
Autonomous deployment of self-organizing

mobile sensors for a complete coverage

N. Bartolini, T. Calamoneri, E. G. Fusco, A. Massini, S. Silvestri

Department of Computer Science, Sapienza University of Rome, Italy
{bartolini, calamo, fusco, massini, simone.silvestri}@di.uniroma1.it

Abstract. In this paper we propose an algorithm for the autonomous
deployment of mobile sensors over critical target areas where sensors
cannot be deployed manually. The application of our approach does not
require prior knowledge of the working scenario nor any manual tuning
of key parameters. Our algorithm is completely distributed and sensors
make movement decisions on the basis of locally available information.
We prove that our approach guarantees a complete coverage, provided
that a sufficient number of sensors are available. Furthermore, we demon-
strate that the algorithm execution always terminates preventing move-
ment oscillations. We compare our proposal with one of the most ac-
knowledged algorithms by means of extensive simulations, showing that
our algorithm reaches a complete and more uniform coverage under a
wide range of operating conditions.

1 Introduction

Research in the field of mobile wireless sensor networks is motivated by the need
to monitor critical scenarios such as wild fires, disaster areas, toxic regions or
battlefields, where static sensor deployment cannot be performed manually. In
these working situations, sensors may be dropped from an aircraft or sent from
a safe location.

We address the problem of coordinating sensor movements to improve the
coverage of an Area of Interest (AoI) with respect to the initial deployment,
which typically is neither complete nor uniform. Centralized solutions are in-
efficient because they require either a prior assignment of sensors to positions
or a starting topology that ensures the connectivity of all sensors (for global
coordination purposes). Therefore, feasible and scalable solutions should employ
a distributed scheme according to which sensors make local decisions to meet
global objectives. Due to the limited power availability at each sensor, energy
consumption is a primary issue in the design of any self-deployment scheme for
mobile sensors. Since sensor movements and, to a minor extent, message ex-
changes, are energy consuming activities, a deployment algorithm should mini-
mize movements and message exchanges during deployment.

Among the previous proposals, the virtual force approach (VFA) [1–4] mod-
els the interactions among sensors as a combination of attractive and repulsive
forces. Other approaches are inspired by the physics as well: in [5] the sensors

2

are modelled as particles of a compressible fluid, in [6] the theory of gas is used
to model sensor movements in the presence of obstacles. A similar approach is
used in [7] to give a unified solution to the problem of deployment and dynamic
relocation of mobile sensors in an open environment.

Other proposals are inspired by computational geometry. Among these, the
Voronoi approach (VOR) [8] provides general rules for sensor movements on the
basis of a local calculation of the Voronoi diagrams determined by the sensor
deployment. A variant of this approach [9] analyzes the problem of sensor de-
ployment in a hybrid scenario, with both mobile and fixed sensors in the same
environment. The authors of [10] propose the use of Delaunay triangulation tech-
niques to obtain a regular tessellation of the AoI. In [11] a novel approach to
sensor deployment is designed with particular emphasis on operative settings
where coverage does not imply connectivity.

Differently from our work, the cited approaches require the manual tuning
of constants and thresholds whose proper values are closely dependent on the
particular operative setting.

We propose an original algorithm for mobile sensor deployment, Push &

Pull. It does not require any prior knowledge of the operative scenario nor
any manual tuning of key parameters. It constitutes a wide extension of our
previous proposal, Snap & Spread [12] to which we added two basic activities to
guarantee the coverage completeness and uniformity and to improve the network
fault tolerance. Push & Pull is based on the interleaved execution of four
activities designed to produce a hexagonal tiling by moving sensors out of high
density regions and attracting them towards coverage holes. Decisions regarding
the behavior of each sensor are based on locally available information.

Our algorithm has the basic self-* properties of autonomic computing, i.e.
self-configuration and self-adaptation. Its design follows the grassroots approach
[13] to autonomic computing. This way self-organization emerges without the
need of external coordination or explicit control, giving rise to a fully decen-
tralized algorithm, according to which the sensor behavior is democratic and
peer structured. We formally prove that our algorithm reaches a final stable de-
ployment and a complete coverage of the AoI in a finite time. We ran extensive
simulations to evaluate the performance of our algorithm and compare it to ex-
isting solutions. Experimental results show that Push & Pull performs better
than one of the most acknowledged and cited algorithms [8].

2 The Push & Pull algorithm

Let V be a set of equally equipped sensors with isotropic communication and
sensing capabilities. The transmission radius is Rtx and the sensing radius is Rs.
We propose a distributed algorithm according to which sensors aim at forming
a hexagonal tiling over the AoI, with hexagon side length equal to Rs. This
setting guarantees both coverage and connectivity when Rtx ≥

√
3Rs and is

not restrictive as most wireless devices can adjust their transmission range by
properly setting their transmission power. Finally, we assume that sensors are

3

endowed with location capabilities. It should be noted that this assumption is
only necessary if the algorithm has to be applied over a specific AoI, with given
coordinates. As in [7] this assumption can be removed when dealing with an
open environment.

A sensor being positioned in the center of a hexagon is referred to as a snapped

sensor. Given a sensor x, snapped to the center of a hexagon, we define slaves

of x all the other sensors lying in its hexagon. We denote by S(x) the set of
slaves of x and by Hex(x) the hexagonal region whose center is covered by x.
All sensors that are neither snapped nor slaves are called free. We define L(x),
the set composed by the free sensors located in radio proximity to x and by its
slaves S(x).

The algorithm Push & Pull is based on the interleaved execution of four
fundamental activities: Snap, Push, Pull and Merge. The coordination of these
activities requires the definition of a communication protocol that we do not
detail due to space limitations. The interested reader may find more information
in [14].

Snap activity

At the beginning, each sensor may act as starter of a snap activity from its
initial location at an instant randomly chosen over a given time interval Tstart.
Initially, several sensors may likely create different tiling portions. A starter
sensor elects its position as the center of the first hexagon of its portion. It
selects at most six sensors among those located within its transmission radius
and makes them snap to the center of adjacent hexagons. Such snapped sensors,
in their turn, give start to analogous activities, thus expanding the boundary of
their tiling portion.

More precisely, a snapped sensor x performs a neighbor discovery, that al-
lows x to gather information regarding S(x) and all the free and snapped sensors
located in radio proximity. After the neighbor discovery, x determines whether
some adjacent snapping positions are still to be covered and leads the corre-
sponding snap activity. The sensor x snaps the closest sensor in L(x) to each
uncovered position. A snapped sensor leads the snapping of as many adjacent
hexagons as possible. If all the hexagons adjacent to Hex(x) have been covered,
x stops any further snapping and gives start to the push activity. Otherwise, if
some hexagons are left uncovered because no more sensors in L(x) are available,
x starts the pull activity.

Push activity

After the completion of the snap activity, a snapped sensor x, may still have
some slave sensors inside its hexagon, so S(x) 6= ∅. In this case, it can proactively
push such slave sensors towards lower density areas.

Given two snapped sensors x and y located in radio proximity from each
other, x may offer one of its slaves to y and push it inside the hexagon of y if
|S(x)| ≥ |S(y)|+1. Notice that, when |S(x)| = |S(y)|+1 the flow of a sensor from
Hex(x) to Hex(y) leads to a symmetric situation in which |S(x)| + 1 = |S(y)|,

4

(a) (b) (c) (d) (e)

Fig. 1. Snap and Push: an example.

leading to possible endless cycles. In such cases we restrict the push activity to
only one direction: x pushes its slave to y only if id(y) < id(x), where id(·) is
any function such that id : V → N.

We formalize these observations by defining the following condition, that
enables the movement of a sensor from Hex(x) to Hex(y):
Moving Condition: {|S(x)| > |S(y)| + 1} ∨ {|S(x)| = |S(y)| + 1 ∧ id(x) > id(y)}.

The snapped sensor x pushes one of its redundant sensors towards the hexagon of
the snapped sensor y which has the lowest number of slaves among those in radio
connectivity with x. If more than one hexagon contains the minimum number
of sensors, the closest to x is preferred. Among its slaves, x selects the sensor to
push according to the criterion of minimum traversed distance to Hex(y).

Figure 1 shows an example of the execution of the first two activities. Figure
1(a) depicts the initial configuration, with nine randomly placed sensors and
highlights the starter sensor sinit creating the first hexagon of the tiling. In
Figure 1(b) the starter sensor sinit selects six sensors to snap in the adjacent
hexagons, according to the minimum distance criterion. Figure 1(c) shows the
configuration after the snap activity of sinit. In Figure 1(d), a deployed sensor
starts a new snap activity while sinit starts the push activity sending a slave
sensor to a lower density hexagon. In Figure 1(e) the deployed sensor snaps the
sensor just received from the starter, reaching the final configuration.

As a consequence of the push activity, slave sensors generally consume more
energy than snapped sensors, because they are involved in a larger number of
message exchanges and movements. Thus we let slave and snapped sensors oc-
casionally exchange their role in order to balance the energy consumption. Any
time a slave s has to make a movement across a hexagon occupied by the snapped
sensor z, the two sensors perform a role exchange if the residual energy of s is
lower than the one of z.

Pull activity

The sole snap and push activities are not sufficient to ensure the maximum
expansion of the tiling, and may likely leave coverage holes. Even when the
number of available sensors is sufficient to completely cover the AoI, a snapped

5

sensor x could not have any sensor in L(x)) to cover the adjacent vacant snapping
positions. This may happen due to the Moving Condition introduced to avoid
moving cycles. For this reason, we introduce the pull activity: snapped sensors
detecting a coverage hole adjacent to their hexagons, and not having available
sensors to snap, send hole trigger messages in order to attract slave sensors and
make them fill the hole.

If a snapped sensor x, with L(x) = ∅, detects a hole, and the Moving Con-
dition is not verified for any of its snapped neighbors, then the following trigger
mechanism is activated. The sensor x temporarily alters the value of its id func-
tion to 0 and notifies its neighbors of this change. Then x waits until either a
new slave comes into its hexagon or a timeout occurs. If a new slave enters in
Hex(x), x sets back its id value and snaps the new sensor, filling the hole. If
otherwise the timeout expires and the hole is still present, the trigger mechanism
is extended to the adjacent hexagons of x, whose snapped sensors set their id
value to 1 and notify their neighbors.

Each snapped sensor involved in the trigger extension mechanism sets its id
to a value that is proportional to the distance from x. All the timeouts related
to each new extension are set in proportion to the maximum distance reached
by the trigger mechanism. This mechanism is iterated by x over snapped sensors
at larger and larger distance in the tiling until the hole is covered. At this point,
as a consequence of timeouts, each involved node sets back its id to the original
value.

Observe that, more snapped sensors adjacent to the same hole may inde-
pendently activate the trigger mechanism. In this case, the only message with
lowest id is honored. The detection of several holes may cause the same node
to receive more a number of trigger messages that are stored in a pre-emptive
priority queue, giving precedence to the messages related to the closest hole.

Tiling merge activity

The fact that many sensors act as starters implies the possible creation of
several tiling portions with different orientations. The tiling merge activity starts
when two tiling portions come in radio proximity. We propose a merge mech-
anism according to which as soon as a sensor x receives a neighbor discovery
message from another tiling portion, it chooses to belong to the oldest one. The
sensor x discriminates this situation by evaluating the time-stamp of the starter
action that is propagated at each snap action.

Figure 2 shows an example of the execution of the tiling merge activity.
Figure 2(a) shows two tiling portions meeting each other. The portion on the
left has the oldest time-stamp, hence it absorbs the other one. Two nodes of the
right portion detect the presence of an older tiling and abandon their original
tiling to honor snap commands coming from a sensor of the left portion (Figure
2(b)). These just snapped nodes, now belonging to the older portion, detect the
presence of three nodes belonging to the right one (Figure 2(c)) and snap them
as soon as they leave their portion (Figure 2(d)).

6

(a) (b) (c) (d)

Fig. 2. Tiling merge activity: an example.

3 Algorithm properties

In this section we discuss some key properties of the Push & Pull algorithm:
coverage, connectivity and termination.

3.1 Coverage and connectivity

We denote by Ntight the tight number of sensors, that is the maximum number
of hexagons necessary to cover the AoI for each possible initial position of the
sensor set and each possible tiling orientation. Notice that an upper bound on
this number can be calculated by increasing the AoI with a border whose width
is the maximal diameter of the tiling hexagon and dividing this increased area

AoI’ by the area of the hexagon. Formally, Ntight ≤ ⌈Area(AoI’)
Area(Hex) ⌉. This upper

bound is valid regardless of the number of tiling portions generated by different
starter sensors.

Theorem 1. Algorithm Push & Pull guarantees a complete coverage, pro-

vided that at least the tight number of sensors are available.

Proof. Let us assume that a coverage hole exists and let x be the sensor which
detects it. The hypothesis on the number of sensors implies that it certainly
exists a hexagon with at least one redundant slave. Let us call Cx the connected
component containing the sensor x. Two different cases may occur depending
on the position of redundant slaves with respect to Cx:

– A redundant slave exists in Cx.
The snapped sensor x starts the trigger mechanism that eventually reaches
a hexagon with a redundant slave. Such a slave is then moved towards x and
finally fills the hole.

– All redundant slaves belong to connected components separated from Cx.
The area surrounding each connected component is in fact a coverage hole
that will eventually be detected by a snapped node located at the boundary.
According to the previous item, all the separated connected components
containing redundant slaves will expand themselves to fill as many coverage

7

holes as possible. Since by the hypothesis the number of sensors is at least
Ntight, it certainly exists a component containing redundant slaves that will
eventually merge with Cx, leading to the situation described in the first item,
thus proving the theorem.

We assume that sensors operate with Rtx ≥
√

3Rs. Simple geometrical con-
siderations allow us to conclude that under this assumption, a hexagonal tiling
with side Rs, i.e. where the distance between any two grid neighbors is

√
3Rs,

guarantees minimal node density (as argued in [15]) and connectivity.

3.2 Termination of Push & Pull

Let L = {ℓ1, ℓ2, . . . , ℓ|L|} be the set of snapped sensors.

Definition 1. A network state is a vector s =< s1, s2, . . . , s|L| >, where si =
|S(i)| + 1, is the number of sensors deployed inside the hexagon Hex(i), ∀i =
1, . . . , |L|.
Definition 2. A state s is stable if the Moving Condition is false for each couple

of snapped sensors located in radio proximity to each other.

Theorem 2. Algorithm Push & Pull terminates in a finite time.

Proof. Due to Theorem 1, the expansion of the tiling generated by Push &

Pull eventually ends either because all sensors have been snapped or the AoI
has been completely covered by snapped sensors. In the first case, no algorithm
actions are necessary, then the algorithm terminates producing a stable state of
the network. Thus, in order to prove the theorem, it suffices to prove that, once
the AoI is fully covered by snapped sensors, the algorithm produces a stable
network state in a finite time. After the complete coverage of the AoI, the set L
of snapped sensors remains fixed. The value of the order function related to each
snapped sensor, id(ℓi) can be modified by the pull activity only a finite number
of times and remains steady onward.

Let us define f : N
|L| → N

2 as follows: f(s) =
(

∑|L|
i=1 s2

i ,
∑|L|

i=1 id(ℓi)si

)

.

We say that f(s) ≻ f(s′) if f(s) and f(s′) are in lexicographic order. Observe that

function f is lower bounded by the pair (|L|, ∑|L|
i=1 id(ℓi)), in fact 1 ≤ si ≤ |V |.

Therefore, if we prove that the value of f decreases at every state change from
s to s′, we also prove that no infinite sequence of state changes is possible.

Let us consider a generic state change which involves the snapped sensors x
and y, with x sending a slave sensor to Hex(y). We have that si = s′i ∀i 6= x, y,
and s′x = sx − 1 and s′y = sy + 1. As the transfer of the slave has been done
according to the Moving Condition, two cases are possible: either sx > sy +1, or
(sx = sy +1)∧(id(x) > id(y)). In the first case, sx > sy +1 trivially implies that
∑|L|

i=1 s2
i >

∑|L|
i=1 s′

2
i . In the second case, from sx = sy +1 and id(x) > id(y), easy

calculations imply that
∑|L|

i=1 s2
i =

∑|L|
i=1 s′

2
i and

∑|L|
i=1 id(ℓi)si >

∑|L|
i=1 id(ℓi)s

′
i.

Therefore in both cases f(s) ≻ f(s′). The function f is lower bounded and always
decreasing of discrete quantities (integer values) at any state change. Thus, after
a finite time the network will be in a stable state, thus the theorem is proved.

8

4 Simulation results

In order to evaluate the performance of Push & Pull and to compare it with
previous solutions, we developed a simulator on the basis of the wireless module
of the OPNET modeler software [16]. We compared our proposal to one of the
most acknowledged and cited algorithms [8], which is based on the use of Voronoi
diagrams. According to this approach, each sensor adjusts its position on the ba-
sis of a local calculation of the Voronoi cell determined by the current sensor
deployment. This information is used to detect coverage holes and consequently
calculate new target locations according to three possible variants. Among these
variants we chose MiniMax, that is the one that gives better guarantees in terms
of coverage extension. We also adopted all the mechanisms provided in [8] to pre-
serve connectivity, to guarantee the algorithm termination, to avoid oscillations
and to deal with position clustering. In the rest of this section this algorithm
will be named VOR.

The experimental activity required the definition of some setup parameters:
Rtx = 11 m and Rs = 5 m. This setting does not significantly affect the quali-
tative evaluation of Push & Pull but is motivated by the need to satisfy the
requirement Rtx ≥ 2Rs given in [8]. The sensor speed is 1 m/sec. The energy
spent by sensors for communications and movements is expressed in energy units
(i.e. the cost of receiving one message): a single transmission costs the same as
7 receptions [17], a 1 meter movement costs the same as 300 transmissions [8]
and a starting/braking action costs the same as 1 meter movement [8].

The length of the time interval Tstart is set to Rtx/v, where v is the sensor
movement speed. The setting of this parameter ensures that different grid por-
tions are not created too close to each other. Nevertheless, it does not affect the
algorithm performance significantly.

Before showing the performance of our algorithm with respect to VOR, we
show some examples of final deployments provided by the two approaches.

(a) (b) (c)

Fig. 3. Comparison between Push & Pull and VOR - Trail initial deployment

Figures 3 and 4 show the sensor deployment over a 80 m × 80 m squared
AoI. The two initial deployments reflect the realistic scenarios in which sensors

9

(a) (b) (c)

Fig. 4. Comparison between Push & Pull and VOR - Safe-location initial deployment

are dropped from an aircraft (Figure 3(a)) and sent from a safe location at the
boundaries of the AoI (Figure 4(a)). For both figures, subfigure (a) represents
the initial deployment, while subfigures (b) and (c) show the final deployment
obtained by Push & Pull and VOR respectively.

We now show the performance of our algorithm with respect to VOR, starting
from the initial deployments described above. We studied the algorithm behavior
by varying the number of available sensors. In order to give a reliable performance
comparison, we show the average results of 30 simulation runs conducted by
varying the seed for the generation of the initial random deployment of the
sensors.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
)

Number of sensors

PUSH&PULL - Coverage
VOR - Coverage

PUSH&PULL - Termination

Fig. 5. Term. and cover-
age time

 0

 1

 2

 3

 4

 5

 6

 100 150 200 250 300 350 400 450 500

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PUSH&PULL - Std Dev
VOR Std Dev

Avg Coverage

 0

 1

 2

 3

 4

 5

 6

 100 150 200 250 300 350 400 450 500

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PUSH&PULL - Std Dev
VOR Std Dev

Avg Coverage

Fig. 6. Coverage density

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 150 200 250 300 350 400 450 500

M
ov

in
g

di
st

an
ce

 (
m

)

Number of sensors

PUSH&PULL - Avg
VOR - Avg

PUSH&PULL - Std Dev
VOR - Std Dev

Fig. 7. Traversed dis-
tance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 150 200 250 300 350 400 450 500

A
vg

 S
ta

rt
in

g/
B

ra
ki

ng

Number of sensors

PUSH&PULL
VOR

Fig. 8. Starting and brak-
ing

 0

 50000

 100000

 150000

 200000

 100 150 200 250 300 350 400 450 500

C
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

)

Number of sensors

PUSH&PULL - Avg
VOR - Avg

PUSH&PULL - Std Dev
VOR - Std Dev

Fig. 9. Energy consump-
tion

Figures 5 through 9 show the performance results for the first set of experi-
ments regarding the trail initial deployment.

10

Figure 5 shows the coverage and termination time for both the Push & Pull

and the VOR algorithms. Notice that, when the number of sensors is close to
the tight value, defined in Section 3.1, VOR requires a very long time to achieve
a complete coverage, while Push & Pull terminates much earlier. When the
number of sensors increases, both algorithms terminate faster, but VOR always
requires more time than Push & Pull to achieve its final coverage. Note also
that while for the VOR algorithm the termination and coverage completion times
coincide, because it moves sensors with the only objective to increase coverage,
for Push & Pull some more movements still occur even after the coverage
completion. These movements are performed to keep on uniforming the sensor
density.

In order to evaluate the coverage uniformity, we compute the coverage den-
sity as the number of sensors covering the points of a squared mesh with side 1
m. Figure 6 shows the standard deviation of the coverage density. The standard
deviation of the coverage density obtained by Push & Pull is much smaller
pointing out a more uniform sensor placement. This result is particularly impor-
tant as a uniform sensor redundancy is necessary to guarantee fault tolerance
and to prolong the network lifetime with selective sensor activation schemes.

Figure 7 shows the average and standard deviation of the distance traversed
by the sensors. Push & Pull let sensors move more than VOR because it aims
at making the coverage as uniform as possible. Notice that both the average and
the standard deviation of the traversed distance of VOR are decreasing with the
number of sensors since more and more sensors maintain their initial positions.
It should be noted that the result of this comparison must not be interpreted as a
negative aspect of our protocol. Indeed, Push & Pull keeps on moving sensors
until a quite uniform coverage is reached while the movements determined by
VOR terminate as soon as the AoI is completely covered. Hence the average
and standard deviation of the traversed distance are more stable under Push &

Pull than under VOR when the number of sensors varies.

Figure 8 highlights that VOR spends much more energy than Push & Pull

in starting/braking actions. The average value of such energy cost decreases with
a growing number of available sensors as the majority of them do not move at
all under VOR.

In Figure 9 we give a global evaluation of the above contributions, and show
the average and standard deviation of the total consumed energy (i.e. the sum
of the contributions due to movements, starting/braking and communications).
This figure shows that when the number of sensors is small (lower than about
250 for this experimental setting), although VOR consumes less energy in move-
ments, the impact of starting/braking actions is not negligible and compensate
the higher cost of movements paid by Push & Pull. When the number of sen-
sors grows, VOR consumes less energy with respect to Push & Pull as a large
part of the sensors are left unmoved.

In all the simulated situations, the execution of VOR implies that a number
of sensors are moved away from overcrowded regions toward uncovered areas.
As soon as all the coverage holes are eliminated, VOR stops, leaving some zones

11

with very low density coverage. Such zones represent possible points of future
failures and coverage holes. Push & Pull mitigates this problem by sending
much more sensors than VOR to the farthest and less dense regions of the AoI.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
)

Number of sensors

PUSH&PULL - Coverage
VOR - Coverage

PUSH&PULL - Termination

Fig. 10. Term. and cover-
age time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 150 200 250 300 350 400 450 500

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PUSH&PULL - Std Dev
VOR - Std Dev
Avg Coverage

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 150 200 250 300 350 400 450 500

C
ov

er
ag

e
de

ns
ity

 (
nr

. o
f s

en
so

rs
)

Number of sensors

PUSH&PULL - Std Dev
VOR - Std Dev
Avg Coverage

Fig. 11. Coverage density

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 150 200 250 300 350 400 450 500

M
ov

in
g

di
st

an
ce

 (
m

)

Number of sensors

PUSH&PULL - Avg
VOR - Avg

PUSH&PULL - Std Dev
VOR - Std Dev

Fig. 12. Traversed dis-
tance

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 100 150 200 250 300 350 400 450 500

A
vg

 S
ta

rt
in

g/
B

ra
ki

ng

Number of sensors

PUSH&PULL
VOR

Fig. 13. Starting and
braking

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 100 150 200 250 300 350 400 450 500

C
on

su
m

ed
 e

ne
rg

y
(u

ni
ts

)

Number of sensors

PUSH&PULL - Avg
VOR - Avg

PUSH&PULL - Std Dev
VOR - Std Dev

Fig. 14. Energy con-
sumption

In the second set of experiments the initial deployment consists in a high
density region at the boundaries of the AoI as depicted in Figure 4(a). It is
worth noting that this initial deployment constitutes a critical scenario for VOR
as this algorithm works at its best for more uniform initial sensor distributions.
Indeed, Figure 10 shows that VOR requires much more time than in the previous
set of experiments to achieve its final deployment. This figure also shows that
VOR is much slower than Push & Pull in completing the coverage of the AoI.
For what concerns the density of the distribution, Figure 11 shows that even in
this operative setting, VOR terminates as soon as the AoI is completely covered,
without uniforming the density of the sensor deployment. This implies that VOR
spends less energy in movements (see Figure 12) than Push & Pull but at the
expense of the quality of the final coverage in terms of uniformity. Furthermore,
VOR shows a much higher number of starting/braking actions (see Figure 13)
than Push & Pull, with a much higher value of the total consumed energy (see
Figure 14).

5 Conclusions and future work

We proposed an original algorithm for mobile sensor self-deployment named
Push & Pull. According to our proposal, sensors autonomously coordinate
their movements in order to achieve a complete coverage with moderate energy
consumption. The execution of Push & Pull does not require any prior knowl-
edge of the operating conditions nor any manual tuning of key parameters as

12

sensors adjust their positions on the basis of locally available information. The
proposed algorithm guarantees the achievement of a complete and stable final
coverage, provided that there is a sufficient number of sensors. Some improve-
ments are being considered as a future extension of this work. In particular, it
seems reasonable that the algorithm can be generalized in order to guarantee
a k-coverage. Mechanisms for obstacle detection and avoidance are also being
investigated.

References

1. Zou, Y., Chakrabarty, K.: Sensor deployment and target localization based on
virtual forces. Proc. IEEE INFOCOM ’03 (2003)

2. Heo, N., Varshney, P.: Energy-efficient deployment of intelligent mobile sensor
networks. IEEE Transactions on Systems, Man and Cybernetics 35 (2005)

3. Chen, J., Li, S., Sun, Y.: Novel deployment schemes for mobile sensor networks.
Sensors 7 (2007)

4. Poduri, S., Sukhatme, G.S.: Constrained coverage for mobile sensor networks.
Proc. of IEEE Int’l Conf. on Robotics and Automation (ICRA ’04) (2004)

5. Pac, M.R., Erkmen, A.M., Erkmen, I.: Scalable self-deployment of mobile sensor
networks; a fluid dynamics approach. Proc. of IEEE/RSJ Int’l Conf. on Intelligent
Robots and Systems (IROS ’06) (2006)

6. Kerr, W., Spears, D., Spears, W., Thayer, D.: Two formal fluid models for multi-
agent sweeping and obstacle avoidance. Proc. of AAMAS (2004)

7. Garetto, M., Gribaudo, M., Chiasserini, C.F., Leonardi, E.: A distributed sensor
relocation scheme for environmental control. The Fourth ACM/IEEE Int. Conf.
on Mobile Ad-hoc and Sensor Systems, (MASS) (2007)

8. Wang, G., Cao, G., La Porta, T.: Movement-assisted sensor deployment. IEEE
Transaction on Mobile Computing 6 (2006)

9. Wang, G., Cao, G., La Porta, T.: Proxy-based sensor deployment for mobile sensor
networks. IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems (MASS) (2004)

10. Ma, M., Yang, Y.: Adaptive triangular deployment algorithm for unattended mo-
bile sensor networks. IEEE Transactions on Computers 56 (2007)

11. Tan, G., Jarvis, S.A., Kermarrec, A.M.: Connectivity-guaranteed and obstacle-
adaptive deployment schemes for mobile sensor networks. Proc. of ICDCS (2008)

12. Bartolini, N., Calamoneri, T., Fusco, E.G., Massini, A., Silvestri, S.: Snap & spread:
a self-deployment algorithm for mobile sensor networks. Proc. of IEEE/ACM Int.
Conf. on Distributed Computing in Sensor Systems (DCOSS) 3 (2008)

13. Babaoglu, O., Jelasity, M., Montresor, A.: Grassroots approach to self-management
in large-scale distributed systems. Unconventional Programming Paradigms. Lec-
ture Notes in Computer Science, Springer Verlag 3566 (2005)

14. Bartolini, N., Massini, A., Silvestri, S.: P&p protocol: local coordination of mobile
sensors for self-deployment. http://arxiv.org/abs/0805.1981 (2008)

15. Brass, P.: Bounds on coverage and target detection capabilities for models of
networks of mobile sensors. ACM Transactions on Sensor Networks 3 (2007)

16. http://www.opnet.com: Opnet technologies inc.
17. http://www-bsac.eecs.berkeley.edu/archive/users/warneke-brett/SmartDust/:

Smart dust

