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Abstract
Bilingual machine-readable dictionaries are knowl-
edge resources useful in many automatic tasks.
However, compared to monolingual computational
lexicons like WordNet, bilingual dictionaries typ-
ically provide a lower amount of structured infor-
mation such as lexical and semantic relations, and
often do not cover the entire range of possible trans-
lations for a word of interest. In this paper we
present Cycles and Quasi-Cycles (CQC), a novel
algorithm for the automated disambiguation of am-
biguous translations in the lexical entries of a bilin-
gual machine-readable dictionary.

1 Introduction
Lexical knowledge resources, such as thesauri, machine-
readable dictionaries, computational lexicons and encyclo-
pedias, have been enjoying increasing popularity over the
last few years. Among such resources we cite Roget’s The-
saurus, the Macquarie Thesaurus, the Longman Dictionary
of Contemporary English [Proctor, 1978, LDOCE], Word-
Net [Fellbaum, 1998] and Wikipedia. These knowledge
resources have been utilized in many applications, includ-
ing Word Sense Disambiguation (WSD) [Yarowsky, 1992;
Nastase and Szpakowicz, 2001; Martı́nez et al., 2008, cf.
Navigli, 2009b, 2012 for a survey], Semantic Information
Retrieval [Krovetz and Croft, 1992; Mandala et al., 1998;
Sanderson, 2000, inter alia], Question Answering [Lita et
al., 2004] and knowledge acquisition [Navigli and Ponzetto,
2012].

Most of these applications exploit the structure provided
by the adopted lexical resources in a number of different
ways. For instance, lexical and semantic relations encoded in
computational lexicons such as WordNet have been shown
to be very useful in graph-based WSD [Mihalcea, 2005;
Agirre and Soroa, 2009; Navigli and Lapata, 2010;
Ponzetto and Navigli, 2010] and semantic similarity [Ped-
ersen et al., 2005]. Interestingly, it has been reported that
the higher the amount of structured knowledge, the higher
the disambiguation performance [Navigli and Lapata, 2010].
∗This paper is an extended abstract of the JAIR publication [Flati

and Navigli, 2012].

Unfortunately, not all the semantics are made explicit within
lexical resources. Even WordNet, the most widely-used
computational lexicon of English, provides explanatory
information in the unstructured form of textual definitions,
i.e., strings of text which explain the meaning of concepts
using possibly ambiguous words (e.g., “motor vehicle with
four wheels” is provided as a definition of the most common
sense of car). Still worse, while computational lexicons like
WordNet contain semantically explicit information such as
is-a and part-of relations, machine-readable dictionaries
(MRDs) are often just electronic transcriptions of their paper
counterparts. Thus, for each entry they mostly provide
implicit information in the form of free text, which cannot
be immediately utilized in Natural Language Processing
applications. Over recent years various approaches to the dis-
ambiguation of monolingual dictionary definitions have been
investigated [Harabagiu et al., 1999; Litkowski, 2004;
Castillo et al., 2004; Navigli and Velardi, 2005;
Navigli, 2009a], and results have shown that they
can, indeed, boost the performance of difficult
tasks such as WSD [Cuadros and Rigau, 2008;
Agirre and Soroa, 2009]. However, little attention has
been paid to the disambiguation of bilingual dictionaries,
which would be capable of improving popular applications
such as Machine Translation.

In this paper we present a graph-based algorithm which
aims at disambiguating translations in bilingual machine-
readable dictionaries. Taken as input a bilingual MRD, our
method transforms the dictionary into a graph whose nodes
are word senses and edges encode translation relations. Next,
we introduce a novel notion of cyclic and quasi-cyclic graph
paths that we use to select the most appropriate sense for a
translation w′ of a source word w.

2 Preliminaries
Goal. The general form of a bilingual dictionary entry is:

wi
p → v1, v2, . . . , vk

where: (i) wi
p is the i-th sense of the word w with part of

speech p in the source language (e.g., play2v is the second
sense of the verb play); (ii) each vj is a translation in the
target language for sense wi

p (e.g., suonarev is a translation
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Figure 1: An excerpt of the Ragazzini-Biagi noisy graph in-
cluding language1n and its neighbours.

for play2v). Note that each vj is implicitly assumed to have
the same part of speech p as wp. Importantly, no sense is
explicitly associated with vj .

Our objective is to associate, in a systematic and automatic
way, each target word vj with one of its senses so that the
concepts expressed by wp and vj match.

Bilingual Dictionary. We define a bilingual machine-
readable dictionary (BiMRD) as a quadruple D =
(L, Senses, T ,M), where L is the bilingual lexicon (i.e., L
includes all the lexical items for both languages), Senses is a
mapping such that, given a lexical item w ∈ L, returns the set
of senses for w in D, T is a translation function which, given
a word sense s ∈ Senses(w), provides a set of (possibly am-
biguous) translations for s. Typically, T (s) ⊂ L, that is, the
translations are in the lexicon. However, it might well be that
some translations in T (s) are not in the lexicon. Finally,M
is a function which, given a word sense s ∈ Senses(w), pro-
vides the set of all words representing meta-information for
sense s (e.g.,M(phoneme1n) = {linguistics}).

The dictionary also provides usage examples and com-
pound translations , lexical variants (e.g., acknowledgement
vs. acknowledgment) and references to other entries (e.g.,
from motorcar to car).

Noisy Graph. Given a BiMRD D, we define a noisy dic-
tionary graph G = (V,E) as a directed graph where:

1. V is the set of senses in the dictionary D (i.e., V =⋃
w∈L Senses(w));

2. For each word w ∈ L and a sense s ∈ Senses(w),
an edge (s, s′) is in E if and only if s′ is a sense of a
translation of s in the dictionary (i.e., s′ ∈ Senses(w′)
and w′ ∈ T (s)), or s′ is a sense of a meta-word m in
the definition of s (i.e., if s′ ∈ Senses(m) for some
m ∈M(s)).

Graph Cycles and Quasi-Cycles. We now recall the defi-
nition of graph cycle. A cycle for a graph G is a sequence

of edges of G that form a path v1 → v2 → · · · → vn
(vi ∈ V ∀i ∈ {1, . . . , n}) such that the first node of the path
corresponds to the last, i.e., v1 = vn. The length of a cycle is
given by the number of its edges.

We further provide the definition of quasi-cycle as a se-
quence of edges in which the reversal of the orientation of
one or more consecutive edges creates a cycle [Bohman and
Thoma, 2000].

It can be seen that the reversal of an edge of a quasi-cycle
creates a cycle. Since the direction of this edge is opposite to
that of the cycle, we call it a reversed edge. Finally, we say
that a path is (quasi-)cyclic if it forms a (quasi-)cycle. Note
that we do not consider paths going across senses of the same
word.

3 The CQC Algorithm
We are now ready to introduce the Cycles & Quasi-Cycles
(CQC) algorithm, whose pseudocode is given in Table 1. The
algorithm takes as input a BiMRD D = (L, Senses, T ,M),
and a sense s of a word w in its lexicon (i.e., w ∈ L and s ∈
Senses(w)). The algorithm aims at disambiguating each of
the word’s ambiguous translations w′ ∈ T (s), i.e., to assign
it the right sense among those listed in Senses(w′).

The algorithm outputs a mapping µ between each ambigu-
ous word w′ ∈ T (s) and the sense s′ of w′ chosen as a result
of the disambiguation procedure that we illustrate hereafter.

First, for each sense s′ of our target translation w′ ∈ T (s),
the algorithm performs a search of the noisy graph associated
with D and collects the following kinds of paths:

i) Cycles: s→ s′ → s1 → · · · → sn−2 → sn−1 = s
ii) Quasi-cycles:

s→ s′ → s1 → ...→ sj ← ...← sk → ...→ sn−1 = s
(1)

1 ≤ j ≤ n− 2, j < k ≤ n− 1

where s is our source sense, s′ is our candidate sense forw′ ∈
T (s), si is a sense listed inD (i ∈ {1, . . . , n−2}), sn−1 = s,
and n is the length of the path. Note that both kinds of path
start and end with the same node s, and that the algorithm
searches for quasi-cycles whose reversed edges connecting
sk to sj are consecutive. To avoid redundancy we require
(quasi-)cycles to be simple, that is, no node is repeated in the
path except the start/end node (i.e., si 6= s, si 6= s′, si 6=
si′ ∀i, i′ s. t. i 6= i′).

The second phase of the CQC algorithm (lines 5-10 of Ta-
ble 1) computes a score for each sense s′ of w′ based on the
paths collected for s′ during the first phase. Let p be such a
path, and let l be its length. Then the contribution of p to the
score of s′ is given by:

score(p) :=
ω(l)

NumPaths(all paths, l)
(2)

where: (i) ω(l) is a monotonically non-increasing function
of its length l; in our experiments, we tested three differ-
ent weight functions ω(l), namely a constant, a linear and
an inversely exponential function1; (ii) the normalization fac-

1Experiments showed the inversely exponential function to be
the best performing one.
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Dataset # entries # translations # polysemous avg. polysemy perfect alignments
TUNING DATASET 50 80 53 4.74 37
TEST DATASET 500 1,069 765 3.95 739

Table 2: Statistics for the tuning and test datasets.

CQC(BiMRD D = (L, Senses, T ,M), sense s of w ∈ L)
1 for each word w′ ∈ T (s)
2 for each sense s′ ∈ Senses(w′)
3 paths(s′) := DFS(s′, s)
4 all paths :=

⋃
s′∈Senses(w′) paths(s

′)
5 for each sense s′ ∈ Senses(w′)
6 score(s′) := 0
7 for each path p ∈ paths(s′)
8 l := length(p)
9 v := ω(l) · 1

NumPaths(all paths,l)

10 score(s′) := score(s′) + v
11 µ(w′) = argmax

s′∈Senses(w′)

score(s′)

12 return µ

Table 1: The Cycles & Quasi-Cycles (CQC) algorithm in
pseudocode.

tor NumPaths(all paths, l) calculates the overall number
of collected paths of length l among all the target senses.

As a result of the systematic application of the algorithm
to each sense in our BiMRD D, a new graph G′ = (V,E′)
is output, where V is again the sense inventory of D, and
E′ is a subset of the noisy edge set E such that each edge
(s, s′) ∈ E′ is the result of our disambiguation algorithm run
with input D and s. In this pruned graph, each sense links to
only one sense of each of its translations.

4 Evaluation: Dictionary Disambiguation
Dictionary. We performed our dictionary disambiguation
experiments on the Ragazzini-Biagi [Ragazzini and Biagi,
2006], a popular bilingual English-Italian dictionary, which
contains over 90,000 lemmas and 150,000 word senses.

Dataset. Our datasets for tuning and test consist of dictio-
nary entries, each containing translations of a source sense
into a target language. Each translation item was manually
disambiguated according to its sense inventory in the bilin-
gual dictionary.

We report statistics for the two datasets in Table 2, includ-
ing the number of polysemous translations and the average
polysemy of each translation. We note that for 44 of the trans-
lations in the test set (i.e., 4.1% of the total) none of the senses
listed in the dictionary is appropriate (including monosemous
translations). The last column in the table shows the number
of translations for which a sense exists that translates back to
the source lemma.

Algorithms. We compared the following algorithms in
our experimental framework, since they represent the most

widespread graph-based approaches and are used in many
NLP tasks with state-of-the-art performance:

• CQC: we applied the CQC algorithm as described in
Section 3.
• Cycles, a variant of the CQC algorithm which searches

for cycles only (i.e., quasi-cycles are not collected).
• DFS, which applies an ordinary DFS algorithm and col-

lects all paths between s and s′.
• Random walks, which performs a large number of ran-

dom walks starting from s′, collecting those paths that
lead to s.
• Markov chains, which calculates the probability of ar-

riving at a certain source sense s starting from the initial
translation sense s′ averaged over n consecutive steps.
The initial Markov chain is initialized so that the outgo-
ing edges of a node have equal probabilities.
• Personalized PageRank (PPR): a popular variant of the

PageRank algorithm [Brin and Page, 1998] where the
original Markov chain approach to node ranking is mod-
ified by perturbating the initial probability distribution
on nodes. We concentrate all the probability mass on
s′, apply PPR and select the best translation sense as the
one which maximizes the PPR value of the source word.
• Lesk algorithm [Lesk, 1986]: we apply an adaptation

of the Lesk algorithm in which, given a source sense s
of word w and a word w′ occurring as a translation of
s, we determine the right sense of w′ on the basis of the
(normalized) maximum overlap between the entries of
each sense s′ of w′ and that of s.

We also compared the performance of our algorithms with
three baselines: (i) the First Sense (FS) Baseline, that asso-
ciates the first sense listed by the dictionary with each trans-
lation to be disambiguated; (ii) the Random Baseline, which
selects a random sense for each target translation; (iii) the
Degree Baseline, that chooses the translation sense with the
highest out-degree.

Parameters. We used the tuning dataset to fix the parame-
ters of each algorithm that maximized the performance (see
Flati and Navigli, 2012 for details).

Measures. To assess the performance of our algorithms, we
calculated precision (the number of correct answers over the
number of items disambiguated by the system), recall (the
number of correct answers over the number of items in the
dataset), and F1 (a harmonic mean of precision and recall,
given by 2PR

P+R ). Note that precision and recall do not consider
those items in the test set for which no appropriate sense is
available in the dictionary. In order to account for these items,
we also calculated accuracy as the number of correct answers
divided by the total number of items in the test set.
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Algorithm P R F1 A
CQC 87.14 83.32 85.19 83.35
Cycles 87.17 74.93 80.59 75.58
DFS 63.40 37.85 47.40 39.85
Random walks 83.94 61.17 70.77 62.49
Markov chains 85.46 65.37 74.08 66.70
PPR 83.20 81.25 82.21 81.27
Lesk 86.05 31.90 46.55 34.52
First Sense BL 72.67 73.17 72.92 73.53
Random BL 28.53 29.76 29.13 28.53
Degree BL 58.39 58.85 58.39 58.62

Table 3: Disambiguation performance on the Ragazzini-Biagi
dataset.

Results. In Table 3 we report the results of our algorithms
on the test set. CQC, PPR and Cycles are the best performing
algorithms, achieving around 83%, 81% and 75% accuracy
respectively. CQC outperforms all other systems in terms of
F1 by a large margin. The results show that the mere use of
cyclic patterns does not lead to state-of-the-art performance,
which is obtained when quasi-cycles are also considered. In-
cluding quasi-cycles leads to a considerable increase in recall,
while maintaining a high level of precision. The DFS is even
more penalizing because it does not get backward support as
happens for cycling patterns. Markov chains consistently out-
perform Random walks. We hypothesize that this is due to
the higher coverage of Markov chains compared to the num-
ber of random walks collected by a simulated approach. PPR
outperforms the two other probabilistic approaches, but lags
behind CQC by 3 points in F1 and 2 in accuracy. This result
confirms previous findings concerning the high performance
of PPR, but also corroborates our hunch about quasi-cycles
being the determining factor in the detection of semantic con-
nections. Finally, Lesk achieves high precision, but low re-
call, due to the lack of a lookahead mechanism.

The random baseline represents our lowerbound and is
much lower than all other results. Compared to the first
sense baseline, CQC, PPR and Cycles obtain better perfor-
mance. This result is consistent with previous findings for
tasks such as the Senseval-3 Gloss Word Sense Disambigua-
tion [Litkowski, 2004]. However, at the same time, it is
in contrast with results on all-words WSD [Navigli, 2009b],
where the first or most frequent sense baseline generally out-
performs most disambiguation systems. Nevertheless, the na-
ture of these two tasks is very different, because in dictionary
entries senses tend to be equally distributed, whereas in open
text they have a single predominant meaning that is deter-
mined by context. As for the Degree Baseline, it yields results
below expectations, and far worse than the FS baseline. The
reason behind this lies in the fact that the amount of trans-
lations and translation senses does not necessarily correlate
with mainstream meanings.

5 Related Work
Since the late 1970s much work on the analysis and disam-
biguation of dictionary glosses has been done. This includes

methods for the automatic extraction of taxonomies from lex-
ical resources [Litkowski, 1978; Amsler, 1980], the identifi-
cation of genus terms [Chodorow et al., 1985] and the extrac-
tion of explicit information from machine-readable dictionar-
ies ([Nakamura and Nagao, 1988; Ide and Véronis, 1993],
as well as the construction of ambiguous semantic networks
from glosses [Kozima and Furugori, 1993].

More recently, a set of heuristics has been proposed to
semantically annotate WordNet glosses, leading to the re-
lease of the eXtended WordNet [Harabagiu et al., 1999;
Moldovan and Novischi, 2004]. Among the heuristics, the
cross reference heuristic is the closest technique to our no-
tion of (quasi-)cyclic patterns in which cycles of length 2
are sought. Recently, it has been proposed that probabilis-
tic translation circuits can be used to automatically acquire a
multilingual dictionary [Mausam et al., 2009].

Based on the eXtended WordNet, a gloss disambiguation
task was organized at Senseval-3 [Litkowski, 2004]. Most no-
tably, the best performing systems, namely the TALP system
[Castillo et al., 2004], and SSI [Navigli and Velardi, 2005],
are knowledge-based and rely on rich knowledge resources:
respectively, the Multilingual Central Repository [Atserias et
al., 2004], and a proprietary lexical knowledge base (cf. Nav-
igli and Lapata, 2010).

However, the literature in the field of gloss disambiguation
is focused only on monolingual dictionaries, such as WordNet
and LDOCE, while, to our knowledge, CQC is the first algo-
rithm aimed at disambiguating the entries of a bilingual dic-
tionary. Moreover, in contrast to many disambiguation meth-
ods in the literature [Navigli, 2009b], our approach does not
exploit lexical and semantic relations, such as those available
in computational lexicons like WordNet.

6 Conclusions
In this paper we presented a novel algorithm, called Cycles
and Quasi-Cycles (CQC), for the disambiguation of bilingual
machine-readable dictionaries. The algorithm is based on the
identification of (quasi-)cycles in the noisy dictionary graph,
i.e., circular edge sequences (possibly with some consecutive
edges reversed) relating a source word sense to a target one.

We show that our notion of (quasi-)cyclic patterns enables
state-of-the-art performance to be attained in the disambigua-
tion of dictionary entries, surpassing all other disambigua-
tion approaches, as well as a competitive baseline such as
the first sense heuristic. Crucially, the introduction of re-
versed edges allows us to find more semantic connections,
substantially increasing recall while keeping precision very
high. The strength of our approach lies in its weakly su-
pervised nature: the CQC algorithm relies exclusively on the
structure of the input bilingual dictionary and, unlike others,
no further resource is required.
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