
C H A P T E R

14 Consensus and agreement
algorithms

14.1 Problem definition

Agreement among the processes in a distributed system is a fundamental
requirement for a wide range of applications. Many forms of coordination
require the processes to exchange information to negotiate with one another
and eventually reach a common understanding or agreement, before taking
application-specific actions. A classical example is that of the commit deci-
sion in database systems, wherein the processes collectively decide whether
to commit or abort a transaction that they participate in. In this chapter, we
study the feasibility of designing algorithms to reach agreement under vari-
ous system models and failure models, and, where possible, examine some
representative algorithms to reach agreement.

We first state some assumptions underlying our study of agreement
algorithms:

• Failure models Among the n processes in the system, at most f
processes can be faulty. A faulty process can behave in any manner allowed
by the failure model assumed. The various failure models – fail-stop, send
omission and receive omission, and Byzantine failures – were discussed
in Chapter 5. Recall that in the fail-stop model, a process may crash in
the middle of a step, which could be the execution of a local operation or
processing of a message for a send or receive event. In particular, it may
send a message to only a subset of the destination set before crashing. In
the Byzantine failure model, a process may behave arbitrarily. The choice
of the failure model determines the feasibility and complexity of solving
consensus.

• Synchronous/asynchronous communication If a failure-prone process
chooses to send a message to process Pi but fails, then Pi cannot detect the
non-arrival of the message in an asynchronous system because this scenario
is indistinguishable from the scenario in which the message takes a very
long time in transit. We will see this argument again when we consider

510

511 14.1 Problem definition

the impossibility of reaching agreement in asynchronous systems in any
failure model. In a synchronous system, however, the scenario in which a
message has not been sent can be recognized by the intended recipient, at
the end of the round. The intended recipient can deal with the non-arrival
of the expected message by assuming the arrival of a message contain-
ing some default data, and then proceeding with the next round of the
algorithm.

• Network connectivity The system has full logical connectivity, i.e., each
process can communicate with any other by direct message passing.

• Sender identification A process that receives a message always knows
the identity of the sender process. This assumption is important – because
even with Byzantine behavior, even though the payload of the message can
contain fictitious data sent by a malicious sender, the underlying network
layer protocols can reveal the true identity of the sender process.

When multiple messages are expected from the same sender in a single
round, we implicitly assume a scheduling algorithm that sends these mes-
sages in sub-rounds, so that each message sent within the round can be
uniquely identified.

• Channel reliability The channels are reliable, and only the processes
may fail (under one of various failure models). This is a simplifying
assumption in our study. As we will see even with this simplifying assump-
tion, the agreement problem is either unsolvable, or solvable in a complex
manner.

• Authenticated vs. non-authenticated messages In our study, we will be
dealing only with unauthenticated messages. With unauthenticated mes-
sages, when a faulty process relays a message to other processes, (i) it can
forge the message and claim that it was received from another process,
and (ii) it can also tamper with the contents of a received message before
relaying it. When a process receives a message, it has no way to verify its
authenticity. An unauthenticated message is also called an oral message
or an unsigned message.

Using authentication via techniques such as digital signatures, it is easier
to solve the agreement problem because, if some process forges a message
or tampers with the contents of a received message before relaying it, the
recipient can detect the forgery or tampering. Thus, faulty processes can
inflict less damage.

• Agreement variable The agreement variable may be boolean or multi-
valued, and need not be an integer. When studying some of the more
complex algorithms, we will use a boolean variable. This simplifying
assumption does not affect the results for other data types, but helps in the
abstraction while presenting the algorithms.

Consider the difficulty of reaching agreement using the following example,
that is inspired by the long wars fought by the Byzantine Empire in the Middle

512 Consensus and agreement algorithms

Figure 14.1 Byzantine
generals sending confusing
messages.

0

1

1

1
0

0

1

0

0

01

0

G1

G3 G4

G2

Ages. Four camps of the attacking army, each commanded by a general, are
camped around the fort of Byzantium.1 They can succeed in attacking only if
they attack simultaneously. Hence, they need to reach agreement on the time
of attack. The only way they can communicate is to send messengers among
themselves. The messengers model the messages. An asynchronous system
is modeled by messengers taking an unbounded time to travel between two
camps. A lost message is modeled by a messenger being captured by the
enemy. A Byzantine process is modeled by a general being a traitor. The traitor
will attempt to subvert the agreement-reaching mechanism, by giving mis-
leading information to the other generals. For example, a traitor may inform
one general to attack at 10 a.m., and inform the other generals to attack at
noon. Or he may not send a message at all to some general. Likewise, he may
tamper with the messages he gets from other generals, before relaying those
messages.

A simple example of Byzantine behavior is shown in Figure 14.1. Four
generals are shown, and a consensus decision is to be reached about a
boolean value. The various generals are conveying potentially misleading
values of the decision variable to the other generals, which results in con-
fusion. In the face of such Byzantine behavior, the challenge is to deter-
mine whether it is possible to reach agreement, and if so under what con-
ditions. If agreement is reachable, then protocols to reach it need to be
devised.

14.1.1 The Byzantine agreement and other problems

The Byzantine agreement problem
Before studying algorithms to solve the agreement problem, we first define
the problem formally [20, 25]. The Byzantine agreement problem requires a
designated process, called the source process, with an initial value, to reach

1 Byzantium was the name of present-day Istanbul; Byzantium also had the name of
Constantinople.

513 14.1 Problem definition

agreement with the other processes about its initial value, subject to the
following conditions:

• Agreement All non-faulty processes must agree on the same value.
• Validity If the source process is non-faulty, then the agreed upon value

by all the non-faulty processes must be the same as the initial value of the
source.

• Termination Each non-faulty process must eventually decide on a value.

The validity condition rules out trivial solutions, such as one in which the
agreed upon value is a constant. It also ensures that the agreed upon value
is correlated with the source value. If the source process is faulty, then the
correct processes can agree upon any value. It is irrelevant what the faulty
processes agree upon – or whether they terminate and agree upon anything
at all.

There are two other popular flavors of the Byzantine agreement problem –
the consensus problem, and the interactive consistency problem.

The consensus problem
The consensus problem differs from the Byzantine agreement problem in that
each process has an initial value and all the correct processes must agree on
a single value [20, 25]. Formally:

• Agreement All non-faulty processes must agree on the same (single)
value.

• Validity If all the non-faulty processes have the same initial value, then
the agreed upon value by all the non-faulty processes must be that same
value.

• Termination Each non-faulty process must eventually decide on a value.

The interactive consistency problem
The interactive consistency problem differs from the Byzantine agreement
problem in that each process has an initial value, and all the correct processes
must agree upon a set of values, with one value for each process [20, 25].
The formal specification is as follows:

• Agreement All non-faulty processes must agree on the same array of
values A!v1" " " vn#.

• Validity If process i is non-faulty and its initial value is vi, then all non-
faulty processes agree on vi as the ith element of the array A. If process j
is faulty, then the non-faulty processes can agree on any value for A!j#.

• Termination Each non-faulty process must eventually decide on the
array A.

514 Consensus and agreement algorithms

14.1.2 Equivalence of the problems and notation

The three problems defined above are equivalent in the sense that a solution
to any one of them can be used as a solution to the other two problems [9].
This equivalence can be shown using a reduction of each problem to the
other two problems. If problem A is reduced to problem B, then a solution
to problem B can be used as a solution to problem A in conjunction with the
reduction. Exercise 14.1 asks the reader to show these reductions.

Formally, the difference between the agreement problem and the consensus
problem is that, in the agreement problem, a single process has the initial
value, whereas in the consensus problem, all processes have an initial value.
However, the two terms are used interchangably in much of the literature and
hence we shall also use the terms interchangably.

14.2 Overview of results

Table 14.1 gives an overview of the results and lower bounds on solving the
consensus problem under different assumptions.

It is worth understanding the relation between the consensus problem and
the problem of attaining common knowledge of the agreement value. For the
“no failure” case, consensus is attainable. Further, in a synchronous system,
common knowledge of the consensus value is also attainable, whereas in the
asynchronous case, concurrent common knowledge of the consensus value is
attainable.

Consensus is not solvable in asynchronous systems even if one process
can fail by crashing. To circumvent this impossibility result, weaker variants

Table 14.1 Overview of results on agreement. f denotes number of failure-prone
processes. n is the total number of processes.

Failure Synchronous system Asynchronous system
mode (message-passing and shared

memory)
(message-passing and shared
memory)

No Agreement attainable Agreement attainable
failure Common knowledge also

attainable
Concurrent common
knowledge attainable

Crash Agreement attainable Agreement not attainable
failure f < n processes

$%f +1& rounds

Byzantine Agreement attainable Agreement not attainable
failure f ≤ "%n−1&/3$ Byzantine

processes
$%f +1& rounds

515 14.3 Agreement in a failure-free system (synchronous or asynchronous)

Table 14.2 Some solvable variants of the agreement problem in an
asynchronous system. The overhead bounds are for the given algorithms, and are
not necessarily tight bounds for the problem.

Solvable Failure model and overhead Definition
variants

Reliable
broadcast

Crash failures, n > f (MP) Validity, agreement, integrity
conditions (Section 14.5.7)

k-set
consensus

Crash failures, f < k < n (MP
and SM)

Size of the set of values agreed
upon must be at most k
(Section 14.5.4)

'-agreement Crash failures, n ≥ 5f +1 (MP) Values agreed upon are within
' of each other (Section 14.5.5)

Renaming Up to f fail-stop processes,
n ≥ 2f + 1 (MP)
Crash failures, f ≤ n−1 (SM)

Select a unique name from a
set of names (Section 14.5.6)

Figure 14.2 Circumventing the
impossibility result for
consensus in asynchronous
systems.

Circumventing the impossibility results for consensus in asynchronous systems

k-set consensus
epsilon-consensus
Renaming
Reliable broadcast

Shared memory

Using atomic registers and
atomic snapshot objects
constructed from atomic
registers.

k-set consensus
epsilon-consensus
Renaming

Consensus
Using more powerful
objects than atomic
registers.
This is the study of
universal objects and
universal constructions.

Message−passing

of the consensus problem are defined in Table 14.2. The overheads given in
this table are for the algorithms described. Figure 14.2 shows further how
asynchronous message-passing systems and shared memory systems deal with
trying to solve consensus.

14.3 Agreement in a failure-free system (synchronous or asynchronous)

In a failure-free system, consensus can be reached by collecting information
from the different processes, arriving at a “decision,” and distributing this
decision in the system. A distributed mechanism would have each process
broadcast its values to others, and each process computes the same function
on the values received. The decision can be reached by using an application-
specific function – some simple examples being the majority, max, and min
functions. Algorithms to collect the initial values and then distribute the deci-
sion may be based on the token circulation on a logical ring, or the three-phase

516 Consensus and agreement algorithms

tree-based broadcast–convergecast–broadcast, or direct communication with
all nodes.

• In a synchronous system, this can be done simply in a constant number of
rounds (depending on the specific logical topology and algorithm used).
Further, common knowledge of the decision value can be obtained using
an additional round (see Chapter 8).

• In an asynchronous system, consensus can similarly be reached in a con-
stant number of message hops. Further, concurrent common knowledge of
the consensus value can also be attained, using any of the algorithms in
Chapter 8.

Reaching agreement is straightforward in a failure-free system. Hence, we
focus on failure-prone systems.

14.4 Agreement in (message-passing) synchronous systems with failures

14.4.1 Consensus algorithm for crash failures (synchronous system)

Algorithm 14.1 gives a consensus algorithm for n processes, where up to
f processes, where f < n, may fail in the fail-stop model [8]. Here, the
consensus variable x is integer-valued. Each process has an initial value xi.
If up to f failures are to be tolerated, then the algorithm has f +1 rounds. In
each round, a process i sends the value of its variable xi to all other processes
if that value has not been sent before. Of all the values received within the
round and its own value xi at the start of the round, the process takes the
minimum, and updates xi. After f +1 rounds, the local value xi is guaranteed
to be the consensus value.

(global constants)
integer: f ; // maximum number of crash failures tolerated
(local variables)
integer: x ←− local value;

(1) Process Pi (1 ≤ i ≤ n) executes the consensus algorithm for up to
f crash failures:

(1a) for round from 1 to f +1 do
(1b) if the current value of x has not been broadcast then
(1c) broadcast(x);
(1d) yj ←− value (if any) received from process j in this round;
(1e) x ←− min∀j%x(yj&;
(1f) output x as the consensus value.

Algorithm 14.1 Consensus with up to f fail-stop processes in a system of n processes, n > f [8]. Code
shown is for process Pi ! 1 ≤ i ≤ n.

517 14.4 Agreement in (message-passing) synchronous systems with failures

• The agreement condition is satisfied because in the f +1 rounds, there must
be at least one round in which no process failed. In this round, say round
r, all the processes that have not failed so far succeed in broadcasting their
values, and all these processes take the minimum of the values broadcast
and received in that round. Thus, the local values at the end of the round
are the same, say xr

i for all non-failed processes. In further rounds, only
this value may be sent by each process at most once, and no process i will
update its value xr

i .
• The validity condition is satisfied because processes do not send fictitious

values in this failure model. (Thus, a process that crashes has sent only
correct values until the crash.) For all i, if the initial value is identical,
then the only value sent by any process is the value that has been agreed
upon as per the agreement condition.

• The termination condition is seen to be satisfied.

Complexity
There are f + 1 rounds, where f < n. The number of messages is at most
O%n2& in each round, and each message has one integer. Hence the total
number of messages is O%%f +1& ·n2&. The worst-case scenario is as follows.
Assume that the minimum value is with a single process initially. In the first
round, the process manages to send its value to just one other process before
failing. In subsequent rounds, the single process having this minimum value
also manages to send that value to just one other process before failing.

Algorithm 14.1 requires f + 1 rounds, independent of the actual num-
ber of processes that fail. An early-stopping consensus algorithm terminates
sooner; if there are f ′ actual failures, where f ′ < f , then the early-stopping
algorithm terminates in f ′ + 1 rounds. Exercise 14.2 asks you to design an
early-stopping algorithm for consensus under crash failures, and to prove its
correctness.

A lower bound on the number of rounds [8]
At least f + 1 rounds are required, where f < n. The idea behind this lower
bound is that in the worst-case scenario, one process may fail in each round;
with f + 1 rounds, there is at least one round in which no process fails. In
that guaranteed failure-free round, all messages broadcast can be delivered
reliably, and all processes that have not failed can compute the common
function of the received values to reach an agreement value.

14.4.2 Consensus algorithms for Byzantine failures (synchronous system)

14.4.3 Upper bound on Byzantine processes

In a system of n processes, the Byzantine agreement problem (as also the
other variants of the agreement problem) can be solved in a synchronous

518 Consensus and agreement algorithms

Figure 14.3 Impossibility of
achieving Byzantine agreement
with n = 3 processes and
f = 1 malicious process.

Pc Pc

Pa PbPa Pb

(a) (b)

Malicious process

0

1

1

0

Second round messageFirst round message

Correct process

0 00

CommanderCommander

1

system only if the number of Byzantine processes f is such that f ≤ " n−1
3 $

[20, 25].
We informally justify this result using two steps:

• With n = 3 processes, the Byzantine agreement problem cannot be solved
if the number of Byzantine processes f = 1. The argument uses the illus-
tration in Figure 14.3, which shows a commander Pc and two lieutenant
processes Pa and Pb. The malicious process is the lieutenant Pb in the
first scenario (Figure 14.3(a)) and hence Pa should agree on the value
of the loyal commander Pc, which is 0. But note the second scenario
(Figure 14.3(b)) in which Pa receives identical values from Pb and Pc, but
now Pc is the disloyal commander whereas Pb is a loyal lieutenant. In this
case, Pa needs to agree with Pb. However, Pa cannot distinguish between
the two scenarios and any further message exchange does not help because
each process has already conveyed what it knows from the third process.

In both scenarios, Pa gets different values from the other two processes.
In the first scenario, it needs to agree on a 0, and if that is the default value,
the decision is correct, but then if it is in the second indistinguishable
scenario, it agrees on an incorrect value. A similar argument shows that
if 1 is the default value, then in the first scenario, Pa makes an incorrect
decision. This shows the impossibility of agreement when n = 3 and f = 1.

• With n processes and f ≥ n/3 processes, the Byzantine agreement problem
cannot be solved. The correctness argument of this result can be shown
using reduction. Let Z%3(1& denote the Byzantine agreement problem
for parameters n = 3 and f = 1. Let Z%n ≤ 3f(f& denote the Byzan-
tine agreement problem for parameters n%≤ 3f& and f . A reduction
from Z%3(1& to Z%n ≤ 3f(f& needs to be shown, i.e., if Z%n ≤ 3f(f&
is solvable, then Z%3(1& is also solvable. After showing this reduction,
we can argue that as Z%3(1& is not solvable, Z%n ≤ 3f(f& is also not
solvable.

519 14.4 Agreement in (message-passing) synchronous systems with failures

The main idea of the reduction argument is as follows. In Z%n ≤ 3f(f&,
partition the n processes into three sets S1(S2(S3, each of size ≤ n/3. In
Z%3(1&, each of the three processes P1(P2(P3 simulates the actions of the
corresponding set S1, S2, S3 in Z%n ≤ 3f(f&. If one process is faulty in
Z%3(1&, then at most f , where f ≤ n/3, processes are faulty in Z%n(f&. In
the simulation, a correct process in Z%3(1& simulates a group of up to n/3
correct processes in Z%n(f&. It simulates the actions (send events, receive
events, intra-set communication, and inter-set communication) of each of
the processes in the set that it is simulating.

With this reduction in place, if there exists an algorithm to solve Z%n ≤
3f(f&, i.e., to satisfy the validity, agreement, and termination conditions,
then there also exists an algorithm to solve Z%3(1&, which has been seen to
be unsolvable. Hence, there cannot exist an algorithm to solve Z%n ≤ 3f(f&.

Byzantine agreement tree algorithm: exponential (synchronous
system)
Recursive formulation
We begin with an informal description of how agreement can be achieved with
n = 4 and f = 1 processes [20, 25], as depicted in Figure 14.4. In the first
round, the commander Pc sends its value to the other three lieutenants, as shown
by dotted arrows. In the second round, each lieutenant relays to the other two
lieutenants, the value it received from the commander in the first round. At
the end of the second round, a lieutenant takes the majority of the values it
received (i) directly from the commander in the first round, and (ii) from the
other two lieutenants in the second round. The majority gives a correct esti-
mate of the “commander’s” value. Consider Figure 14.4(a) where the com-
mander is a traitor. The values that get transmitted in the two rounds are as

Figure 14.4 Achieving
Byzantine agreement when
n = 4 processes and f = 1
malicious process.

01

(a)

1

1
0

0

0

0 0

Pd

Pb

Pc

Pa

00

(b)

0

0
0

0

0

1 1

Pd

Pb

Pc

Pa

Commander Commander

Malicious process

Second round exchangeFirst round exchange

Correct process

520 Consensus and agreement algorithms

shown. All three lieutenants take the majority of (1, 0, 0) which is “0,” the agree-
ment value. In Figure 14.4(b), lieutenant Pd is malicious. Despite its behavior
as shown, lieutenants Pa and Pb agree on “0,” the value of the commander.

(variables)
boolean: v ←− initial value;
integer: f ←− maximum number of malicious processes, ≤ "%n−1&/3$;
(message type)
OM(v(Dests(List(faulty), where
v is a boolean,
Dests is a set of destination process i.d.s to which the message is sent,
List is a list of process i.d.s traversed by this message, ordered from most

recent to earliest,
faulty is an integer indicating the number of malicious processes to be

tolerated.
Oral_Msg (f), where f > 0:
(1) The algorithm is initiated by the commander, who sends his source value

v to all other processes using a OM(v(N()i*(f) message. The commander
returns his own value v and terminates.

(2) [Recursion unfolding:] For each message of the form OM(vj ,
Dests(List(f ′) received in this round from some process j, the process i
uses the value vj it receives from the source j, and using that value, acts
as a new source. (If no value is received, a default value is assumed.)

To act as a new source, the process i initiates Oral_Msg (f ′ −1), wherein
it sends
OM(vj(Dests −)i*(concat%)i*(L&(%f ′ −1&)
to destinations not in concat%)i*(L&
in the next round.

(3) [Recursion folding:] For each message of the form OM(vj ,
Dests(List(f ′) received in step 2, each process i has computed the agree-
ment value vk, for each k not in List and k ̸= i, corresponding to the value
received from Pk after traversing the nodes in List, at one level lower in
the recursion. If it receives no value in this round, it uses a default value.
Process i then uses the value majorityk ̸∈List(k ̸=i%vj(vk& as the agreement
value and returns it to the next higher level in the recursive invocation.

Oral_Msg(0):
(1) [Recursion unfolding:] Process acts as a source and sends its value to

each other process.
(2) [Recursion folding:] Each process uses the value it receives from the

other sources, and uses that value as the agreement value. If no value is
received, a default value is assumed.

Algorithm 14.2 Byzantine generals algorithm – exponential number of unsigned messages, n > 3f .
Recursive formulation.

521 14.4 Agreement in (message-passing) synchronous systems with failures

Table 14.3 Relationships between messages and rounds in the oral messages
algorithm for the Byzantine agreement.

Round
number

A message
has already
visited

Aims to
tolerate
these many
failures

Each
message
gets sent to

Total number of messages in
round

1 1 f n−1 n−1
2 2 f −1 n−2 %n−1& · %n−2&
" " " " " " " " " " " " " " "
x x %f +1&−x n−x %n−1&%n−2&" " " %n−x&
x+1 x+1 %f +1&−

x−1
n−x−1 %n−1&%n−2&" " " %n−x−1&

" " " " " " " " " " " " " " "
f +1 f +1 0 n−f −1 %n−1&%n−2&" " " %n−f −1&

The first algorithm for solving Byzantine agreement was proposed by
Lamport et al. [20]. We present two versions of the algorithm.

The recursive version of the algorithm is given in Algorithm 14.2. Each
message has the following parameters: a consensus estimate value (v); a set
of destinations (Dests); a list of nodes traversed by the message, from most
recent to least recent (List); and the number of Byzantine processes that the
algorithm still needs to tolerate (faulty). The list L =)Pi(Pk1

" " " Pkf+1−faulty
*

represents the sequence of processes (subscripts) in the knowledge expression
Ki%Kk1

%Kk2
" " " Kkf+1−faulty

%v0&" " " &&. This knowledge is what Pkf+1−faulty
con-

veyed to Pkf−faulty
conveyed to " " " Pk1

conveyed to Pi who is conveying to the
receiver of this message, the value of the commander (Pkf+1−faulty

)’s ini-
tial value.

The commander invokes the algorithm with parameter faulty set to f , the
maximum number of malicious processes to be tolerated. The algorithm uses
f +1 synchronous rounds. Each message (having this parameter faulty = k)
received by a process invokes several other instances of the algorithm with
parameter faulty = k − 1. The terminating case of the recursion is when
the parameter faulty is 0. As the recursion folds, each process progres-
sively computes the majority function over the values it used as a source
for that level of invocation in the unfolding, and the values it has just com-
puted as consensus values using the majority function for the lower level of
invocations.

There are an exponential number of messages O%nf & used by this algorithm.
Table 14.3 shows the number of messages used in each round of the algorithm,
and relates that number to the number of processes already visited by any
message as well as the number of destinations of that message.

As multiple messages are received in any one round from each of the other
processes, they can be distinguished using the List, or by using a scheduling

522 Consensus and agreement algorithms

algorithm within each round. A detailed iterative version of the high-level
recursive algorithm is given in Algorithm 14.3. Lines 2a–2e correspond to the
unfolding actions of the recursive pseudo-code, and lines 2f–2h correspond
to the folding of the recursive pesudo-code. Two operations are defined
in the list L: head%L& is the first member of the list L, whereas tail%L&

(variables)
boolean: v ←− initial value;
integer: f ←− maximum number of malicious processes, ≤ "%n−1&/3$;
tree of boolean:

• level 0 root is vL
init, where L =)*;

• level h %f ≥ h > 0& nodes: for each vL
j at level h − 1 = sizeof%L&, its

n − 2 − sizeof%L& descendants at level h are vconcat%)j*(L&
k , ∀k such that

k ̸= j(i and k is not a member of list L.

(message type)
OM%v(Dests(List(faulty&, where the parameters are as in the recursive for-
mulation.

(1) Initiator (i.e., commander) initiates the oral Byzantine agreement:
(1a) send OM(v(N −)i*()Pi*(f) to N −)i*;
(1b) return(v).

(2) (Non-initiator, i.e., lieutenant) receives the oral message (OM):
(2a) for rnd = 0 to f do
(2b) for each message OM that arrives in this round, do
(2c) receive OM(v(Dests(L =)Pk1

" " " Pkf+1−faulty
*(faulty) from Pk1

;
// faulty + rnd = f; -Dests-+ sizeof%L& = n

(2d) vtail%L&
head%L& ←− v; // sizeof%L&+faulty = f +1. fill in estimate.

(2e) send OM(v(Dests −)i*()Pi(Pk1
" " " Pkf+1−faulty

*(faulty −1)
to Dests −)i* if rnd < f;

(2f) for level = f −1 down to 0 do
(2g) for each of the 1 · %n−2& · " " " %n− %level+1&& nodes vL

x in level
level, do

(2h) vL
x %x ̸= i(x ̸∈ L& = majorityy ̸∈ concat%)x*(L&+y ̸=i%v

L
x (vconcat%)x*(L&

y &;

Algorithm 14.3 Byzantine generals algorithm – exponential number of unsigned messages, n > 3f .
Iterative formulation. Code for process P i .

is the list L after removing its first member. Each process maintains a tree of
boolean variables. The tree data structure at a non-initiator is used as follows:

• There are f +1 levels from level 0 through level f .
• Level 0 has one root node, v)*

init, after round 1.

523 14.4 Agreement in (message-passing) synchronous systems with failures

• Level h, 0 < h ≤ f has 1 · %n−2& · %n−3& · · · %n−h& · %n− %h+1&& nodes
after round h+1. Each node at level %h−1& has %n−%h+1&& child nodes.

• Node vL
k denotes the command received from the node head%L& by node

k which forwards it to node i. The command was relayed to head%L&
by head%tail%L&&, which received it from head%tail%tail%L&&&, and so on.
The very last element of L is the commander, denoted Pinit.

• In the f +1 rounds of the algorithm (lines 2a–2e of the iterative version),
each level k, 0 ≤ k ≤ f , of the tree is successively filled to remember the
values received at the end of round k + 1, and with which the process
sends the multiple instances of the OM message with the fourth parameter
as f − %k+1& for round k+2 (other than the final terminating round).

• For each message that arrives in a round (lines 2b–2c of the iterative
version), a process sets vtail%L&

head%L& (line 2d). It then removes itself from Dests,
prepends itself to L, decrements faulty, and forwards the value v to the
updated Dests (line 2e).

• Once the entire tree is filled from root to leaves, the actions in the folding
of the recursion are simulated in lines 2f–2h of the iterative version,
proceeding from the leaves up to the root of the tree. These actions are
crucial – they entail taking the majority of the values at each level of the
tree. The final value of the root is the agreement value, which will be the
same at all processes.

Example Figure 14.5 shows the tree at a lieutenant node P3, for n = 10
processes P0 through P9 and f = 3 processes. The commander is P0. Only
one branch of the tree is shown for simplicity. The reader is urged to work
through all the steps to ensure a thorough understanding. Some key steps from
P3’s perspective are outlined next, with respect to the iterative formulation of
the algorithm.

Figure 14.5 Local tree at P3

for solving the Byzantine
agreement, for n = 10 and
f = 3. Only one branch of the
tree is shown for simplicity.

Enter after round 1

Round 2

Round 3

Round 4

Level 1

Level 0

Level 2

Level 3

< >v0

< 0 >v1

< 5,0 >v1

< 7,5,0 >v1
< 7,5,0 >v2

< 7,5,0 >v4
< 7,5,0 >v6

< 7,5,0 >v8
< 7,5,0 >v9

< 5,0 >v2
< 5,0 >v4

< 5,0 >v6
< 5,0 >v7

< 5,0 >v8
< 5,0 >v9

< 0 >v2
< 0 >v4

< 0 >v6
< 0 >v7

< 0 >v8
< 0 >v9

< 0 >v5

524 Consensus and agreement algorithms

• Round 1 P0 sends its value to all other nodes. This corresponds to invoking
Oral_Msg (3) in the recursive formulation. At the end of the round, P3 stores
the received value in v)*

0 .
• Round 2 P3 acts as a source for this value and sends this value to all

nodes except itself and P0. This corresponds to invoking Oral_Msg (2) in the
recursive formulation. Thus, P3 sends 8 messages. It will receive a similar
message from all other nodes except P0 and itself; the value received from
Pk is stored in v)0*

k .
• Round 3 For each of the 8 values received in round 2, P3 acts as a

source and sends the values to all nodes except (i) itself, (ii) nodes vis-
ited previously by the corresponding value, as remembered in the super-
script list, and (iii) the direct sender of the received message, as indi-
cated by the subscript. This corresponds to invoking Oral_Msg (1) in the
recursive formulation. Thus, P3 sends 7 messages for each of these 8 val-
ues, giving a total of 56 messages it sends in this round. Likewise it
receives 56 messages from other nodes; the values are stored in level 2 of
the tree.

• Round 4 For each of the 56 messages received in round 3, P3 acts a source
and sends the values to all nodes except (i) itself, (ii) nodes visited previously
by the corresponding value, as remembered in the superscript list, and (iii)
the direct sender of the received message, as indicated by the subscript. This
corresponds to invoking Oral_Msg (0) in the recursive formulation. Thus, P3

sends 6 messages for each of these 56 values, giving a total of 336 messages
it sends in this round. Likewise, it receives 336 messages, and the values are
stored at level 3 of the tree. As this round is Oral_Msg (0), the received values
are used as estimates for computing the majority function in the folding of the
recursion.

An example of the majority computation is as follows:

• P3 revises its estimate of v)5(0*
7 by taking majority %v)5(0*

7 (v)7(5(0*
1 (v)7(5(0*

2 (
v)7(5(0*

4 (v)7(5(0*
6 (v)7(5(0*

8 (v)7(5(0*
9 &. Similarly for the other nodes at level 2 of

the tree.
• P3 revises its estimate of v)0*

5 by taking majority %v)0*
5 (v)5(0*

1 (v)5(0*
2 (v)5(0*

4 (
v)5(0*

6 (v)5(0*
7 (v)5(0*

8 (v)5(0*
9 &. Similarly for the other nodes at level 1 of the tree.

• P3 revises its estimate of v)*
0 by taking majority%v)*

0 (v)0*
1 (v)0*

2 (
v)0*

4 (v)0*
5 (v)0*

6 (v)0*
7 (v)0*

8 (v)0*
9 &. This is the consensus value.

Correctness
The correctness of the Byzantine agreement algorithm (Algorithm 14.3) can
be observed from the following two informal inductive arguments. Here we
assume that the Oral_Msg algorithm is invoked with parameter x, and that
there are a total of f malicious processes. There are two cases depending on

525 14.4 Agreement in (message-passing) synchronous systems with failures

whether the commander is malicious. A malicious commander causes more
chaos than an honest commander.

Loyal commander
Given f and x, if the commander process is loyal, then Oral_Msg %x& is
correct if there are at least 2f +x processes.

This can easily be seen by induction on x:

• For x = 0, Oral_Msg %0& is executed, and the processes simply use the
(loyal) commander’s value as the consensus value.

• Now assume the above induction hypothesis for any x.
• Then for Oral_Msg %x + 1&, there are 2f +x + 1 processes including the

commander. Each loyal process invokes Oral_Msg %x& to broadcast the
(loyal) commander’s value v0 – here it acts as a commander for this
invocation it makes. As there are 2f +x processes for each such invocation,
by the induction hypothesis, there is agreement on this value (at all the
honest processes) – this would be at level 1 in the local tree in the folding
of the recursion. In the last step, each loyal process takes the majority of
the direct order received from the commander (level 0 entry of the tree),
and its estimate of the commander’s order conveyed to other processes as
computed in the level 1 entries of the tree. Among the 2f +x values taken
in the majority calculation (this includes the commanders’s value but not
its own), the majority is loyal because x > 0. Hence, taking the majority
works.

No assumption about commander
Given f , Oral_Msg %x& is correct if x ≥ f and there are a total of 3x+1 or
more processes.

This case accounts for both possibilities – the commander being malicious
or honest. An inductive argument is again useful.

• For x = 0, Oral_Msg %0& is executed, and as there are no malicious pro-
cesses (0 ≥ f) the processes simply use the (loyal) commander’s value as
the consensus value. Hence the algorithm is correct.

• Now assume the above induction hypothesis for any x.
• Then for Oral_Msg %x + 1&, there are at least 3x + 4 processes including

the commander and at most x+1 are malicious.

• (Loyal commander:) If the commander is loyal, then we can apply the
argument used for the “loyal commander” case above, because there
will be more than (2%f +1&+ %x+1&) total processes.

• (Malicious commander:) There are now at most x other malicious
processes and 3x+3 total processes (excluding the commander). From
the induction hypothesis, each loyal process can compute the consensus
value using the majority function in the protocol.

526 Consensus and agreement algorithms

Illustration of arguments
In Figure 14.6(a), the commander who invokes Oral_Msg (x) is loyal, so all
the loyal processes have the same estimate. Although the subsystem of 3x pro-
cesses has x malicious processes, all the loyal processes have the same view to
begin with. Even if this case repeats for each nested invocation of Oral_Msg,
even after x rounds, among the processes, the loyal processes are in a simple
majority, so the majority function works in having them maintain the same
common view of the loyal commander’s value. (Of course, had we known the
commander was loyal, then we could have terminated after a single round, and
neither would we be restricted by the n > 3x bound.) In Figure 14.6(b), the
commander who invokes Oral_Msg (x) may be malicious and can send con-
flicting values to the loyal processes. The subsystem of 3x processes has x−1
malicious processes, but all the loyal processes do not have the same view to
begin with.

Complexity
The algorithm requires f +1 rounds, an exponential amount of local memory,
and

%n−1&+ %n−1&%n−2&+· · ·+ !%n−1&%n−2& · · · %n−f −1&# messages,

Phase-king algorithm for consensus: polynomial (synchronous
system)
The Lamport–Shostak–Pease algorithm [21] requires f + 1 rounds and can
tolerate up to f ≤ " n−1

3 $ malicious processes, but requires an exponential
number of messages. The phase-king algorithm proposed by Berman and
Garay [4] solves the consensus problem under the same model, requiring
f +1 phases, and a polynomial number of messages (which is a huge saving),

Figure 14.6 The effects of a
loyal or a disloyal commander
in a system with n = 14 and
f = 4. The subsystems that
need to tolerate k and k − 1
traitors are shown for two
cases. (a) Loyal commander.
(b) No assumptions about
commander.

Oral_Msg(k) Oral_Msg(k)

? ?

1

00

Malicious processCorrect process

Oral_Msg(k − 1) Oral_Msg(k − 1)

Commander

(a) (b)

CommanderCommander

527 14.4 Agreement in (message-passing) synchronous systems with failures

but can tolerate only f < .n/4/ malicious processes. The algorithm is so
called because it operates in f +1 phases, each with two rounds, and a unique
process plays an asymmetrical role as a leader in each round.

The phase-king algorithm is given in Algorithm 14.4, and assumes a binary
decision variable. The message pattern is illustrated in Figure 14.7.

(variables)
boolean: v ←− initial value;
integer: f ←− maximum number of malicious processes, f < .n/4/;

(1) Each process executes the following f +1 phases, where f < n/4:
(1a) for phase = 1 to f +1 do
(1b) Execute the following round 1 actions:
(1c) broadcast v to all processes;
(1d) await value vj from each process Pj;
(1e) majority ←− the value among the vj that occurs > n/2 times

(default value if no majority);
(1f) mult ←− number of times that majority occurs;
(1g) Execute the following round 2 actions:
(1h) if i = phase then
(1i) broadcast majority to all processes;
(1j) receive tiebreaker from Pphase (default value if nothing is

received);
(1k) if mult > n/2+f then
(1l) v ←− majority;
(1m) else v ←− tiebreaker;
(1n) if phase = f +1 then
(1o) output decision value v.

Algorithm 14.4 Phase-king algorithm [4] – polynomial number of unsigned messages, n > 4f . Code
is for process Pi , 1 ≤ i ≤ n.

Figure 14.7 Message pattern
for the phase-king algorithm.

Phase f + 1Phase 1 Phase 2

Pf + 1

P0

P1

Pk

528 Consensus and agreement algorithms

• Round 1 In the first round (lines 1b–1f) of each phase, each process
broadcasts its estimate of the consensus value to all other processes, and
likewise awaits the values broadcast by others. At the end of the round,
it counts the number of “1” votes and the number of “0” votes. If either
number is greater than n/2, then it sets its majority variable to that
consensus value, and sets mult to the number of votes received for the
majority value. If neither number is greater than n/2, which may happen
when the malicious processes do not respond, and the correct processes
are split among themselves, then a default value is used for the majority
variable.

• Round 2 In the second round (lines 1g–1o) of each phase, the phase
king initiates processing – the phase king for phase k is the process with
identifier Pk, where k ∈)1" " " n*. The phase king broadcasts its majority
value majority, which serves the role of a tie-breaker vote for those other
processes that have a value of mult of less than n/2 + f . Thus, when a
process receives the tie-breaker from the phase king, it updates its estimate
of the decision variable v to the value sent by the phase king if its own
mult variable < n/2 + f . The reason for this is that among the votes for
its own majority value, f votes could be bogus and hence it does not have
a clear majority of votes (i.e., > n/2) from the non-malicious processes.
Hence, it adopts the value of the phase king. However, if mult > n/2+f
(lines 1k–1l), then it has received a clear majority of votes from the non-
malicious processes, and hence it updates its estimate of the consensus
variable v to its own majority value, irrespective of what tie-breaker value
the phase king has sent in the second round.

At the end of f + 1 phases, it is guaranteed that the estimate v of all the
processes is the correct consensus value.

Correctness
The correctness reasoning is in three steps:

1. Among the f +1 phases, the phase king of some phase k is non-malicious
because there are at most f malicious processes.

2. As the phase king of phase k is non-malicious, all non-malicious processes
can be seen to have the same estimate value v at the end of phase k.
Specifically, observe that any two non-malicious processes Pi and Pj can
set their estimate v in three ways:

(a) Both Pi and Pj use their own majority values. Assume Pi’s majority
value is x, which implies that Pi’s mult > n/2+f , and of these voters,
at least n/2 are non-malicious. This implies that Pj must also have
received at least n/2 votes for x, implying that its majority value
majority must also be x.

529 14.5 Agreement in asynchronous message-passing systems with failures

(b) Both Pi and Pj use the phase king’s tie-breaker value. As Pk is non-
malicious it must have sent the same tie-breaker value to both Pi and Pj .

(c) Pi uses its majority value as the new estimate and Pj uses the phase
king’s tie-breaker as the new estimate. Assume Pi’s majority value
is x, which implies that Pi’s mult > n/2 + f , and of these voters, at
least n/2 are non-malicious. This implies that phase king Pk must also
have received at least n/2 votes for x, implying that its majority value
majority that it sends as tie-breaker must also be x.

For all three possibilities, any two non-malicious processes Pi and Pj agree
on the consensus estimate at the end of phase k, where the phase king Pk

is non-malicious.
3. All non-malicious processes have the same consensus estimate x at the

start of phase k+1 and they continue to have the same estimate at the end
of phase k+1. This is self-evident because we have that n > 4f and each
non-malicious process receives at least n− f > n/2 + f votes for x from
the other non-malicious processes in the first round of phase k+1. Hence,
all the non-malicious processes retain their estimate v of the consensus
value as x at the end of phase k+1.
The same logic holds for all subsequent phases. Hence, the consensus
value is correct.

Complexity
The algorithm requires f +1 phases with two sub-rounds in each phase, and
%f +1&!%n−1&%n+1&# messages.

14.5 Agreement in asynchronous message-passing systems with failures

14.5.1 Impossibility result for the consensus problem

Fischer et al. [12] showed a fundamental result on the impossibility of
reaching agreement in an asynchronous (message-passing) system, even if
a single process is allowed to have a crash failure. This result, popularly
known as the FLP impossibility result, has a significant impact on the field of
designing distributed algorithms in a failure-susceptible system. The correct-
ness proof of this result also introduced the important notion of valency of
global states.

For any global state GS, let v(GS) denote the set of possible values that can
be agreed upon in some global state reachable from GS. -v%GS&- is defined as
the valency of global state GS. For a boolean decision value, a global state can
be bivalent, i.e., have a valency of two, or monovalent, i.e., having a valency
of one. A monovalent state GS is 1-valent if v%GS& =)1* and it is 0-valent
if v%GS& =)0*. Bivalency of a global state captures the idea of uncertainty

530 Consensus and agreement algorithms

in the decision, as either a 0-valent or a 1-valent state may be reachable from
this bivalent state.

In an (asynchronous) failure-free system, Section 14.3 showed how to
design protocols that can reach consensus. Observe that the consensus
value can be solely determined by the inputs. Hence, the initial state is
monovalent.

In the face of failures, it can be shown that a consensus protocol necessarily
has a bivalent initial state (assuming each process can have an arbitrary
initial value from)0(1*, to rule out trivial solutions). This argument is by
contradiction. Clearly, the initial state where inputs are all 0 is 0-valent and
the initial state where inputs are all 1 is 1-valent. Transforming the input
assignments from the all-0 case to the all-1 case, observe that there must exist
input assignments I⃗a and I⃗b that are 0-valent and 1-valent, respectively, and
that they differ in the input value of only one process, say Pi. If a 1-failure
tolerant consensus protocol exists, then:

1. Starting from I⃗a, if Pi fails immediately, the other processes must agree
on 0 due to the termination condition.

2. Starting from I⃗b, if Pi fails immediately, the other processes must agree
on 1 due to the termination condition.

However, execution 2 looks identical to execution 1, to all processes, and
must end with a consensus value of 0, a contradiction. Hence, there must
exist at least one bivalent initial state.

Observe that reaching consensus requires some form of exchange of the
intial values (either by message-passing or shared memory, depending on
the model). Hence, a running process cannot make a unilateral decision on
the consensus value. The key idea of the impossibility result is that, in the
face of a potential process crash, it is not possible to distinguish between a
crashed process and a process or link that is extremely slow. Hence, from
a bivalent state, it is not possible to transition to a monovalent state. More
specifically, the argument runs as follows. For a protocol to transition from a
bivalent global state to a monovalent global state, and using the global time
interleaved model for reasoning in the proof, there must exist a critical step
execution that changes the valency by making a decision on the consensus
value. There are two possibilities:

• The critical step is an event that occurs at a single process. However, other
processes cannot tell apart the two scenarios in which this process has
crashed, and in which this process is extremely slow. In both scenarios,
the other processes can continue to wait forever and hence the processes
may not reach a consensus value, remaining in bivalent state.

• The critical step occurs at two or more independent (i.e., not send–receive
related) events at different processes. However, as independent events at
different processes can occur in any permutation, the critical step is not
well-defined and hence this possibility is not admissible.

531 14.5 Agreement in asynchronous message-passing systems with failures

Thus, starting from a bivalent state, it is not possible to transition to a
monovalent state. This is the key to the impossibility result for reaching
consensus in asynchronous systems.

The impossibility result is significant because it implies that all problems
to which the agreement problem can be reduced are also not solvable in any
asynchronous system in which crash failures may occur. As all real systems
are prone to crash failures, this result has practical significance. We can
show that all the problems, such as the following, requiring consensus are not
solvable in the face of even a single crash failure:

• The leader election problem.
• The computation of a network-side global function using broadcast–

convergecast flows.
• Terminating reliable broadcast.
• Atomic broadcast.

The common strategy is to use a reduction mapping from the consensus
problem to the problem X under consideration. We need to show that, by
using an algorithm to solve X, we can solve consensus. But as consensus is
unsolvable, so must be problem X.

14.5.2 Terminating reliable broadcast

As an example, consider the terminating reliable broadcast problem, which
states that a correct process always gets a message even if the sender crashes
while sending. If the sender crashes while sending the message, the message
may be a null message but it must be delivered to each correct process.
The formal specification of reliable broadcast was studied in Chapter 6; here
we have an additional termination condition, which states that each correct
process must eventually deliver some message.

• Validity If the sender of a broadcast message m is non-faulty, then all
correct processes eventually deliver m.

• Agreement If a correct process delivers a message m, then all correct
processes deliver m.

• Integrity Each correct process delivers a message at most once. Further,
if it delivers a message different from the null message, then the sender
must have broadcast m.

• Termination Every correct process eventually delivers some message.

The reduction from consensus to terminating reliable broadcast is as fol-
lows. A commander process broadcasts its input value using the terminating
reliable broadcast. A process decides on a “0” or “1” depending on whether it
receives “0” or “1” in the message from this process. However, if it receives
the null message, it decides on a default value. As the broadcast is done
using the terminating reliable broadcast, it can be seen that the conditions

