5 65.4 67.0 68.4 76.3 83.4
SquaT++V 47.1 51.9 56.7 59.4 62.9 65.6 68.1 70.3 78.8 84.4
SquaT++E 47.9 51.2 55.1 58.6 61.5 64.8 67.8 69.6 78.9 84.9
B-MST 49.9 55.3 61.0 63.9 66.9 70.7 73.7 75.6 83.3 87.5
HyperLex 51.1 59.3 64.6 67.3 71.3 73.9 74.9 76.6 83.4 87.6
Chinese Whispers 49.7 54.5 57.7 61.2 64.0 66.7 69.5 71.4 79.4 84.0

KeySRC 39.5 46.1 48.7 51.4 54.3 57.1 59.6 61.7 68.2 72.5
EP 36.1 41.4 44.6 50.8 53.5 55.0 57.1 59.2 67.9 73.3
Yahoo! 42.3 47.6 51.4 54.6 57.3 59.4 61.0 63.4 69.1 73.3

These two measures are only suitable, however, for systems returning ranked lists
(such as Yahoo! and Essential Pages). In order to apply them to search result clustering
systems, we flatten each clustering to a list of search results. To do so, given a clustering
C = (C1, C2, . . . , Cm), we add to the initially empty list the first element19 of each cluster
Cj (j = 1, . . . , m); then we iterate the process by selecting the second element of each
cluster Cj such that |Cj| ≥ 2, and so on. The remaining elements returned by the search
engine, but not included in any cluster of C, are appended to the bottom of the list in
their original order.

4.3.2 Results and Discussion. The results in terms of S-recall@K are shown in Table 15. The
first key finding is that, independently of the adopted corpus for graph construction,
each of the WSI algorithms outperforms all nonsemantic systems, including the state-
of-the-art search resulting clustering engine (KeySRC), Essential Pages (see Section 2.4),
and the Yahoo! baseline. This result provides strong evidence that inducing senses for
a given ambiguous query is beneficial for the diversification of snippet results. Not
all WSI algorithms perform the same, however: In fact, we observe that exploiting
local graph patterns (as done by Curvature and SquaT++) typically leads to worse
results compared with other graph-based approaches. We do not observe substantial
differences between Curvature and SquaT++ on edges and vertices. We hypothesize
that the lack of significant difference in the diversification performance of the three
pattern-based WSI algorithms is due to the lower number of clusters they produce
(in the order of around two to three clusters, cf. Table 12).

19 Recall that the snippets within a cluster are sorted by relevance, cf. Section 3.4.

742

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

The best performance on both corpora is, instead, obtained by HyperLex, tailed
by B-MST and Chinese Whispers. HyperLex is more complex and requires the tuning
of many parameters (Agirre et al. 2006a), however. Interestingly, we observe that the
ranking of WSI algorithms according to S-recall@K closely matches that obtained with
the F1 measure for clustering quality. Finally, among the nonsemantic alternatives,
Yahoo! fares well and surpasses KeySRC and EP.

To get futher insights into the performance of the best semantic systems, in Fig-
ure 6 we graphed the values of S-recall@K for representative systems, namely, B-MST,

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

S
-r

ec
al

l@
K

K

B-MST
SquaT++V

KeySRC
Essential Pages

Yahoo!

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

S
-r

ec
al

l@
K

K

B-MST
SquaT++V

KeySRC
Essential Pages

Yahoo!

Figure 6
S-recall@K trend for B-MST, SquaT++V , KeySRC, Essential Pages, and Yahoo! on Web1T (top)
and ukWaC (bottom).

743

Computational Linguistics Volume 39, Number 3

SquaT++V, and the three nonsemantic systems. The results shown in the figure are
those obtained with Web1T (top) and ukWaC (bottom). We can see that SquaT++V lags
behind B-MST especially for low values of K. As also remarked previously, Yahoo! tends
to perform better than KeySRC.

As regards S-precision@r, shown in Table 16, again all WSI algorithms outperform
nonsemantic systems. The general trend observed for S-recall@K is confirmed here:
HyperLex generally achieves the best values of S-precision@r, with good performance
for all other semantic systems. All in all, HyperLex has the best balance between recall
and precision, with better diversification performance on ukWaC, and therefore looks
like the most suitable choice. B-MST, however, is much simpler and requires just one
parameter (i.e., the number of clusters), which can also be exploited by the user to get
finer- or coarser-grained search result groups. As was previously done for S-recall@K,
we also graphed the values of S-precision@r for the same representative systems in
Figure 7.

5. In Vitro Experiment: Evaluating the Induced Senses

Although the primary aim of this work was to demonstrate a relevant, end-to-end appli-
cation of sense discovery techniques, we performed an additional in vitro experiment
aimed at verifying the quality of the discovered senses independently of the task in
which they are used.

When performing in vitro evaluations, no single intrinsic measure provides a
clear hint as to which algorithm performs best (Manandhar et al. 2010). In fact, some
measures favor large clusters, whereas others are based on the expectaction that the
WSI algorithm will discover more fine-grained sense distinctions. To provide further
insights into the clusters produced by our graph-based WSI algorithms, we performed

Table 16
S-precision@r on all queries (percentages). The results for WSI algorithms are reported for both
Web1T and ukWaC.

r

System 50 60 70 80 90

W
eb

1T

Curvature 46.0 33.8 30.7 25.2 21.9
SquaT++V 45.9 34.5 28.3 24.0 21.0
SquaT++E 42.8 35.3 29.1 23.6 20.4
B-MST 43.6 35.3 29.3 25.7 21.6
HyperLex 46.5 38.0 31.3 26.5 22.5
Chinese Whispers 49.4 35.2 28.9 24.2 21.9

uk
W

aC

Curvature 37.9 33.2 27.4 24.3 20.4
SquaT++V 45.0 34.4 28.8 25.5 22.2
SquaT++E 42.0 34.0 29.3 25.2 20.5
B-MST 49.3 36.7 33.5 26.3 22.5
HyperLex 51.4 40.0 32.4 27.6 22.6
Chinese Whispers 45.1 36.6 30.1 24.5 20.5

KeySRC 29.3 22.3 17.7 15.4 12.0
EP 33.6 24.9 18.9 16.1 13.2
Yahoo! 36.1 25.7 18.7 15.5 12.6

744

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 50 55 60 65 70 75 80 85 90

S
-p

re
ci

si
on

@
r

r

B-MST
SquaT++V

KeySRC
Essential Pages

Yahoo!

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 50 55 60 65 70 75 80 85 90

S
-p

re
ci

si
on

@
r

r

B-MST
SquaT++V

KeySRC
Essential Pages

Yahoo!

Figure 7
S-precision@r trend for B-MST, SquaT++V , KeySRC, Essential Pages, and Yahoo! on Web1T (top)
and ukWaC (bottom).

a qualitative evaluation of the output clusters. To this end we randomly selected
17 queries from our query data set. For each query, we submitted in random order
the output of three representative WSI algorithms on the ukWaC corpus, namely,
Curvature, HyperLex, and B-MST, to five annotators.

We show an excerpt of the evaluation procedure for the query excalibur in
Table 17. On the left side of the table we propose an example of an anonymized set of
three clusterings (i.e., one for each algorithm, shown in columns 2–4) presented to our
annotators. Each algorithm produced a group of clusters, each of which consisted of a
set of words strictly related to the meaning conveyed by the cluster itself, as discussed in

745

Computational Linguistics Volume 39, Number 3

Table 17
An example of the manual evaluation procedure for the query excalibur: We show a clustering
triple proposed to the evaluator (left side) and an example of produced ranking (right side).

Clustering A Clustering B Clustering C

Cluster 1

movie movie hotel
book DVD movie
casino video review

book offer

Cluster 2
sword sword
stone lineage
artillery stone

Cluster 3
comic hotel
comic strip chicago

casino

rank algorithm

1st B
2nd A
3rd C

Section 3.2.2. The annotators were asked to rank the three clusterings according to their
own preference (ties were allowed). On the right side of Table 17 we show an example
of ranking for the three clusterings. In the example, clustering B was deemed to be more
representative, because it better models three meanings of excalibur, namely: the film-
novel meaning, the sword meaning, and the hotel casino meaning, whereas clustering
A mixes the movie and the casino meaning within cluster 1, and, even worse, clustering
C just provides a singleton cluster.

Finally, for each query, and for the entire set of 17 queries, we calculated the average
ranking obtained by each WSI algorithm. The overall results are shown in Table 18
(last row): 1.7 for HyperLex, 1.8 for B-MST, and 2.4 for Curvature. This experiment
corroborates the findings obtained from our extrinsic experiments: Curvature is the
worst-ranking system (probably because of the low number of induced senses), whereas
HyperLex and B-MST are more apt to discriminate between the meanings of an input
query. It is worth noting that the annotators often assigned the same rank to the clus-
ters produced by B-MST and HyperLex, confirming our extrinsic finding that the two
algorithms tend to have a similar behavior, compared with local graph pattern WSI.

6. Time Performance Analysis

Finally, because we are interested in the real-world application of the WSI techniques
we discussed, we decided to collect statistics about the execution times of each system
on the AMBIENT and MORESQUE data sets. We carried out this performance analysis
on a workstation using Sun Java 1.6 VM running on OpenSuse 11.4 (64 bit) with 16 GB
PC3-15000 RAM, Intel Xeon E3-1240@3.30 GHz, and 1.5 TB hard disk space.

In the graph construction step, in common with all WSI algorithms, most (i.e., about
80%) of the computational load is due to the interaction with the database management
system (DBMS, we used MySQL 5.1), and the remaining CPU time is used for popu-
lating the graph. On average constructing a co-occurrence graph takes 10–12 seconds
per query. We note, however, that our algorithms were not engineered to work in an
enterprise, possibly distributed, environment, with a commercial DBMS. Moreover, a
fully engineered architecture might appropriately precalculate and cache the graphs
concerning the most frequent queries.

746

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Table 18
Results of the manual evaluations. The average scores assigned by the assessors to each one of
the 17 queries are shown in columns 2, 3, and 4. In the last row we report the average results
over all queries.

query id B-MST HyperLex Curvature

1 2.0 1.0 3.0
2 1.4 2.0 2.4
3 2.2 1.6 2.2
4 1.4 2.4 2.2
5 2.6 2.0 1.4
6 1.2 1.8 3.0
7 2.2 1.4 2.1
8 2.2 2.4 1.4
9 1.8 2.4 1.6

10 1.8 1.6 2.2
11 1.6 1.4 3.0
12 1.6 1.8 2.6
13 1.8 1.2 3.0
14 1.8 1.2 3.0
15 1.8 1.8 2.0
16 1.6 1.4 3.0
17 1.8 1.2 3.0

all 1.8 1.7 2.4

The average time performance of WSI algorithms including sense discovery and
snippet clustering (but excluding graph construction) are shown in Table 19, expressed
in average number of seconds per query for both corpora. These numbers are compared
with the time performance of nonsemantic systems (bottom part of the table).

We observe that, among pattern-based algorithms, SquaT++ has a high runtime
cost, due to the heavy calculation of three different graph patterns. SquaT++E is
particularly onerous in the presence of large amounts of edges, which is the case
for ukWaC. Curvature, instead, has a lower cost, because the triangle pattern is less

Table 19
Execution times expressed in seconds. For WSI algorithms, the reported times include the sense
discovery and snippet clustering steps and excludes the graph construction step.

Algorithm Web1T ukWaC

Curvature 0.34 0.34
SquaT++V 28.98 14.45

WSI-based SquaT++E 21.49 169.13
systems B-MST 0.24 0.27

HyperLex 0.16 0.13
Chinese Whispers 0.28 0.35

SRC systems
Lingo 0.27
STC 0.20
KeySRC 1.00†

† Estimated by the authors of KeySRC.

747

Computational Linguistics Volume 39, Number 3

onerous to compute. Interestingly, the algorithms which we experimentally found
to perform best (i.e., B-MST, HyperLex, and Chinese Whispers) have a much lower
computational load compared with graph-pattern based algorithms. We found that
HyperLex is particularly fast, with an average time of 0.1 seconds per query. Finally, we
observe that the cost of the best WSI algorithms is not very far off that of nonsemantic
SRC systems.

7. Conclusions

In this article we have presented a novel approach to Web search result clustering based
on the automatic discovery of word senses from raw text. Key to our approach is the
idea of, first, automatically inducing senses for the target query and, second, clustering
the search results based on their semantic similarity to the word senses induced.

A sizeable body of work looking at the benefit of word senses for Web search
already exists at the intersection between lexical semantics and information retrieval.
That research, however, has focused almost exclusively on classical Word Sense Dis-
ambiguation, with contrasting and often inconclusive results. In this article, instead,
we provide clear indication on the usefulness of a looser notion of sense to cope with
ambiguous queries.

In fact, our experiments on data sets of queries of different lengths show that our
approach outperforms all nonsemantic approaches to Web search result clustering. The
main advantage of using Word Sense Induction lies in its dynamic production of word
senses that cover both concepts (e.g., beagle as a specific breed of dog) and instances (e.g.,
beagle as a specific instance of a space lander). This is in contrast with static dictionaries
such as WordNet that are typically used in Word Sense Disambiguation and which, by
their very nature, mainly encode concepts.

Not only have we shown that graph-based WSI, when applied to search result
clustering, surpasses its nonsemantic alternatives, but we have also provided an end-to-
end evaluation framework that enables fair comparison of WSI algorithms. As a result,
we are able to overcome many of the issues with the evaluation of clustering algorithms
(von Luxburg, Williamson, and Guyon 2012), including the lack of a single unbiased
intrinsic measure (Manandhar et al. 2010). Moreover, new WSI algorithms can be added
at any time and compared with those already integrated into the framework. Building
upon this, we are currently organizing a Semeval-2013 task for the extrinsic evaluation
of WSI algorithms.20 As of today, we are releasing a new data set of 114 ambiguous
queries and 11,400 sense-annotated snippets.21 Given the present paucity of ambiguous
query data sets available (Sanderson 2008), we hope our data set will be useful in future
comparative experiments.

Thanks to its modular structure, our framework can easily be extended in many
other ways, including the addition of new snippet similarity measures, text corpora,
query data sets, evaluation measures, and so on. Although our graphs are centered on
words (as vertices), we are also interested in testing new graph construction procedures
based on the use of collocations as vertices, as done by Korkontzelos and Manandhar
(2010). Furthermore, the framework is independent of the target language, in that it just
requires a large-enough corpus for co-occurrence extraction in that language and some
basic tools for processing text (i.e., a stopword list, a lemmatizer, and a compounder).

20 http://www.cs.york.ac.uk/semeval-2013/task11/.
21 The data set is available at http://lcl.uniroma1.it/moresque/.

748

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

As future work, the framework might be integrated with distributional semantics
models and techniques (Baroni and Lenci 2010; Erk, Padó, and Padó 2010; Mitchell and
Lapata 2010; Boleda, im Walde, and Badia 2012; Clarke 2012; Silberer and Lapata 2012,
inter alia).

Finally we note that, although in this article our framework was applied to poly-
semous queries only, nothing prevents it from being used to perform experiments at
different levels of sense granularity. A qualitative evaluation of preliminary experiments
in aspect identification (cf. Section 2.6), which requires the detection of very fine-grained
subsenses of possibly monosemous queries, showed that WSI also seems to perform
well in this task. Given the high number of monosemous queries submitted to Web
search engines, we believe that further investigation in this direction may well reveal
additional benefits of WSI for Web Information Retrieval.

Acknowledgments
The authors gratefully acknowledge
the support of the ERC Starting
Grant MultiJEDI no. 259234 and the
CASPUR High-Performance Computing
Grants 515/2011 and 118/2012.
Thanks go to Google for providing the
Web1T corpus for research purposes,
Claudio Carpineto and Massimiliano
D’Amico for producing the output of
KeySRC and Essential Pages, and Stanislaw
Osinski and Dawid Weiss for their help
with Lingo and STC. Additional thanks go
to Jim McManus and the three anonymous
reviewers for their helpful comments.

References
Agirre, Eneko, David Martı́nez, Oier López

de Lacalle, and Aitor Soroa. 2006a.
Evaluating and optimizing the parameters
of an unsupervised graph-based WSD
algorithm. In Proceedings of the 1st
Workshop on Graph-Based Algorithms for
Natural Language Processing, pages 89–96,
New York.

Agirre, Eneko, David Martı́nez, Oier
López de Lacalle, and Aitor Soroa.
2006b. Two graph-based algorithms
for state-of-the-art WSD. In Proceedings
of the 2006 Conference on Empirical
Methods in Natural Language Processing,
pages 585–593, Sydney.

Agirre, Eneko and Aitor Soroa. 2007.
UBC-AS: A graph based unsupervised
system for induction and classification.
In Proceedings of the 4th International
Workshop on Semantic Evaluations,
pages 346–349, Prague.

Agrawal, Rakesh, Sreenivas Gollapudi,
Alan Halverson, and Samuel Ieong. 2009.
Diversifying search results. In Proceedings
of the 2nd International Conference on Web

Search and Web Data Mining, pages 5–14,
Barcelona.

Baroni, Marco and Alessandro Lenci.
2010. Distributional memory: A
general framework for corpus-based
semantics. Computational Linguistics,
36(4):673–721.

Basile, Pierpaolo, Annalina Caputo, and
Giovanni Semeraro. 2009. Exploiting
disambiguation and discrimination
in Information Retrieval systems.
In Proceedings of the 2009 IEEE/WIC/
ACM International Joint Conference on
Web Intelligence and Intelligent Agent
Technology - Volume 03, pages 539–542,
Washington, DC.

Bennett, Paul N. and Nam Nguyen. 2009.
Refined experts: Improving classification
in large taxonomies. In Proceedings of the
32nd Annual International ACM SIGIR
Conference on Research and Development
in Information Retrieval, pages 11–18,
Boston, MA.

Bernardini, Andrea, Claudio Carpineto,
and Massimiliano D’Amico. 2009.
Full-subtopic retrieval with
keyphrase-based search results clustering.
In Proceedings of 2009 IEEE/WIC/ACM
International Conference on Web Intelligence,
pages 206–213, Milan.

Biemann, Chris. 2006. Chinese whispers—an
efficient graph clustering algorithm
and its application to Natural Language
Processing problems. In Proceedings of the
1st Workshop on Graph-Based Algorithms for
Natural Language Processing, pages 73–80,
New York.

Boleda, Gemma, Sabine Schulte im Walde,
and Toni Badia. 2012. Modeling regular
polysemy: A study on the semantic
classification of Catalan adjectives.
Computational Linguistics, 38(3):575–616.

Branson, S. and A. Greenberg. 2002.
Clustering Web search results using suffix

749

Computational Linguistics Volume 39, Number 3

tree methods. In Technical Report CS276A
Final Project, Stanford University.

Brants, Thorsten and Alex Franz. 2006. Web
1T 5-gram, ver. 1, ldc2006t13. In Linguistic
Data Consortium, Philadelphia, PA.

Brody, Samuel and Mirella Lapata. 2009.
Bayesian Word Sense Induction. In
Proceedings of the 12th Conference of the
European Chapter of the Association for
Computational Linguistics, pages 103–111,
Athens.

Bruza, Peter, Robert McArthur, and Simon
Dennis. 2000. Interactive Internet
search: Keyword, directory and query
reformulation mechanisms compared. In
Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 280–287, Athens.

Bunescu, Razvan C. and Marius Pasca. 2006.
Using encyclopedic knowledge for named
entity disambiguation. In Proceedings of
11th Conference of the European Chapter of the
Association for Computational Linguistics,
pages 9–16, Trento.

Carbonell, Jaime and Jade Goldstein.
1998. The use of MMR, diversity-based
reranking for reordering documents and
producing summaries. In Proceedings of
the 21st Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 335–336,
Melbourne.

Carmel, David, Haggai Roitman, and
Naama Zwerdling. 2009. Enhancing
cluster labeling using Wikipedia. In
Proceedings of the 32nd Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 139–146, Boston, MA.

Carpineto, Claudio, Massimiliano D’Amico,
and Andrea Bernardini. 2011. Full
discrimination of subtopics in search
results with keyphrase-based clustering.
Web Intelligence and Agent Systems,
9(4):337–349.

Carpineto, Claudio, Stanislaw Osiński,
Giovanni Romano, and Dawid Weiss.
2009. A survey of Web clustering engines.
ACM Computing Surveys, 41(3):1–38.

Carpineto, Claudio and Giovanni Romano.
2004. Exploiting the potential of concept
lattices for Information Retrieval with
CREDO. Journal of Universal Computer
Science, 10(8):985–1013.

Chandar, Praveen and Ben Carterette. 2010.
Diversification of search results using
webgraphs. In Proceedings of the 33rd
International ACM SIGIR Conference on

Research and Development in Information
Retrieval, pages 869–870, Geneva.

Chapelle, Olivier, Yi Chang, and Tie-Yan Liu.
2011. Future directions in learning
to rank. Journal of Machine Learning
Research—Proceedings Track, 14:91–100.

Chen, Harr and David R. Karger. 2006. Less
is more: Probabilistic models for retrieving
fewer relevant documents. In Proceedings of
the 29th Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 429–436,
Seattle, WA.

Chen, Jiyang, Osmar R. Zaı̈ane, and Randy
Goebel. 2008. An unsupervised approach
to cluster web search results based on
word sense communities. In Proceedings
of 2008 IEEE/WIC/ACM International
Conference on Web Intelligence,
pages 725–729, Sydney.

Cheng, David, Santosh Vempala, Ravi
Kannan, and Grant Wang. 2005. A
divide-and-merge methodology for
clustering. In Proceedings of the 24th
ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database
Systems, pages 196–205, Baltimore, MD.

Clarke, Daoud. 2012. A context-theoretic
framework for compositionality in
distributional semantics. Computational
Linguistics, 38(1):41–71.

Clough, Paul, Mark Sanderson, Murad
Abouammoh, Sergio Navarro, and
Monica Lestari Paramita. 2009. Multiple
approaches to analysing query diversity. In
Proceedings of the 32nd Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 734–735, Boston, MA.

Crabtree, Daniel, Xiaoying Gao, and Peter
Andreae. 2005. Improving Web clustering
by cluster selection. In Proceedings of 2005
IEEE/WIC/ACM International Conference on
Web Intelligence, pages 172–178,
Compiegne.

Cutting, Douglass R., David R. Karger,
Jan O. Pedersen, and John W. Tukey. 1992.
Scatter/Gather: A cluster-based approach
to browsing large document collections. In
Proceedings of the 15th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 318–329, Copenhagen.

Di Giacomo, Emilio, Walter Didimo,
Luca Grilli, and Giuseppe Liotta. 2007.
Graph visualization techniques for Web
clustering engines. IEEE Transactions on
Visualization and Computer Graphics,
13(2):294–304.

750

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Di Marco, Antonio and Roberto Navigli.
2011. Clustering Web search results with
maximum spanning trees. In Proceedings of
the XIIth International Conference of the
Italian Association for Artificial Intelligence,
pages 201–212, Palermo.

Dorow, Beate, Dominic Widdows, Katarina
Ling, Jean-Pierre Eckmann, Danilo Sergi,
and Elisha Moses. 2005. Using curvature
and Markov clustering in graphs for
lexical acquisition and word sense
discrimination. In Proceedings of the
Meaning-2005 Workshop, Trento.

Erk, Katrin, Sebastian Padó, and Ulrike Padó.
2010. A flexible, corpus-driven model of
regular and inverse selectional preferences.
Computational Linguistics, 36(4):723–763.

Fellbaum, Christiane, editor. 1998. WordNet:
An Electronic Database. MIT Press,
Cambridge, MA.

Ferraresi, Adriano, Eros Zanchetta, Marco
Baroni, and Silvia Bernardini. 2008.
Introducing and evaluating ukWaC,
a very large Web-derived corpus of
English. In Proceedings of the 4th Web as
Corpus Workshop (WAC-4), pages 47–54,
Marrakech.

Furnas, G. W., T. K. Landauer, L. M.
Gomez, and S. T. Dumais. 1987. The
vocabulary problem in human-system
communication. Commununications of
ACM, 30(11):964–971.

Gabrilovich, Evgeniy and Shaul Markovitch.
2009. Wikipedia-based semantic
interpretation for natural language
processing. Journal of Artificial Intelligence
Research (JAIR), 34:443–498.

Geiss, Johanna. 2009. Creating a gold
standard for sentence clustering in
multi-document summarization. In
Proceedings of the 47th Annual Meeting
of the Association for Computational
Linguistics and the 4th International Joint
Conference on Natural Language Processing
of the AFNLP, pages 96–104, Singapore.

Gelgi, Fatih, Hasan Davulcu, and Srinivas
Vadrevu. 2007. Term ranking for clustering
Web search results. In Proceedings of
10th International Workshop on the Web
and Databases, Beijing, China.

Gonzalo, Julio, Anselmo Penas, and Felisa
Verdejo. 1999. Lexical ambiguity and
Information Retrieval revisited. In
Proceedings of the Joint SIGDAT Conference
on Empirical Methods in Natural Language
Processing and Very Large Corpora,
pages 195–202, College Park, MD.

Harris, Zellig. 1954. Distributional structure.
Word, 10:146–162.

Hubert, L. and P. Arabie. 1985. Comparing
partitions. Journal of Classification,
2(1):193–218.

Kamvar, Maryam and Shumeet Baluja.
2006. A large scale study of wireless
search behavior: Google mobile search.
In Proceedings of the 2006 Conference on
Human Factors in Computing Systems,
pages 701–709, Montréal.

Ke, Weimao, Cassidy R. Sugimoto, and
Javed Mostafa. 2009. Dynamicity vs.
effectiveness: Studying online clustering
for Scatter/Gather. In Proceedings of the
32nd Annual International ACM SIGIR
Conference on Research and Development
in Information Retrieval, pages 19–26,
Boston, MA.

Kim, Sang-Bum, Hee-Cheol Seo, and
Hae-Chang Rim. 2004. Information
Retrieval using word senses: Root sense
tagging approach. In Proceedings of the
27th Annual International ACM SIGIR
Conference on Research and Development
in Information Retrieval, pages 258–265,
Sheffield.

Korkontzelos, Ioannis and Suresh
Manandhar. 2010. UoY: Graphs of
unambiguous vertices for word sense
induction and disambiguation.
In Proceedings of the 5th International
Workshop on Semantic Evaluation,
pages 355–358, Uppsala.

Krovetz, Robert and William B. Croft.
1992. Lexical ambiguity and Information
Retrieval. ACM Transactions on Information
Systems, 10(2):115–141.

Kurland, Oren. 2008. The opposite of
smoothing: A language model approach
to ranking query-specific document
clusters. In Proceedings of the 31st Annual
International ACM SIGIR Conference on
Research and Development in Information
Retrieval, pages 171–178, Singapore.

Kurland, Oren and Carmel Domshlak. 2008.
A rank-aggregation approach to searching
for optimal query-specific clusters. In
Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 547–554, Singapore.

Lee, Kyung Soon, W. Bruce Croft, and James
Allan. 2008. A cluster-based resampling
method for pseudo-relevance feedback. In
Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 235–242, Singapore.

Lin, Dekang. 1998. Automatic retrieval and
clustering of similar words. In Proceedings

751

Computational Linguistics Volume 39, Number 3

of the 17th International Conference on
Computational Linguistics, pages 768–774,
Montreal.

Lin, Dekang and Patrick Pantel. 2002.
Discovering word senses from text.
In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, pages 613–619,
Edmonton.

Liu, Shuang, Clement Yu, and Weiyi Meng.
2005. Word Sense Disambiguation
in queries. In Proceedings of the 2005
ACM CIKM International Conference on
Information and Knowledge Management,
pages 525–532, Bremen.

Liu, Tie-Yan, Yiming Yang, Hao Wan,
Hua-Jun Zeng, Zheng Chen, and
Wei-Ying Ma. 2005. Support vector
machines classification with a very
large-scale taxonomy. SIGKDD
Explorations, 7(1):36–43.

Liu, Ying, Wenyuan Li, Yongjing Lin, and
Liping Jing. 2008. Spectral geometry for
simultaneously clustering and ranking
query search results. In Proceedings of the
31st Annual International ACM SIGIR
Conference on Research and Development
in Information Retrieval, pages 539–546,
Singapore.

Ma, Hao, Michael R. Lyu, and Irwin King.
2010. Diversifying query suggestion
results. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence, AAAI
2010, pages 1,399–1,404, Atlanta, GA.

Maarek, Yoelle, Ron Fagin, Israel Ben-Shaul,
and Dan Pelleg. 2000. Ephemeral
document clustering for Web applications.
IBM Research Report RJ 10186. Haifa.

Manandhar, Suresh, Ioannis P. Klapaftis,
Dmitriy Dligach, and Sameer S. Pradhan.
2010. SemEval-2010 task 14: Word sense
induction & disambiguation. In Proceedings
of the 5th International Workshop on Semantic
Evaluation, pages 63–68, Uppsala.

Mandala, Rila, Takenobu Tokunaga, and
Hozumi Tanaka. 1998. The use of WordNet
in Information Retrieval. In Proceedings of
the COLING-ACL workshop on Usage of
Wordnet in Natural Language Processing,
pages 31–37, Montréal.

Matsuo, Yutaka, Takeshi Sakaki, Kôki
Uchiyama, and Mitsuru Ishizuka. 2006.
Graph-based word clustering using a Web
search engine. In Proceedings of the 2006
Conference on Empirical Methods in Natural
Language Processing, pages 542–550,
Sydney.

Mihalcea, Rada. 2007. Using Wikipedia for
automatic Word Sense Disambiguation.

In Human Language Technology Conference of
the North American Chapter of the Association
of Computational Linguistics, pages 196–203,
Rochester, NY.

Mihalkova, L. and R. Mooney. 2009. Learning
to disambiguate search queries from short
sessions. In Proceedings of Machine Learning
and Knowledge Discovery in Databases (2),
pages 111–127, Bled.

Miller, George A., R. T. Beckwith,
Christiane D. Fellbaum, D. Gross, and
K. Miller. 1990. WordNet: an online
lexical database. International Journal of
Lexicography, 3(4):235–244.

Mitchell, Jeff and Mirella Lapata. 2010.
Composition in distributional models
of semantics. Cognitive Science,
34(8):1388–1429.

Navigli, Roberto. 2009. Word Sense
Disambiguation: A survey. ACM
Computing Surveys, 41(2):1–69.

Navigli, Roberto. 2012. A quick tour of Word
Sense Disambiguation, induction and
related approaches. In Proceedings of the
38th Conference on Current Trends in
Theory and Practice of Computer Science,
pages 115–129, Spindleruv Mlýn.

Navigli, Roberto and Giuseppe Crisafulli.
2010. Inducing word senses to improve
Web search result clustering. In Proceedings
of the 2010 Conference on Empirical
Methods in Natural Language Processing,
pages 116–126, Boston, MA.

Navigli, Roberto and Simone Paolo Ponzetto.
2012. The automatic construction,
evaluation and application of a
wide-coverage multilingual semantic
network. Artificial Intelligence,
193:217–250.

Ngo, Chi Lang and Hung Son Nguyen.
2005. A method of Web search result
clustering based on rough sets. In
Proceedings of 2005 IEEE/WIC/ACM
International Conference on Web Intelligence,
pages 673–679, Compiegne.

Nguyen, Cam-Tu, Xuan-Hieu Phan,
Susumu Horiguchi, Thu-Trang Nguyen,
and Quang-Thuy Ha. 2009. Web search
clustering and labeling with hidden topics.
ACM Transactions on Asian Language
Information Processing, 8(3):1–40.

Osinski, Stanislaw and Dawid Weiss. 2005.
A concept-driven algorithm for clustering
search results. IEEE Intelligent Systems,
20(3):48–54.

Rand, W. M. 1971. Objective criteria for the
evaluation of clustering methods. Journal
of the American Statistical Association,
66(336):846–850.

752

Di Marco and Navigli Clustering and Diversifying Search Results with Graph-Based WSI

Reisinger, Joseph and Marius Pasca. 2011.
Fine-grained class label markup of search
queries. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies,
pages 1,200–1,209, Portland, OR.

Rosenberg, Andrew and Julia Hirschberg.
2007. V-measure: A conditional
entropy-based external cluster evaluation
measure. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational
Natural Language Learning, pages 410–420,
Prague.

Sanderson, Mark. 1994. Word Sense
Disambiguation and Information
Retrieval. In Proceedings of the 17th Annual
International ACM-SIGIR Conference on
Research and Development in Information
Retrieval, pages 142–151, Dublin.

Sanderson, Mark. 2000. Retrieving with good
sense. Information Retrieval, 2(1):49–69.

Sanderson, Mark. 2008. Ambiguous queries:
Test collections need more sense. In
Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 499–506, Singapore.

Santamarı́a, Celina, Julio Gonzalo, and
Javier Artiles. 2010. Wikipedia as sense
inventory to improve diversity in Web
search results. In Proceedings of the 48th
Annual Meeting of the Association for
Computational Linguistics, ACL 2010,
pages 1,357–1,366, Uppsala.

Schütze, Hinrich. 1992. Dimensions of
meaning. In Proceedings of the 1992
ACM/IEEE Conference on Supercomputing,
pages 787–796, Los Alamitos, CA.

Schütze, Hinrich. 1998. Automatic word
sense discrimination. Computational
Linguistics, 24(1):97–124.

Schütze, Hinrich and Jan Pedersen. 1995.
Information Retrieval based on word
senses. In Proceedings of SDAIR’95,
pages 161–175, Las Vegas, NV.

Silberer, Carina and Mirella Lapata.
2012. Grounded models of semantic
representation. In Proceedings of
the 2012 Joint Conference on Empirical
Methods in Natural Language
Processing and Computational Natural
Language Learning, pages 1,423–1,433,
Jeju Island.

Smadja, Frank, Kathleen R. McKeown,
and Vasileios Hatzivassiloglou. 1996.
Translating collocations for bilingual
lexicons: A statistical approach.
Computational Linguistics, 22(1):1–38.

Song, Ruihua, Zhenxiao Luo, Jian-Yun Nie,
Yong Yu, and Hsiao-Wuen Hon. 2009.
Identification of ambiguous queries in
Web search. Information Processing and
Management, 45:216–229.

Steinley, Doug. 2004. Properties of the
Hubert-Arabie adjusted Rand index.
Psychological Methods, 9(3):386–396.

Stokoe, Christopher, Michael J. Oakes,
and John I. Tait. 2003. Word Sense
Disambiguation in Information Retrieval
revisited. In Proceedings of the 26th Annual
International ACM SIGIR Conference on
Research and Development in Information
Retrieval, pages 159–166, Toronto.

Swaminathan, Ashwin, Cherian V. Mathew,
and Darko Kirovski. 2009. Essential pages.
In Proceedings of 2009 IEEE/WIC/ACM
International Conference on Web Intelligence,
pages 173–182, Milan.

Udani, Goldee, Shachi Dave, Anthony
Davis, and Tim Sibley. 2005. Noun sense
induction using Web search results. In
Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 657–658, Salvador.

Van de Cruys, Tim and Marianna
Apidianaki. 2011. Latent semantic word
sense induction and disambiguation.
In Proceedings of the 49th Annual Meeting
of the Association for Computational
Linguistics: Human Language Technologies,
pages 1,476–1,485, Portland, OR.

van Rijsbergen, C. J. 1979. Information
Retrieval, second edition. Butterworths,
London.

Véronis, Jean. 2004. HyperLex: Lexical
cartography for information retrieval.
Computer, Speech and Language,
18(3):223–252.

von Luxburg, Ulrike, Robert C. Williamson,
and Isabelle Guyon. 2012. Clustering:
Science or art? Journal of Machine
Learning Research—Proceedings Track,
27:65–80.

Voorhees, Ellen M. 1993. Using WordNet
to disambiguate word senses for text
retrieval. In Proceedings of the 16th Annual
International ACM-SIGIR Conference on
Research and Development in Information
Retrieval, pages 171–180, Pittsburgh, PA.

Wang, Xuanhui, Deepayan Chakrabarti,
and Kunal Punera. 2009. Mining broad
latent query aspects from search sessions.
In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, pages 867–876,
Paris.

753

Computational Linguistics Volume 39, Number 3

Wang, Xuanhui and ChengXiang Zhai.
2007. Learn from Web search logs to
organize search results. In Proceedings of
the 30th Annual International ACM SIGIR
Conference on Research and Development
in Information Retrieval, pages 87–94,
Amsterdam.

Widdows, Dominic and Beate Dorow. 2002.
A graph model for unsupervised lexical
acquisition. In Proceedings of the 19th
International Conference on Computational
Linguistics, pages 1–7, Taipei.

Wu, Fei, Jayant Madhavan, and Alon Y.
Halevy. 2011. Identifying aspects for
Web-search queries. Journal of Artificial
Intelligence Research (JAIR), 40:677–700.

Xue, Gui-Rong, Dikan Xing, Qiang Yang,
and Yong Yu. 2008. Deep classification in
large-scale text hierarchies. In Proceedings
of the 31st Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 619–626,
Singapore.

Xue, Xiaobing and Xiaoxin Yin. 2011. Topic
modeling for named entity queries. In
Proceedings of the 20th ACM International
Conference on Information and Knowledge
Management, pages 2009–2012, New York.

Yarowsky, David. 1993. One sense per
collocation. In Proceedings of the ARPA
Workshop on Human Language Technology,
pages 266–271, Princeton, NJ.

Zamir, Oren and Oren Etzioni. 1998. Web
document clustering: A feasibility
demonstration. In Proceedings of the 21st
Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval, pages 46–54, Melbourne.

Zamir, Oren, Oren Etzioni, Omid Madani,
and Richard M. Karp. 1997. Fast and

intuitive clustering of Web documents.
In Proceedings of the Third International
Conference on Knowledge Discovery and
Data Mining, pages 287–290, Newport
Beach, CA.

Zeng, Hua-Jun, Qi-Cai He, Zheng Chen,
Wei-Ying Ma, and Jinwen Ma. 2004.
Learning to cluster Web search results. In
Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
pages 210–217, Sheffield.

Zhai, ChengXiang, William W. Cohen,
and John Lafferty. 2003. Beyond
independent relevance: Methods and
evaluation metrics for subtopic retrieval.
In Proceedings of the 26th Annual
International ACM SIGIR Conference on
Research and Development in Information
Retrieval, pages 10–17, Toronto.

Zhang, Benyu, Hua Li, Yi Liu, Lei Ji,
Wensi Xi, Weiguo Fan, Zheng Chen,
and Wei-Ying Ma. 2005. Improving Web
search results using affinity graph. In
Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval,
SIGIR 2005, pages 504–511, Salvador.

Zhang, Xiaodan, Xiaohua Hu, and Xiaohua
Zhou. 2008. A comparative evaluation
of different link types on enhancing
document clustering. In Proceedings of the
31st Annual International ACM SIGIR
Conference on Research and Development
in Information Retrieval, pages 555–562,
Singapore.

Zhao, Ying and George Karypis. 2004.
Empirical and theoretical comparisons of
selected criterion functions for document
clustering. Machine Learning, 55(3):311–331.

754

