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ABSTRACT
At the core of the seminal Graph Minor Theory of Robert-
son and Seymour is a powerful theorem which describes the
structure of graphs excluding a fixed minor. This result is
used to prove Wagner’s conjecture and provide a polyno-
mial time algorithm for the disjoint paths problem when
the number of the terminals is fixed (i.e, the Graph Minor
Algorithm). However, both results require the full power of
the Graph Minor Theory, i.e, the structure theorem.

In this paper, we show that this is not true in the latter
case. Namely, we provide a new and much simpler proof
of the correctness of the Graph Minor Algorithm. Specifi-
cally, we prove the“Unique Linkage Theorem”without using
Graph Minors structure theorem. The new argument, in ad-
dition to being simpler, is much shorter, cutting the proof by
at least 200 pages. We also give a new full proof of correct-
ness of an algorithm for the well-known edge-disjoint paths
problem when the number of the terminals is fixed, which is
at most 25 pages long.
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1. INTRODUCTION

1.1 Graph Minors Algorithm
One of the deepest and most important bodies of work

in graph theory is the Graph Minor Theory developed by
Robertson and Seymour. At the heart of this theory is a
theorem [33, Theorem 1.3] describing the structure of all
graphs excluding a fixed graph as a minor. At a high level,
the theorem says that every such graph can be decomposed
into a collection of graphs each of which can “almost” be
embedded into a bounded-genus surface, combined in a tree
structure. Much of the Graph Minors series of articles is
devoted to the proof of this structure theorem.

The main algorithmic result of the Graph Minor Theory
is a polynomial-time algorithm for testing the existence of a
fixed minor [31] which, combined with the proof of Wagner’s
Conjecture, implies the existence of a polynomial-time algo-
rithm for deciding any minor-closed graph property. The ex-
istence of such a polynomial time algorithm has in turn been
used to show the existence of polynomial-time algorithms for
several graph problems, some of which were not previously
known to be decidable [10]. It also leads to the framework
of parameterized complexity developed by Downey and Fel-
lows [8], which is perhaps one of the most active areas in the
study of algorithms.

This algorithm is one of the most important polynomial
time algorithms in theoretical computer science. The algo-
rithm is relatively easy to describe. However, the proof of
correctness of the algorithm (that is, the proof that the al-
gorithm does in fact correctly determine the presence of a
fixed graph as a minor) uses the full power of the Graph
Minor Theory. More precisely, we can immediately reduce
the problem to the case when the input graph has no large
clique minor. However, the analysis of this case requires
the development of the structure theorem. Our goal is to
provide a new proof for the correctness of this algorithm
that avoids many of the difficulties and technicalities in the
original proof of Robertson and Seymour, and, specifically,
avoids the use of the structure theorem.

The main purpose of this paper is to show the correctness
of the Graph Minor Algorithm without using the structure



theorem. This leads to a dramatically shorter and more
simple proof of the correctness for the algorithm.

Much of the proof of the correctness of Graph Minor Al-
gorithm in fact focuses on developing an algorithm for the
disjoint paths problem. It will be more convenient for us,
as well, to focus on the disjoint paths problem. We discuss
this further in the next subsection.

1.2 The Graph Minors Algorithm vs. the k-
disjoint paths problem

In the edge- (vertex-) disjoint paths problem, we are given
a graph G and a set of k pairs of vertices, called termi-
nals, in G, and we have to decide whether or not G has k
edge- (vertex-) disjoint paths connecting given pairs of ter-
minals. The problem of testing whether a given graph con-
tains a fixed graph H as a minor can be trivially reduced to
a bounded number of vertex disjoint path problems. Thus, a
polynomial time algorithm for the k disjoint paths problem
yields a polynomial time algorithm for minor testing, albeit
with a worse runtime than that of the Graph Minors Algo-
rithm. Moreover, the arguments for minor testing and the
disjoint paths problem are analogous, although somewhat
simpler to explain in the case of the disjoint paths problem.
Finally, the k disjoint paths problem is also a classic prob-
lem the theory of algorithms, widely studied in its own right.
For all these reasons, for the remainder of the article we will
restrict our attention to the k disjoint paths problem. We
will return only briefly to Graph Minors Algorithm to show
how our results yield a short argument for the correctness
of the Graph Minors Algorithm.

1.3 Background on the disjoint paths problem
The k disjoint paths problem, both in it’s vertex and edge

disjoint versions, is a central problem in algorithmic graph
theory and combinatorial optimization. See the surveys [11,
36]. It has attracted attention in the contexts of transporta-
tion networks, VLSI layout and virtual circuit routing in
high-speed networks or on the internet. A basic technical
problem here is to interconnect certain prescribed “chan-
nels” on a chip such that wires belonging to different pins
do not touch each other. In this simplest form, the problem
mathematically amounts to finding disjoint trees in a graph
or disjoint paths in a graph, each connecting a given set of
vertices.

We now quickly look at previous results on the k disjoint
paths problem. If k is as a part of the input of the problem,
then this is one of Karp’s original NP-complete problems
[13], and it remains NP-complete even if G is restricted to
be planar (Lynch [22]). The seminal work of Robertson and
Seymour says that there exists a polynomial time algorithm
(the actual runtime of the algorithm is O(n3). The time
complexity is improved to O(n2) in [18]) for the disjoint
paths problem when the number of terminals, k, is fixed. In
the next subsection, we give an outline of this algorithm.

1.4 Robertson-Seymour Algorithm
In this subsection, we sketch Robertson and Seymour’s

algorithm for the k disjoint paths problem (see also [27]).
At a high level, Robertson-Seymour’s algorithm is based on
the following two cases: either a given graph G has bounded
tree-width (bounded by some function of k) or else it has
large tree-width.
Case 1. Tree-width of G is bounded.

In this case, one can apply a dynamic programming argu-
ment to a tree-decomposition of bounded tree-width, see [1,
2, 31].
Case 2. Tree-width of G is large.

This second case again breaks into two cases depending
on whether G has a large clique minor or not.
Case 2.1. G has a large clique minor.

If there exist disjoint paths from the terminals to this
clique minor, then we can use this clique minor to link up
the terminals in any desired way. Otherwise, there is a small
cut set such that the large clique minor is cut off from the
terminals by this cut set. In this case, we can prove that
there is a vertex v in the clique minor which is irrelevant,
i.e., the k disjoint paths problem is feasible in G if and only
if it is also feasible in G− v. We then recursively apply the
algorithm to G− v.
Case 2.2. G does not have a huge clique minor.

In this case, one can prove that, after deleting a bounded
number of vertices, there is a huge subgraph which is es-
sentially planar. Moreover, this huge planar subgraph itself
has very large tree width. This makes it possible to prove
that the middle vertex v of this wall is irrelevant. Again, we
recursively apply the algorithm to G− v.

The analysis of Cases 1 and 2.1 is relatively easy. It is the
analysis of Case 2.2 that gives rise to the majority of the
work. The analysis of this case requires the whole series of
graph minor papers and the structure theorem of [33].

1.5 Our main contributions – Unique linkage
theorem

The analysis of Case 2 in the previous subsection can be
reduced to the Unique Linkage Theorem without excessive
difficulty. It is then the proof of the Unique Linkage Theo-
rem that requires much of the graph minors machinery. In
fact, in the corresponding argument for the Graph Minors
Algorithm, this is the only place in the proof of correctness
which requires the full structure theorem. Before stating the
theorem, we give some notation.

A linkage is a graph where every component is a path
(possibly trivial). The order of the linkage is the number of
components. In slightly sloppy notation, we will use P ∈ P
to refer to a component P of the linkage P. Two linkages
P and P ′ are equivalent if they have the same order and for
every component P of P, there exists a component P ′ of
P ′ such that P and P ′ have the same endpoints. We say a
linkage P in a graph G is unique if for all linkages P ′ in G
equivalent to P, we have that V (P ′) = V (P).

We are now ready to state the theorem, which is the main
result of Graph Minors XXI [34].

Theorem 1 (The Unique Linkage Theorem [34]). For
all k ≥ 1, there exists a value w(k) such that the following
holds. Let P be a linkage of order k in a graph G with
V (G) = V (P). If P is unique, then the tree-width of G is at
most w(k).

The current proof given by Robertson and Seymour [34]
needs the full power of the graph minor structure theorem,
but they predicted that there exists a simpler proof avoiding
the use of the Graph Minor structure theorem. Our main
contribution is to confirm that they are right– we provide
such a short proof. Our proof less is than 25 pages, and gives
rise to an explicit bound for the tree-width w(k), while the
original algorithm does not.



We now mention several consequences of our new shorter
proof. First, we clarify how the unique linkage theorem im-
plies that the vertex v in Case 2 is irrelevant. This was easy
to prove for Case 2.1. The formal argument is given in Sec-
tions 5 and 6 in [31]. We are left with Case 2.2. The main
result in [35] says that the existence of the irrelevant vertex
in Case 2.2 can be reduced to the unique linkage problem.
Let us observe that the arguments in [35] does NOT use the
graph minor structure theorem. It is totally self-contained.
Our proof of the Unique Linkage Theorem currently uses
several tools from [29] for graphs embedded on surfaces of
bounded genus (again, these tools do not depend on the
structure theorem). Thus together with [35] and [29], our
proof of the Unique Linkage Theorem provides a proof of the
correctness of the k-disjoint paths algorithm which avoids
the use of the graph minor structure theorem. At the mo-
ment, we believe that we also have a much shorter proof of
the main result in [35] and the aspects of [29] which we use.
This would lead to a correspondingly short, self-contained
proof of the k-vertex disjoint paths algorithm.

Second, when we consider instead the k-edge disjoint paths
problem, we are able to avoid the need for the work of [35].
This allows us to give a self-contained argument for the
proof of correctness of the k-edge disjoint paths problem.
We present the argument in the next subsection.

Finally, one of the original applications of the Unique
Linkage Theorem is to verify the “intertwining conjecture”
of Lovász [21] and Milgram and Unger [24]. The conjecture
states that for every two graphs G1 and G2, there is a finite
list H1, . . . , Hn of graphs, such that G topologically contains
both G1 and G2 if and only if it topologically contains one of
H1, . . . , Hn (G topologically contains H if some subgraph of
G is isomorphic to a subdivision of H). A proof of this con-
jecture follows from the unique linkage theorem, as proved
in [34]. But our proof, together with the proof in Section
11 of [34] gives rise to a short self-contained proof of this
conjecture, which is, we believe, of independent interest. As
pointed out in [34], our proof yields an algorithm that given
two graphs G1 and G2, computes H1, . . . , Hn above.

We conclude with a few words on possible applications of
our new proof. Kernelization is a technique for creating algo-
rithms for fixed-parameter tractable problems. This concept
has attracted recent interest within the framework of param-
eterized complexity. See, for example, [3]. The approach is
based on the observation that a problem is fixed-parameter
tractable if and only if it is kernelizable and decidable. The
idea of kernelization is to reduce the size of the input X
to a function of k in polynomial time. When the input is
bounded by k, we can use any exponential time algorithm,
for example brute-force search, to find a solution of the prob-
lem. A basic technique in kernelization arguments is to find
an“irrelevant”vertex for the problem, and reduce the size of
the input. This is exactly what we do for the disjoint paths
problem, hence we hope that our new short proof might yield
new technical methods in this line of inquiry.

Algorithms for H-minor-free graphs for a fixed graph H
have been studied extensively; see e.g. [4, 5, 6, 12]. In par-
ticular, it is generally believed that algorithms for planar
graphs can often be generalized to H-minor-free graphs for
any fixed H. Results from graph minors, and the unique
linkage theorem in particular, are essential for these argu-
ments. For example, the topological embedding algorithms
given in [14, 15, 16, 17, 23] partially depend on the unique

linkage theorem. Also, linear time algorithms for the dis-
joint paths problem when an input graph is planar [26] or
an input graph is bounded genus [9, 20] heavily depend on
the unique linkage theorem. Thus we anticipate that our
new proof will have further applications along these lines.

1.6 The edge-disjoint paths problem
Using our new proof of Unique Linkage Theorem, we give

a short proof of correctness for the k-edge disjoint paths prob-
lem.

Input: A graph G with n vertices and m edges, k pairs of
vertices (si, ti), called terminals, i = 1, . . . , k, in G.

Output : Edge-disjoint paths P1, P2, . . . , Pk in G such that
Pi joins si and ti for i = 1, 2, . . . , k.

We assume that k is fixed. We will need the following
definitions. For a vertex set X in a graph G = (V, E), let
δ(X) be the set of edges between X and V \X. For a graph
G = (V, E), its line graph L(G) is the graph whose vertex
set is E such that two vertices of L(G) are adjacent if and
only if their corresponding edges share a common endpoint
in G. To simplify the description, when we consider the line
graph of a graph with terminals, we assume that exactly one
edge is incident to each terminal by adding a new terminal
and a single edge to G. Let s̃1, . . . , s̃k, t̃1, . . . , t̃k be the edges
incident with the terminals s1, . . . , sk, t1, . . . , tk in G, respec-
tively. Then, one can see that the edge-disjoint paths prob-
lem in G with respect to the terminals s1, . . . , sk, t1, . . . , tk

is equivalent to the vertex-disjoint paths problem in L(G)
with respect to the terminals s̃1, . . . , s̃k, t̃1, . . . , t̃k.

As proved in [19], an instance of the k edge-disjoint paths
problem can be reduced to an instance satisfying the follow-
ing conditions:

(R1) All vertices have degree at most 2k − 1.

(R2) G has no vertex set X such that |X| ≥ 2, X contains
no terminals, and |δ(X)| ≤ 3.

(R3) G and L(G) has no clique minor of size 3k.

We call these operations simple reductions. Although it
is easy to find a vertex of high degree (as in (R1)) and a
≤ 3-edge-cut in a given graph (as in (R2)), it is not easy to
find a large clique minor.

The following theorem, which is the main result in [19],
characterizes the instances of the edge-disjoint paths prob-
lem, and shows a way to find a large clique minor.

Theorem 2. For any instance of the k-edge-disjoint paths
problem and for any integer h ≥ 2, there exists an integer
f(k, h) such that one of the following holds:

(A) The instance violates at least one of (R1), (R2), and
(R3). That is, one of the simple reductions can be
applied to the instance.

(B) The input graph has tree-width at most f(k, h).

(C) The input graph contains a wall W of size h with the
outer face boundary C with the following properties:

(a) G − C consists of two parts X and Y such that
X ∪ C contains the whole wall W .

(b) Every vertex of X ∪ C has degree at most three.

(c) X ∪ C does not contain any terminal.



(d) X ∪C can be embedded in a plane with the outer
face boundary C.

We can find one of (A), (B) and (C) in O(m) time. Fur-
thermore, if the instance satisfies (R1) and (R2), but does
not satisfy (B) and (C), then we can find a clique minor of
size 3k in G or L(G) in O(m) time (For definitions of the
tree-width and the wall, we refer the reader to the appendix).

Having Theorem 2, we are ready to describe our O(mn)
time algorithm for the edge disjoint path problem more pre-
cisely. The algorithm below has appeared in [19], but for
the completeness, we include the whole algorithm. We set
h = 4w(k)+4, where w(k) is the value given by Theorem 1.

Algorithm for the edge-disjoint paths problem
Step 1. We first apply Theorem 2. If (A) in Theorem 2
occurs, we apply a simple reduction as in (A) and recurse on
a smaller graph. If (B) occurs, we apply the standard dy-
namic programming argument [1, 2]. Thus we may assume
outcome (C).

Step 2. If (C) happens, it is possible to throw away a
vertex v (irrelevant vertex) in the deep inside the wall W if
h is large enough (i.e, the vertex in the middle brick of W ).

We then recursively apply our algorithm to G − v. Since
Theorem 2 can be done in O(m) time, the whole algorithm
runs in O(mn) time (this improves the time complexity of
[31] that gives an O(m3) algorithm for the edge-disjoint
paths problem).
Correctness of the Algorithm

For the correctness of the algorithm, it suffices to prove
that v is an irrelevant vertex in Step 2. We now give a proof,
which is very similar to that given in [35], Theorem (3.1).
We shall essentially reduce the correctness of the algorithm
to the unique linkage theorem.

It is easy to see that if G does not have the desired k
edge-disjoint paths, then G − v does not have them either.
Thus it remains to show that if the desired k edge-disjoint
paths exist in G, then G − v has them as well. Let G′ be
the line graph L(G). We begin with the following:

(1) The line graph of X ∪ C described in (C) of Theorem 2
is still a plane graph.

This is because each vertex in X ∪ C has degree at most
three in X ∪ C. Hereafter, let H be the plane subgraph of
G′ induced by X ∪ C.

Let C1, . . . , Cs be disjoint cycles in the plane graph H.
Let Di be the disc in the plane with boundary Ci. We
say that they are concentric if we have the property that
Ds ⊆ · · · ⊆ D1. Let C1, . . . , Ch/2 be concentric cycles in H
and P = {P1, . . . , Pk} be a linkage in G′. Note that since
X ∪ C contains a wall of height h, it follows that H also
contains these h/2 concentric cycles.

We assume that the vertices of G′ that correspond to the
edges incident with v in Step 2 are contained in Dh/2−Ch/2

(again such a choice is possible by the above remark). Let
M = C1 ∪ · · · ∪ Ch. We only need to prove is the following:

(2) Suppose M exists in G′. Then the desired k vertex-
disjoint paths in G′ exist such that the vertices of G′ that
correspond to the edges incident with v in G are not in any
of the paths.

This will clearly suffice to complete the proof of the the-
orem. We prove (2) by induction on the number of vertices

of G′. Note that we do not preserve line graph in the in-
ductive step, i.e, when we make a smaller graph and apply
induction, it may not be the line graph of some graph. We
only require that our graph is contained in H as a subgraph,
i.e, h/2 concentric cycles in a subgraph of the plane graph
H.

Proceeding, if there is a vertex u that is not in M ∪ P,
then we can delete u from G′, and apply induction to G′−u.
Similarly, consider the case when there exists an edge e that
is in Ci, i ≤ t/2, but one of the endpoints is not used in P.
We can contract e and still preserves the existence of con-
centric cycles C1, . . . , Ci/e, . . . , Ch/2 (and a plane subgraph
H/e), unless |Ci| = 3. But if |Ci| = 3, then we can clearly
reroute the paths in P so that they do not touch any vertex
inside the disk Di, except for the vertices in Ci, and so find a
linkage avoiding the edges incident v. Thus, after contract-
ing e, we can apply induction to the resulting graph. We
conclude that V (M ∪ P) = V (G′).

Let w(k) be the value given by Theorem 3. By a dive we
mean a subpath of a path in P contained in the disc D1

with both ends in C1 and at least one vertex in Cl for some
l ≥ w(k) + 1 We now claim the following:

(3) There are at most w(k) dives.

If there is another linkage P ′ equivalent to P such that
|V (P ′)| < |V (P)|, then there is a vertex u of G′ that is not
in P ′. If u is not in M , then we delete u from G′, and apply
induction to G′ − u. Similarly, if u is in M , then there is an
edge e with one endpoint u in M . In this case, we contract
e as above. After contracting e, we can apply the inductive
hypothesis to the resulting graph. Thus we may assume that
P is a unique linkage.

We now use the unique linkage theorem to prove (3). Sup-
pose for a contradiction that the linkage P contains at least
w(k) + 1 dives. Then since H is a plane subgraph of G′ and
M is contained in H, there are dives P1, P2, . . . , Pw(k)+1 that
are pairwise disjoint and all intersect Ci for i = 1, . . . , w(k)+
1. This implies that P1, P2, . . . , Pw(k)+1 all intersect each of
C1, C2, . . . , Cw(k+1), and hence C1∪P1, C2∪P2, . . . , Cw(k)+1∪
Pw(k)+1 is a “bramble” in G′ of “order” at least w(k)+1 (for
the definition of the bramble, we refer the reader to [25]).
By [25] the graph G′ has tree-width at least w(k) + 1, a
contradiction to the unique linkage theorem. This proves
(3).

We are now ready to finish the proof. We claim that no
dive intersects C2w(k)+1. The depth of a dive P is the max-
imum index i such that P ∩ Ci 6= ∅. To see this, observe
that if P is a dive of depth i, then if Ci−1 does not intersect
any path of P, we can reroute the component of P contain-
ing P to avoid the vertex P ∩ Ci. Thus, some component
(other than the one containing P ) of P intersects Ci−1. By
planarity, it follows that there exists a dive of depth i − 1.
Thus, if there exists a dive of depth 2w(k) + 2, we see that
there exist w(k) + 1 dives, a contradiction to (3).

If we assume that h ≥ 4w(k)+4, we see that no component
of P can intersect Ct/2. This completes the proof of (2), and
the theorem.

In the next section, we give an outline of our proof of
the unique linkage theorem. To help the reader see how the
proof goes, we shall give a short proof of the case k = 2.



2. OUTLINE OF THE PROOF OF THE
UNIQUE LINKAGE THEOREM

In this section, we give an overview for our proof of the
unique linkage theorem1. The proof proceeds by analyz-
ing what we will call traversing linkages. Before we give
the exact definition, we first give some intuition of what a
traversing linkage is. Let P be a k-linkage. A linkage Q
traverses P if when we follow the linkage Q from beginning
to end, we intersect the linkage P repeatedly in a regular,
uniform way. Moreover, these intersections are independent
of each other in a sense. That is, the first intersections of P
and Q are contained in a small subpath of P, and Q never
returns to that subpath. We reduce the proof of the Unique
Linkage Theorem to showing the following theorem.

Theorem 3. There exists functions l(k) and w(k) such that
the following holds. Let P be a linkage of order k, and let
Q be a linkage traversing P of order w(k) and length l(k).
Then P is not unique in P ∪Q.

Traversing linkages have two nice properties we use re-
peatedly in the proof of Theorem 3. First, the graph consists
of the union of just two linkages, and so is dramatically sim-
pler than the general graphs typically analyzed in the theory
of graph minors. Second, there is an element of symmetry
allowing us to move back and forth between analyzing first
the linkage P, and then the linkage Q, and back again.

We now give the exact definition of a traversing linkage.
We recall that a ladder of length t is a graph consisting of
two paths of length P1, P2 with the vertices of Pi equal to
vi
1, . . . , v

i
t for i = 1, 2 as well as edges of the form vj1vj2 for

1 ≤ j ≤ t.

Definition 4. Let P be a linkage. The linkage Q traverses
P (or, equivalently, is a traversing linkage) if there exist
disjoint subpaths B1, . . . , Bl in P such that the following
hold:

a. The linkageQ intersects P only in the subpaths B1, . . . ,
Bl, i.e. V (Q) ∩ V (P) ⊆ Sl

1 V (Bi).

b. For all Q ∈ Q and 1 ≤ i ≤ l, Q ∩ Bi is a (possibly
trivial) subpath of Bi.

c. For every element Q ∈ Q, we may traverse the path
Q from one end to the other, we encounter the paths
B1, B2, . . . , Bl in that order.

d. If we look at the Z the set of subpaths of Q with one
end in Bi and another end in Bi+1 for 1 ≤ i ≤ l − 1,
then Z ∪ Bi ∪ Bi+1 forms a subdivided ladder after
possibly deleting vertices of degree one.

The paths B1, B2, . . . , Bl are called the basis subpaths of the
traversing linkage Q. The value l is the length of the travers-
ing linkage Q. Again, the order of the traversing linkage is
the number of components. Fix labels sP , tP to the end-
points of every component P ∈ P. If we consider the ladder
in d, there are two distinct possibilities. Let P and P ′ be
the components of P containing Bi and Bi+1, respectively.
We say that Q twists between Bi and Bi+1 if for all j, the
jth component of Z we intersect traveling P from sP to tP is
the (w− j + 1)th when traversing P ′ from sP ′ to tP ′ (where
w is the order of Q).

Figure 1: The dashed linkage is a traversing linkage
of order three and length five traversing the solid
linkage. The first and fourth basis subpaths are in-
dicated with boxes. The dashed linkage twists be-
tween the first and second basis subpaths.

Observe, that if we swap the labels sP and tP on a com-
ponent P ∈ P, then if we consider some basis subpath Bi

contained in P , if Q twists between Bi and Bi+1 before the
swap, then Q will not twist between the two basis subpaths
after the swap (and vice versa: if Q does not twist before
the swap, then it will twist after the swap).

We briefly describe now how we reduce the Unique Link-
age Theorem to the proof of Theorem 3. The analysis is
somewhat similar to the proof of the edge disjoint version of
the disjoint paths problem. We proceed in two basic steps.
First, we pick a prospective counter-example to the Unique
Linkage Theorem: a linkage P contained in a graph G with
V (G) = V (P) such that G does not contain an equivalent
linkage on fewer vertices. Moreover, we make the assump-
tion that the tree width of the graph is huge. We first show
that such a counterexample G cannot contain a large clique
minor, and then using what we call the Weak Structure The-
orem, we show that there exists a large planar subgraph H
containing a huge wall such that the linkage P interacts with
H planarly. In other words, even if there exist vertices with
neighbors in the center of H, the components of P intersect
H in a way that always respects the planar embedding of H.
We then, as in the proof of the edge disjoint version, take
a large number of concentric cycles such that they intersect
the linkage P in a clean way. The concentric cycles as they
travel through the linkage P will then provide the traversing
linkage Q.

The proof of Theorem 3 will be the main work in our
proof of the Unique Linkage Theorem. The remainder of
this section will be devoted to a brief outline of the proof of
Theorem 3.

The proof of Theorem 3 proceeds by finding many sub-
linkages in Q forming what we will call Q-bumps. Let P
be a linkage and Q be a traversing linkage of order w. Let
B1, . . . , Bl be the basis subpaths. A Q-bump is a sublinkage
Q of Q of order w such that there exist indices i and i′ and
a path P ∈ P such that

a. every component of Q has one endpoint in Bi and one
endpoint in Bi′ and no internal vertex in P , and

b. Bi and Bi′ are both contained in P .

Q-bumps can be thought of as a cylindrical set of subpaths
wrapping around a sublinkage of the linkage P. A Q bump
allows one to reroute the linkage P - not to find an equivalent

1A full version of this paper is available at
http://reseach.nii.ac.jp/~k_keniti/uniquelink.pdf



linkage - but rather to cyclically shift by one some subset
of the paths. We make this more explicit in the following
observation.

Observation 5. Let P be a linkage of order k with com-
ponents Pi for 1 ≤ i ≤ k. Let si and ti be the endpoints
of Pi for 1 ≤ i ≤ k. Let Q be a traversing linkage of order
k + 1 with basis subpaths B1, . . . , Bl. Let Q be a Q-bump of
length l′ + 1 with basis subpaths B1, . . . , Bl′+1 satisfying the
following properties.

i. Assume Bi is contained in Pi for 1 ≤ i ≤ l′. Specifi-
cally, note Bi and Bi′ are contained in distinct com-
ponents of P for 1 ≤ i < i′ ≤ l′.

ii. For all i, 1 ≤ i < l′ + 1, Q does not twist between Bi

and Bi+1.

Then P ∪Q contains disjoint paths P ′1, . . . , P
′
k such that the

endpoints of P ′i are si and ti+1 for 1 ≤ i ≤ l′ (taken modulo
l′) and the ends of Pi are si and ti for i > l′. Moreover, the
paths P ′1, . . . , P

′
k can be chosen to avoid some vertex of P.

We illustrate the observation in Figure 2.

Figure 2: A bump of order 4 traversing a linkage of
order 3. The rerouted paths guaranteed by Obser-
vation 5 are indicated as dotted paths. Note that
the circled vertex is avoided by the new linkage.

Let R1 and R2 be two vertex disjoint Q-bumps, and as-
sume that there exists a component P of P containing all
the endpoints of R1 and R2. Let π(i) and σ(i) be values,
for i = 1, 2 such that Ri has endpoints in Bπ(i) and Bσ(i).
Consider the subpath of Pi of P connecting the ends of Ri,
i.e. let Pi be the minimal subpath of P containing Bπ(i) and
Bσ(i) for i = 1, 2. Then R1 and R2 are independent if P1

and P2 are disjoint.
We now have everything in place to outline the argument

for the proof of Theorem 3. Let P be our linkage of order
k which we would like to reroute, and let Q be a very long
traversing linkage of huge order. Fix a path P1 in the linkage
P.

First, we observe that for some component P1 of P, the
linkage Q must return frequently to the path P1.

If there existed many disjoint independent Q-bumps with
ends in P1, it would be relatively easy to ensure that some
subset large satisfies the necessary properties to apply Ob-
servation 5. Then using at most k bumps satisfying the
conditions of Observation 5, we repeatedly rotate and find
an equivalent linkage avoiding some vertex.

The difficulty is how to find many disjoint independent Q-
bumps. We switch perspectives at this point and consider
how the components of P intersect with Q. The path P1

repeatedly crosses the linkage Q, always hitting the paths of
Q in order. Then there are two possible cases. First, it is

possible that some subpath P ′1 of P1 intersects Q in a some-
what regular manner, yielding many disjoint, independent
Q-bumps on P ′1. In this case, we apply Observation 5 to
find a linkage equivalent to P avoiding some vertex. Alter-
natively, no such path P ′1 exists and the path P1 intersects
Q in a more complex fashion. In this case we are able to
find a large complete minor in P ∪ Q. As we have already
discussed, a large clique minor allows us to find an equiva-
lent linkage avoiding some vertex of P. In each case, we find
an equivalent linkage avoiding some vertex of P, completing
the proof.

We expand, for a moment, on these ideas for interested
readers with some familiarity with the graph minors tech-
niques. We return to a more general discussion below. Let
P be a linkage of order k and Q be a traversing linkage
of order w and length l. Let the basis subpaths of Q be
B1, B2, . . . , Bl.

We contract all the edges incident a vertex of degree at
most two, as well as edges of E(Q) ∩ E(P). Thus we may
assume that:

1. there are no edges contained in Q∩ P, and

2. there are no vertices in V (Q) \ V (P).

We can fix a labeling Q1, Q2, . . . , Qw of the components
of Q of order w, so that every component P ∈ P satisfies
the following. The path P can be decomposed into subpaths
R1, . . . , Rt and edges e1, . . . , et−1 that are pairwise disjoint
so that ei connects the ends of Ri and Ri+1 and each Ri

has one end in Q1, the other end in Qw, and intersects the
paths of Q in order, i.e. Q1, Q2, . . . , Qw. (In fact, the paths
Ri are the basis subpaths of Q on P , ordered by traversing
P ).

If we look at the graph formed by P ∪ Q, we see that
Q ∪St

1 Ri forms a subdivision W of the (w × t)-grid. The
horizontal paths of the grid are the Qi for 1 ≤ i ≤ w, and
the vertical paths are the Ri, 1 ≤ i ≤ t. The edges ei form a
matching with the ends contained in Q1 ∪Qw. We keep the
grid W aside, and for the rest of the proof focus on the edges
ei. As we described above, there are essentially two cases.
If these edges are relatively well behaved, all but a small
number of them can be embedded in a low genus surface. In
this case, this will allow us to reroute the linkage P avoiding
some vertex using techniques of Robertson and Seymour for
the disjoint paths problem in the bounded genus case [29].
Alternatively, the edges ei are not tame. In this case, we
will find a large clique minor. Then, again we see that P
can again be rerouted to avoid some vertex v.

The edges ei, together with the outer face boundary of W ,
comprise a society, one of the key topics in Graph Minors
Theory [30]. Our proof builds on results in [30], and extend-
ing them in such a way that the outcomes include “genus
addition”, i.e, a handle addition and a crosscap addition.
We further adapt some ideas in [32, 33] to grow a graph on
the surface with large representativity. This process stops
when we have a huge clique minor, because, as mentioned
above, if there is a huge clique minor, we can reroute the
linkage P to avoid some vertex. We reiterate that our proof
does not need most of the heavy machinery in Graph Minor
theory. This is for several reasons. First, because our so-
ciety consists of only a matching, the analysis is simplified.
Second, we do not have to worry about global connectivity
issues as the society vertices are the vertices of the outer ring



of a grid. And, finally, certain degenerate cases will allow
us to easily find many disjoint Q-bumps, an outcome not
available in the general graph minors arguments. This final
point will allow us to evade the topic of “vortices”, a major
savings in time and effort. Further ingredients of the graph
minors series which we are able to avoid include, “embedding
up to 3-separations”, “tangle, respectful tangle” etc.

We return now to a more general overview of the proof.
A technicality we ignored in this outline is the following.
Given that we find many disjoint independent Q-bumps on
the subpath P ′1 of P1, how do use the bumps to reroute the
linkage? We do so by splitting on edges. Given an edge e in
a linkage P, we say that the linkage P − e is obtained from
P by splitting P on e. We note that the property of being
a unique linkage is preserved upon splitting a linkage on a
given edge:

Observation 6. Let P be a unique linkage in a graph G,
and let P be obtained from splitting P on some edge e. Then
P is a unique linkage in G. Moreover, if Q is a traversing
linkage of P of length l, with basis subpaths B1, B2, . . . , Bl,
then if e /∈ E(Bi) for all 1 ≤ i ≤ l, then Q is a traversing
sublinkage of P.

Thus we perform possibly two edge splits on P to obtain
a new linkage with a component equal to P ′1. Given that
we have many disjoint, independent Q bumps attaching to
P ′1, we contradict that the new linkage is unique, and by the
observation, that the original linkage P is unique.

In conclusion, we give a complete proof of the k = 2 case
of Theorem 3. Robertson and Seymour [34] observe that this
can be easily shown directly; however, we give a proof using
traversing linkages in the hopes that it further illustrates the
tools and techniques of the main result.

Theorem 7. Let P be a linkage of order 2. Let Q be a
traversing linkage of order five and length 33. Then there
exists a vertex v ∈ V (P) such that (P ∪ Q) − v contains a
linkage P ′ equivalent to P.

Proof. Let the components of P be P1 and P2, and label
the ends of Pi si and ti for i = 1, 2. Let the basis subpaths of
Q be B1, B2, . . . , B33. We assume, to reach a contradiction,
that there do not exist paths P ′1, P ′2 that avoid some vertex
of P such that the endpoints of P ′i are si and ti.

The linkage Q repeatedly passes back and forth between
P1 and P2. To simplify the picture somewhat, we consider
the following auxiliary graph H with vertices equal to the
set of basis subpaths Bi for 1 ≤ i ≤ 33 and two vertices Bi

and Bj connected by an edge if either there is a subpath of
Pi connecting them avoiding all other basis subpaths, or if
|j − i| = 1. It follows that E(H) is comprised of three edge
disjoint paths: one for each of the paths Pi and one for the
linkage Q. The edges of H of the form BiBi+1 have two
distinct types - the linkage Q can either twist between Bi

and Bi+1 or not. We will refer to the edges BiBi+1 where Q
twists as the odd edges of H; every other edge of H will be
called even. If Σ is the set of odd edges, then by swapping
the labels si and ti, the resulting set of odd edges is Σ4X
where 4 denotes the symmetric difference and X is the set
of all edges of the form BiBi+1.

First, observe that there does not exist an index i such
both the edge Bi−1Bi and BiBi+1 are even in H. Otherwise,
we can find paths P ′1 and P ′2 equivalent to P avoiding an
internal vertex of Bi. Similarly, there does not exist an

index i such that Q does twist between both Bi−1 and Bi

and between Bi and Bi+1. This is because we could swap
the labels on the ends P1 so that Q does not twist between
Bi−1 and Bi and between Bi and Bi+1. If we let R be the
path in H of consisting of the edges of the form BiBi+1 for
1 ≤ i ≤ 32, it follows that the edges of R alternate between
edges in Σ and edges not in Σ.

Also, observe that for indices i and j such that both the
edges BiBi+1 and BjBj+1 are not in Σ, we have that the
edges do not“cross”in H. That is, if Bi and Bj are both con-
tained P1, say, and occur on P1 in that order when travers-
ing from s1 to t1, then Bi+1 occurs before Bj+1 on P2 when
traversing from s2 to t2. Otherwise, we would be able to find
an equivalent linkage avoiding some vertex of P. Similarly,
if i and j are two indices such that both the edges BiBi+1

and BjBj+1 are in Σ, and if both Bi and Bj are contained
in P1 in that order, then it follows that Bj+1 and Bi+1 occur
on that order when traversing P2 from s2 to t2.

After possibly swapping the labels si and ti for one or pos-
sibly both values of i, we see by examining the graph H that
the following must hold for Q∪P. Traversing P1 from s1 to
t1, we see B2, B6, . . . , B26, B30, B32, B28, . . . , B8, B4 in that
order, and traversing P2 from s2 to t2, we see B1, B5, . . . , B29,
B33, B31, B27, . . . , B7, B3 in that order. Moreover, Q twists
between Bi and Bi+1 if and only if i is even. Let e1 be an
edge of P1 separating B30 from B32, and let e2 be an edge
of P2 separating B33 from B31. If we split the linkage P
on e1 and e2, we have a linkage P ′ of order four. More-
over, by appropriately choosing the labels for the endpoints
of components of P ′, we may assume that Q does not twist
between any two basis subpaths in P ′. We label the compo-
nents of P ′ as P ′i for 1 ≤ i ≤ 4 such that the endpoints of Q
are contained in P ′1.

By examination, we see that there exist four disjoint in-
dependent Q-bumps with endpoints in P ′1 satisfying i. and
ii. in Observation 5. Moreover, if we let the endpoints of P ′i
be s′i and t′i, then for each such bump, the rerouting guar-
anteed by Observation 5 results in paths with endpoints s′i
and t′i+1. By using all four re-routings, we see that we wrap

around and find a linkage P equivalent to P ′ avoiding some
vertex of P ′. Then Observation 6 implies a contradiction to
our choice of P to be a unique linkage, proving the claim.

3. REFERENCES
[1] S. Arnborg and A. Proskurowski, Linear time

algorithms for NP-hard problems restricted to partial
k-trees, Discrete Appl. Math. 23 (1989), 11–24.

[2] H. L. Bodlaender, A linear-time algorithm for finding
tree-decomposition of small treewidth, SIAM J.
Comput. 25 (1996), 1305–1317.

[3] H. L. Bodlaender, F. Fomin, D. Lokshtanov, E.
Penninkx, S. Saurabh and D. Thilikos, (Meta)
kernelization, to appear in 50th Annual Symposium on
Foundations of Computer Science (FOCS 2009).

[4] E. D. Demaine, F. Fomin, M. Hajiaghayi, and D.
Thilikos, Subexponential parameterized algorithms on
bounded-genus graphs and H-minor-free graphs, J.
ACM 52 (2005), 1–29.

[5] E. D. Demaine, M. Hajiaghayi, and K.
Kawarabayashi, Algorithmic graph minor theory:
Decomposition, approximation and coloring, Proc.
46th Annual Symposium on Foundations of Computer
Science (FOCS’05), 637–646, (2005).



[6] E. D. Demaine, M. Hajiaghayi, and B. Mohar,
Approximation algorithms via contraction
decomposition, Proc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’07),
278–287, (2007).

[7] R. Diestel, Graph Theory, 3rd Edition, Springer, 2005.

[8] R.G. Downey and M.R. Fellows, Parameterized
complexity, Springer-Verlag, 1999.

[9] Z. Dvorak, D. Kral and R. Thomas, Coloring
triangle-free graphs on surfaces, ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2009,
120–129.

[10] M.R. Fellows and M. A. Langston, Nonconstructive
tools for proving polynomial-time decidability, J.
ACM 35, (1988), 727–739.

[11] A. Frank, Packing paths, cuts and circuits – a survey,
in Paths, Flows and VLSI-Layout, B. Korte, L.
Lovász, H. J. Promel and A. Schrijver (Eds.),
Springer-Verlag, Berlin, 1990, 49–100.

[12] M. Grohe, Local tree-width, excluded minors, and
approximation algorithms. Combinatorica 23, (2003),
613–632.

[13] R. M. Karp, On the computational complexity of
combinatorial problems, Networks 5 (1975), 45–68.

[14] K. Kawarabayashi, Planarity allowing few error
vertices in linear time, 50th Annual Symposium on
Foundations of Computer Science (FOCS 2009),
639–648, (2009).

[15] K. Kawarabayashi and B. Reed, Computing crossing
number in linear time, Proc. 39th ACM Symposium on
Theory of Computing (STOC’07), 382–390, (2007).

[16] K. Kawarabayashi and B. Mohar, Graph and Map
Isomorphism and all polyhedral embeddings in linear
time, Proc. 40th ACM Symposium on Theory of
Computing (STOC’08), 471–480, (2008).

[17] K. Kawarabayashi, B. Mohar and B. Reed, A simpler
linear time algorithm for embedding graphs into an
arbitrary surface and the genus of bounded tree-width
graphs, Proc. 49th Annual Symposium on Foundations
of Computer Science (FOCS’08), 771–780, (2008).

[18] K. Kawarabayashi, Y. Kobayashi and B. Reed, The
disjoint paths problem in quaratic time, submitted.

[19] K. Kawarabayashi and Y. Kobayashi, The
edge-disjoint paths problem for 4-edge-connected
graphs and Eulerian graphs, ACM-SIAM Symposium
on Discrete Algorithms (SODA), 345–353, (2010).

[20] Y. Kobayashi and K. Kawarabayashi, Algorithms for
finding an induced cycle in planar graphs and
bounded genus graphs, ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1146–1155, (2009).

[21] L. Lovász, in Combinatorics, Proc. Fifith Hungarian
Combin. Colloq., Keszthely, 1976, Vol. II, p.1208,
North-Holland, Amsterdam, 1978.

[22] J. F. Lynch, The equivalence of theorem proving and
the interconnection problem, ACM SIGDA Newsletter
5 (1975), 31–65.

[23] D. Marx and I. Schlotter, Obtaining a planar graph by
vertex deletion, Proc. the 33rd Workshop on
Graph-Theoretic Concepts in Computer Scienece,
292–303, (2007).

[24] M. Milgram and P. Ungar, Amer. Math. Monthly, 85,
(1978), 664–668.

[25] B. Reed, Tree width and tangles: a new connectivity
measure and some applications, in “Surveys in
Combinatorics, 1997 (London)”, London Math. Soc.
Lecture Note Ser. 241, Cambridge Univ. Press,
Cambridge, 87–162, (1997).

[26] B. Reed, N. Robertson, A. Schrijver and P. D.
Seymour, Finding disjoint trees in planar graphs in
linear time, Contemp. Math., 147, Amer. Math. Soc.,
Providenc, RI, 1993, 295–301.

[27] N. Robertson and P. D. Seymour, An outline of a
disjoint paths algorithm, in Paths, Flows, and
VLSI-Layout, B. Korte, L. Lovász, H. J. Prömel, and
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