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Abstract

A graph is said to be k-linked if it has at least 2k vertices and for every sequence s1, . . . , sk, t1, . . . , tk

of distinct vertices there exist disjoint paths P1, . . . , Pk such that the ends of Pi are si and ti. Bollobás

and Thomason showed that if a simple graph G on n vertices is 2k-connected and G has at least 11kn

edges, then G is k-linked. We give a relatively simple inductive proof of the stronger statement that 8kn

edges and 2k-connectivity suffice, and then with more effort improve the edge bound to 5kn.

1 Introduction and Results

A graph is said to be k-linked if it has at least 2k vertices and for every sequence s1, . . . , sk, t1, . . . , tk of

distinct vertices there exist disjoint paths P1, . . . , Pk such that the ends of Pi are si and ti. (This differs

slightly from the usual definition in the literature, but is more convenient for our purposes.) Clearly every

k-linked graph is k-connected. The converse is not true, however, which brings up the natural question of

how much connectivity, as a function f(k), is necessary to ensure that a graph is k-linked.

Larman and Mani [6] and Jung [3] first showed that such a function f(k) exists by showing that the

existence of a topological complete minor of size 3k and 2k-connectivity suffice to make a graph k-linked.

This result, along with an earlier result of Mader’s that sufficiently high average degree forces a large

topological minor [7] proved that such a function f above does exist. Robertson and Seymour [8] proved

that 2k-connectivity and the existence of a K3k minor would suffice to make a graph k-linked. This, together

with bounds on the extremal function for complete minors by Kostochka [5] and Thomason [12] showed that

f(k) = O(k
√

log k). Bollobás and Thomason [1] noticed that the same effect can be achieved by replacing the
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K3k minor with a sufficiently dense (noncomplete) minor, whose existence in a graph on n vertices requires

only O(kn) edges. Thus they improved the bound on f(k) to 22k.

Our first objective is to give a reasonably straightforward proof that f(k) ≤ 16k. After this result was

written and distributed in April 2003, we have learned of two independent improvements. Kawarabayashi

(personal communication) pointed out that by using the result of Egawa, Faudree, Györi, Ishigami, Schelp

and Wang [2] our bound could be lowered, and suggested the possibility of improving the bound to 12k. That

was done independently by Kawarabayashi, Kostochka and Yu [4], who in the process essentially rediscovered

the result of [2]. After the communication from Kawarabayashi and after having seen an early version of [4]

we were able to further improve the bound to 10k, and that is the second result of this paper.

For the purposes of this paper, all graphs will be simple. If G is a graph and e ∈ E(G), we denote by

G/e the graph obtained from G by contracting e and deleting all resulting parallel edges. The pair (A, B)

is a separation of a graph G if A ∪ B = V (G) and every edge of G has both ends in A or B. The order of

a separation (A, B) is |A ∩ B|. If X ⊆ V (G) and (A, B) is a separation of G with X ⊆ A, then we say that

(A, B) is a separation of (G, X). We will use the notation G[A] to indicate the subgraph of G induced by

the set of vertices A. For X ⊆ V (G), we define ρ(X) to be the number of edges with at least one end in X .

We will use the following definitions.

Definition Let G be a graph, and let X ⊆ V (G). We say that the pair (G, X) is linked if for all integers l

and all distinct vertices s1, s2, . . . sl, t1, . . . , tl ∈ X there exist disjoint paths P1, . . . , Pl, called a linkage, such

that the ends of Pi are si and ti, and no Pi has an internal vertex in X .

Definition Let G be a graph, let X ⊆ V (G), and let λ > 0 be a real number. We say that the pair (G, X)

is λ-massed if

(1) ρ(V (G) − X) > λ|V (G) − X |, and

(2) every separation (A, B) of (G, X) of order at most |X | − 1 satisfies ρ(B − A) ≤ λ|B − A|.

The notion of λ-massed provides a weakening, suitable for inductive arguments, of the property of being

|X |-connected and containing “many” edges. Our main result is the following.

Theorem 1.1 Let k ≥ 1 be an integer, let G be a graph, and let X ⊆ V (G) be such that |X | ≤ 2k and

(G, X) is 5k-massed. Then (G, X) is linked.

We deduce the following two corollaries.

Corollary 1.2 If G is 2k-connected and G has at least 5k|V (G)| edges, then G is k-linked.

Proof Since G is 2k-connected, it has at least 2k vertices. Let X ⊆ V (G) be a set of size exactly 2k. Then

ρ(V (G) − X) ≥ |E(G)| −
(

2k

2

)

≥ 5k|V (G)| −
(

2k

2

)

> 5k|V (G) − X |,
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and so (1) holds. Now if (A, B) is a separation of (G, X) of order at most 2k − 1, then B ⊆ A, because G is

2k connected. Thus (2) holds, and so (G, X) is 5k-massed. By Theorem 1.1 the pair (G, X) is linked, and

so G is k-linked, as desired. �

Corollary 1.3 If G is 10k-connected, then G is k-linked.

The proof of Theorem 1.1 proceeds in two steps. First we show that a minimal counterexample has

a dense subgraph and no rigid separation. To emphasize the flexibility of the argument we formulate this

theorem using the following definitions involving a parameter α, later to be specified to be either 8 (to obtain

an easy proof) or 5 (to get the best bound).

Definition Let G be a graph, let X ⊆ V (G), and let (A, B) be a separation of G. We say that (A, B) is a

rigid separation of (G, X) if X ⊆ A, B − A 6= ∅, and (G[B], A ∩ B) is linked.

Rigid separations facilitate inductive arguments, as follows. Let (A, B) be a rigid separation of (G, X), and

let G′ be obtained from G[A] by adding the edge uv for all nonadjacent pairs of distinct vertices u, v ∈ A∩B.

As we will see, the pair (G, X) is linked if and only if (G′, X) is linked.

The next definition formalizes the notion of “minimal counterexample”.

Definition Let G be a graph, let X ⊆ V (G), and let α > 0 be a real number. We say that the pair (G, X)

is (α, k)-minimal if

(3) (G, X) is αk-massed,

(4) |X | ≤ 2k and (G, X) is not linked,

(5) subject to (3) and (4), |V (G)| is minimum,

(6) subject to (3)–(5), ρ(G − X) is minimum, and

(7) subject to (3)–(6), the number of edges of G with both ends in X is maximum.

Theorem 1.4 Let k ≥ 1 be an integer, let α ≥ 2 be a real number, let G be a graph, and let X ⊆ V (G)

be such that (G, X) is (α, k)-minimal. Then G has no rigid separation of order at most |X |, and G has a

subgraph L with |V (L)| ≤ d2αke and minimum degree at least bαkc + 1.

The second step consists of finding a k-linked subgraph of L, where L is as in the above theorem. This

is much easier for α = 8, and so we do that first.

Theorem 1.5 Let k ≥ 1 be an integer, and let H be a graph with minimum degree at least 8k on at most

16k vertices. Then H has a k-linked subgraph.

Theorem 1.4 will be proved in Section 2 and Theorem 1.5 will be proved in Section 3. By the argument

given at the end of this section (with the constant 5 replaced by 8) those two theorems imply that every
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2k-connected graph on n vertices and at least 8kn edges is k-linked. To improve the bound to 5kn we need

the following strengthening of Theorem 1.5, which we prove in Section 4.

Theorem 1.6 Let k ≥ 1 be an integer, and let H be a graph with minimum degree at least 5k on at most

10k vertices. Then H has a k-linked subgraph.

In the remainder of this section we deduce Theorem 1.1. By changing the the constant 5 to 8 one can avoid

using Theorem 1.6 and deduce the corresponding weakening of Theorem 1.1 using the easier Theorem 1.5

instead.

Proof of Theorem 1.1 (assuming Theorems 1.4 and 1.6). Let (G, X) be as stated in Theorem 1.1, and

suppose for a contradiction that it is not linked. We may assume that (G, X) is (5, k)-minimal, and hence by

Theorem 1.4 applied with α = 5 the graph G has a subgraph H satisfying the hypotheses of Theorem 1.6.

By Theorem 1.6 the graph H , and hence G, has a k-linked subgraph J .

Assume for a moment that G has |X | disjoint paths P1, P2, . . . between X and V (J), and choose them

so that they have no internal vertex in J . Since J is k-linked, the ends of Pi in J can be linked as necessary

to form a desired set of paths showing that (G, X) is linked, where each of these paths consists of the union

of two Pis and with an appropriate subpath of the linkage in J . But this contradicts our assumption that

(G, X) is not linked.

Thus the paths P1, P2, . . . of the previous paragraph do not exist, and hence G has a separation (A, B)

of order at most |X | − 1 with X ⊆ A and V (J) ⊆ B. Choose (A, B) of smallest possible order; then there

exist |A ∩ B| disjoint paths from A ∩ B to V (J), and an argument similar to the argument of the previous

paragraph shows that (A, B) is rigid, contrary to Theorem 1.4. �

2 Proof of Theorem 1.4

Let k, α, G, X be as stated in the theorem. We break the proof up into a series of claims. The first two

claims extablish the first conclusion of the theorem.

Claim 2.1 (G, X) has no rigid separation of order at most |X | − 1.

Proof Suppose for a contradiction that (A, B) is a rigid separation of (G, X) chosen with A minimal. Let

S := A∩B. We define G′ to be the graph obtained from G[A] by adding an edge between every nonadjacent

pair of vertices in S.

If (G′, X) is αk-massed, then the (α, k)-minimality of (G, X) implies that (G′, X) is linked. But a linkage

in (G′, X) can be easily converted to a linkage in (G, X) as follows. Since S is complete, we may assume

that each path in the linkage uses at most one edge with both ends in S, and edges of E(G′) − E(G) may

be replaced by paths in G[B], because (A, B) is rigid. Since (G, X) is not linked, we conclude that (G′, X)
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is not αk-massed. Since (G, X) is αk-massed, ρ(B − A) ≤ αk|B − A|, and hence ρ(G′ − X) > αk|G′ − X |.
Thus (G′, X) fails to satisfy condition (2), and hence it has a separation (A′, B′) of order at most |X | − 1

with ρ(B′ − A′) > αk|B′ − A′|. Then B′ − A′ 6= ∅, and hence A′ ( A. Let us select such a separation with

B′ minimal. If S ⊆ A′, then (A′ ∪ B, B′) is a separation of (G, X) violating condition (2), a contradiction.

Thus S 6⊆ A′, but S is a clique, and hence S ⊆ B′. Since ρ(B′ −A′) > αk|B′ −A′|, the pair (G′[B′], A′ ∩B′)

satisfies (1), and the minimality of B′ implies that it satisfies (2). Thus this pair is αk-massed, and hence

the (α, k)-minimality of (G, X) implies that (G′[B′], A′ ∩ B′) is linked. A linkage in (G′[B′], A′ ∩ B′) can

be converted to a linkage in (G[B ∪ B′], A′ ∩ B′) similarly as above, establishing that (A′, B′ ∪ B) is a rigid

separation of (G, X), violating our choice of (A, B). �

Claim 2.2 (G, X) has no rigid separation of order exactly |X |.

Proof Suppose for a contradiction that (G, X) has a rigid separation (A, B) of order exactly |X |. We use

an argument analogous to the proof of Theorem 1.1. If there exist |X | disjoint paths from X to A∩B, then

those paths and the rigidity of (A, B) can be used to obtain any linkage in (G, X), contrary to (4). Otherwise

there exists a separation (A′, B′) of (G[A], X) of order strictly less than X with A ∩ B ⊆ B′; let us choose

such a separation with |A′ ∩ B′| minimum. Then there exist |A′ ∩ B′| disjoint paths between A′ ∩ B′ and

A ∩ B, and from the rigidity of (A, B) we deduce that (A′, B ∪ B′) is a rigid separation of (G, X) of order

strictly less than |X |, contrary to Claim 2.1. �

Since (G, X) is not linked, there exist an integer l and a sequence s1, s2, . . . , sl, t1, t2, . . . , tl of distinct

vertices of X such that there does not exist the corresponding linkage. Condition (7) implies that for some

choice of the above sequence, all pairs of vertices of X are adjacent, except possibly the pairs si, ti. Thus we

may assume that the chosen sequence has this property.

Claim 2.3 If u and v are adjacent vertices of G and at least one of them does not belong to X, then u and

v have at least bαkc common neighbors.

Proof Let G′ = G/uv. If (G′, X) is αk-massed, then the (α, k)-minimality of (G, X) implies that (G′, X)

is linked. But then (G, X) is linked, a contradiction. Thus (G′, X) is not αk-massed, and so it fails to satisfy

(1) or (2).

We claim that (G′, X) satisfies (2). To prove this claim suppose for a contradiction that (G′, X) has a

separation (A, B) of order strictly less than |X | such that ρ(B−A) > αk|B−A|, and pick such a separation

(A, B) with B minimal. The (α, k)-minimality of (G, X) implies that (G′[B], A ∩ B) is linked.

The separation (A, B) induces a separation (A∗, B∗) of G, where we replace the new vertex of G′ with

both u and v. Then u, v ∈ B∗, or else (G, X) would have a separation violating (2). If u, v ∈ A∗ as well,

then ρ(B∗ − A∗) > αk|B∗ − A∗|, and thus (A∗, B∗) is a rigid separation by the (α, k)-minimality of (G, X)
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applied to the pair (G[B∗], A∗ ∩ B∗). If one of u, v does not belong to A∗, then a linkage in (G′[B], A ∩ B)

gives rise to a linkage in (G[B∗], A∗∩B∗), again showing that (A∗, B∗) is rigid. Thus in either case we obtain

contradiction to Claim 2.1 or Claim 2.2. This proves our claim that (G′, X) satisfies (2).

Since (G′, X) is not αk-massed, the above claim implies that it does not satisfy (1). Thus G′ must have

at least bαkc+1 fewer edges incident V (G′)−X . This means (keeping in mind that all pairs of vertices of X

are adjacent, except possibly the pairs si, ti) that either u and v have at least bαkc + 1 common neighbors;

or they have exactly bαkc common neighbors, and one of u, v belongs to {si, ti} and the other is adjacent

to the other member of {si, ti}. In either case the claim holds. �

Claim 2.4 Let δ∗ be the minimum degree in G among the vertices of V (G)−X. Then bαkc+1 ≤ δ∗ < 2αk.

Proof The lower bound follows immediately from Claim 2.3. To prove the upper bound, consider the graph

G− e for some edge e ∈ E(G) which does not have both ends in X . If (G− e, X) is αk-massed, then by the

(α, k)-minimality of (G, X) the pair (G−e, X) is linked, and consequently, (G, X) is as well, a contradiction.

So (G− e, X) is not αk-massed, and hence it fails to satisfy (1) or (2). We claim that it satisfies (2). Indeed,

otherwise (G − e, X) has a separation (A, B) of order less than |X | with ρ(B − A) > αk|B − A|. It follows

that u ∈ A − B and v ∈ B − A, lest (A, B) be a separation in (G, X) violating (2). But by Claim 2.3, u

and v have at least bαkc common neighbors in G. Since these common neighbors belong to A ∩ B, we have

2k ≤ bαkc ≤ |A∩B| < |X |, a contradiction. This proves that (G− e, X) satisfies (2), and hence it does not

satisfy (1). We conclude that ρ(G − X) ≤ αk|G − X | + 1.

For x ∈ X let f(x) be the number of neighbors of x in V (G)−X . Clearly f(x) ≥ 1, lest (X, V (G)−{x})
be a separation of (G, X) violating (2). But then by Claim 2.3, f(x) ≥ bαkc− (2k− 2)+1 ≥ 3. If δ∗ ≥ 2αk,

then

2αk|V (G) − X |+ 2 ≥ 2ρ(G − X) =
∑

v∈G−X

deg(v) +
∑

x∈X

f(x) ≥ 2αk|V (G) − X | + 3|X |,

a contradiction, because X 6= ∅ by (2) applied to (G, X). �

We are now ready to complete the proof of Theorem 1.4. Let v ∈ (G) − X be a vertex of degree δ∗ in

G, and let L be the induced subgraph on v and the neighborhood of v. By Claim 2.4, L has at most d2αke
vertices, and by Claim 2.3, L has minimum degree at least bαkc+ 1, as desired. This completes the proof of

Theorem 1.4.

3 Proof of Theorem 1.5

In the proof we will need the following lemma.

Lemma 3.1 Let J be a graph such that 2δ(J) ≥ |J | + 3k − 4. Then J is k-linked.
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Proof Let s1, s2, . . . , sk, t1, t2, . . . , tk be a sequence of distinct vertices of J , and let X = {s1, s2, . . . , sk,

t1, t2, . . . , tk}. The hypothesis implies that every two nonadjacent vertices of X have at least k common

neighbors outside of X , and hence there is a desired linkage consisting of paths of length at most 2. �

Now we are ready to prove Theorem 1.5. Let k and H be as in the statement. We may assume that H

is not k-linked, and hence there exists a sequence s1, s2, . . . , sk, t1, t2, . . . , tk of distinct vertices of H with

no corresponding linkage. Let X = {s1, s2, . . . , sk, t1, t2, . . . , tk}, and let us choose a set P of disjoint paths

such that for each path P ∈ P
(a) P has length at most seven,

(b) the ends of P are si and ti for some i = 1, 2, . . . , k,

(c) no internal vertex of P belongs to X ,

(d) subject to (a)–(c), |P| is maximum, and

(e) subject to (a)–(d), the sum of the lengths of the paths in P is minimum.

Then |P| < k, and so we may assume that s1 and t1 belong to no member of P . Let L be the subgraph of

H induced on X and the paths in P . Notice that any vertex v ∈ V (H) − V (L) has at most 3k neighbors in

L, for otherwise it would have at least four neighbors on some path P ∈ P , in which case it would have two

non-consecutive neighbors on P , and so P could be shortened by using v, contrary to (e). Thus the graph

H −V (L) has minimum degree at least 8k − 3k = 5k. Since L has at most 8(k− 1) + 2 vertices, we see that

both s1 and t1 have a neighbor in H − V (L).

We now show that H −V (L) is not connected. To this end let S be the set of all vertices of H −V (L) at

distance at most two from a neighbor of s1, where the distance is taken in the graph H −V (L); and let T be

defined analogously with t1 replacing s1. Then S and T are nonempty; by (d) they are disjoint, and no edge

of H has one end in S and the other end in T . We claim that S ∪ T ∪V (L) = V (H). To prove this claim let

v ∈ V (H)− V (L), and let x and y be neighbors in H − V (L) of s1 and t1, respectively. Then x, y, and v all

have at least 5k neighbors in H − V (L), but H − V (L) has at most 16k − 2k = 14k vertices. Since S and T

are disjoint, it follows that v belongs to S or T , as desired. This proves our claim that S∪T ∪V (L) = V (H),

and hence concludes the proof of the fact that H − V (L) is disconnected.

Now let J be the smallest component of H − V (L). Then J has at most (16k − 2k)/2 = 7k vertices and

minimum degree at least 5k. By Lemma 3.1 the graph J is k-linked, as desired. This completes the proof of

Theorem 1.5. �

4 Proof of Theorem 1.6

We will need the following strengthening of Lemma 3.1, due to Egawa, Faudree, Györi, Ishigami, Schelp and

Wang [2], and obtained independently by Kawarabayashi, Kostochka and Yu [4]. For 4k ≥ n ≥ 3k the exact

numerical bound does not follow from the statement of [2, Theorem 3], but it does follow from the proof.
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Theorem 4.1 Let k ≥ 2 be an integer, and let H be a graph on n ≥ 3k vertices and minimum degree δ. If

n ≥ 4k, then let 2δ ≥ n + 2k − 3, and otherwise let 3δ ≥ n + 5k − 5. Then H is k-linked.

We are now ready to begin the proof of Theorem 1.6. Let k and G be as in the statement of the theorem.

We may assume that G is not k-linked, and hence there exists a sequence s1, s2, . . . , sk, t1, t2, . . . , tk of distinct

vertices of G with no corresponding linkage. Let X = {s1, s2, . . . , sk, t1, t2, . . . , tk}. A subgraph L of G is

called a partial linkage if X ⊆ V (L) and every component P of L satisfies the following conditions:

(a) P is a path of length at most five,

(b) either V (P ) consists of one member of X , or the ends of P are si and ti for some i = 1, 2, . . . , k, and

(c) no internal vertex of P belongs to X .

A partial linkage is called minimal if

(d) there is no partial linkage with strictly fewer components than L, and

(e) subject to (d), there is no partial linkage with fewer vertices.

By the choice of X , for every partial linkage L there exists an index i ∈ {1, 2, . . . , k} such that si and ti are

not connected by a path of L. Such indices will be called unresolved for L.

Claim 4.2 Let L be a minimal linkage, let P be a component of L, and let v ∈ V (G) − V (L). Then any

two neighbors of v in P are at distance at most two in P . In particular, v has at most three neighbors on P .

Moreover, v has at most 3k − 2 neighbors in V (L).

Proof To prove the first statement suppose for a contradiction that v has neighbors x and y on P such

that the subpath of P from x to y has at least two internal vertices. Then by deleting those internal vertices

from L and adding the path xvy we obtain a partial linkage with the same number of components but fewer

vertices than L, contrary to the minimality of L. The second statement follows immediately from the first.

To prove the third statement notice that if i is an unresolved index for L, then v is adjacent to at most one

of si, ti by the minimality of L. �

If L is a partial linkage and i ∈ {1, 2, . . . , k}, then we define Si(L) to be the set of all neighbors of si in

V (G) − V (L), and we define Ti(L) analogously.

Claim 4.3 Let L be a minimal linkage, let i be unresolved for L, and let v ∈ V (G) − V (L). Then v has at

least five neighbors in Si(L) ∪ Ti(L).

Proof Let L, i, and v be as stated. For m = 3, 4, 5, 6 let lm be the number of components of L on m

vertices, and let l2 be the number of indices j ∈ {1, 2, . . . , k} such that sj and tj are either adjacent in

L, or not connected by a path of L. Let l′3 be the number of components P of L such that P has three

vertices, all adjacent to both si and ti. Clearly l2 + l3 + · · · + l6 = k and 2l2 + 3l3 + · · · + 6l6 = |V (L)|. For

v ∈ V (G) let N(v) denote the set of neighbors of v. Let P be a component of L on m ≥ 4 vertices. Then
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|N(si) ∩ V (P )| + |N(ti) ∩ V (P )| ≤ m + 2, for otherwise si and ti have a common neighbor, say u, in the

interior of P . In that case the linkage obtained from L by deleting P and adding the path siuti has the same

number of components as L, but fewer vertices, contrary to the minimality of L. Thus

|N(si) ∩ V (L)| + |N(ti) ∩ V (L)| ≤ 4(l2 − 1) + 6l′3 + 5(l3 − l′3) + 6l4 + 7l5 + 8l6 ≤ |V (L)| + 2k + l′3 − 4.

From this it follows, since Si(L) ∩ Ti(L) = ∅ by the minimality of L,

|Si(L) ∪ Ti(L)| ≥ 5k − |N(si) ∩ V (L)| + 5k − |N(ti) ∩ V (L)|

≥ 10k − (|V (L)| + 2k + l′3 − 4) = 8k − |V (L)| − l′3 + 4.

Now let P be a component of L, and let v ∈ V (G) − V (L). Then v has at most three neighbors on P by

Claim 4.2. Moreover, if P has length two and each of its vertices is adjacent to both si and ti, then v has

at most two neighbors in P . Indeed, suppose the contrary, and let P have vertex-set {sj , u, tj}; then the

linkage obtained from L by deleting P and adding the paths siuti and sjvtj contradicts the minimality of

L. Thus v has at most two neighbors on P . This implies that for v ∈ V (G) − V (L)

|N(v) − V (L)| ≥ 5k − 3(k − l′3) − 2l′3 ≥ 2k + l′3.

Now let t be the number of neighbors of v in Si(L) ∪ Ti(L). Then

10k ≥ |Si(L) ∪ Ti(L)| + |V (L)| + |{v}| + |N(v) − V (L)| − t

≥ 8k − |V (L)| − l′3 + 4 + |V (L)| + 1 + 2k + l′3 − t = 10k + 5 − t,

and so t ≥ 5, as desired. �

If L is a partial linkage and i is unresolved for L, then we define Si(L) to be the set of all vertices

v ∈ V (G)−V (L) such that either v belongs to or has a neighbor in Si(L); and we define T i(L) analogously.

We now prove two fundamental properties of these sets.

Claim 4.4 Let L be a minimal linkage, and let i be unresolved for L. Then Si(L) and T i(L) are disjoint,

there is no edge between them, and their union is V (G) − V (L).

Proof If Si(L) and T i(L) are not disjoint, or if there is an edge between them, then there exists a path P

between si and ti of length at most five with internal vertices in Si(L) ∪ T i(L). But then the linkage L∪ P

has fewer components than L, and hence contradicts the minimality of L. Now let v ∈ V (G) − V (L). By

Claim 4.3 the vertex v has a neighbor in Si(L) or Ti(L), and so it lies in either Si(L) or T i(L), respectively. �

Claim 4.5 Let L be a minimal linkage, and let i be an unresolved index for L. If Si(L) 6= ∅, then |Si(L)| ≥
2k + 3. If T i(L) 6= ∅, then |T i(L)| ≥ 2k + 3.
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Proof From the symmetry it suffices to prove the first statement. By Claim 4.2, a vertex v in V (G)−V (L)

has at least 5k − (3k − 2) = 2k + 2 neighbors in V (G) − V (L), implying that if Si(L) is non-empty, then

G[Si(L)] has minimum degree at least 2k + 2. Thus |Si(L)| ≥ 2k + 3, as desired. �

Guided by the proof of Theorem 1.5 our next objective is to show that a minimal linkage L and an

unresolved index i for it can be chosen so that both Si(L) and T i(L) are nonempty. The proof is long, and

makes use of further enlargements of the sets Si(L) and T i(L), which we shall denote by S̃i(L) and T̃i(L),

respectively. We now introduce these sets.

Let L be a minimal linkage, let i be an unresolved index for L, and let v ∈ S i(L) ∪ T i(L) have three

consecutive neighbors u1, u2, u3, in order, on some component P of L. Let L′ be obtained from L by deleting

u2 and adding the vertex v and edges u1v and u3v. Then L′ is a minimal linkage and i is an unresolved

index for L. We say that L′ is a v-flip of L, and we say that the sequence u1, u2, u3 is the base of the flip.

Claim 4.6 Let L be a minimal linkage, let i be an unresolved index for L, let v ∈ Si(L)∪ T i(L), and let L′

be a v-flip of L with base u1, u2, u3. Then Si(L
′) − {u2} = Si(L) − {v} and T i(L

′) − {u2} = T i(L) − {v}.
Moreover, u2 ∈ Si(L

′) if and only if u2 has a neighbor in Si(L) − {v}. Similarly, u2 ∈ T i(L
′) if and only if

u2 has a neighbor in T i(L) − {v}.

Proof Let u ∈ Si(L) − {v}. To prove the first two equalities, it suffices to prove, by symmetry, that

u ∈ Si(L
′)− {u2}. Clearly u 6= u2, because u 6∈ V (L). By Claim 4.3 the vertex u has at least five neighbors

in Si(L) ∪ Ti(L), but since u ∈ Si(L), all those neighbors belong to Si(L) by Claim 4.4. It follows that u

has a neighbor in Si(L
′), and hence it belongs to Si(L

′), as desired. By Claim 4.3 and Claim 4.4 the vertex

u2 has at least five neighbors in either Si(L
′) or Ti(L

′). In the former case u2 ∈ Si(L
′) and and it has a

neighbor in Si(L) − {v}, and in the latter case neither of these statements hold by Claim 4.4. The last

assertion follows by symmetry. �

Let L, L′, i, v, u1, u2, u3 be as above, and assume now that v ∈ Si(L). If u2 has a neighbor v′ ∈ Si(L)−{v},
then we say that L′ is a proper v-flip of L. In that case u2 ∈ Si(L

′) by Claim 4.6 and v has a neighbor

in Si(L
′) − {u2} by Claim 4.3 and Claim 4.4. Thus L is a proper u2-flip of L′, and so the relationship is

symmetric. We say that L and L′ are Si-adjacent. If v ∈ T i(L) then we say that the v-flip L′ is proper if u2

has a neighbor v′ ∈ T i(L) − {v}, and say that L and L′ are T i-adjacent. We say that two partial linkages

L and L′ are i-adjacent if they are Si-adjacent or T i-adjacent. We say that L and L′ are i-related if there

exists a sequence L0, L1, . . . , Ln of linkages such that L = L0, L′ = Ln, and Lj is i-adjacent to Lj−1 for all

j = 1, 2, . . . , n. The following is an immediate consequence of Claim 4.6.

Claim 4.7 Let L be a minimal linkage, let i be an unresolved index for L, and let L′ be a linkage i-related

to L. Then |Si(L
′)| = |Si(L)| and |T i(L

′)| = |T i(L)|.

The next claim states that the order of Si- and T i-adjacencies can be reversed.
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Claim 4.8 Let L be a minimal linkage with i an unresolved index. Then if the linkage L1 is T i-adjacent to

L and L2 is Si-adjacent to L1, then there exist linkages L′

1 and L′

2 where L′

1 is Si-adjacent to L, and L′

2 is

T i-adjacent to L′

1. Moreover, L′

2 = L2.

Proof Let L, i, L1 and L2 be as in the statement. Let v1 ∈ Si(L) be the vertex such that L1 is a proper

v-flip of L and let u1, u2, u3 be the base of the flip. Similarly, let v2 be the vertex in T i(L1) such that L2 is

a proper v2-flip of L1, and let w1, w2, w3 be the base. By Claim 4.4 the vertex v2 ∈ T i(L1) = T i(L) is not

adjacent to v1 ∈ Si(L) or u2 ∈ Si(L1), where the equality and the last membership hold by Claim 4.6. Thus

we see that u2 /∈ {w1, w2, w3}. Since L2 is a proper v2-flip, the vertex w2 has at least one other neighbor in

T i(L) = T i(L1) besides the vertex v2. Thus there exists a linkage L′

1 that is a proper v2-flip of the linkage

L. Moreover, u1, u2, u3 are in some component P ′

1 of L′

1, and since Si(L
′

1) = Si(L) by Claim 4.6, we see

that there exists a linkage L′

2 that is a proper v1-flip of L′

1. By construction, L2 = L′

2, as desired. �

We are finally ready to define the promised enlargements of Si and T i. Let L0 be a minimal linkage, and

let i be an unresolved index for L0. We define S̃i(L0) :=
⋃

Si(L) and T̃i(L0) :=
⋃

T i(L), the unions taken

over all linkages L that are i-related to L0. We now show that these sets satisfy the conclusion of Claim 4.4.

Claim 4.9 Let L0 be a minimal linkage with i an unresolved index. Then S̃i(L0) and T̃i(L0) are disjoint,

and there does not exist an edge with ends u and v such that u ∈ S̃i(L0) and v ∈ T̃i(L0).

Proof Assume we have u ∈ S̃i(L0) and v ∈ T̃i(L0) with u adjacent to v. Then there exists a linkage L

i-related to L0 with u ∈ Si(L). There also exists a sequence L = L0, L1, . . . , Lm = L′ of linkages, where

v ∈ T i(L
′) and Lj is i-adjacent to Lj−1 for j = 1, 2, . . . , m. Then by Claim 4.8, we may assume that there

exists l ≤ m, where for 1 ≤ j ≤ l, Lj−1 is T i-adjacent to Lj , and for l + 1 ≤ j ≤ m, Lj−1 is Si-adjacent to

Lj . By Claim 4.6 Si(Lj) = Si(L) for every 1 ≤ j ≤ l. Importantly, u ∈ Si(Ll). Similarly, by Claim 4.6,

v ∈ T i(Ll). But then for the minimal linkage Ll, we have an edge between vertices of Si(Ll) and T i(Ll).

This contradicts Claim 4.4. To see that S̃i(L0) and T̃i(L0) are in fact disjoint, assume v ∈ S̃i(L0) ∩ T̃i(L0).

Then there exists a linkage L i-related to L0 with v ∈ Si(L). But every vertex in Si(L) has at least five

neighbors in Si(L) by Claim 4.3 and Claim 4.4, so v has a neighbor in S̃i(L0). But then there is an edge

with one end in S̃i(L0) and the other end in T̃i(L0), contrary to what we have just seen. �

Now we are finally ready to prove that we may assume that there exists a minimal linkage L and an

unresolved index i for L such that both Si(L) and T i(L) are nonempty.

Claim 4.10 There exists a minimal linkage L and an unresolved index i such that either both S i(L) and

T i(L) are nonempty, or one of S̃i(L), T̃i(L) induces a k-linked subgraph of G.
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Proof Let L0 be a minimal linkage, and let i be an unresolved index for L0. If both S̃i(L0) and T̃i(L0)

are nonempty, then by Claim 4.7 we deduce that Si(L0) and T i(L0) are both nonempty, and so the claim

holds. From the symmetry between S̃i(L0) and T̃i(L0) we may assume therefore that S̃i(L0) = ∅.
Let v ∈ T̃i(L0) be a vertex of minimum degree in G[T̃i(L0)], and let L be a linkage related to L0 such

that v ∈ T i(L). Assume first that there exists a component P of L such that si has at least five neighbors

on P and v has at least two neighbors on P . Let the ends of P be sj and tj . Since P has at least five

vertices and v has at least two neighbors in P , Claim 4.2 implies that v is adjacent to an internal vertex of

P . Let us choose such a neighbor, say u, so that it is not adjacent to sj or tj , if possible. Since v ∈ T̄i(L)

there exists a path Q of length at most two with ends v and ti and internal vertex (if it exists) in Ti(L).

If u is adjacent to si let P ′ denote the path siuvQti. If u is not adjacent to si, then P has six vertices,

and every vertex of V (P ) − {u} is adjacent to si. Let u′ be a neighbor of u in P chosen so that u′ is not

equal or adjacent to sj or tj , and let P ′ denote the path siu
′uvQti. Then in either case the length of P ′

is at most the length of P . Let L′ be obtained from L by deleting the internal vertices of P and adding

P ′; then L′ is a minimal linkage and j is an unresolved index for L′. From the symmetry between Sj(L
′)

and Tj(L
′) we may assume that Sj(L

′) = ∅, for if both are nonempty, then the claim holds. In particular,

u is adjacent to sj , for otherwise the neighbor of sj in P belongs to Sj(L
′). It follows that there exists a

vertex u′′ ∈ V (P ) − V (P ′) not adjacent to sj or tj . Then u′′ is adjacent to si, for otherwise P has length

five and u is adjacent to si; consequently P ′ has length at most four, contrary to the minimality of L. By

Claim 4.3 the vertex u′′ has at least five neighbors in Sj(L
′) ∪ Tj(L

′) = Tj(L
′). Thus u′′ has a neighbor

v′′ ∈ Tj(L
′) − V (P ) ⊆ V (G) − V (L) = T̄i(L). Let Q′′ be a path of length at most two with ends v′′ and ti

and internal vertex in Ti(L). Let L′′ be obtained from L′ by replacing P ′ by the path P ′′ := siu
′′v′′Q′′ti.

Then L′′ is a minimal linkage, and by our choice of P ′′ to include only u′′ from P , we see that both sj ’s

neighbor from P as well as tj ’s neighbor from P is not included in L′′. Thus j is an unresolved index with

both Sj(L
′′) and Tj(L

′′) nonempty, proving the claim.

Thus we may assume that if a component P of L includes at least five neighbors of si, then it includes

at most one neighbor of v. Since Si(L) = ∅, s1 has at least 5k neighbors in V (L), and hence at least k/2

components of L have at least five neighbors of s1. Those components have at most one neighbor of v.

The remaining components have at most two neighbors of v that do not belong to T̃i(L), because if v has

three neighbors on a component P of L, then those neighbors are consecutive, and by considering a v-flip

of L we deduce (using S̃i(L) = ∅ and Claim 4.4) that the middle of the three neighbors belongs to T̃i(L).

Thus v has at most k/2 + 2k/2 = 3k/2 neighbors outside T̃i(L), and hence G[T̃i(L)] has minimum degree at

least 5k − 3k/2 = 7k/2. But T̃i(L) includes no neighbor s of s1, for otherwise a linkage L′ with s ∈ T i(L
′)

contradicts Claim 4.4. Thus |T̃i(L)| ≤ 10k − 5k ≤ 5k, and hence G[T̃i(L)] is k-linked by Theorem 4.1. �

Claim 4.10 enables us to choose a suitable linkage and an unresolved index for it. A linkage L is called

optimal if
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(O1) L is minimal,

(O2) i = 1 is an unresolved index for L, and

(O3) there is no minimal linkage L′ with an unresolved index i′ for L′ such that

0 < min{|Si′(L
′)|, |T i′(L

′)|} < min{|S1(L)|, |T 1(L)|}.
By Claim 4.10 we may assume (by permuting the elements of X) that there exists an optimal linkage, say

L0, and let L0 be fixed for the rest of the paper. Then every linkage 1-related to L0 is also optimal by

Claim 4.7. From the symmetry between S1(L0) and T 1(L0) we may assume that |S1(L0)| ≤ |T 1(L0)|. Let

S̃ := S̃1(L0) and T̃ := T̃1(L0). The following is the main advantage of optimality.

Claim 4.11 If L is an optimal linkage and v ∈ S1(L), then every v-flip is proper.

Proof Let L′ be a v-flip of L with base u1, u2, u3, and suppose for a contradiction that it is not proper.

Then S1(L
′) = S1(L) − {v} by Claim 4.6 and S1(L

′) 6= ∅ by Claim 4.5, contrary to the optimality of L. �

Claim 4.12 Either |S̃| ≥ 4k or G[S̃] is k-linked.

Proof Let v be a vertex of S̃ such that v is of minimum degree in G[S̃]. Then there exists a linkage L

1-related to L0 with v ∈ S1(L). Then, by Claim 4.2, for each component P of L, v has at most three

neighbors in P , and if it has three, then they are consecutive. However, if v has three neighbors on P , say

u1, u2, u3, in order, then the v-flip of L is proper by Claim 4.11, showing that u2 ∈ S̃. Thus v has at most

2 neighbors in V (P ) − S̃ for each component P of L. Further, v has at most one neighbor among each pair

of terminals not connected by a path in L. Thus v has at most 2(k − 1) + 1 neighbors not in S̃. But then

G[S̃] has minimum degree at least 5k − (2k − 1) = 3k − 1. Thus |S̃| ≥ 3k. If |S̃| ≤ 4k − 1, then by Theorem

4.1, G[S̃] is k-linked. Thus the claim holds. �

If Claim 4.11 held for vertices v ∈ T 1(L), then we would have an analogue of Claim 4.12 for T̃ , and we

would be done. Unfortunately, that is not the case, but, luckily, the counterexamples to the analogue of

Claim 4.11 can be managed. Hence the following definition. Let L be an optimal linkage. We say that a

vertex u ∈ V (L) is L-treacherous if u is an internal vertex of a component P of L, u has a unique neighbor

v ∈ T 1(L), and v is adjacent to both neighbors of u in P . Treacherous vertices are annoying in the sense

that if v is as above, then the v-flip of L is not proper. Our intention is to pick two vertices in T 1(L) with

the most treacherous neighbors, and remove them from T 1(L). Actually, we need to be more delicate. We

need to not only remove them from T 1(L), but we also need to redefine T̃ as if those vertices did not exist.

Let us be more precise.

Let L be a linkage, let v ∈ S1(L) ∪ T 1(L), let L′ be a proper v-flip of L with base u1, u2, u3, and

let V ⊆ T 1(L) be a set. If v 6∈ V , then we say that L and L′ are adjacent modulo V . In that case

u2 ∈ S1(L
′) ∪ T 1(L

′) − V and V ⊆ T 1(L
′) by Claim 4.6, and so the definition is symmetric in L and L′.
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We say that two linkages L and L′ are related modulo V if there exists a sequence L0, L1, . . . , Ln of linkages

such that L = L0, L′ = Ln, and Li is adjacent to Li−1 modulo V for all i = 1, 2, . . . , n. We shall abbreviate

“1-adjacent” and “1-related” to “adjacent” and ”related”, respectively. Thus L and L′ are related if and

only if they are related modulo ∅.
Let an optimal linkage L1 related to L0 and a vertex v1 ∈ T 1(L1) be chosen to maximize the number

of L1-treacherous neighbors of v1. Let an optimal linkage L2 related to L1 modulo {v1} and a vertex

v2 ∈ T 1(L2) − {v1} be chosen to maximize the number of L2-treacherous neighbors of v2. Let R̃ :=
⋃

T 1(L) − {v1, v2}, the union taken over all linkages L related to L2 modulo {v1, v2}. Then clearly R̃ ⊆ T̃

and v1, v2 ∈ T 1(L) for every linkage L related to L2 modulo {v1, v2}.

Claim 4.13 Let L be a linkage related to L2 modulo {v1, v2}, let v ∈ R̃ − V (L), and let ξ be the number of

L-treacherous neighbors of v that do not belong to R̃. Then v has at least 3k − ξ − 1 neighbors in R̃.

Proof Let P be a component of L. We claim that v has at most two neighbors in V (P ) − R̃ that are not

L-treacherous. If v has three neighbors in V (P )− R̃, then by Claim 4.2 they are consequtive, say u1, u2, u3,

in order. Since u2 6∈ R̃ we deduce that the v-flip of L is not proper, and hence u2 is L-treacherous. There

is at least one index j ∈ {1, 2, . . . , k} such that sj , tj are not joined by a path of L, and the minimality

of L implies that v is adjacent to at most one of sj , tj . Thus v has at most 2(k − 1) + ξ + 1 neighbors in

V (L) − R̃. Hence v has at least 5k − (2k − 1 + ξ) = 3k + 1 − ξ neighbors in the complement of V (L) − R̃.

Those neighbors belong to R̃, except for v1 and v2. Thus the claim holds. �

Claim 4.14 |R̃| ≥ 3k

Proof Each component P of L2 includes at most two L2-treacherous vertices, because any two L2-

treacherous vertices on P are at distance at least two on P by the definition of an L2-treacherous vertex

and Claim 4.2. By Claim 4.5 and the optimality of L2 we have |T 1(L2)| ≥ 2k + 3, and hence there exists

a vertex v ∈ T 1(L2) − {v1, v2} ⊆ R̃ not adjacent to any L2-treacherous vertex. By Claim 4.13 the vertex v

has at least 3k − 1 neighbors in R̃, and the claim follows. �

Let v3 be a vertex of minimum degree of the graph G[R̃], and let L3 be a linkage related to L2 modulo

{v1, v2} such that v3 ∈ T 1(L3). For i = 1, 2, 3 let ξi denote the number of Li-treacherous neighbors of vi

that do not belong to R̃.

Claim 4.15 Let L be an optimal linkage, let v ∈ T 1(L), and let u be an L-treacherous neighbor of v. Let

w ∈ S1(L) ∪ T 1(L) − {v}. Then the base of a w-flip of L does not include u.

14



Proof Suppose for a contradiction that the base, say w1, w2, w3, of a w-flip L′ includes u. Since u is

L-treacherous, v is adjacent to u and both neighbors of u in L. It follows that w2 is adjacent to v, that u

is adjacent to w, and that w ∈ S1(L). But then the w-flip is proper by Claim 4.11, and hence w2 ∈ S1(L
′)

and v ∈ T 1(L
′) by Claim 4.6. But w2 is adjacent to v, contrary to Claim 4.4 applied to the linkage L′. �

Claim 4.16 Let L be an optimal linkage, let v ∈ T 1(L), let u be an L-treacherous neighbor of v, and let L′

be an optimal linkage related to L modulo {v}. Then v ∈ T 1(L
′) and u is L′-treacherous.

Proof We have v ∈ T 1(L
′) by Claim 4.6. Let u1, u3 be the two neighbors of u in L. It suffices to prove the

claim assuming that L′ is adjacent to L modulo {v}. From Claim 4.15 we deduce that u1uu3 is a subpath of

L′. Suppose for a contradiction that u is not L′-treacherous. Then u is adjacent to a vertex v′ ∈ T 1(L
′)−{v}.

Let L′′ be the v-flip of L′ with base u1, u, u3. Since u is adjacent to v′, this v-flip is proper, and hence L′′

is optimal and u, v′ ∈ T 1(L
′′) by Claim 4.6. The vertex u is adjacent to at least five vertices in T1(L

′′) by

Claim 4.3 and Claim 4.4, and hence it has at least three neighbors in T1(L), contrary to the fact that it is

L-treacherous. �

Claim 4.17 Let i ∈ {1, 2, 3}, and let u be an Li-treacherous neighbor of vi. Then u is not adjacent to vj

for j ∈ {i + 1, . . . , 3} and u 6∈ S̃.

Proof Since Lj is related to Li modulo {vi}, Claim 4.16 implies that vi ∈ T 1(Lj) and u is Lj-treacherous.

Thus u is not adjacent to vj . To prove that u 6∈ S̃ suppose the contrary. Thus there exists a sequence of

linkages Li = R0, R1, . . . , Rt such that Ri is adjacent to Ri−1 for i = 1, 2, . . . , t and u ∈ S1(Rt). By Claim 4.8

we may assume that there is an integer l ∈ {1, 2, . . . , t} such that Ri is S1-adjacent to Ri−1 for i = 1, 2, . . . , l

and that Ri is T 1-adjacent to Ri−1 for i = l + 1, . . . , t. Then by Claim 4.6, vi ∈ T 1(Li) = T 1(Rl) and

u ∈ S1(Rt) = S1(Rl). The edge uvi violates Claim 4.4, a contradiction. �

Claim 4.18 For i = 1, 2 no Li-treacherous neighbor of vi belongs to R̃.

Proof Let u be an Li-treacherous neighbor of vi, and suppose for a contradiction that it belongs to R̃.

Thus there exists a linkage L related to Li modulo {v1, v2} such that u ∈ T 1(L). By Claim 4.16 the vertex

u is L-treacherous, a contradiction. �

Claim 4.19 ξ1 ≥ ξ2 ≥ ξ3
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Proof Let i ∈ {2, 3}. Since Li is related to Li−1 modulo {v1, . . . , vi−1} and Li−1 is related to Li−2 modulo

{v1, . . . , vi−2}, we deduce that Li is related to Li−2 modulo {v1, . . . , vi−2}. Thus the choice of vi−1 implies

that vi−1 has at least ξi neighbors that are Li−1-treacherous; but no treacherous neighbor of vi−1 belongs

to R̃ by Claim 4.18, and hence ξi−1 ≥ ξi, as desired. �

Claim 4.20 If |R̃| < 4k, then either |R̃| ≥ 4k − 3ξ3 + 3 or the graph G[R̃] is k-linked.

Proof The graph G[R̃] has minimum degree at least 3k − ξ3 − 1 by Claim 4.13, because v3 is a vertex of

minimum degree in that graph. From Claim 4.14 and Theorem 4.1 we deduce that if the first conclusion of

the claim does not hold, then the second does, as desired. �

Now we are ready to complete the proof of Theorem 1.6. Recall that X = {s1, s2, . . . , sk, t1, t2, . . . , tk}.
By Claim 4.12 we may assume that |S̃| ≥ 4k, for otherwise the theorem holds. But R̃ is disjoint from

S̃ ∪ X ∪ {v1, v2} by Claim 4.9, and hence |R̃| ≤ 10k − 4k − 2k − 2 < 4k. Similarly, by Claim 4.20 we may

assume that |R̃| ≥ 4k − 3ξ3 + 3. For i = 1, 2, 3 let Zi denote the set of Li-treacherous neighbors of vi not in

R̃. Thus |Zi| = ξi. Since the sets S̃, R̃, Z1, Z2, Z3 and X are pairwise disjoint by Claim 4.9 and Claim 4.17,

we have, using Claim 4.19,

10k ≥ |S̃| + |R̃| + ξ1 + ξ2 + ξ3 + 2k ≥ 4k + 4k − 3ξ3 + 3 + ξ1 + ξ2 + ξ3 + 2k ≥ 10k + 3,

a contradiction. This proves Theorem 1.6.

5 A Lower Bound

Construct a graph G as follows. Let V (G) be the disjoint union of V (P1), V (P2), V (P3), V (P4), V (H), and

{s3, . . . , sk, t3, . . . , tk}, where P1, . . . , P4 are four paths on m vertices each, with m ≥ 2, and H is a complete

graph on k − 1 vertices. Let the vertices of Pi be labeled vi
1, v

i
2, . . . , v

i
m, and let s1 = v1

1 , s2 = v2
1 , t1 = v3

1 ,

t2 = v4
1 . In the graph G, for 1 ≤ j ≤ m − 1, let vi

j be adjacent to vi+1

j and vi+1

j+1, and let vi
m be adjacent

to vi+1
m as i ranges from 1 to 4 and the superscript arithmetic is taken modulo 4. Let vi

m be adjacent to

every vertex of H for i = 1, . . . , 4. For every i ≥ 3, let si and ti be adjacent to every other vertex in the

graph except each other. Then G does not have disjoint paths Q1, Q2, . . . , Qk, where Qi has ends si and

ti, and so it is not k-linked. On the other hand, G is 2k-connected and has n = 4m + 3k − 5 vertices and

(2k − 1)n− (3k + 1)k/2 edges. This is the best example we are aware of, suggesting the following question.

Conjecture 5.1 For every integer k ≥ 1, every 2k-connected graph on n vertices and at least (2k − 1)n −
(3k + 1)k/2 + 1 edges is k-linked.
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The conjecture clearly holds for k = 1, and it holds for k = 2 by the characterization of 2-linked graphs

in [9, 10, 13]. Recently, we have been able to show [11] that the conjecture also holds for k = 3, but it seems

to be open for all k ≥ 4.

It is likely that Theorem 1.6 can be improved. In light of the role it played in the proof of Theorem 1.1

we propose the following problem.

Problem 5.2 Determine the infimum α∗ of all real numbers α > 0 such that for all sufficiently large

integers k every graph on at most 2αk vertices and minimum degree at least αk has a k-linked subgraph.

By Theorem 1.6 we have α∗ ≤ 5, and the graph K3k−1 shows that α∗ ≥ 3. Any improvement in the

upper bound would give a corresponding improvement in Theorem 1.1.
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