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Abstract

At the core of the Robertson-Seymour theory of graph minors lies a powerful decomposition theorem
which captures, for any fixed graph H, the common structural features of all the graphs which do not
contain H as a minor. Robertson and Seymour used this result to prove Wagner’s Conjecture that finite
graphs are well-quasi-ordered under the graph minor relation, as well as give a polynomial time algorithm
for the disjoint paths problem when the number of the terminals is fixed. The theorem has since found
numerous applications, both in graph theory and theoretical computer science. The original proof runs
more than 400 pages and the techniques used are highly non-trivial.

Robertson and Seymour’s proof yields an O(n3)-time algorithm to find the decomposition. In this
paper, we give a simplified algorithm for finding the decomposition based on a new constructive proof of
the decomposition theorem for graphs excluding a fixed minor H. The new proof is both dramatically
simpler and shorter, making these results and techniques more accessible. The algorithm runs in time
O(n3) as well. Moreover, our proof gives an explicit bound on the constants in the O-notation.

1 Introduction

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. The
theory of graph minors was developed by Robertson and Seymour in a series of 23 papers published over
more than twenty-five years. The aim of the series of papers is to prove a single result: the graph minor
theorem, which says that in any infinite collection of finite graphs there is one that is a minor of another.
As with other deep results in mathematics, the body of theory developed for the proof of the graph minor
theorem has also found applications elsewhere, both within graph theory and computer science. Yet many
of these applications rely not only on the general techniques developed by Robertson and Seymour to handle
graph minors, but also on one particular auxiliary result which is central to the proof of the graph minor
theorem: a result which approximately describes the structure of all graphs G which do not contain some
fixed graph H as a minor. At a high level, the theorem says that every such a graph can be decomposed into
a collection of graphs each of which can be “almost” embedded into a bounded-genus surface; the pieces can
be assembled in a tree structure to obtain the original graph. This decomposition theorem is used to verify
Wagner’s Conjecture [41], which can be stated as follows: every minor-closed graph property (i.e. a property
preserved under taking of minors) is characterized by a finite set of forbidden minors. It is also used in the
proof of the correctness for the seminal graph minor algorithm, a polynomial-time algorithm for testing the
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presence of a fixed minor [36]. When combined together, the graph minor algorithm and the proof of Wagner’s
Conjecture immediately imply the existence of a polynomial-time algorithm for deciding membership in any
minor-closed class of graphs. There have been numerous applications of the decomposition theorem; we
discuss this more thoroughly below.

The proof of this decomposition theorem is extremely long and technical, and utilizes much of the theory
of graph minors which Robertson and Seymour developed. The proof occupies the first 16 graph minor
papers and is at least 400 pages long. Moreover, some of the bounds given in the proof are not explicit.
The combination of the usefulness of the graph minor decomposition theorem and the difficulty of the proof
have motivated the search for a more accessible proof. To quote a survey article of Lovász’ [24], “It would
be quite important to have simpler proofs with more explicit bounds. Warning: many of us have tried, but
only a few successes can be reported.”

1.1 Our contribution

Building on the methods we have developed in [17], we give a much shorter proof of the graph minor
decomposition theorem. We begin by giving the necessary notation to state the decomposition theorem
more precisely.

A path decomposition of a graph G consists of linearly ordered subsets Bi, 1 ≤ i ≤ k with Bi ⊆ V (G) such
that for every edge uv ∈ E(G) there exists an index i such that u, v ∈ Bi and furthermore, for all vertices
x, if x ∈ Bi and x ∈ Bj , then x ∈ Bl for all i ≤ l ≤ j. The width of the decomposition is the maximal
size of a Bi, and the path-width of a graph G, denoted pw(G), is the minimum width over all possible path
decompositions of G. The adhesion of the decomposition is the max1≤i<j≤k Bi ∩ Bj .

In this paper, an embedding refers to a 2-cell embedding, i.e. a drawing of the vertices and edges of the
graph as points and arcs in a surface such that every face (region outlined by edges) is homeomorphic to
a disc. A non-contractable curve in the surface is simply a curve that cannot be contracted continuously
to a point on the surface. The representativity, or face-width, of an embedded graph is minimum number
of times a non-contractable curve C intersects the embedded graph, with the minimum taken over all such
non-contractable curves C.

Let G be a graph and Σ be a general surface. Let k be a positive integer. A k-near embedding in Σ consists
of edge disjoint subgraphs H0, H1, . . . ,Hm for some positive integer m satisfying the following conditions.

i.
⋃m
i=0Hi = G.

ii. For all i, j ≥ 1, i 6= j, V (Hi) ∩ V (Hj) ⊆ V (H0).

iii. For all i > k, |V (Hi) ∩ V (H0)| ≤ 3.

iv. There exist pairwise disjoint open discs ∆1, . . . ,∆m and an embedding σ : H0 ↪→ Σ−
⋃m
i=1 ∆i such that

the only vertices contained in the boundary of ∆i are exactly the vertices of Hi ∩H0 for i = 1, . . . ,m.

v. For 1 ≤ i ≤ k, let the vertices of V (Hi) ∩ V (G0) be u1, u2, . . . , un for some integer n with the order
given by their order on the boundary of the disc ∆i in ∆. Then the graph Hi has a path decomposition
(Bj)1≤j≤n such that uj ∈ Bj for all 1 ≤ j ≤ n.

The k-near embedding is α-bounded if the path decomposition of Hi in v. has adhesion at most α for all
1 ≤ i ≤ k. The k-near embedding is totally bounded if both m ≤ k and the path decomposition of Hi in v
has width at most k for all 1 ≤ i ≤ k. Finally, a graph G is t-close to admitting a k-near embedding if there
exists a set X ⊆ V (G) with |X| ≤ t such that G−X admits a k-near embedding.

The pieces of the decomposition are combined according to “clique-sum” operations, a notion which goes
back to characterizations of K5-minor-free graphs by Wagner [48]. Suppose G1 and G2 are graphs with
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disjoint vertex sets and let k ≥ 0 be an integer. For i = 1, 2, let Wi ⊆ V (Gi) form a clique of size k and let
G′i be obtained from Gi by deleting some (possibly no) edges from the induced subgraph Gi[Wi]. Consider
a bijection h : W1 → W2. We define a k-sum G of G1 and G2, denoted by G = G1 ⊕k G2, to be the graph
obtained from the union of G′1 and G′2 by identifying w with h(w) for all w ∈W1. The images of the vertices
of W1 and W2 in G1 ⊕k G2 form the join set. Note that each vertex v of G has a corresponding vertex in
G1 or G2 or both. It is also worth mentioning that ⊕ is not a well-defined operator: it can have a set of
possible results.

Now we can state a precise form of the decomposition theorem:

Theorem 1.1 (Decomposition Theorem, Theorem 1.3 [39] ) For every graph H, there exists an in-
teger h ≥ 0 depending only on |V (H)| such that every H-minor-free graph can be obtained by at most h-sums
of graphs which are h-close to admiting a totally bounded h-near embedding in some surfaces in which H
cannot be embedded.

We give a shorter and simpler proof of Theorem 1.1. The proof is constructive and immediately yields an
f(|H|)n3 time algorithm to find such a decomposition for excluding H-minor. In addition, our proof also
gives an explicit bound for h.

The original proof of Robertson and Seymour also gives an f ′(|H|)n3 algorithm to find the decomposition,
if one follows all the arguments very carefully (as pointed out by Reed (private communication)). Our
algorithm is an improvement, in that it is far easier and more accessible, and in that it improves the bounds
on the function f and gives explicit bounds for the value h. Recently, Reed, Li and the first author announced
an O(n log n) algorithm to find the decomposition theorem. The proof generally follows the argument in
the graph minor theory, however some of the more technical graph minor results must be strengthened.
Complete details will require more than 100 pages and are not yet fully written down.

1.2 Algorithmic applications

Algorithms for H-minor-free graphs for a fixed graph H have been studied extensively; see e.g. [4, 5, 13, 21,
27]. In particular, it is generally believed that several algorithms for planar graphs can be generalized to
H-minor-free graphs for any fixed H [13, 21, 27]. The decomposition theorem provides the key insight into
why this might be possible: given an algorithm for planar graphs, first extend it to handle bounded-genus
graphs; then extend it further to handle graphs “almost-embeddable” into bounded-genus surfaces, and
finally generalize the results to resolve the problem on tree decompositions into graphs almost-embeddable
in bounded genus surfaces. The graph minor decomposition theorem has already been used to obtain many
combinatorial results and show the existence of many efficient algorithms, despite being published only
recently. Grohe [12] proves the existence of PTASs for minimum vertex cover, minimum dominating set,
and maximum independent set in H-minor-free graphs. However, such an approach requires an algorithm
to construct the decomposition. Our simpler proof and algorithm gives a fast and more accessible algorithm
for these problems.

DeVos et al [9] used the decomposition theorem to prove that for every integer k ≥ 1 and every fixed graph
H, every H-minor-free graph has a vertex partition into parts V1, . . . , Vk and edge partition E1, . . . , Ek such
that for every i ∈ {1, . . . , k}, the graphs G − Vi and G − Ei have bounded treewidth. It follows that given
an algorithm to construct the decomposition, there is a 2-approximation algorithm for graph coloring in
minor-closed class of graphs, see [8]. A special case of this partitioning result restricted to planar graphs was
proved by Baker [2] who used it to devise efficient approximation algorithms (and approximation schemes) for
several hard approximation algorithms on planar graphs. Baker used the planar separator theorem of Lipton
and Tarjan [23]. Alon, Seymour, and Thomas [1] proved a similar separator theorem for graphs excluding any
fixed minor, and this result is further generalized by Kawarabayashi and Reed [19]. Eppstein [11] extended
Baker’s ideas to graphs in arbitrary proper minor-closed classes of graphs. Again, these methods for finding
approximation algorithms for problems in minor closed classes begin with the graph minor decomposition.
Again, our proof and algorithm yields fast and more accessible algorithms for these approximation results.
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Demaine et al [6] have been working on directly using the graph minor theorem in algorithmic applications.
They obtained subexponential fixed-parameter algorithms for dominating set, vertex cover and set cover in
any class of graphs excluding a fixed graph H as a minor. Specifically, the running time is 2O(

√
k)nh, where h

is a constant depending only on H. For further applications, see the survey [7] or the paper [8]. Our simpler
proof gives not only more accessible and simpler algorithms but also faster algorithms, i.e. h = 3.

2 The proof and algorithm

Although the decomposition theorem is the one that appears now to be best known, and which has also
found the most algorithmic applications, Robertson and Seymour themselves [39] later dubbed it a ‘red
herring’ in the search for the proof of the graph minor theorem. We begin this section by describing the
“main” structure theorem in graph minor theory.

A particularly simple form of this structure theorem applies when the excluded minor H is planar: in that
case, the said parts of G—the parts that fit together in a tree-structure and together make up all of G—have
bounded size, i.e., G has bounded treewidth. If H is not planar, the graphs G not containing H as a minor
have unbounded treewidth, and therefore contain arbitrarily large grids as minors and arbitrarily large walls
as a topological minor. Such a large grid or wall identifies, for every low-order separation of G, one side in
which most of that grid or wall lies. This is formalized by the notion of a tangle: the larger the treewidth
of G, the larger the grid or wall, the order of the separations for which this works, and (thus) the order of
the tangle. Since adjacent parts in our tree decomposition of G meet in only a bounded number of vertices
and thus define low-order separations, our large-order tangle ‘points to’ one of the parts, the part G′ that
contains most of its defining grid or wall. This allows Robertson and Seymour to focus on one piece of the
tree decomposition. In fact, most of the details of the graph minor papers are devoted to prove the structure
theorem capturing our large-order tangle, which we shall call the “main” structure theorem of the graph
minor theory.

We are now ready to state the main structure theorem in graph minor theory

Theorem 2.1 (Structure Theorem, [39]) For every graph R there exist integers θ, α = α(|R|) ≥ 0 such
that the following holds: Let G be a graph that does not contain R as a minor and T be a tangle in G of
order at least θ. Then there exists a subset A ⊆ V (G) with |A| ≤ α such that G−A has an α-bounded α-near
embedding into a surface Σ in which R cannot be drawn. Moreover, this near embedding captures T −A.

Assuming Theorem 2.1, the decomposition theorem can be proven relatively easily. We give the proof in
Section 3. Thus, the majority of the work in our proof of the decomposition theorem lies in proving Theorem
2.1. Our main tool in proving Theorem 2.1 will be several new results on embedding societies in surfaces.
We discuss this in more detail in the next subsection. We then give an outline of the proof of Theorem 2.1
in Subsection 2.2.

2.1 Nearly embedding a society

A society is a pair (G,Ω) where G is a graph and Ω is a cyclic ordering of some of the vertices of G. Societies
play a key role in the graph minor series, see [32].

In our proof, we will need to understand when a given society (G,Ω) is t-close to having a t bounded k-near
embedding in the disc ∆ for given values t and k. Two possible obstructions are what’s known as k-crosscaps
and k-handles. A k-crosscap consists of k disjoint, pairwise crossing paths with their endpoints in Ω. A
k-handle consists of 2k pairwise disjoint paths P1, . . . , Pk, Q1, . . . , Qk each with their endpoints in Ω which
satisfy the following. For all i, j, we have that Pi and Pj do not cross and similarly, Qi and Qj do not cross,
and alternatively, the paths Pi and Qj do cross. See Figure 1.
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Figure 1: An example of a 4-crosscap and a 4-handle.

It would be convenient if these were the only obstructions. Unfortunately, we must define several patterns
consisting of disjoint paths with their endpoints in Ω. For the exact definition, we refer to the appendix and
here denote the pattern with k paths as Pk.

Theorem 2.2 Let k ≥ 1 be given. There exists a value α = α(k) such that for every society (G,Ω), one of
the following holds.

(i) (G,Ω) contains a k-crosscap, a k-handle, or the pattern Pk.

(ii) (G,Ω) is α-close to admitting an α-bounded α-near embedding in the disc ∆ such that all the vertices
of Ω are embedding on the boundary of ∆ in the order indicated by Ω

Theorem 2.2 generalizes the main theorem of [32]. Let ∆ be the disc and let D1 and D2 be two disjoint,
open discs in ∆ which do not intersect the boundary of ∆. Let Σ1 be the surface obtained by deleting D1

and gluing a crosscap to the boundary of D1. Let Σ2 be the surface obtained by deleting D1 and D2 from ∆
and gluing a handle onto the boundaries of D1 and D2. The existence of a k-crosscap or k-handle for large
k in a society (G,Ω) implies that the natural surface in which we should attempt to embed (G,Ω) is Σ1, or
Σ2, respectively. When we can do so is described in the following theorem.

Theorem 2.3 Let k ≥ 1 be given. There exists a value f = f(k) and α = α(k) satisfying the following.
Let (G,Ω) be a society containing a f -crosscap (f -handle) Q but which does not contain the pattern Pk.
Then there exists a set X ⊆ V (G) with |X| ≤ α and edge disjoint subgraphs H1 and H2 of G such that
H1 ∪H2 = G−X which satisfy the following.

(i) H1 contains a k-crosscap (k-handle) Q′ which is a subgraph of Q.

(ii) Ω−X ⊆ V (H1) and (H1,Ω−X) admits a 0-near embedding in Σ1 (Σ2).

(iii) There exists a single face of the near embedding in Σ1 or Σ2 which contains all the vertices of V (H1)∩
V (H2).

The proofs of Theorems 2.2 and 2.3 contain the main technical work in the new proof. Interested readers
are directed to the appendix for the full proofs. We will see in the next subsection how these theorems come
into the proof of Theorem 2.1.

2.2 Outline of the proof of Theorem 2.1

We now give an overview of our proof for the structure theorem, Theorem 2.1. Our starting point is so called
“Weak Structure Theorem” which is proved in Graph Minor XIII [36]. Roughly it says that, given any grid
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or wall W of size f(t, k) in a given graph G, either G has a Kt-minor, or G has a vertex set Z of order at
most t2 such that G− Z has a subwall W ′ of W of size k which induces “essentially” planar embedding in
G− Z. More explicitly:

Theorem 2.4 (Weak Structure Theorem, [36]) Let t and l be given. There exists f = f(t, l) satisfying
the following. Let G be a graph containing a wall W of size f . Then either G contains a Kt minor which
cannot be separated from W by a small order separation, or there exists a subset A ⊆ V (G), a sub-wall W ′

of W of size l and edge disjoint subgraphs H1 and H2 of G satisfying the following.

(i) |A| ≤ t2 and G−A = H1 ∪H2.

(ii) W ′ is a subgraph of H1

(iii) H1 has a 0-near embedding in the disc ∆ such that W ′ is not separated from ∆ by a small separation
and all the vertices of V (H1) ∩ V (H2) are embedding on the boundary of ∆.

Note that given the structure in Theorem 2.4, we have a natural society given by the subgraph H2 and the
cyclic ordering of the vertices of V (H1) ∩ V (H2) given by their embedding on the boundary of the disc ∆.

We begin with a graph G not containing Kt as a minor, and now our proof adapts some ideas in [38, 39] to
grow a large subgraph of G which essentially embeds on a surface with large representativity. We maintain
two subgraphs H1 and H2 of G and a subset of the vertices Z such that

1. H1 ∪H2 = G− Z,

2. H1 essentially embeds in a surface Σ with big representativity (technically, H1 has a 0-near embedding
in Σ), and

3. there is a single face F of the embedding of H1 containing the vertices of V (H1) ∩ V (H2).

We then consider the society given by H2 and the cyclic order of the vertices of V (H1)∩V (H2) given by the
boundary of the face F (denote as Ω this cyclic order of V (H1)∩ V (H2)). If there existed a set Z2 ⊆ V (H2)
with |Z2| ≤ α such that (H2 − Z2,Ω− Z2) admitted an α-bounded α-near embedding of (G,Ω) in the disc,
then we could “glue” it onto the embedding of H1 in Σ and find the desired α-bounded α-near embedding
of G− (Z ∪ Z2).

We apply Theorem 2.2 to attempt to find such a nice embedding of (H2,Ω). We can (by picking α suffi-
ciently large), assume that we find either a large crosscap or handle, or a large pattern Pk. However, it is
straightforward to show that if k is large, then H1 along with the pattern Pk yields a large clique minor.
Thus, we may assume that we always find a large crosscap or handle. We apply Theorem 2.3 to the society
(H2,Ω) along with the large crosscap or handle. We find subgraphs J1 and J2 and subset X of vertices such
that (J1,Ω−X) embeds in the disc plus a crosscap or handle.

Returning to our graph original graph G, we see that G − (Z ∪ X) = H1 ∪ J1 ∪ J2 and that H1 ∪ J1 has
a 0-near embedding in the surface Σ′ obtained by adding a single crosscap or handle to Σ. Moreover, by
using the fact that (J1,Ω − X) contains a large handle or crosscap, we can ensure that this embedding of
H1 ∪ J1 embeds with large representativity (although it will be somewhat smaller than the representativity
of the embedding of H1 in Σ). Finally, there exists a single face of the embedding in Σ′ which contains all
the vertices of V (H1 ∪ J!) ∩ V (J2) = V (J1) ∩ V (J2).

Thus, at each inductive step we grow the genus of the surface maintaining large representativity. The base
case in the induction is the weak structure theorem with the large graph essentially embedded in the sphere.
In this special case, the wall plays the role of representativity. The whole process must eventually stop since
there is a theorem [30] that states that for a sufficiently large genus surface and a sufficiently large amount
of representativity, any graph embedded with such representativity must contain Kt as a minor.
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2.3 Improvements over the original

Let us clarify why our proof is shorter than the original proof by Robertson and Seymour.

1. We only need to introduce three parameters in our proof (the genus of the surface into which we embed,
the representativity of the embedding, and the size of the set of vertices to be deleted). On the other
hand, Robertson and Seymour consider seven! parameters, see Graph Minor XVI [39]. This leads to
a particularly technical and sensitive induction hypothesis in the Robertson-Seymour proof.

2. Our starting point is the “weak structure theorem” as above, while Robertson and Seymour begins
with the grid theorem. Our initial setup immediately allows us to focus on a single “special” face and
a single “society” because the rest of the graph is essentially embedded into a disc. On the other hand,
Robertson and Seymour need to analyze how the rest of the graph attaches to the grid. This requires
a lot of work, as in Graph Minors XIV, XV and XVI [37, 38, 39].

3. We only maintain one “special” face and one society at each inductive step, while Robertson and
Seymour have to deal with many societies simultaneously. Thus our proof makes the genus addition
step much easier. This issue is discussed in Graph Minor XVI [39].

4. In the inductive step, we maintain a subgraph which is essentially embedded in the surface with large
representativity. Robertson and Seymour only maintain a subdivision of G embedded in the surface.
This difference allows us to deal with the “connectivity” issue more easily. This issue is mainly discussed
in Graph Minor XV [38].

5. In addition to a subgraph embedded in the surface, Robertson and Seymour maintain a set of “long”
jumps attaching to distant faces of a graph in the surface (see Graph Minor XVI [39]). However, in
our case, we simply maintain an embedding on a surface with large representativity.

6. The biggest advantage for our proof is that we do not have to worry about “distance” on a surface.
More precisely, Robertson and Seymour have to maintain a subdivision embedded on a surface, but
in each inductive step they delete large portions of the subgraph embedded in the surface. In order
to maintain the “long” jumps mentioned above, they need to use a technical distance measure for the
graph embedded in the surface. This issue is actually quite troublesome in the Graph Minors Series;
both Graph Minors XI and XII [34, 35] are devoted to this distance measure. Alternatively, because
we do not have to maintain such “long” jumps, we do not rely on this distance measure.

2.4 Extracting an algorithm

Our proof is constructive and can be converted into a polynomial time algorithm (in factO(n2) time algorithm
for fixed |H|) to obtain the structure given in the main structure theorem.

The algorithm follows from our constructive proof. As subroutines, we only need the following.

1. We need to find, for some two vertices s, t and fixed constant k, either k disjoint paths between s and
t, or a vertex set of order at most k that separates s and t.

2. We also need a subroutine for 0-near embedding a given society in the disc.

Concerning the first point, we can use the result by Nagamochi and Ibaraki [22] to resolve the problem in
O(n) time. Concerning the second point, there is now an O(n) time algorithm to find a 0-near embedding of
a society by Kapadia, Li and Reed [14] (which improves the previous best known result by Tholey [46] which
gives O(mα(m,n)) time algorithm, where the function α(m,n) is the inverse of the Ackermann function).

At each step of the proof of the main structure theorem, we may proceed by repeatedly calling the above
two operations. Therefore, we obtain an O(n2) time algorithm to find the structure ensured by the main
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structure theorem. For the decomposition theorem, Theorem 1.1, in each iteration, we apply the algorithm
of the structure theorem and then recurse on a smaller graph. Thus we obtain an O(n3) time algorithm
to construct the structure in Theorem 1.1. How we extract the O(n3) time algorithm for the graph minor
decomposition from the algorithm for the graph minor structure theorem is treated in more detail in the
next section.

3 Proof of the Decomposition Theorem

In this section, we prove Theorem 1.1 assuming Theorem 2.1. We recall that a tree decomposition of a graph
G is a pair (T,W ), where T is a tree and W is a family {Wt | t ∈ V (T )} of vertex sets Wt ⊆ V (G), such
that the following two properties hold:

(W1)
⋃
t∈V (T )Wt = V (G), and every edge of G has both ends in some Wt.

(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Wt ∩Wt′′ ⊆Wt′ .

The width of the decomposition is mint∈V (T ) |Wt| − 1. The treewidth of G is defined as the minimum width
taken over all tree decompositions of G. For the definition of the torso and a tangle, we refer the reader to
Diestel’s book [10]. We recall that a separation of a graph G is a pair (A,B) of subsets of vertices such that
G[A] ∪G[B] = G. We restate the theorem to facilitate the induction.

Theorem 3.1 For every graph R there exist integers α and θ such that for every graph G that does not
contain R as a minor and every Z ⊆ V (G) with |Z| ≤ 3θ−2 there is a rooted tree decomposition {Vt | t ∈ T}
of G with root r such that for every t ∈ V (T ), there is a surface Σt in which R cannot be embedded, and a
subset At ⊆ V (Gt) of the torso Gt of Vt with |At| ≤ α such that Gt−At has an α-bounded α-near embedding
into Σt with the following properties:

(i) There are at most α vortices.

(ii) All vortices have path-width at most α.

(iii) For every t′ ∈ V (T ) with tt′ ∈ E(T ) and t ∈ rT t′ there is a vertex set X which is either

(a) two consecutive parts of a vortex decomposition in Gt or

(b) a subset of V (Gt) and induces in Gt a K1, a K2 or a triangle face in Σt.

such that Vt ∩ Vt′ ⊆ X ∪At.

(iv) For every t′ ∈ T with tt′ ∈ E(T ) and t′ ∈ rT t the overlap Vt ∩ Vt′ is contained in At′ .

Further Z ⊆ Ar. We say that the part Vr accommodates Z.

Proof. Applying Theorem 2.1 with the given graph R yields two constants α̂ and θ̂. Let θ := max(θ̂, 3α̂+ 1)
and α := 4θ − 2.

The proof proceeds by induction on |V (G)|. We may assume that |Z| = 3θ− 2, since if it is smaller we may
arbitrarily add vertices to Z. Note, we may assume that such vertices exist, as the theorem is trivial for
|V (G)| < α.

Claim 3.2 We may assume that there is no separation (A,B) of order at most θ such that both |Z \A| and
|Z \B| are of size at least |A ∩B|.
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Proof. Otherwise, let ZA := (A∩Z)∪ (A∩B). By assumption, |A∩B| ≤ |Z \A| and therefore, |ZA| ≤ |Z|.
We apply our theorem inductively to G[A] and ZA, which yields a tree decomposition of G[A] with one
part GA such that the apex set of the embedding of its torso contains ZA. Similarly, we apply the theorem
to G[B] and ZB := (B ∩ Z) ∪ (A ∩ B). We combine these two tree decompositions by joining a new part
Z ∪ (A ∩ B) to both GA and GB and obtain a tree decomposition of G with the desired properties of the
theorem: The new part contains at most |Z| + |A ∩ B| ≤ 4θ − 2 vertices, so all these can be put into the
apex set of an α-near embedding. Further, the new part contains Z. This proves the claim. �

Let T be the set of separations (A,B) of G of order less than θ such that |Z ∩ B| > |Z ∩ A|. With this
definition, we make the following claim.

Claim 3.3 T is a tangle of G of order θ.

Proof. For every separation (A,B) of G of order less than θ, one of the sets Z \ B and Z \ A contains at
least θ vertices, as |Z| = 3θ − 2, but not both by (3.2). Therefore, property (i) of the definition of a tangle
holds. We deduce further, that for every (A,B) ∈ T , the small side A contains less than θ vertices from Z.
Hence, the union of three small sides cannot be V (G) as it contains at most 3θ − 3 vertices from Z, which
shows property (ii) and proves the claim. �

From Claim 3.2 and the definition of T we conclude the following claim.

Claim 3.4 |(A−B) ∩ Z| < |A ∩B| for every (A,B) ∈ T .

Theorem 2.1 implies that there exists a subset Â ⊆ V (G) with |Â| ≤ α such that there exists an α̂-bounded
α̂-near embedding of G in some surface Σ that captures T . At a high level, our plan is now to split up G at
separators consisting of apex vertices, society vertices Ω(Hi) for i > α̂ and vertices of single parts of vortex
decompositions of a vortex Hi for i ≤ α̂. We obtain a part that contains H0 and which we know how to
embed α-nearly; this part is going to be one part of a new tree decomposition. We find tree decompositions
for all subgraphs of G that we split off inductively and eventually combine these tree decompositions to a
new one that satisfies our theorem.

Let us consider a small vortex (Hi,Ωi) for i ∈ {α̂ + 1, . . . ,m}. Our embedding captures T , therefore the
separation (V (Hi) ∪ Â, V (G − (V (Hi) − V (H0))) ∪ Â), whose order is smaller than 3 + |Â| ≤ θ, lies in
T . By (3.4), Hi contains less than θ vertices of Z. Thus, Z ′ := Ωi ∪ Â ∪ (Z ∩ V (Hi)) contains at most
3+ α̂+θ ≤ 3θ−1 vertices. We apply our theorem inductively to the smaller graph G[V (Hi)∪Â] with Z ′. Let
Hi be a part of the resulting tree decomposition (T i,Hi) that accommodates Z ′. LetW = {Hα̂+1, . . . ,Hm}.

For every vortex (Hi,Ωi) with Ωi = {wi1, . . . , win(i)} for i = 1, . . . , α̂, let us choose a fixed decomposition

(X̂i
1, . . . , X̂

i
n(i)) of depth at most α̂. We define

Xi
j :=


(
X̂i

1 ∩ X̂i
2

)
∪ {wi1} for j = 1(

X̂i
j ∩ (X̂i

j−1 ∪ X̂i
j+1)

)
∪ {wij} for 1 < j < n(i)(

X̂i
n(i) ∩ X̂

i
n(i)−1

)
∪ {win(i)} for j = n(i)

By H−i we denote the graph on Xi
1 ∪ . . . ∪Xi

n(i) where every Xi
j induces a complete graph but no further

edges are present. Now, as the depth of (Hi,Ωi) is at most α̂, every Xi
j contains at most 2α̂+ 1 vertices and

thus, (Xi
1, . . . , X

i
n(i)) is a decomposition of the vortex V −i := (H−i ,Ωi) of width at most 2α̂ + 1 ≤ α. Let V

denote the set of these new vortices.

For every j = 1, . . . , n(i), the pair (
X̂i
j ∪ Â, (V (G)− (X̂i

j −Xi
j)) ∪ Â

)
9



is a separation of order at most |Xi
j ∪ Â| ≤ 2α̂+ 1 + α̂ ≤ θ. As before, our embedding captures T and thus,

the separation lies in T . By (3.4), at most θ − 1 vertices from Z lie in X̂i
j . Let Z ′ := Xi

j ∪ Â ∪ (Z ∩ X̂i
j).

This set contains at most 3θ− 1 vertices and, similar to before, we can apply our theorem inductively to the
smaller graph G[X̂i

j ∪ Â] with Z ′. We obtain a tree decomposition (T ij ,Hij) of this graph, with one part Hi
j

accommodating Z ′.

Now, with V0 := V (H0) ∪ Â, we can write

G = G[H0] ∪
(⋃
W
)
∪
(⋃
{G[X̂i

j ] : Vi ∈ V, 1 ≤ j ≤ n(i)}
)
.

By induction, we obtained tree decompositions for all vortices inW and all the graphsG[X̂i
j ] with the required

properties. We can now construct a tree decomposition of G: We just add a new vertex v0 representing V0

to the union of all the trees T i and T ij and add edges from v0 to every vertex representing an Hi or an Hi
j

we found in our proof.

We still have to check that the torso of the new part V0 can be α-nearly embedded as desired. But this
is easy: Let H ′0 be the graph resulting from H0 if we add an edge xy for every two nonadjacent vertices x
and y that lie in a common vortex V ∈ W. We can extend the embedding σ : G0 ↪→ Σ to an embedding
σ′ : G′0 ↪→ Σ by mapping the new edges disjointly to the discs D(V ). Then, G′ := H ′0 ∪

⋃
H−i ∪ Â is the

torso of V0 in our new tree decomposition and we have an α-bounded α-near embedding of G′ − Â in Σ.

�

Observe that the above proof of Theorem 3.1 is constructive and consequently, it gives rise to an O(n3) time
algorithm to construct the decomposition as in Theorem 3.1.

To extract the algorithm, the first step is to define the tangle T of order Θ. This can be done in O(n)
time given that |Z| ≤ 3Θ− 2 is an absolute constant and we just need the standard max-flow, minimum-cut
algorithm. Then we apply the algorithm to give the structure in Theorem 2.1 with respect to the tangle T , as
in the previous section. Finally, we recursively apply this algorithm to all the graphs inW and all the graphs
G[X̂i

j ] with the required properties. We can put these decompositions together, as in the proof of Theorem
3.1, to obtain a tree decomposition of G by adding a new vertex v0 representing V0 := V (H0)∪

⋃
H−i ∪ Â (as

in the above proof) to the union of all the trees T i and T ij and add edges from v0 to every vertex representing
an Hi or an Hi

j we found in our proof.

Since we only need to apply the algorithm to construct the structure in Theorem 2.1 recursively, we obtain
an g(t)n3 time algorithm to construct the structure as in Theorem 3.1 for some function g(t), as claimed.
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Appendix

The appendix is organized as follows. In section A, we give notation used in this paper. Sections B and C
are useful lemmas for our society theorem. Theorem 2.2 is proven in Section D, and Theorem 2.3 will be
shown in Section E. Finally in Section 7, we give our main proof the main structure theorem.

A Notation

In this section, we begin with the notation which will be necessary to state the society theorem strengthening
the main result of [32].

We mention several definitions on systems paths in graphs which we will use throughout the article. First,
a linkage P is a graph such that each component of P is a path. The order of a linkage is the number of
components. We will use P ∈ P to indicate that P is a component of P. We allow that some components
of P be equal to trivial paths on a single vertex. A sub-linkage of P is any subgraph of P which is itself a
linkage.

In a graph G, for any set X of vertices in G, an X-path is a path P in G such that both endpoints of P are
contained in X and P has no internal vertex in X.

A.1 Societies and patterns

A society is a pair (G,Ω) where G is a graph and Ω is a cyclic ordering of a subset of the vertices of G.
In somewhat sloppy notation, we will use Ω to refer both to the cyclic order as well as the set of vertices
itself. A segment of a society is a non-empty, proper subset X ⊆ Ω such that there do not exist x1, x2 ∈ X
and y1, y2 ∈ Ω \X such that x1, y1, x2, y2 occur on Ω in that order. A segment can thus be thought of as a
continuous section of the vertices in Ω. Thus for any two vertices u, v in G, we can define the segments uΩv
and vΩu such that the intersections of the two segments are only u and v.

Given two disjoint paths Ω-paths P1 and P2, we say that P1 and P2 are crossing if we can label the endpoints
of Pi as si and ti for i = 1, 2 such that s1, s2, t1, t2 occur in Ω in that order. An Ω-bridge in G is a connected
subgraph B of G such that either E(B) consists of a unique edge with both endpoints in Ω, or for some
component C of G− Ω, the set E(B) consists of all edges of G with at least one endpoint in V (C).

A pattern in a society (G,Ω) is a linkage where each component is an Ω-path. In very brief terms, we will show
that either a society contains one of several desirable patterns, or, alternatively, admits a decomposition.
We first define the possible patterns we will consider.

The most simple is a k-crosscap. For a positive integer k, A k-crosscap in a society (G,Ω) is a pattern P
with |P| = k such that the elements of P are pairwise crossing.

Definition Let (G,Ω) be a society and k ≥ 1, l ≥ 1 positive integers. A (k, l)-cross pattern in (G,Ω)
consists of the union of three linkages P, Q, and R of Ω-paths satisfying the following conditions.

i. The components of P, Q, and R are pairwise vertex-disjoint.

ii. We can label the components of Q as Q1, . . . , Qk and the components of R as R1, . . . , Rk, so that the
paths Qi and Ri are crossing for all 1 ≤ i ≤ k.
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iii. For all P, P ′ ∈ P, P and P ′ do not cross. It follows that Ω ∪ P can be embedded in the disc with the
vertices of Ω on the boundary of the disc in the indicated order.

iv. Fix such an embedding of P ∪Ω in the disc. For every 1 ≤ i ≤ l, there exists a face Fi (not infinite face
that corresponds to Ω) containing all the endpoints of Qi∪Ri, and in the dual graph of the embedding
of P ∪ Ω (minus the vertex that corresponds to the infinite face that corresponds to Ω), the faces Fi
and Fj have distance at least l for all 1 ≤ i < j ≤ l.

Moreover, we assume that P is inclusion minimal satisfying i − iv. In other words, if we delete some
component of P, we no longer satisfy iv.

Note that a (1, l)-cross pattern consists simply of the pair of crossing paths R1 and R2. An l-doublecross,
as defined by Robertson and Seymour in [32], is the same as a (2, l)-cross pattern.

Let P be a pattern with pairwise non-crossing components in a society (G,Ω). Then there exists a natural
embedding of P ∪Ω in the disc such that the vertices contained in the boundary of the disc are exactly the
vertices of Ω in the stipulated cyclic order. For any two vertices x and y in Ω ∪ V (P), we say the distance
between x and y is the minimal number of times a curve C in the disc with endpoints x and y intersects P.
Since the embedding of P ∪Ω in the disc is unique up to homeomorphism of the disc, this distance function
is a property only of the pattern P and not the embedding. Thus, we denote this distance function dP . Note
that it is easy to see that dP satisfies the triangle inequality, although it will not generally define a metric.

Definition Let k, l, be non-negative integers. Let (G,Ω) be a society. A (k, l)-leap pattern is a pattern
P ∪Q satisfying the following conditions.

i. The components of P and Q are pairwise disjoint.

ii. For all P, P ′ ∈ P, P and P ′ do not cross.

iii. The pattern Q has order k, and for all Q ∈ Q the endpoints of Q have distance dP at least l.

Moreover, we assume that P is inclusion minimal satisfying i− iii, i.e. after deleting a component of P, the
resulting pattern does not satisfy iii.

Observation 1 For all k ≥ 1, l ≥ 1, both a (k, l)-cross pattern and a (k, l)-leap pattern have at most
(
k
2

)
l+2k

components.

A special type of (k, k)-leap pattern is an k-handle.

Definition A k-handle is a leap pattern formed by the union P ∪ Q of two linkages of order k satisfying
the following conditions.

i. The components of P and Q are pairwise disjoint.

ii. For every P, P ′ ∈ P, P and P ′ do not cross. Similarly, for each Q,Q′ ∈ Q, Q and Q′ do not cross.

iii. For all P ∈ P and Q ∈ Q, P and Q cross.

A.2 Tangles and Grids

A (directed) separation of a graph G is an ordered pair (A,B) of non-empty subsets of V (G) such that
G[A] ∪ G[B] = G. The number |A ∩ B| is the order of (A,B). Whenever we speak of separations in this
paper, we shall mean such directed separations.
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Definition A set T of separations of G, all of order less than some integer θ, is a tangle of order θ if the
following holds:

i. For every separation (A,B) of G of order less than θ, either (A,B) or (B,A) lies in T .

ii. If (Ai, Bi) ∈ T for i = 1, 2, 3, then G[A1] ∪G[A2] ∪G[A3] 6= G.

Note that if (A,B) ∈ T then (B,A) /∈ T ; we think of A as the ’small side’ of the separation (A,B), with
respect to this tangle. We also call B as a ‘big side’, with respect to this tangle.

For a tangle T of order θ in a graph G, let Z ⊆ V (G) be a vertex set with |Z| < θ. Let T −Z denote the set
of all separations (A′, B′) of G− Z of order less than θ− |Z| such that there exists a separation (A,B) ∈ T
with Z ⊆ A ∩B, A− Z = A′ and B − Z = B′. It is shown in [33, Theorem (6.2)] that T − Z is a tangle of
order θ − |Z| in G− Z. Thus we can also call B as a ’big side’, with respect to this tangle.

For positive even integers r, define a graph Hr as follows. Let P0, . . . , Pr be r vertex disjoint (‘horizontal’)
paths of length 2r + 1, say Pi = vi0 . . . v

i
2r+1. Let V (Hr) =

⋃r
i=1 V (Pi) \ {v0

0 , v
r
2r+1}, and let

E(Hr) =

(
r⋃
i=1

E(Pi) \ {v0
0v

0
1 , v

r
2rv

r
2r+1}

)
∪
{
vijv

i+1
j : i odd, j even; 1 ≤ i < r; 0 ≤ j ≤ 2r + 1

}
∪
{
vijv

i+1
j : i even, j odd; 0 ≤ i < r; 1 ≤ j ≤ 2r + 1

}
.

The 6-cycles in Hr are its bricks. In the natural plane embedding of Hr, these bound its ‘finite’ faces. The
outer cycle of the unique maximal 2-connected subgraph of Hr is the boundary cycle of Hr. Any subdivision
H = THr of Hr will be called an r–wall or a wall of size r. The bricks and the boundary cycle of H are its
subgraphs that form subdivisions of the bricks and the boundary cycle of Hr, respectively. The nails of H
are vertices of degree 3 in H.

Let us recall that an r-grid is a graph which is isomorphic to a subdivision of the graph Wr obtained from
the Cartesian product of paths Pr × Pr, with vertex set V (Wr) = {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ r} in which
two vertices (i, j) and (i′, j′) are adjacent if and only if |i− i′|+ |j − j′| = 1. The (a× b)-grid is defined in a
similar way.

Definition A tree decomposition of a graph G is a pair (T,W ), where T is a tree and W is a family
{Wt | t ∈ V (T )} of vertex sets Wt ⊆ V (G), such that the following two properties hold:

(W1)
⋃
t∈V (T )Wt = V (G), and every edge of G has both ends in some Wt.

(W2) If t, t′, t′′ ∈ V (T ) and t′ lies on the path in T between t and t′′, then Wt ∩Wt′′ ⊆Wt′ .

The width of the decomposition is mint∈V (T ) |Wt| − 1. The treewidth of G is defined as the minimum width
taken over all tree decompositions of G.

A path decomposition is a tree decomposition where the underlying graph is a path. We will often indicate
path decompositions simply by a linearly ordered collection Bi, 1 ≤ i ≤ k, of subsets V (G) where the path
is understood to be the path with vertex set {i | 1 ≤ i ≤ k} and edges {i(i+ 1) | 1 ≤ i ≤ k − 1}.

One of the most important results concerning the treewidth is that it guarantees the existence of a large
wall. We give an algorithmic version of this result, which is due to Bodlaender [3].

Theorem A.1 For any constant r, there exists a constant w = f1(r) satisfying the following: There exists
an O(wwn) time algorithm that, given a graph G, either finds a tree decomposition of G of width at most w
or finds a wall W of height r. For a planar graph, the time complexity can be improved to O(2wn).
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Let T be a tangle of order Θ. We say that a wall of height at least Θ is controlled by the tangle T if the
‘large side’ B of an element (A,B) ∈ T contains all but at most Θ nails of H. There is a corresponding
result of Theorem A.1 that is concerning about a big side of a given tangle of large order.

Theorem A.2 For any constant r, there exists a constant w = f2(r) satisfying the following: Let T be a
tangle of order w. Then there is a wall of height r, controlled by the tangle T . Furthermore, given the tangle
T , there exists an O(wwn) time algorithm that finds a wall W of height r.

The first half of Theorem A.2 was proved by Robertson, Seymour and Thomas [43], while the second half is
obtained by Reed, see [18, 28].

A.3 Flat decompositions

We now describe the decomposition when a given society does not contain any of the desired patterns.

Vortex decompositions are a similar idea of that of tree decompositions, extended to societies. Let (G,Ω)
be a society, and label the vertices of Ω v1, v2, . . . , vn for some positive integer n in the order in which they
occur in Ω.

Definition A vortex decomposition of (G,Ω) is a collection of subsets X1, . . . , Xn ⊆ V (G) such that

i. for all 1 ≤ i ≤ n, vi ∈ Xi and for every edge e ∈ G, there exists an index j such that both ends of e
are contained in Xj .

ii. for all v ∈ V (G), {vj | v ∈ Xj} forms a segment of (G,Ω).

The depth of a vortex decomposition is equal to the

max
i,j
|Xi ∩Xj |.

Just as large treewidth ensures the existence of a large grid minor, we see that if a society does not admit a
vortex decomposition of small depth, then it must contain a certain structure.

Theorem A.3 (8.1, [32]) For all t ≥ 1, if (G,Ω) has no vortex decomposition of depth at most t then there
exist two disjoint segments S1, S2 of Ω and t disjoint Ω-paths each with one endpoint in S1 and one endpoint
in S2.

Definition Let (G,Ω) be a society and t ≥ 0 and α ≥ 1 be integers. Then (G,Ω) admits a t-nearly flat
decomposition if the following hold. There exists an integer n ≥ t and pairwise edge disjoint subgraphs
H0, H1, . . . ,Ht, Ht+1, . . . Hn of G satisfying the following:

i.
⋃n
i=0Hi = G and Ω ⊆ V (H0).

ii. For all i, j ≥ 1, i 6= j, V (Hi) ∩ V (Hj) ⊆ V (H0).

iii. For all i > t, |V (Hi) ∩ V (H0)| ≤ 3.

iv. Let Σ be the disc. There exist pairwise disjoint open discs ∆1, . . . ,∆n and an embedding σ : H0 ↪→
Σ−

⋃n
i=1 ∆i satisfying the following.

a. The vertices of Ω are on the boundary of Σ in the order stipulated by Ω.

b. The only vertices contained in the boundary of ∆i are exactly the vertices of Hi ∩H0.
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For each i, 1 ≤ i ≤ n, let Ωi be the cyclic ordering of the vertices V (H0) ∩ V (Hi) given by the embedding
of H0 in the plane. The societies (Hi,Ωi) are the vortices of the decomposition; we refer to (Hi,Ωi) for
t < i ≤ n as the small vortices and for 1 ≤ i ≤ t as the large vortices. The decomposition is α-bounded if for
all 1 ≤ i ≤ t, (Hi,Ωi) has a vortex decomposition of depth at most α. Finally, let H0 be the graph defined
to have vertex set V (H0) and edge set E(H0)∪ {xy | ∃i > t such that x, y ∈ V (Hi)∩ V (H0)}. Note that by
construction, H0 embeds in Σ−

⋃r
i=1 ∆i.

We sometimes say that (G,Ω) is rural if it admits a 0-nearly flat decomposition. Let t be a positive integer
t, and let H0, H1, . . . ,Hn be a t-nearly flat decomposition of a society (G,Ω). We say that the small vortices
of the decomposition are grounded if for all i, t < i ≤ n, there exists a component C of Hi − V (H0) such
that for all x ∈ V (Hi) ∩ V (H0) there exists a y ∈ V (C) such that x is adjacent to y. In other words, the
component C is adjacent every vertex of V (Hi)∩ V (H0). Thus “grounded” serves as a sort of non-triviality
condition for the decomposition.

Observation 2 If a society (G,Ω) admits a t-nearly flat decomposition for some non-negative integer t,
then (G,Ω) admits a t-nearly flat decomposition where the small vortices are grounded.

The t-nearly flat decomposition generalizes the idea of almost 3-embeddings in the disc where we now allow
at most t possible faces to be replaced by sub-societies. The crossing paths theorem of Robertson and
Seymour can be restated as follows.

Theorem A.4 (2.4, [32]) Let (G,Ω) be a society. Then (G,Ω) either contains a (1, l)-cross pattern for
every positive l, or (G,Ω) admits a 0-nearly flat embedding.

The next theorem is the main result of [32].

Theorem A.5 (6.4, [32]) For all positive l, there exists a value α = α(l) such that the following holds. Let
(G,Ω) be a society. Then (G,Ω) either

1. contains an l-crosscap, a (1, l)-leap pattern, or a (2, l)-cross pattern, or

2. admits an α-bounded 1-nearly flat decomposition.

We generalize this result and show the following theorem. This is a more exact statement of Theorem 2.2,
which follows immediately from the stronger statement.

Theorem A.6 For all non-negative integers k, l, there exists a value α = α(k, l) satisfying the following.
Let (G,Ω) be a society. Either

1. (G,Ω) contains a k-crosscap, a (k, l)-cross pattern, or a (k, l)-leap pattern, or

2. there exists a set X ⊆ V (G) with |X| ≤ α such that (G−X,Ω\X) admits an α-bounded (k−1)-nearly
flat decomposition.

A.4 The weak structure theorem

In this subsection, we shall mention one of the key theorems we will use, which we call The Weak Structure
Theorem. We need some definitions.

Definition For a positive integer r and a graph G, a flat r-wall decomposition of G is a collection of
pairwise edge disjoint subgraphs G0, G1, . . . , Gn and an r-wall subgraph W with boundary cycle C satisfying
the following:
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i. G =
⋃n
i=0Gi,

ii. V (Gi) ∩ V (Gj) ⊆ V (G0) for all 1 ≤ i < j ≤ n and |V (Gi) ∩ V (G0)| ≤ 3 for all 1 ≤ i ≤ n, and

iii. for all 1 ≤ i ≤ n, V (Gi) \ V (G0) contains at most one vertex of degree 3 in W .

Let G0 be the subgraph resulting from G0 after adding an edge to any two nonadjacent vertices u and v
contained in V (G0) ∩ V (Gi) for some index 1 ≤ i ≤ n.

iv. The graph G0 is planar and can be embedded such that the infinite face is bounded by V (C)∩V (G0).

Recall that ∂G(X) for any subset X in a graph G is the set of vertices v in V (G) \ X such that v has a
neighbor in X.

We are now ready to give the Weak Structure Theorem.

Theorem A.7 (Weak Structure Theorem, [36], Theorem (9.4)) For all k ≥ 1, r even, there exists
a value q = q(t, r) such that the following holds. Let G be a graph that does not contain Kt as a minor
and let W be a wall of size w. Then there exists a set A ⊆ V (G) with |A| ≤ 10t2 such that G − A can be
decomposed into edge disjoint subgraphs H and G′ with G− A = G′ ∪H. Moreover, the graph H has a flat
r-wall decomposition H0, H1, . . . ,Hn, a subwall W ′ of size r of W with boundary cycle C satisfying:

i) ∂G−A(V (G′)) ⊆ V (C) ∩ V (H0), and

ii) every vertex of degree 3 in W ′ is contained in V (H0).

The weak structure theorem is in fact weaker than the full structure theorem. Notice that a graph G may
have the desired decomposition in the statement of the weaker theorem, and yet still have an arbitrarily
large clique minor (for example, an arbitrarily large clique could be contained in the subgraph G′). Instead,
in the full clique-sum decomposition theorem, for all integers t there exists a value T such that any graph
with no Kt minor has a certain structure, and, moreover, any graph which does have this structure cannot
contain KT as a minor. See [10].

Let us observe that if we are given a tangle T of order f2(q), we can find a q-wall W that can be obtained
from Theorem A.2, such that W is controlled by the tangle T . If we start with this wall W in Theorem A.7,
each Hi ∪A is a small side with respect to the tangle T . This fact will be used when we prove Theorem 1.1.

A.5 Near embeddings and the structure theorem

Before proving the main structure theorem, Robertson and Seymour first studied graphs embedded in some
fixed surface. We will use these tools as well, and we present them in this section.

We begin with several basics on graphs embedded in surfaces. By surface we mean a 2-manifold without
boundary, and we always assume the embedded graph has a 2-cell embedding. If a graph G is embedded in
a surface Σ not equal to the sphere, the representativity of the embedding is the minimal number of points
in which a homotopically non-trivial curve C in the surface intersects the embedded graph.

We will need the following result or Robertson and Seymour.

Theorem A.8 (9.1,[30]) For all t ≥ 1 and for all surfaces Σ not equal to the sphere in which Kt can be
embedded, there exists a value f ′(t,Σ) such that if G is a graph embedded in Σ with representativity f ′(t,Σ),
then G contains Kt as a minor.

A k-near embedding in Σ captures a tangle T if the ‘large side’ B of an element (A,B) ∈ T − Z is never
contained in a Hi for 1 ≤ i ≤ m.
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B Lemmas on X-paths

Given a fixed subsetX ⊆ V (G) of a graphG, we define a distance function to be a function d : X×X → [0,∞)
such that

1. d(x, y) = d(y, x) for all x, y ∈ X, and

2. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X.

In other words, a distance function is similar to a metric in that it is a symmetric non-negative function
which satisfies the triangle inequality. However, we do not include any requirements on when d(x, y) is equal
to zero. Given a distance function d, x ∈ X, and t ≥ 0, we define the ball around x of radius t, denoted
Bd(x, t) or B(x, t) when there can be no confusion, to be {y ∈ X | d(x, y) ≤ t}.

In this section we prove two lemmas on X-paths in graphs. Recall that if X ⊆ V (G) is a subset of the
vertices of a graph G, then an X-path is a path P with both endpoints contained in X and no internal vertex
in X.

Lemma B.1 Let d be a distance function on a subset X ⊆ V (G) of vertices of a graph G. Let k, l, t ≥ 0
be non-negative integers. Then one of the following holds. Either there exist pairwise disjoint X-paths
P1, . . . , Pk that satisfy the following conditions:

i. d(xi, yi) ≥ l for all 1 ≤ i ≤ k, and

ii. the endpoints of Pi can be labeled xi, yi so that d(xi, xj) ≥ t for all 1 ≤ i < j ≤ k.

Or, alternatively, the following holds. Let T = max{l, t}. There exist vertices z1, . . . , z3k−3 ∈ X and
Z ⊆ V (G), |Z| ≤ k − 1 such that every X \ Z-path P in G − Z with endpoints x and y either satisfies
d(x, y) < l or x, y ∈

⋃3k−3
i=1 B(zi, T ).

This is an idea we will return to again later in the article. We refer to a set of X-paths satisfying i. and ii.
above as (l, t)-spread with respect to the distance function d.

To summarize, call an X-path with endpoints at distance l long. The lemma states that one of the following
two situations holds. First, we find k vertex disjoint long X-paths P1, . . . , Pk such that the endpoints of Pi
can be labeled xi, yi, so that for each Pj and Pj′ , xj is of distance t from xj′ for all j 6= j′. Alternatively,
we find a small number of vertices Z in G and at most 3k− 3 balls in X such that every long X-path either
contains a vertex of Z, or has both endpoints contained in the union of these balls.

Proof. Let k, l, and t be non-negative integers. Fix T = max{l, t}. For the duration of the proof, we will
say that an X-path P is long if the endpoints of P are at distance at least l. We proceed by induction on
|X|.

First, assume that there exists a vertex x ∈ X such that there does not exist a long X-path with x as an
endpoint. Then the theorem holds by simply applying induction to G − x. We conclude that every vertex
of X is the endpoint of some long X-path.

Let P1, . . . , Ps be disjoint X-paths satisfying i and ii with s chosen maximal over all such possibilities. Let
0 ≤ p ≤ s be an integer, and let Q1, . . . , Qp be disjoint paths with the endpoints of Qi equal to zi and wi
for 1 ≤ i ≤ p satisfying the following.

a. wi ∈ X \
⋃s
j=1(B(xj , T ) ∪B(yj , T )) for all 1 ≤ i ≤ p.

b. zi ∈ V (Pi) for all 1 ≤ i ≤ p.
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c. Qi is internally disjoint from X ∪
⋃s
j=1 V (Pj) for 1 ≤ i ≤ p.

d. d(wi, wj) > T for 1 ≤ i < j ≤ p.

We pick P1, . . . , Ps and Q1, . . . , Qp satisfying a - d to maximize p. Fix Z = {z1, . . . , zp}

Let x be a vertex of X \ (
⋃p
i=1B(wi, T ) ∪

⋃s
i=1 (B(xi, T ) ∪B(yi, T ))), and let R be a long X \ Z-path in

G − Z. If no such x and R exist, then given that s ≤ k − 1 and p ≤ s, the lemma is proven. If R is
disjoint from P1, . . . , Ps, we see that R,P1, . . . , Ps satisfy i and ii, contrary to our choice of P1, . . . , Ps.
Note that ii follows by our choice of x to be distant T from every endpoint of the Pi. We conclude that
V (R)∩ (

⋃p
i=1 V (Qi) ∪

⋃s
i=1 V (Pi)) is nonempty. Let y be the first vertex of

⋃p
1 V (Qi)∪

⋃s
1 V (Pi) which we

encounter when traversing the path R beginning at the endpoint x.

There are now several different cases, depending on where the vertex y lies. As the first case, assume
y ∈ V (Qi) for some 1 ≤ i ≤ p. It follows that R ∪Qi contains a long X-path, call it P ′, which has x as an
endpoint and is disjoint from P1, . . . , Ps. However, then P ′, P1, . . . , Ps satisfy i and ii, violating our choice
of s to be maximal. As a case, assume y ∈ Pi for some 1 ≤ i ≤ p. Then R ∪ Qi ∪ Pi contains two disjoint
long X-paths, call them P ′ and P ′′, such that P ′ has x as an endpoint and P ′′ has wi as an endpoint. Note
that here we are using the property that y 6= zi to ensure that P ′ and P ′′ can be chosen disjoint. Then
P1, . . . , Pi−1, Pi+1, . . . , Ps, P

′, P ′′ satisfy i and ii, violating our choice of s to be maximal. As the final case,
consider when y ∈ Pi for p < i ≤ s. Then Q1, . . . , Qp, R, after possibly renumbering the paths P1, . . . , Ps,
satisfy a - d, contrary to our choice of p. This completes the analysis of the possible cases and completes the
proof of the lemma. �

Before proceeding with the next result, we mention a theorem of Mader [25] which we will use in the proof.
Let S be a partition of a subset X of vertices of a graph G. An S-path is an X-path with endpoints in
distinct elements of S. See [44] for a short proof of Theorem B.2.

Theorem B.2 (Mader) Let G be a graph and S a partition of a subset S of vertices in G. The maximum
number of disjoint S-paths is equal to the minimum value of

|U0|+
n∑
i=1

⌊
1
2
|Bi|

⌋
taken over all partitions U0, U1, . . . , Un of V (G) such that each S-path disjoint from U0 has at least one edge
with both endpoints in Ui for some index i. The value Bi denotes the set of vertices in Ui which belong to S
or have at least one neighbor in V (G) \ (U0 ∪ Ui).

The next lemma is somewhat technical and concerns the following situation. We begin with a collection of
k− 1 disjoint X-paths each of whose endpoints are distant in X, and would like to expand this to a set of k
disjoint X-paths, again, each of whose endpoints are distant in X. The lemma describes a set of sufficient
conditions which allow one to find such paths.

Lemma B.3 Let k, l be non-negative integers. Let G be a graph and X ⊆ V (G) a subset of vertices with
a distance function d defined on X. Let v be a vertex in X such that d(v, x) ≥ l for all x ∈ X \ {v}. Let
P1, . . . , Pk−1 be disjoint (X \ {v})-paths in G− v where the endpoints of Pi are xi and yi for 1 ≤ i ≤ k − 1.
Assume that d(xi, yi) ≥ kl for all 1 ≤ i ≤ k − 1, and, furthermore, assume there exist 2k − 1 X-paths with
pairwise intersecting only in the vertex v. Then there exist disjoint X-paths P ′1, . . . , P

′
k such that

i. the endpoints of P ′i are x′i and y′i and d(x′i, y
′
i) ≥ l for all 1 ≤ i ≤ k, and

ii. there exists x ∈ X such that x′i, y
′
i ∈ {x1, . . . , xk−1, y1, . . . , yk−1, v, x} for all 1 ≤ i ≤ k.
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Proof. We proceed by induction on k. When k = 0, the claim is trivially true. Thus, we may assume
k ≥ 1. Let Q1, . . . , Q2k−1 be X-paths such that Qi ∩ Qj = v for all i 6= j. Pick such paths to minimize⋃k−1
i=1 E(Pi)∪

⋃2k−1
i=1 E(Qi). We may assume that G =

⋃2k−1
1 Qi∪

⋃k−1
1 Pi, as any additional edges or vertices

may be deleted and we still satisfy the hypotheses.

First, we observe that for every index i, 1 ≤ i ≤ k−1, the path Pi intersects Qj for at least 2 distinct indices
j. Assume that there exists an index α such that at most 1 index j satisfies Pα ∩Qj 6= ∅. By applying the
induction hypothesis to the graph

⋃
{j|Pα∩Qj=∅}Qj ∪

⋃
{i 6=α} Pi, we find k − 1 X-paths satisfying i and ii.

By construction, the k−1 paths we find will be disjoint from Pα. Thus, by including Pα, we find the desired
k paths satisfying i and ii.

We claim that for every index i, 1 ≤ i ≤ k−1, there exist indices j and j′ such that xi is an end of Qj and yi
is an endpoint of Qj′ . Fix an index i such that xi is not contained in Qj for all indices j in order to reach a
contradiction. As we have already seen, Pi intersects at least two distinct paths Qj . Let w be the first vertex
of
⋃2k−1
j=1 V (Qj) which we encounter when traversing Pi from xi to yi. Let β be such that w ∈ V (Qβ). If we

replace Qβ with the path vQβwPixi, we find 2k − 1 paths from v to X \ {v} intersecting only in the vertex
v. Moreover, if we let x be the end of Qβ in X \ {v}, we see that wQβx cannot be equal to wPiyi, as wPiyi
must intersect a second path Qj . Thus, the subpath wQβx must contain at least one edge not contained
in
⋃k−1
j=1 E(Pj). This contradicts our choice of Q1, . . . , Q2k−1 to minimize

⋃k−1
j=1 E(Pj) ∪

⋃2k−1
j=1 E(Qj) and

proves the claim.

Without loss of generality, we assume Q2k−1 has no endpoint in {x1, . . . , xk−1, y1, . . . , yk−1}. Let r be the
endpoint of Q2k−1 not equal to v. We conclude that X = {x1, . . . , xk−1, y1, . . . , yk−1, v, r}.

We define an auxiliary graph H with vertex set {x1, . . . , xk−1, y1, . . . , yk−1, v, r} such that two vertices are
adjacent if and only if they have distance less than l with the distance function d. Consider the components
of this graph. First, note that the vertex v has no neighbors and is an isolated vertex in H. Observe that
for all indices i, 1 ≤ i ≤ k− 1, it is not the case that both xi and yi are contained in the same component of
H. Otherwise, we pick such an index i and a path in H connecting xi and yi chosen over all such indices to
minimize the length of the path. The path cannot contain v, as v is an isolated vertex in H. It follows that
the path has at most k edges. Given that any two adjacent vertices in H have distance at most l − 1, the
triangle inequality implies that xi and yi have distance at most k(l−1) < kl, contradicting our assumptions.

Let S be the partition of X given by the connected components of H. We apply Theorem B.2 to G with
the partition S of X. If there exist k disjoint S-paths in G, such paths would satisfy i and ii, proving the
theorem. Thus we assume, in order to reach a contradiction, that there exists a partition U0, U1, . . . , Un of
the vertex set of G such that

|U0|+
n∑
1

⌊
1
2
|Bi|

⌋
≤ k − 1.

Note that in fact we have equality above, as P1, . . . , Pk−1 form k − 1 disjoint S-paths. Also, note that each
of the paths Qi for 1 ≤ i ≤ 2k − 1 is an S-path.

Recall that Bi is the set of vertices of Ui∩X along with the vertices of Ui with a neighbor in V (G)\(U0∪Ui).
Observe that if R is an X-path which is equal to Pi for some 1 ≤ i ≤ k−1 or R = Qj for some 1 ≤ j ≤ 2k−1,
then for all l, 1 ≤ l ≤ n, we have the property that if both V (R)∩U0 = ∅ and |Ui ∩ V (R)| ≥ 2, then we can
conclude that |Bi ∩ V (R)| ≥ 2.

We now show that v /∈ U0. Fix J ⊆ {1, . . . , k − 1} such that V (Pj) ∩ U0 6= ∅ if and only if j ∈ J . By the
definition of Bi, for every j /∈ J there exists an index i ≥ 1 such that |Ui ∩ V (Pj)| ≥ 2, and consequently,
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|Bi ∩ V (Pj)| ≥ 2. Combining these bounds, we see that

k − 1 = |U0|+
n∑
i=1

⌊
1
2
|Bi|

⌋

≥ |U0 ∩ {v}|+

∣∣∣∣∣U0 ∩

(
k−1⋃
i=1

V (Pi)

)∣∣∣∣∣+
n∑
i=1

∑
j /∈J

⌊
1
2
|Bi ∩ V (Pj)|

⌋
≥ |U0 ∩ {v}|+ |J |+ (k − 1− |J |)
≥ |U0 ∩ {v}|+ k − 1.

Specifically, we conclude that equality holds throughout and |U0 ∩ {v}| = 0. Without loss of generality, we
assume that v ∈ U1.

We re-iterate the above argument with the paths Q1, . . . , Q2k−1. Let J0 ⊆ {1, . . . , 2k − 1} be such that
V (Qj) ∩ U0 6= ∅ if and only if j ∈ J0. Let J1 ⊆ {1, . . . , 2k − 1} \ J0 be the set of indices j such that such
that |V (Qj) ∩ U1| ≥ 2. We see that

k − 1 = |U0|+
n∑
i=1

⌊
1
2
|Bi|

⌋

≥ |J0|+
⌊

1
2

(|J1|+ 1)
⌋

+
n∑
i=2

∑
j /∈(J0∪J1)

⌊
1
2
|Bi ∩ V (Qj)|

⌋

≥ |J0|+
⌊

1
2

(|J1|+ 1)
⌋

+ (2k − 1)− |J0| − |J1|

≥ (2k − 1) +
1
2

(|J1|+ 1)− 1
2
− |J1|

≥ (2k − 1)− |J1|
2
≥ k − 1

2
,

a contradiction. Note, we use the fact that v /∈ U0 to claim that |U0| ≥ |J0|. This contradiction shows that
no such partition U0, . . . , U1 of V (G) exists, and completes the proof of the lemma. �

C Rerouting patterns in a planar annulus

We remind the reader that a linkage P ′ is equivalent to a linkage P if they have the same number of
components and for every component P ∈ P, there exists a component P ′ ∈ P ′ such that P and P ′ have
the same endpoints.

Let P be a pattern in a society (G,Ω). Then P is crooked if for every P ∈ P, both segments of Ω − V (P )
contain some vertex of V (P) ∩ Ω. Note that a k-crosscap is a crooked pattern trivially, and the fact that
both a (k, l)-cross pattern and (k, l)-leap pattern are crooked patterns follows by the minimality assumption
in their respective definitions.

We will need several definitions concerning sets of disjoint cycles in nearly flat decompositions.

Definition Let (G,Ω) be a society with a 1-nearly flat decomposition (H0, H1, . . . ,Hn) for n ≥ 1. Let ∆ be
the disc, ∆i for 1 ≤ i ≤ n be the open discs as in the definition, and fix an embedding of H0 in ∆−(

⋃n
i=1 ∆i).

Let s ≥ 1 be a positive integer. The cycles C1, C2, . . . , Cs in G form an s-nest if the following conditions are
satisfied.
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i. For all 1 ≤ i < j ≤ s, V (Ci) ∩ V (Cj) = ∅.

ii. For each small vortex (Hi,Ωi), i ≥ 2 and for all 1 ≤ j ≤ s, we have that |V (Cj) ∩ Ωi| ≤ 2.

For every 1 ≤ i ≤ s, let Ci be cycle of H0 given by Ci∩H0 as well as at most one edge of H0[V (Hj)∩V (H0)]
for 2 ≤ j ≤ n. By ii. above, the cycle Ci is well defined for every 1 ≤ i ≤ s.

iii. For each 1 ≤ i ≤ s, the cycle Ci bounds a disc ∆i ⊆ ∆ such that ∆ ⊇ ∆s ⊇ · · · ⊇ ∆1.

Definition Let C1, . . . , Cs be pairwise disjoint cycles in a society (G,Ω), and let P be a pattern. We say
that P is orthogonal to C1, . . . , Cs if for every P ∈ P with endpoints x and y in Ω, there exists a vertex
z ∈ V (P ) such that the following holds:

i. for 1 ≤ i ≤ s, both xPz ∩ Ci and zPy ∩ Ci form connected subpaths of Ci, and

ii. xPz intersects each of the cycles Cs, Cs−1, . . . , C1 in that order and zPy intersects each cycle C1, C2, . . . , Cs
in that order.

The first result of this section shows when we can find many cycles which are orthogonal to a given pattern.
If our society is 1-nearly flat, we will see that it suffices to contain a huge nest. In order to state this result,
we will need the following theorem.

Theorem C.1 ([42], see also [17]) For all k ≥ 1, there exists a value w(k) such that the following holds.
Let P be a linkage of order k in a graph G with V (G) = V (P). Then either there exists a vertex v in G and
a linkage P ′ in G− v which is equivalent to P, or the treewidth of G is at most w(k).

The next theorem is a restatement of Theorem 10.1 in [16].

Theorem C.2 (10.1, [16]) Let (G,Ω) be a society and let k, t ≥ 1 be positive integers. Let P be a crooked
pattern of order k. Let s = w(k) + t where w(k) is the function in Theorem C.1. Let H0, H1, . . . ,Hn be a
1-nearly flat decomposition of (G,Ω) such that all the small vortices are grounded. If there exists an s-nest
C1, . . . , Cs, then there exist a t-nest C ′1, . . . , C

′
t in G and a pattern P ′ equivalent to P such that P ′ and

C ′1, . . . , C
′
t are orthogonal.

In our proofs, we will inductively find a large crooked transaction in a smaller society. We will then need to
find a pattern which is substantially the same, but avoids a fixed segment of the society vertices. First, we
define what we mean by “substantially” the same for two crooked patterns. Let P and P ′ be two patterns
in a society (G,Ω) such that the components of P are P1, . . . , Pk and the endpoints of Pi equal to si and ti.
The patterns P and P ′ are homeomorphic if there exists a labeling P ′1, . . . , P

′
k of the components of P ′ and

their endpoints such that the endpoints of P ′i are equal to s′i and t′i and the vertices s1, . . . , sk, t1, . . . , tk and
s′1, . . . , s

′
k, t
′
1, . . . , t

′
k both occur in Ω is the same cyclic order.

Now we consider the property for a given segment of society vertices that will allow us to find a homeomorphic
pattern with no endpoint in that segment.

Definition Let (G,Ω) be a society, and let S be a segment of the society. For all t ≥ 1, we say that S is
t-insulated if there exists a separation (A,B) of G with the following properties:

i. S ⊆ A, and A∩Ω and B ∩Ω form two segments of Ω intersecting in exactly two vertices, call them v1

and vn for some n ≥ 2.

ii. There exists an enumeration v1, v2, . . . , vn of the vertices A∩B such that if we let ΩA be the cyclic order
of (A ∩B) ∪ (A ∩ Ω) given by v1Ωvnvn−1, . . . , v1, then (G[A],ΩA) has a 0-nearly flat decomposition.
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iii. If we let X and Y be the two segments of (Ω∩A)\S, there exist t disjoint paths in G[A] from X to Y .

Now we state the theorem. The proof is similar to the proof of Theorem C.2.

Theorem C.3 Let (G,Ω) be a society and let P be a crooked pattern in (G,Ω) of order k. Let S be a
segment of Ω. Let w be the function in Theorem C.1. If S is (2k+1)(2k+2w(k))-insulated, then there exists
a pattern P which is homeomorphic to P which does not have any endpoint in S.

Proof. Fix t = 2k+ 2w(k), and let (A,B) be the separation as in the definition of (2k+ 1)t-insulated with
S ⊆ A. Let X and Y be the two segments of Ω comprising the vertices (A∩Ω)\S. Then in G[A], there exist
(2k+ 1)t disjoint paths from X to Y . Since there are at most 2k vertices of Ω∩V (P) which are contained in
X ∪ Y , it follows that we can find segments X ⊆ X and Y ⊆ Y which are disjoint from V (P) and a pattern
Q of order t contained in G[A] such that every component has one endpoint in X and one endpoint in Y .

Fix P ′ to be a pattern contained in G equivalent to P and Q′ a pattern in G[A] equivalent to Q which
minimize E(P ′) ∪ E(Q′). Let G′ be defined to be the subgraph P ′ ∪ Q′ and let Ω′ be the cyclic order Ω
restricted to Ω ∩ (V (P ′) ∪ V (Q′)). We will in fact see that the desired pattern P is contained in G′.

Let ΩA be the cyclic order on a subset of A as in the definition of t-insulated. Let A′ = A ∩ V (G′) and
B′ = B ∩ V (G′), and ΩA′ be the cyclic order ΩA restricted to A′. Given that (G[A],ΩA) has a 0-flat
decomposition, it follows that (G′[A′],ΩA′) does as well. Fix H0, H1, . . . ,Hn to be a 0-flat decomposition of
(G′[A′],ΩA′). By Observation 2, we may assume that the vortices of the decomposition are grounded. We
pick our grounded decomposition to minimize n, the number of vortices.

We begin with several claims about the the 0-near flat decomposition.

Claim C.4 There are no vortices in the decomposition and G′[A′] = H0.

Proof. Assume H1 is defined. Since the decomposition is 0-nearly flat, it follows that |V (H0)∩V (H1)| ≤ 3.
Let x1, . . . , xl be the vertices of V (H0) ∩ V (H1) for some integer l, 1 ≤ l ≤ 3. Let ∆1 be the open disc of
the disc ∆ corresponding to H1 in the definition of a 0-near decomposition.

First, observe that there exists at most one component of each of P ′ and Q′ that intersect E(H1) by the fact
that E(H1) is separated from the rest of G′ by a 3-cut. Moreover, given that V (G′) = P ′ ∪ Q′, we see that
at least one such path does intersect V (H1) \ V (H0). If l ≤ 2, it follows that l = 2 and H1 consists of just
a single path linking the vertices x1 and x2 by our choice to minimize the edges of G′. Let ∆ be the disc
and let ∆1, . . . ,∆n be the discs as in the definition of 0-nearly flat decomposition. We see that H1 ∪H0 can
be embedded in ∆ −

⋃n
i=2 ∆i by embedding H1 in ∆1. This contradicts our choice to minimize the value

n. Similarly, if l = 3, given minimality and the fact that H1 is grounded, we can show the following after
possibly re-labeling the vertices of V (H1) ∩ V (H0). The subgraph H1 must consist of exactly the union of
a subpath P of P linking x1 and x2 and a subpath Q with one end equal to x3 and the other endpoint
contained in V (P ). It follows that H0 ∪H1 can again be embedded in ∆−

⋃n
i=2 ∆i, contrary to our choice

to minimize n. �

Claim C.5 There does not exist a component P of P ′ with V (P ) ⊆ A′.

Proof. Pick such a component P and a segment Z of ΩA′ , to minimize |Z|, with Z ⊆ Ω ∩ A such that
Z contains the endpoints of P . Given that A′ can be embedded on the disc, we see that V (P ) is a cutset
separating Z from ΩA′ \Z. However, by the fact that P ′ is a crooked pattern, there exists some component
P2 of P which intersects Z \ V (P ). It follows that P2 is contained in G′[A′] and has both endpoints in
Z \ V (P ). This, however, contradicts our choice of P and Z to minimize |Z|, proving the claim. �

Finally, we see P ′ and Q′ form a subgraph of bounded treewidth.
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Claim C.6 The graph P ′ ∪Q′ has treewidth tw(G′) < w(k).

Proof. If there exists a linkage P ′′ equivalent to P which avoids some vertex of degree at least 3 in G′, it
follows that P ′′ ∪ Q′ will have strictly fewer edges, contradicting our choice of P ′ and Q′. Note that every
vertex of Ω∩V (Q′) has degree one in G′, and so each component of P ′′ intersects Ω exactly in its endpoints.
Consequently, P ′′ is a pattern as required. The claim follows now by suppressing vertices of degree at most
2 in G′ and applying Theorem C.1. �

We number the components of Q′ Q1, Q2, . . . , Qt so that Q1 is “closest” to the segment S, followed by Q2,
and so on. Explicitly, there exist segments S0 = S ⊆ S1 ⊆ S2 ⊆ · · · ⊆ St of Ω such that Qi has both
endpoints in Si and V (Qi) ∩ Si+1 = ∅. Then, by our choice of P ′ and Q′ to minimize the number of their
edges, we see that there does not exist a subpath R of P ′ ∩G′[A′] with both endpoints in some component
Qi of Q′ and which is otherwise disjoint from Q′. Otherwise, we could reroute Qi through R and reduce the
number of edges in their union.

We define a local peak to be a subpath R of P ′ such that R has both endpoints in Qi for some index i < t,
at least one internal vertex in Qi+1, and no internal vertex in Q′ −Qi+1.

Claim C.7 There does not exist a local peak.

Proof. Assume such a local peak R exists with its endpoints are contained in Qi, and choose such a local
peak to minimize the value i. Assume R is contained in the component P of P ′. Let the endpoints of R
be x and y. Then the subpath xQiy must intersect some component of P ′, otherwise we could reroute P
through Qi and reduce the number of edges in the union. Let P2 be a component of P ′ intersecting xQiy.
Given that P2 does not have endpoints in (X ∪ Y ) ∩ ΩA′ , if i > 1, it follows that P2 has a subpath forming
a local peak with endpoints on Qi−1, contrary to our choice of local peak. However, if i = 1, it follows that
either P2 has a subpath with both endpoints contained in Q1 and no internal vertex in Q′, or, P2 is strictly
contained in G′[A′]. In the first case, we can reroute Q1 to reduce the number of edges in the union; the
second case contradicts Claim C.5. This proves the claim. �

We define a dive to be a subpath of P[A′] with both endpoints in ΩA′ ∩ (A′ ∩ B′). Let R be a dive with
endpoints x and y. Observe that by Claim C.7, there exist an index i and a vertex z in V (R) ∩ V (Qi) such
that the subpath xRz (and symmetrically, zRy) intersects the path Qj in a subpath of Qj for all i ≤ j ≤ s.
Moreover, the subpath xRz (and again symmetrically, zRy) intersects each of the paths Qt, Qt−1, . . . , Qi in
order when traversing xRz from x to z. Thus, the path R “dives” directly down to a “deepest” path Qi,
and then returns as directly as possible to A′ ∩B′.

We define the depth of a dive R to be the minimal index i such that V (R) ∩ V (Qi) 6= ∅.

Claim C.8 There does not exist a dive of depth 2w(k).

Proof. We first observe that if there exists a dive R of depth l, then there must exist a dive R′ of depth
l − 1, otherwise we could reroute the component of P ′ containing R through a subpath of Qi+1 and reduce
the number of edges. It follows that if there exists a dive of depth 2w(k), then there exist dives of depth i
for all w(k) ≤ i ≤ 2w(k). It follows that the union of the dives and the paths Qt, Qt−1, . . . , Qt−w(k) contains
a w(k)×w(k)-grid minor, contradicting Claim C.6 because a w(k)×w(k)-grid minor has treewidth at least
w(k) (see [10]). This proves the claim. �

We conclude that at most 2k components of P ′[A′] intersect the paths Q1, . . . , Q2k. Moreover, by Claim
C.7, they must intersect in a clean manner. It is now an easy matter to find a pattern homeomorphic to P ′
by rerouting the components of P ′ which intersect Q1, . . . , Q2k so that they have their endpoints contained
in X. This completes the proof of the theorem. �
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D Proof of Theorem A.6

In this section we present the proof of the main society theorem, Theorem A.6. We first need several quick
results going forward. The first is a theorem of Erdős and Szekeres.

Theorem D.1 Let k ≥ 1 be a positive integer, and let a(1), a(2), . . . , a(k2) be a sequence of distinct integers
of length k2. Then there exists either a monotone increasing or monotone decreasing subsequence of length
k.

We will also need the following lemma. The statement is somewhat technical, but describes a situation which
will arise in the proof.

Lemma D.2 Let G be a graph and X and Y two nonempty subsets of vertices. Let k ≥ 1 be a positive
integer. Assume that there exists at least one X−Y path in G, but there do not exist k vertex disjoint X−Y
paths. Then there exists a separation (A,B) with X ⊆ A and Y ⊆ B satisfying exactly one of the following:

a. |A∩B| = k, for all z ∈ A∩B there exists a z−X path in G[A], and there exist k disjoint (A∩B)−Y
paths in G[B], or

b. |A ∩B| < k and (A ∩B) ⊆ Y .

Proof. The proof proceeds by induction on |V (G) \ X|. Note that if X = V (G), then it follows that
|Y | ≤ k, lest there exist k trivial X −Y paths, and consequently, the trivial separation (V (G), Y ) satisfies b.

We assume that there do not exist k disjoint X−Y paths. Let (A,B) be a separation of minimal order with
X ⊆ A and Y ⊆ B, chosen over all such minimal separations to minimize |B|. Note that by assumption,
(A,B) has order at least one. Also, by minimality, for every vertex z in A ∩ B there exists an X − z path
in G[A]. Assume that B \ A 6= V (G) \X. If we consider the subgraph G[B], there do not exist k disjoint
(A∩B)−Y paths, and there exists at least one such path. By the induction hypothesis applied to G[B] and
the two sets A∩B and Y , there exists a separation (A′, B′) of G[B] with A∩B ⊆ A′ and Y ⊆ B′ satisfying
either a. or b. It follows that (A ∪A′, B′) is a separation in G satisfying a. or b., as desired.

Thus we have reduced to the case when B \ A = V (G) \X. Then by our choice of separation (A,B), there
does not exist any other order |A ∩ B| separation separating X and Y . We may assume that A ∩ B * Y ,
lest the separation (A,B) satisfy b. Let x be a vertex of B \A which is adjacent to a vertex of A ∩B. Such
a vertex exists because there exist |A ∩B| disjoint paths from A ∩B to Y by our choice of a minimal order
separation. Given that A ∩B * Y , we may simply pick the next vertex on one of these paths. We see that
there exist |A ∩B|+ 1 disjoint paths from (A ∩B) ∪ {x} to Y by the fact that (A,B) was the unique order
|A ∩ B| separation separating X and Y . If |A ∩ B| + 1 = k, then the separation (A ∪ {x}, B) satisfies a. If
instead |A ∩ B|+ 1 < k, then we apply induction to G[B] with the two sets (A ∩ B) ∪ {x} and Y to find a
separation (A′, B′) satisfying a. or b. The separation (A ∪ A′, B) then satisfies one of the desired outcomes
in the original graph. �

In the proof we will need to briefly consider the bridges of a linkage. We recall that a bridge of a linkage P
in a graph G is a subgraph B such that B is either an edge with both endpoints in V (P) (known as a trivial
bridge), or B − V (P) is a connected component of G− V (P) and B contains every edge with one endpoint
in V (P) and one endpoint in V (B) \ V (P). Thus the bridges can be thought of the distinct “pieces” of the
graph attaching to the linkage P.

The proof of Theorem A.6 will be an inductive proof on the value k. The inductive step hinges on finding a
large, almost planar subgraph in the society. We state this as a separate lemma.

Lemma D.3 Let k, l ≥ 2, and t be non-negative integers such that t ≥ l, t ≥ k. Let (G,Ω) be a society.
There exists a value α = α(k, t) such that one of the following holds.
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1. (G,Ω) contains a k-crosscap, a (k, l)-cross pattern, or a (k, l)-leap pattern, or

2. (G,Ω) admits a vortex decomposition of adhesion α, or

3. there exists a set Z ⊆ V (G) with |Z| ≤ 4k2, segments S1, S2 of Ω which are disjoint from Z, and a
decomposition of G− Z into graphs GL, H,GR such that the following hold:

a. V (H) ∩ Ω = S1 ∪ S2. We can label the two segments of Ω \ (S1 ∪ S2) as SL and SR such that
V (GL) ∩ Ω = SL \ Z and V (GR) ∩ Ω = SR \ Z.

Let ΩH be the cyclic order on S1 ∪ S2 induced by Ω.

b. (H,ΩH) has a 0-nearly flat decomposition H0, . . . ,Hn for some integer n.

c. H contains t disjoint S1 − S2 paths L1, . . . , Lt. If we label the endpoints of Li in S1 as xi for
1 ≤ i ≤ t, then x1, x2, . . . , xt occur on S1 in that order.

d. For every vertex v in H, there exists a path in H connecting v to S1 ∪ S2.

e. V (GL) ∩ V (H) ⊆ V (L1) ∩ V (H0) and V (GR) ∩ V (H) ⊆ V (Lt) ∩ V (H0).

f. There is no V (GL)− V (GR) path in G− (Z ∪ V (H)).

Proof. We prove the lemma with
α = (t4k2)2.

Assume (G,Ω) form a counterexample to the statement for the value of α above. If (G,Ω) admits a vortex
decomposition of adhesion α, then we immediately contradict our choice of (G,Ω) to be a counterexample.
Thus, by Theorem A.3, we see that there exist disjoint segments X and Y in Ω and a pattern L of order
α where each component in L has exactly one endpoint in X and one endpoint in Y . There is a natural
sequence associated to the pattern L obtained by ordering the components of L by the Ω-order of their
endpoints in X and looking at their corresponding end in Y . By applying Theorem D.1 to this sequence, we
see that there exists a sub-linkage L′ of the components of L of order t4k2 such that the components of L′
are either pairwise crossing or pairwise non-crossing. If the components of L′ are pairwise crossing, then L′
contains a k-crosscap and the statement is proven.

By dividing L′ into sets of t consecutive paths, we conclude that there exist 4k2 distinct patterns L1, . . . ,L4k2

and segments X1, . . . , X4k2 ⊆ X and Y1, . . . , Y4k2 ⊆ Y satisfying the following.

• For all 1 ≤ i < j ≤ 4k2, both Xi ∩Xj = ∅ and Yi ∩ Yj = ∅.

• For all 1 ≤ i ≤ 4k2, every component of Li has one endpoint in Xi and one end in Yi.

• For all 1 ≤ i ≤ 4k2, the components of Li are pairwise non-crossing.

• The segments X1, . . . , X4k2 occur in that order in X if we look at the Ω-order of the vertices of X.
Similarly, the segments Y4k2 , . . . , Y1 occur in that order if we look at the Ω-order of the vertices of Y .

Moreover, we assume that we have chosen inclusion-wise minimal segments X1, . . . , X4k2 , Y1, . . . , Y4k2 with
these properties. We let Ai and Bi be the two segments of Ω \ (Xi ∪ Yi). We label them such that
A1 ⊆ A2 ⊆ · · · ⊆ A4k2 .

Given that t ≥ l, we see that for all 1 ≤ i ≤ 4k2 there exists a separation of order k − 1 separating Ai from
Bi in the graph G− (Xi ∪ Yi ∪ V (Li)), otherwise there would exist a (k, l)-leap pattern in (G,Ω). Let Zi be
a cut set of size at most k − 1 associated with such a separation.

For distinct i and j, it is possible that Zi ∩ V (Lj) 6= ∅. We pick a large collection of the linkages Li such
that their corresponding Zi’s are disjoint from the linkages. Explicitly, there exists a subset I ⊆ {1, . . . ,m}
with |I| ≥ m/k such that for all i, j ∈ I, i 6= j, we have that Zi ∩ (Xj ∪ Yj ∪ V (Lj)) = ∅. This follows since
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each Zi intersects at most k− 1 sets of the form Xj ∪ Yj ∪ V (Lj), implying that such a subset I can simply
be chosen greedily.

After possibly re-labeling the indices, we may assume I = {1, 2, . . . , 4k}. We assume that the order of the
patterns Li is preserved, i.e. A1 ⊆ A2 ⊆ · · · ⊆ A4k. We fix Z =

⋃
i∈I Zi.

For all i, 1 ≤ i ≤ 4k, we define Bi to be the subgraph formed by the union of all
⋃4k

1 Lj ∪ Ω bridges in the
graph G− Z with at least one vertex contained in Xi ∪ Yi ∪ Li. We now define the subgraph Hi as

Hi = Xi ∪ Yi ∪ Li ∪ Bi∪

∪

{
L | L a component of

4k⋃
1

Li and V (L) ∩ V (Bi) 6= ∅

}
.

We define Ωi to be the cyclic order given by Ω restricted to the vertices V (Hi) ∩ Ω.

The Hi are not pairwise disjoint as constructed, but their intersections are limited. Specifically, we will see
that if i and j are sufficiently far apart, thenHi∩Hj = ∅. Towards that end, we observe that Ωi ⊆ Bi−2∩Ai+2.
Otherwise, by symmetry, we may assume that Bi contains an (Ω ∪

⋃4k
j=1 Lj)-bridge with one endpoint in Li

and one endpoint in
⋃
j≥i+2 Lj ∪ Xi+2 ∪ Yi+2 ∪ Bi+2. But then there exists a path from Ai+1 to Bi+1 in

G− Z which avoids the set of vertices Li+1 ∪Xi+1 ∪ Yi+1, contrary to our construction of the set Z.

We now apply Theorem A.4 to the society (Hi,Ωi) for 1 ≤ i ≤ 4k. If there exist a pair of crossing paths P
and Q in (Hi,Ωi), then neither P nor Q crosses some component of the linkage Li+2, nor does either P or
Q cross some component of the linkage Li−2. Thus, if (H4i,Ω4i) contains a pair of crossing paths P4i, Q4i

for all 1 ≤ i ≤ k, we see that P4, . . . , P4k, Q4, . . . , Q4k,L6,L10, . . . ,L4k−2 contains a (k, l)-cross pattern given
that t ≥ l. We conclude that there exists an index i such that (Hi,Ωi) has a 0-flat decomposition. Without
loss of generality, we assume that i = 1 and (H1,Ω1) has a 0-flat decomposition. We label the components
L1, L2, . . . , Lt such that the endpoints of Li are xi and yi for 1 ≤ i ≤ t and x1, x2, . . . , xt occur on X1 in
that order and yt, . . . , y1 occur on Y1 in that order. We chose X1 and Y1 to be minimal by inclusion, and so
we also see that x1 is the first vertex on X1, and xt the last. Similarly, yt is the first vertex on Y1 and y1 the
last vertex. Let H be the subgraph of H1 given by X1∪Y1∪V (L1) as well as the union of Ω∪

⋃4k
1 Li bridges

with at least one attachment contained in (X1 ∪ Y1 ∪L1)− (L1 ∪Lt), that is we eliminate bridges attaching
only to the “external” paths L1 and Lt. The 0-flat decomposition of (H1,Ω1) induces a 0-flat decomposition
on (H,X1 ∪ Y1) as well by simply restricting the subgraphs of H1 to subgraphs of H. Let J0, J1, . . . , Jn be
the resulting decomposition for some non-negative integer n.

We let SL be the segment of Ω \ (X1 ∪ Y1) containing A1, and we let SR be the segment of Ω \ (X1 ∪ Y1)
containing B1. Since there does not exist an A1 − B1 path in G − (Z ∪ V (H)), we let (WL,WR) be a
separation of order 0 with A1 ⊆WL and B1 ⊆WR. We now define GL to be union of G[WL] as well as any
edges with one end in WL and one end in H as well as edges of G−H with both ends in L1. Similarly, we
define GR to be the union of G[WR] and any edges with one end in WR and one end in Lt as well as edges
of G −H with both ends in Lt. Note that GR, GL, and H are pairwise edge disjoint by construction and
GR ∪GL ∪H = G− Z.

We claim that the decomposition GR, H,GL with S1 = X1 and S2 = Y1 satisfy outcome 3 in the statement,
contrary to our choice of a counterexample. By construction, we clearly satisfy a. – d. as well as f. If we
consider property e., the only vertices in common between GL and H must belong to the path L1. If these
vertices are not contained in J0, it follows that there exists an index i such that Ji consists exactly of a
subpath of L1. We can then appropriately embed J0 ∪ Ji in the disc so that the vertices of GL ∩ H are
embedded in the disc. Repeating this argument for all such vertices of GL ∩H and GR ∩H gives a 0-flat
decomposition satisfying e. as well, contradicting our choice of (G,Ω) to be a counterexample and completing
the proof of the lemma. �

We now proceed with the proof of Theorem A.6. In order to facilitate the induction, we will actually prove
a slightly stronger statement. Theorem A.6 follows immediately by setting k1 = k, k2 = k, and k3 = k.
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Theorem D.4 For all non-negative integers k1 ≥ 2, k2 ≥ 2, k3 ≥ 0 and l ≥ 2, there exists a value α =
α(k1, k2, k3, l) satisfying the following. Let (G,Ω) be a society. Either

1. (G,Ω) contains a k1-crosscap, a (k2, l)-cross pattern, or a (k3, l)-leap pattern, or

2. there exists a set X ⊆ V (G) with |X| ≤ α such that (G−X,Ω\X) admits an α-bounded (k2−1)-nearly
flat decomposition.

We quickly outline the proof. We proceed by induction on |V (G)— and apply Lemma D.3 for some appropri-
ately chosen big value t. After deleting the relatively small set Z of vertices, we see that that the remaining
graph can be divided into three pieces: the large nearly flat strip H and two remaining societies, GL and
GR glued onto SL ∪L1 and onto SR ∪Lt where the order of the vertices of L1 and Lt comes from the linear
order given by the path. We would like to apply induction to each of the societies (GL, V (GL) ∩ (SL ∪ L1))
and (GR, V (GR) ∩ (SR ∪ Lt)). If they both have the desired nearly flat decomposition, we can then glue
the decompositions together in order to find a decomposition of the whole society. If they do not have the
desired decompositions, we find (k′, l)-cross pattern and a (k′′, l)-cross pattern with k′ + k′′ ≥ k2 which can
be combined to find a (k2, l)-cross pattern in (G,Ω). As a technicality, in order to ensure that any pattern
we inductively find will be a pattern in (G,Ω), we expand GL and GR to include a large planar swathe of
H which will allow us to apply Theorem C.3. The only difficulty now will be to ensure that we did not have
to delete too many vertices to obtain the two inductive decompositions. This will require a little more work
and specifically considering large leap patterns as well.

Proof. The proof proceeds by induction on |V (G)|. We first fix the following values. Let w be the function
in Theorem C.1. Fix k = max{k1, k2, k3}. Let T be defined to be

T = 2
((

k

2

)
(l + 1)k + 2k

)
+ 2w

((
k

2

)
(l + 1)k + 2k

)
+ 1.

We assume that
t = 4[2T + 4k2 + (2k − 1) + l + 1]4k2.

The value T is obtained by taking the bound on the order of a (k, k(l + 1))-cross or leap pattern from
Observation 1 and applying the insulation bound given by Theorem C.3.

The value of α will be determined by several recursive relations which arise in the proof. For now, we observe
that if k1 = 2 or k2 = 2, then the theorem follows immediately from Theorem A.4. Thus, the theorem is
true with α(2, k′2, k

′
3, l
′) = 0 for all k′2 ≥ 2, k′3 ≥ 0, and l′ ≥ 2. Similarly, we see that the theorem is true with

α(k′1, 2, k
′
3, l
′) = 0 again for all k′2 ≥ 2, k′3 ≥ 0, and l′ ≥ 2. Finally, if we assume that a (0, l)-leap pattern

is simply the empty pattern for all l ≥ 2, then we see that the statement is trivial with α(k′1, k
′
2, 0, l

′) for
all k′1 ≥ 2, k′2 ≥ 2, and l′ ≥ 2. These observations will effectively serve as the boundary conditions for our
recursive relation which determines α. Finally, as a first step we assume

α(k1, k2, k3, l) ≥ (t4k2)2

which will allow us to apply Lemma D.3.

We apply Lemma D.3. We can assume that there exists a set Z ⊆ V (G) and a decomposition of GL, H,GR
of G−Z satisfying outcome 3. Let S1, S2, SL, SR, H0, . . . ,Hn, L1, . . . , Lt, x1, . . . , xt, y1, . . . , yt be as defined
in the outcome. We will refer to the linkage L1 ∪ · · · ∪ Lt as L. For each Li, 1 ≤ i ≤ t, the vertices of
V (Li) ∩ V (H0) split G − Z into two pieces, one containing GL and one containing GR. For all 1 ≤ i ≤ t,
we let (Ai, Bi) be the separation G with Ai ∩ Bi = Z ∪ (V (Li) ∩ V (H0)) such that V (GL) ∪ Z ⊆ Ai and
V (GR)∪Z ⊆ Bi and the position of the vertices of H determined by a curve in the disc through the vertices
of V (Li)∩V (H0) following the path Li. Note that, as described, the separation (Ai, Bi) may not be uniquely
defined. There might exist Hj attaching to at most two vertices of V (Li) ∩ V (H0), in which case the curve
could be shifted to include such V (Hj) in either Ai or Bi. In this case, we arbitrarily include such V (Hj) in
either Ai or Bi.
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We quickly consider a couple of properties of the separations (Ai, Bi). First, for all i < j, we have the
property that Ai ⊆ Aj and Bi ⊇ Bj . If we look at Ai ∩Bi, this is exactly the set of vertices of Li contained
in V (H0) together with the set Z of vertices. Finally, we have chosen the separations such that for i < j,
the subgraph induced on (Bi ∩ Aj) \ Z is essentially the subgraph of H0 “between” the paths Li and Lj ,
along with the small vortices Hr with all attachments contained in that planar strip.

For every i, 1 ≤ i ≤ t, let OrdLi (respectively OrdRi ) be the cyclic order of (SL \ Z) ∪ x1S1xi ∪ (V (Li) ∩
V (H0)) ∪ yiSwy1 ((xt−iS1xt ∪ (SR \ Z) ∪ ytS2yi ∪ (V (Lt) ∩ V (H0)), respectively for OrdRi ) where the order
is given by the order of Ω and the natural linear order of V (Li). Let FLi be the subgraph G[Ai] − Z and
let FRi be the subgraph G[Bi] − Z. Consider the societies (FRi , Ord

R
i ) and (FLi , Ord

L
i ) for T ≤ i ≤ t − T .

The segment V (Li)∩V (J0) in (FLi , Ord
L
i ) is (T − 1)-insulated, and, similarly, the segment V (Li)∩V (J0) is

(T −1)-insulated in (FRi , Ord
R
i ). It follows by our choice of T , Observation 1, and Theorem C.3 that neither

(FRi , Ord
R
i ) nor (FLi , Ord

L
i ) contains either a k1-crosscap, a (k2, l)-cross pattern, nor a (k3, l)-leap pattern

for all T ≤ i ≤ t− T .

For 1 ≤ i ≤ t, we let τi be the maximal integer such that (FLi , Ord
L
i ) contains a (τi, l)-cross pattern.

Similarly, we let γi be the maximal integer such that (FLi , Ord
L
i ) contains a (γi, l)-cross pattern. As we have

just observed, τi < k2 for i ≥ T and γi ≤ k2 for i ≤ t− T .

Claim D.5 For all T ≤ i ≤ j ≤ t− T with |i− j| ≥ l + 1, we may assume that τi + γj = k2 − 1 and either
τi or γj is equal to zero.

Proof. Fix the indices i and j satisfying the inequalities. We first will show that if τi + γj ≥ k2, the
theorem is proven. Let Pi be an (τi, l)-cross pattern in (FLi , Ord

L
i ) and let Pj be a (γi, l)-cross pattern in

(FRj , Ord
R
j ). By Theorem C.3, the fact that τi < k2 and γi < k2, and by our choice of T , we may assume

that each of Pi and Pj has all it’s endpoints contained in Ω, i.e. both Pi and Pj are a (τi, l) and (γj , l)-cross
patterns in (G,Ω), respectively. It follows that Pi ∪ Pj ∪

⋃l
i′=1 Li+i′ forms a (τi + γj , l)-cross pattern in

(G,Ω), satisfying the theorem.

We conclude that τi+γj < k2. Assume, as a case, that both τi ≤ k2−2, γj ≤ k2−2. It follows that (FLi , Ord
L
i )

(and similarly, (FRj , Ord
R
j )) does not contain a k1-crosscap, a (k2 − 1, l)-cross pattern, nor a (k3, l)-leap

pattern. By induction and our assumption that (FLi , Ord
L
i ) does not contain a (τi + 1, l)-cross pattern, we

conclude that there exist a set Zi such that (FLi − Zi, OrdLj ) has an α(k1, k2 − 1, k3, l)-bounded τi-nearly
flat decomposition. Similarly, there exists a subset Zj such that (FRj −Zj , OrdRj ) has an α(k1, k2 − 1, k3, l)-
bounded γj-nearly flat decomposition. It follows that (G− (Z ∪Z1∪Z2),Ω) has a (2α(k1, k2−1, k3, l) + |Z|)
bounded (τi + γj)-nearly flat decomposition. Recall that |Z| ≤ 4k2. If we pick α(k1, k2, k3, l) to satisfy the
recursion relation

α(k1, k2, k3, l) ≥ 2α(k1, k2 − 1, k3, l) + 4k2 ≥ |Z|+ |Zi|+ |Zj |,

we see that the theorem holds.

It follows that we may assume that either τi or γj is at least k2 − 1. Putting the inequalities together, it
follows that exactly one of τi or γj is equal to k2 − 1 and the other is then equal to zero. This proves the
claim. �

For the remainder of the proof, we assume without loss of generality, that γt−T = k2−1 and that (FRi , Ord
R
i )

has a 0-nearly flat decomposition for all T ≤ i ≤ t− T − l − 1. Then there exists a (k2 − 1, l)-cross pattern
P for (G,Ω) contained in (FLt−T , Ord

L
t−T ). Fix this pattern P for the remainder of the proof.

Claim D.6 There exists an index ī such that the subgraph H[Bī ∩ Aī+2T+4k2+l+1] does not contain any
neighbor of a vertex in Z.

Proof. For all i, T ≤ i ≤ t−T − l−1, if there existed a pair of crossing Ω-paths Q1, Q2 contained in G[Ai],
it would follow that P ∪

⋃l
j=1 Lt−T−j ∪ Q1 ∪ Q2 would form a (k2, l)-cross pattern in (G,Ω). Given that
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H satisfies d. It follows that for every z ∈ Z, the neighbors of z in H are limited; specifically, there exist
indices i(z) and j(z) with i(z) < j(z) and j(z)− i(z) < 4 such that every neighbor of z in H is contained in
Bi(z)∩Aj(z). We conclude (by the choice of t) that that there exists an index ī as desired by the claim. �

The remainder of the proof will split into two cases. If there does not exist a path from in G−H ′ from SL to
SR, then we inductively find the desired decomposition in each half of G−H ′ and glue the 3 decompositions
together. Alternatively, if there does exist such a path, call it P , we find a (k3 − 1, l′)-leap pattern in a
supergraph of FL

ī+2T+4k2+l+1
for some suitable l′ > l, and extend it to a (k3, l)-leap pattern using the path

P .

Before doing so, we will need some more notation. Fix the indices a = ī+T +4k2 and b = ī+T +4k2 + l+1.
Fix FL to be G[Aa]−(Z∩SR) and OrdL the cyclic order on the segment SL∪s1S1sa∪(V (La)∩V (H0))∪taS2t1
with the ordering taken from the order Ω and the natural ordering of the vertices of La. We similarly fix FR
to be G[Bb]− (Z∩SL) and OrdR the cyclic order on the segment SR∪sbS1st∪ (V (Lb)∩V (H0))∪ ttS2tb. We
let H be the subgraph G[Ba ∩Ab]− Z. We let Ord be the cyclic order V (H) ∩ (S1 ∪ S2 ∪ V (FR) ∪ V (FL))
with the order taken from Ω and the natural linear order of the vertices La and Lb. By construction, we
know that (H,Ord) has a 0-near flat decomposition. Also, we know that the vertices of La contained in
FL are T + 4k2-insulated in (FL, OrdL). Similarly, the vertices of Lb in FR are T + 2k − 1-insulated in
(FR, OrdR).

We first consider the subgraph FL, and let (C,D) be a separation of minimal order with (SL ∪ s1S1sa ∪
taS2t1) ⊆ C and Z ⊆ D. We allow (C,D) to be a trivial separation with D = Z, and so such a separation
is guaranteed to exist and has order at most |Z| ≤ 4k2. Let Z ′ = C ∩D. Observe that for every vertex in
x ∈ D, there exists an x−Z path with no internal vertex in Ω. Also, by the fact that (C,D) is a separation
of minimal order, for every z ∈ Z ′, there exists a z − Ω path in G[C].

Claim D.7 D does not contain any vertex in Aa ∩Bī+4k2 .

Proof. To see the claim, assume x ∈ Aa ∩Bī+4k2 is such a vertex. Note that any path from x to Z in FR

must intersect the 4k2 distinct paths Lj for ī ≤ j ≤ ī+ 4k2 − 1. This follows from the near planarity of H
as well as the fact that no vertex of Z has a neighbor in Aa ∩ Bb. However, at most 2k2 distinct paths Lj
intersect D. Thus no such x exists, proving the claim. �

An immediate consequence of this fact is that V (La) ∩ V (H0) is T -insulated in FL[C].

Now consider the graph FR ∪G[D].

Claim D.8 There exists a Z ′ − (sbS1st ∪ SR ∪ ttS2tb) path in FR ∪G[D].

Proof. Assume, that such a path does not exist. Then there exists a separation (C ′, D′) of FR ∪G[D] of
order zero with Z ′ ⊆ C ′ and sbS1st ∪ SR ∪ ttS2tb ⊆ D′.

If we now look at this separation, we see that G = FL[C] ∪ G[C ′] ∪ H ∪ G[D′] − E(H). Moreover, these
subgraphs are edge disjoint.

Recall that FRt−T contained a (k2 − 1, l)-pattern P with endpoints in Ω. The pattern P is also contained
in G[D′]. Also note that V (La) ∩ V (H0) is highly insulated in FL[C] and that D does not contain any
vertex of Aa ∩ Bī+4k2 . Thus V (La) ∩ V (H0) is T insulated in FL[C] ∪ G[C ′] as well. We conclude that
if (FL[C] ∪ G[C ′], OrdL) contains a pair of crossing paths, we may assume that they have endpoints in Ω.
Combining the pair of crossing paths with P and the paths La+1, . . . , La+l, we see that (G,Ω) contains a
(k2, l)-cross pattern.
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We conclude that (FL[C] ∪ G[C ′], OrdL) has a 0-nearly flat decomposition. We now turn our attention to
G[D′]. The set C ′ cannot contain any vertex of Bī+2T+4k2+(2k−1)+1 ∩Ab, as this would imply the existence
of a path from OrdR to OrdL avoiding both Z and V (H), a contradiction. It follows that set V (Lb)∩V (FR)
is T -insulated in (G[D′], OrdR). Thus, if ([G[D′], OrdR) has either a k1-crosscap, a (k2, l)-cross pattern, or
a (k3, l)-leap pattern, the theorem is proven. By induction, we conclude that there exists a set X ⊆ D′

with |X| ≤ α(k1, k2, k3, l) and an α(k1, k2, k3, l)-bounded (k2 − 1)-nearly flat decomposition of (G[D′] −
X,OrdR − X). Combined with the 0-nearly flat decompositions for (H,Ord) and (FL[C] ∪ G[C ′], OrdL)
yields an α(k1, k2, k3, l)-bounded (k2− 1)-nearly flat decomposition of (G−X,Ω). This completes the proof
of the claim. �

We now define the separation (C ′′, D′′) of FR ∪G[D] as follows. If there exist 2k− 1 disjoint paths from Z ′

to (sbS1st∪SR∪ ttS2tb), we define (C ′′, D′′) to be the trivial separation with C ′′ = Z ′ and D′′ = V (FR)∪D.
If such 2k− 1 disjoint paths do not exist, we now apply Lemma D.2 to the subgraph FR ∪G[D] and the two
sets Z ′ and (sbS1st ∪ SR ∪ ttS2tb) with the value 2k − 1 to find the separation (C ′′, D′′).

By induction, we see that the society ((FR∪G[D])[D′′], Ord
L−C ′′) contains a (k3−1, k(l+1))-leap pattern

or the desired decomposition.

Claim D.9 There does not exist a set X ⊆ V (FR) ∪D with |X| ≤ α(k1, k2, k3 − 1, k(l + 1)) such that the
society ((FR∪G[D])−((C ′′ ∩D′′) ∪X) , Ord

L−((C ′′ ∩D′′)∪)) contains an α(k1, k2, k3−1, k(l+1)) bounded
(k2 − 1)-nearly flat decomposition.

Proof. Assume, to reach a contradiction, that such a set X and decomposition exist. We can merge the
0-nearly flat decompositions for (FL ∪ G[C ′], OrdL), (H,Ord), and the (k2 − 1)-nearly flat decomposition
of ((FR ∪G[D])− ((C ′′ ∩D′′) ∪X) , OrdL − ((C ′′ ∩D′′) ∪X)) to find an α(k1, k2, k3 − 1, k(l+ 1))-bounded
(k2 − 1)-nearly flat embedding of (G − ((C ∩D) ∪ (C ′′ ∩D′′) ∪X),Ω − ((C ∩D) ∪ (C ′′ ∩D′′) ∪X)). The
theorem now follows if we assume that

α(k1, k2, k3, l) ≥ α(k1, k2, k3 − 1, k(l + 1)) + 4k2 + (2k − 1).

This proves the claim. �

We see, by induction and the previous claim, that there exists a (k3− 1, k(l+ 1))-leap pattern in the society
((FR ∪G[D])[D′′]− (C ′′ ∩D′′), OrdL − (C ′′ ∩D′′)). Fix P to be such a pattern.

Claim D.10 C ′′ does not contain any vertices of OrdL, and consequently, |C ′′ ∩D′′| = 2k − 1.

Proof. Assume C ′′ contains a vertex of OrdL. Then there exists a path in G[C ′′] linking a vertex of OrdL

to Z ′. Then in FL[C], there exists a path linking that vertex to a vertex of OrdL. Thus, there exists a path
P linking in FL[C] ∪ G[C ′′] with one end in OrdL and the other end in OrdR. Moreover, the path P is
disjoint from P by construction. It follows that P ∪P ∪La ∪ · · · ∪La+l−1 contains a (k3, l)-leap pattern, as
desired.

Thus, C ′′ does not contain any vertices of OrdL, and the second half of the claim now follows trivially from
the outcome of Lemma D.2. �

We are now ready to complete the proof of the theorem. Let P consist of two disjoint subpatterns, R and
Q where R consists of pairwise non-crossing OrdL-paths and Q consists of k3 − 1 pairwise disjoint paths
whose endpoints are at distR at least k(l + 1). We let S be a linkage of order 2k − 1 in FR[D′′] each with
one endpoint in C ′′ ∩D′′ and the other endpoint in OrdR ∪ V (R). Note that the linkage S is guaranteed to
exist by Lemma D.2 and the previous claim.
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We consider an auxiliary graph A as follows. For all S ∈ S, let xS be the first vertex of S contained in
OrdR ∪ V (R) when traversing S from C ′′ ∩D′′ to OrdR and let SxS be the subpath of S with one end xS
and the other end in C ′′ ∩ D′′. The vertex set of A is the set V (Q) ∪ {V (SxS) | S ∈ S} ∪ {v} and edge
set E(Q) ∪ {E(SxS) | S ∈ S} as well as an edge from v to every vertex of C ′′ ∩ D′′. We fix the subset
XA ⊆ V (A) to be the vertices {v} ∪ {xS | S ∈ S}∪ (OrdR ∩ V (Q)) and define a distance function dA on Xa

so that dA(v, x) = l for all x ∈ XA, x 6= v, and dA(x, y) = distR(x, y) for all x, y ∈ XA, x 6= v, y 6= v. We see
that Q forms a set of k− 1 pairwise disjoint XA-paths whose endpoints are at distance k(l+ 1) with respect
to the distance function dA, and vSxS form 2k−1 internally disjoint paths from v to distinct vertices of XA.

We apply Lemma D.2 to the auxiliary graph A with the XA-paths. We conclude that there exist pairwise
disjoint XA-paths Q1, . . . , Qk with endpoints contained in (OrdR ∩ V (Q))∪ {v, v′} for some vertex v′ ∈ XA

such that for all 1 ≤ i ≤ k, the endpoints of Qi are at distance at least l + 1 with the distance function dA.
We will convert the paths Qi, 1 ≤ i ≤ k into Ω-paths as follows. Let i be such that Qi has v as an endpoint,
and i′ such that Qi′ has v′ as an endpoint (it is possible that i = i′). We let M1 be a path in G[C ′′]∪FL[C]
linking Qi ∩ (C ′′ ∩D′′) to OrdL. In the case that v′ ∈ OrdR, we let M2 be the trivial path {v′} and define
R to be the empty path. If v′ ∈ V (R) for some R ∈ R, we let M2 be a subpath of R linking v′ and OrdR.
We now let Q′i = (Qi − v) ∪M1 and Q′i′ = Qi′ ∪M2 (and in the case i = i′, Q′i = (Qi − v) ∪M1 ∪M2). We
let Q′j = Qj for all j /∈ {i, i′}. We conclude that Q′1 ∪ . . . Q′k ∪ La ∪ La+1 ∪ · · · ∪ La+l ∪ (R − R) forms a
(k3, l)-leap pattern, completing the proof of the theorem. �

E Embedding a society into a crosscap or handle

Before stating the main result of this section, we need the following definitions. We say Ω-paths P1, . . . , Pk
in a society (G,Ω) are independent if they are pairwise disjoint and there exist disjoint segments S1, . . . , Sk
of Ω such that the endpoints of Pi are contained in Si for all 1 ≤ i ≤ k.

For our main theorem in this section, we will need to allow for one more possible pattern as an outcome.

Let (G,Ω) be a society, and let k and l be positive integers and let P be a pattern in (G,Ω). We say that P
is a twisted (k, l)-cross pattern if there exists a segment S of Ω such that the cyclic order Ω′ obtained from
Ω by reversing the order of the segment S satisfies the property that P is a (k, l)-cross pattern in the society
(G,Ω′).

We are now ready to state the main theorem of this section. This is the more exact statement of Theorem
2.3, which follows as an immediate consequence of the stronger statement.

Theorem E.1 For all positive integers t, k, and l, there exist values f(t, k) and a(k, l) satisfying the fol-
lowing. Let (G,Ω) be a society, and let M be either a f(t, k)-crosscap or f(t, k)-handle in G. Assume there
exists a cycle C such that V (C) = Ω and the natural cyclic order of V (C) associated with the cycle is the
same as Ω. Then one of the following outcomes holds.

1. There exists a (k, l)-cross pattern or a (k, l)-twisted cross pattern.

2. There exists a segment S of Ω such that if we let Ω′ be the cyclic order of Ω \ S induced by Ω, then
there exists a pattern P ∪ Q in (G,Ω′) such that P consists of k independent Ω-paths P1, . . . , Pk and
for every Pi, there exist l distinct components of Q which cross Pi.

3. Let Σ1 and Σ2 be the surfaces comprised of the disc plus a single crosscap or a single handle, respectively.
There exists a subset Z ⊆ V (G) with |Z| ≤ a(k, l) such that (G − Z,Ω − Z) has a 1-near embedding
H0, H1, . . . ,Hm in Σ1 if M is a crosscap, and in Σ2 in the case M is a handle such that:

i. the vertices embedded in the boundary of the disc are exactly the vertices of Ω− Z, and they are
embedded in the correct cyclic order;
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ii. there exists a subgraph M ′ of M forming a t-crosscap or t-handle in H0 ∪
⋃m
i=1Hi.

In order to prove Theorem E.1, we need some further notation and auxiliary results. Let (G,Ω) be a society
and letM be a k-crosscap or k-handle for some positive integer k. In this section, we consider the embedding
σ of (M∪Ω,Ω) in the natural way into the disc plus a crosscap (or in the disc plus a handle in the case that
M is a k-handle) such that the only vertices embedded onto the boundary of the disc are exactly the vertices
Ω in the order specified by Ω. This allows us to define a facial set of M, which is a subset Y ⊆ Ω such that
Y is the set of Ω vertices contained in a single face of the embedding σ. Note that in this embedding σ, we
do not regard the infinite region bounded by Ω as a “facial set”. A facial cycle consists of all the vertices
of M∪ Ω contained in a single face. Assume that F is a facial cycle. We say F is dividing in G if there
does not exist anM∪Ω-bridge with attachments in both V (M) \F and in V (F ). The compass of F is the
subgraph formed by F as well as every M∪ Ω-bridge with all attachments contained in V (F ).

We define the distance function dM between two vertices x and y as minimal number of points in S∩σ(Ω∪M)
for every curve S in the surface linking x and y. But we do not allow the curve S to pass through the infinite
region bounded by Ω. Note that d is always non-negative and trivially satisfies the triangle inequality. Also,
the following observation follows immediately from the definition.

Observation 3 Let (G,Ω) be a society and M a crosscap or handle in G. If M′ is a sublinkage of M
forming a crosscap or handle, then for all vertices x and y in G, dM′(x, y) ≤ dM(x, y). Moreover, if
M′ =M−R for some component R ∈M, then dM(x, y)− 1 ≤ dM′(x, y) ≤ dM(x, y).

Recall that a set of X-paths is (l, t)-spread for integers l and t if they satisfy i. and ii. in Lemma B.1. We
need the following lemma.

Lemma E.2 There exist functions f1, f2, and f3 satisfying the following. Let k, t, and l be positive integers.
Let M be either an f1(t, k)-crosscap or an f1(t, k)-handle in a society (G,Ω). Let P be an f2(k)-linkage of
(M∪ Ω)-paths which is (f3(l, k), f3(l, k))-spread with respect to the distance function dM. Then there exist
a sublinkage M′ of M and a pattern P ′ of order k such that the components of P ′ and M′ are pairwise
disjoint and the paths P ′ are (l, l)-spread with respect to the distance function dM′ .

Proof. Let k, t, and l be given. We prove the lemma with f1(t, k) = t + 2k + 1, f2(k) = 4k2, and
f3(l, k) = l + 2k + 1. Assume, to reach a contradiction, that the desired patterns P ′ and M′ do not exist.

First, we see that there does not exist a component R ∈ M such that at least 2k components have an
endpoint which is a vertex of R \ Ω. Assume that R is such a component and that P1, . . . , P2k are distinct
components of P with one endpoint in R. Label the endpoint of Pi in R as xi, and assume that x1, x2, . . . , x2k

occur on R in that order. Since the vertices xi and xj are of distance dM at most 1, we see that the other
endpoints of Pi and Pj must be of dM at least l + 2k + 1 since P is (f3(l, k), f3(l, k))-spread with respect
to the distance function dM. For 1 ≤ i ≤ 2k, we define paths Ri as follows. If Pi has its other endpoint
contained in a component ofM distinct from R, then we let Ri be this component ofM. Otherwise, Pi has
its other endpoint in Ω, and let Ri be the endpoint of Pi in Ω \ R. Fix M′ to be M−

(⋃2k
i=1Ri ∪R

)
. By

the Observation 3, for every pair of vertices u and v, dM′(u, v) ≥ dM(u, v)− (2k + 1) ≥ l. Moreover, for all
j, 1 ≤ j ≤ k, we see that R2j ∪ P2j ∪ P2j+1 ∪ R2j+1 contains an Ω-path, call it P ′j , whose endpoints are of
distance dM at least l+ 2k+ 1. The paths P ′j are disjoint fromM′ and also pairwise disjoint, contradicting
our choice of G to form a counterexample.

We conclude that each path P ∈ P has endpoints in a common R ∈ M (including the ends of R) for at
most 2k− 1 other components ofM. By discarding a factor of at most 4k of P, we can conclude that there
exists a subset I ⊆ {1, . . . , 4k2} of size k such that for all i, i′ ∈ I, there does not exist R ∈M such both Pi
and Pi′ have endpoints in R.

For all i ∈ I, label the endpoints of Pi as xji for j = 1, 2. For every i ∈ I and j = 1, 2, define Rji to be
the component of M containing xji when such a component exists, and otherwise let Rji be equal to xji .
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For every i ∈ I, there exists an Ω-path contained in R1
i ∪ R2

i ∪ Pi with endpoints of distance dM at least
l + 2k + 1. Fix such a path and call it P ′i . We now see that M′ = M−

(⋃
i∈I(R

1
i ∪R2

i )
)

along with the
pattern P ′ = P ′1 ∪ · · · ∪P ′k satisfies the statement of the lemma, contradicting our choice of counterexample.
This completes the proof of the lemma. �

We are now ready to prove Theorem E.1.

Assume the theorem is false, and let (G,Ω) form a counterexample. Let t, k, l be as in Theorem E.1. Let
k′ = k′(k, l) be determined later. We assume that f(t, k) in Theorem E.1 is bigger than f1(t, k′) in Lemma
E.2, and f(t, k) > (2k + 1)(l + 2f3(3, k′))23f2(k′). Moreover, we assume f3(3, k′) ≥ t and α(k, l) ≥ f2(k′),
where f2, f3 come from Lemma E.2.

We first apply Lemma B.1 with k = f2(k′) and l = t = f3(3, k′) to (G,Ω) and X = M, where f2, f3 come
from Lemma E.2. Since there are two possibilities for the outcome of Lemma B.1, we now consider the two
cases.

Case 1. There is an f2(k′)-linkage P of (M∪ Ω)-paths which is (f3(3, k′), f3(3, k′))-spread with respect to
the distance function dM.

We apply Lemma E.2 to the f2(k′)-linkage P and M. Thus there exists a sublinkage M′ of M and a
pattern P ′ of order k′ such that the components of P ′ and M′ are pairwise disjoint and the paths P ′ are
(3, 3)-spread with respect to the distance function dM′ .

The rest of the proof is almost identical to the proof given in Lemma 27 of [17].

We say that two components P, P ′ ∈ P ′ are facially incident if there exists a facial cycle ofM′ that contains
both an endvertex of P and of P ′. We first prove the following claim.

Claim E.3 If there are 9(18(2kl)2((2kl) + 2))3 components in P ′ which are pairwise not facially incident,
then there exist pairwise disjoint paths Ei, Fi and segments Ti for 1 ≤ i ≤ (2kl)2((2kl)+2) with the following
properties.

a. The segments Ti are disjoint and occur in the order T1, . . . , T(2kl)2((2kl)+2) in Ω.

b. The disjoint paths Ei and Fi each have exactly one end in Ti and are each disjoint from Tj for all
1 ≤ i, j ≤ (2kl)2((2kl) + 2), j 6= i.

c. The disjoint paths Ei, 1 ≤ i ≤ (2kl)2((2kl) + 2), either form a crosscap or are pairwise non-crossing;
the disjoint paths Fi, 1 ≤ i ≤ (2kl)2((2kl) + 2), either form a crosscap or are pairwise non-crossing.

d. If the disjoint paths Ei form a crosscap, then Ei and Fi do not cross for all 1 ≤ i ≤ (2kl)2((2kl) + 2);
if the disjoint paths Ei do not pairwise cross, then Ei and Fi do cross for all 1 ≤ i ≤ (2kl)2((2kl) + 2).

e. There exists a segment T containing Ti, and exactly one endpoint of each path Ei and Fi for all
1 ≤ i ≤ (2kl)2((2kl) + 2).

Proof. Note that the statement of Claim E.3 is almost identical to Claim 29 in [17]. The statement follows
immediately from Claim 29 in [17] by suppressing vertices of degree at most 2. �

It was shown in [17] that given such Ei, Fi, and Ti as in the conclusion of Claim E.3, either 1 or 2 in Theorem
E.1 is satisfied.

Claim E.4 Let Ei, Fi, Ti, and T satisfy a.−e. as in the conclusion of Claim E.3 for 1 ≤ i ≤ (2kl)2((2kl)+2).
Then either (G,Ω) satisfies 1 in Theorem E.1, with the additional property that every path of the cross pattern
or twisted cross pattern has one end in T and one end in Ω \ T , or (G,Ω) satisfies 2 in Theorem E.1, with
the additional property that the segment S satisfies V (S) ⊆ Ω \ T .
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Let us observe that, as in the application of Claim 29 of [17], Claim 30 in [17] again only deals with the case
that each Ei and Fi is a single edge. We can apply the result of the claim by suppressing vertices of degree
at most 2, and conclude that Claim E.4 holds.

The following claim is a re-statement of Claim 28 in [17].

Claim E.5 If there is a facial set C that contains at least (k + 4)4k2 endpoints of the components in P ′,
then 2 in Theorem E.1 holds.

Claims E.3, E.4, together with Claim E.5 imply that if we assume k′ ≥ 2(k + 4)4k29(18(2kl)2((2kl) + 2))3,
then the theorem holds. This completes the analysis of Case 1.

Case 2. There exist vertices z1, . . . , z3f2(k′)−3 ∈ V (G) and Z ∈ V (G) with |Z| ≤ f2(k′) − 1 such that
every ((M∪Ω)− Z)-path P in G− Z with endpoints x and y either satisfies d(M∪Ω)−Z(x, y) < f3(3, k′) or

x, y ∈
⋃3f2(k′)−3
i=1 B(zi, f3(3, k′)).

We let S1, . . . , Sm be the segments of Ω demarcated by the vertices ofM∩Ω. We observe that for any pair
of indices i and j, there exists a subgraphM′ ofM such that Si and Sj are contained in the same facial set
of M′ and if M is a m-crosscap, then M′ is an m/2-crosscap, and if M is a m-handle, then M′ is an m/2-
handle. Since there are at most 3f2(k′)− 3 balls B(zi, f3(3, k′)) that cover all the long ((M∪Ω)−Z)-paths
(i.e, a path with endpoints x and y such that the distance d(M∪Ω)−Z(x, y) ≥ f3(3, k′)) in G−Z, thus by the
above remark, there is a sublinkageM′′ ofM in G−Z such thatM′′ is either a m′-handle or a m′-crosscap
with m′ = (2k + 1)(t+ l + 2f3(3, k′), and moreover, there is one special facial cycle of M′′ that contains all
the balls B(zi, f3(3, k′)) (note that f(t, k) > (2k + 1)(l + 2f3(3, k′))23f2(k′)).

Again, we let S′1, . . . , S
′
m′′ be the segments of Ω demarcated by the vertices ofM′′∩Ω so that C[S′i], i.e., the

facial cycle containing S′i, forms internally disjoint subpaths of C. We label the S′i such that S′1, . . . , S
′
m′′

occur in that order of Ω. If M′′ is a m′-crosscap, note m′′ = m′ and if M′′ is a m′-handle, then m′′ = 2m′.
We also define Cj [S′i] to be the union of j facial cycles containing S′i ∪ · · · ∪ S′i+j−1. We assume that the
facial cycle containing Sm′′ contains all the balls B(zi, f3(3, k′)).

We now prove the following claims;

Claim E.6 If there are k indices π(1), . . . , π (k) with the following properties.

• π(1) ≤ π(2) ≤ . . . ,≤ π (k).

• π(i+ 1)− π(i) ≥ l + 2f3(3, k′).

• There is a (M′′∪Ω)-path in G−Z with two endpoints contained in different facial cycles of C2f3(3,k′)[S′π(i)−f3(3,k′)].
Moreover, two endpoints of this path is not contained in a single component of M′′.

Then 1 in Theorem E.1 holds.

Proof. By using the (M′′ ∪ Ω)-path as in the third property, each C2f3(3,k′)[S′π(i)−f3(3,k′)] contains one
path P1,π(i)−f3(3,k′) ∈M′′ with endpoints a, c and another path P2,π(i)−f3(3,k′) with endpoints b, d such that
a, b, c, d ∈ Ω appear in this order. Let us observe that any (M′′ ∪ Ω)-path with two endpoints contained in
different facial cycles of C2f3(3,k′)[S′π(j)−f3(3,k′)] does not intersect any other (M′′ ∪ Ω)-path with endpoints
contained in different facial cycles of C2f3(3,k′)[S′π(j′)−2f3(3,k′)] with j 6= j′, otherwise there is a (M′′∪Ω)-path
in G−Z with distance dM′′∪Ω of two endpoints at least f3(3, k′). Therefore, the paths P2,π(i)−2f3(3,k′) does
not intersect any other vertex in P2,π(i′)−2f3(3,k′) with i 6= i′.

Thus we get a (k, l)-cross pattern or a (k, l)-twisted cross pattern in G − Z by taking P1,π(i)−f3(3,k′) and
P2,π(i′)−2f3(3,k′), together with components of M′′. �
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Claim E.7 If there is an index i such that the outer cycle of Ct[S′i] is dividing in G−Z, and moreover the
compass of Ct[S′i] in G− Z induces a 0-nearly flat decomposition, then 3 in Theorem E.1 holds.

Proof. If the assumption of Claim E.7 is satisfied, by the above remarks, we get a sublinkage M̂′′ of M′′
such that M̂′′ is either a t-handle or a t-crosscap. Moreover, except for one special facial cycle F ′, each
facial cycle F of M̂′′ is dividing in G − Z, and in addition, the compass of F in G − Z induces a 0-nearly
flat decomposition. It follows that 3 in Theorem E.1 holds with Z. �

We pick up Ct[S′i] for i = f3(3, k′), l + 3f3(3, k′), 2l + 5f3(3, k′), . . . , 2kl + (2× 2k + 1)f3(3, k′)). If the outer
cycle of Ct[S′i] is not dividing in G− Z, then C2f3(3,k′)[S′i−f3(3,k′)] contains a (M′′ ∪Ω)-path in G− Z with
two endpoints contained in different facial cycles of C2f3(3,k′)[S′i−f3(3,k′)]. Moreover, two endpoints of this
path are not contained in a single component of M′′. Therefore, by our choice, either

• There are k indices π(1), . . . , π (k) of i such that Ct[S′π(i)] is dividing in G− Z, or

• there are k indices π(1), . . . , π (k) of i such that C2f3(3,k′)[S′π(i)−f3(3,k′)] contains a (M′′ ∪ Ω)-path in
G−Z with two endpoints contained in different facial cycles of C2f3(3,k′)[S′π(i)−f3(3,k′)]. Moreover, two
endpoints of this path is not contained in a single component of M′′.

For the second case, we are done by Claim E.6. Suppose the first case applies. By a result of Seymour [45],
Thomassen [47], if Claim E.7 does not hold for any index, then it follows that the compass of the outer cycle
of each Ct[S′π(i)] in G − Z contains two vertex-disjoint paths connecting the diagonally opposite corners of
Ct[S′π(i)] (that are vertices in Ω). Thus we get 1 in Theorem E.1. This completes the proof of Theorem E.1.

F Proof of the Structure Theorem

In this section, we give the proof of the structure theorem, Theorem 2.1.

In the proof, we will apply the society theorem, Theorem A.6, and as a result, we have to analyze the case
when we find a large leap pattern in a society. The leap pattern itself is slightly too general a structure to be
useful. We begin this section with a short lemma for analyzing leap patterns. First, we state the following
lemma which is a similar result to the lemma of Erdős and Szekeres.

Lemma F.1 Let k ≥ 1 be a positive integer, let (G,Ω) be a society and let M be a pattern of order k3.
Then there exists a pattern M′ contained in M such that one of the following holds:

i. M′ is a k-crosscap;

ii. the elements of M′ are pairwise non-crossing and there exists two segments S1 and S2 of Ω such that
every component of M′ has one endpoint in S1 and one endpoint in S2;

iii. M′ consists of k independent Ω-paths.

We now prove the following key lemma.

Lemma F.2 For all positive integers k and l, there exist k′ and l′ such that the following holds. Let (G,Ω)
be a society and M be a (k′, l′) leap pattern in (G,Ω). Then there exists a pattern M′ contained in M such
that:

1. M′ is a k-handle;
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2. M′ is a k-crosscap;

3. M′ consists of the union of two disjoint patterns P ∪Q such that P consists of k independent Ω-paths,
and for every component of P ∈ P, there exist k distinct components of Q which cross P ;

4. M′ is a (k, l)-cross pattern.

Proof. Let M = P ∪ Q as in the definition of a leap pattern. We let k̄ = max{k, l}, and we prove the
theorem with k′ = 9k̄6 and l′ = 2k̄ + 1. We apply Lemma F.1 to the pattern Q. If Q contains a k̄-crosscap,
we satisfy outcome 2. Also, note that for every component Q ∈ Q, there exist l′ distinct components of P
which cross Q. Thus, if Q contains k̄ independent Ω-paths, then we satisfy outcome 3.

We conclude that there exists a linkage Q′ of order 3k̄2 and segments S1 and S2 such that the components
of Q′ are pairwise non-crossing and every component of Q′ has one endpoint in S1 and the other endpoint in
S2. Label the components of Q′ as Q1, . . . , Q3k̄2 , and let the endpoints of Qi be si and ti. We furthermore
assume that si ∈ S1 for all 1 ≤ i ≤ 3k̄2 and that s1, s2, . . . , s3k̄2 occur on S1 in that order. Note that, then
t3k̄2 , t3k̄2−1, . . . , t1 occur on S2 in that order.

For all indices i, k̄ + 1 ≤ i ≤ 3k̄2 − k̄, consider the path Qi. Let Xi be the segment si+k̄Ωti+k̄ containing
si+k̄+1, . . . , s3k̄2 . Similarly, define Yi to be the segment si−k̄Ωti−k̄ which contains s1, . . . , si−k̄+1. If there
exist k̄ components P1, . . . , Pk̄ of P which all cross Qi and have one endpoint in Xi, then we see that
P1 ∪ · · · ∪ Pk̄ ∪ Qi ∪ Qi+1 ∪ · · · ∪ Qi+k̄−1 form a k̄-handle in (G,Ω). Note, here we are using the property
that the components of P are pairwise non-crossing. Alternatively, if there exist k̄ components of P which
cross Qi and have one endpoint Yi, we similarly find a k̄-handle in (G,Ω).

We conclude that for all i, k̄ + 1 ≤ i ≤ 3k̄2 − k, there exists a component of P, label it Pi, which crosses Qi
and has both endpoints contained within si−k̄S1si+k̄ ∪ ti−k̄S2ti+k̄. The paths {P3k̄i−k̄ ∪Q3k̄i−k̄ : 1 ≤ i ≤ k̄}
and

⋃k̄−1
i=1

⋃k̄
j=1Q3k̄i+j form a (k̄, k̄)-cross pattern, proving the claim. �

Before proceeding with the proof of the structure theorem, we give several additional lemmas. Let (G,Ω) be
a society and s ≥ 1 an integer. We say that (G,Ω) is s-nested if there exists a 1-nearly flat decomposition
H0, H1, . . . ,Hn of (G,Ω) such that all the small vortices are grounded, and for which there exists an s-nest
C1, . . . , Cs in G such that Ω ⊂ V (Cs), and H1 is contained in the disc ∆1 bounded by the cycle C1.

We will also require the following three lemmas.

Lemma F.3 For any t, there is an integer s1 such that if an s1-nested society (G,Ω) contains either a
(4t4, 4t4)-cross pattern P or a (4t4, 4t4)-twisted cross pattern P, then G has a Kt-minor.

Proof. We first observe that both a (4t4, 4t4)-cross pattern P and a (4t4, 4t4)-twisted cross pattern P are
crooked patterns of order at most 16t12. Let s1 = 2w(16t12) + 16t12, where w(.) is the function in Theorem
C.1. We claim s1 satisfies the theorem. It follows from Theorem C.2 (with t replaced by 16t12) that (G,Ω)
has a 16t12-nest C ′1, . . . , C

′
16t12 and either a (4t4, 4t4)-cross pattern P ′ or a (4t4, 4t4)-twisted cross pattern

P ′, which is equivalent to P, such that P ′ and C ′1, . . . , C
′
16t12 are orthogonal. It follows from Claims 33–35

in [17] (and some similar configurations which we omit here because the proofs and constructions of them
are essentially the same as Claims 33–35) that G has a Kt-minor because P ′ and C ′1, . . . , C

′
16t12 contain a

“16t12-grid”, and subpaths of P ′ not in this grid form a matching after contracting edges incident vertices
of degree two. �

Lemma F.4 For any t, there are integers k, l, s2 such that if an s2-nested society (G,Ω) contains a pattern
P∪Q such that P consists of k independent Ω-paths, and for every component of P ∈ P, there exist l distinct
components of Q which cross P , then G has a Kt-minor.
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Proof. We first observe that a pattern P ∪ Q is crooked and its order is k + kl. We take N as in
Lemma 32 in [17]. Moreover, we take k, l such that N ≤ kl + k, and moreover, k, l satisfies k, l in [17]. Let
s2 = w(kl+k) +N , where w(.) is the function in Theorem C.1. We claim s2 satisfies the theorem. It follows
from Theorem C.2 (with t replaced by N) that (G,Ω) has an N -nest C ′1, . . . , C

′
N , and a pattern P ′ ∪ Q′,

which is equivalent to P ∪Q, such that P ′ ∪Q′ and C ′1, . . . , C
′
N are orthogonal. It follows from Lemma 32 in

[17] that G has a Kt-minor because P ′ ∪ Q′ and C ′1, . . . , C
′
N contain an “N -grid”, and, again, the subpaths

of P ′ ∪Q′ not in this grid form a matching after contracting edges incident vertices of degree two. �

Lemma F.5 For any t, there are integers k, l, s3 such that the following holds. If an s3-nested society (G,Ω)
contains a segment S of Ω such that if we let Ω′ be the cyclic order of Ω \S induced by Ω, then there exists a
pattern P ∪Q in (G,Ω′) such that P consists of k independent Ω-paths P1, . . . , Pk and for every component
of P ∈ P, there exist l distinct components of Q which cross P . Then G has a Kt-minor.

Proof. We take k, l,N as in the proof of Lemma F.4, and N ′ = N + 1, s3 = w(k + kl) +N ′. We claim s3

satisfies the theorem. By possibly sacrificing the cycle C1, we find a new pattern P ′∪Q′ in (G,Ω), such that
P ′ consists of k independent Ω-paths, and for every component of P ∈ P ′, there exist l distinct components
of Q′ which cross P . Therefore, we can reduce to Lemma F.4 with s2 = s3. �

Finally, we are ready to finish our proof of Theorem 2.1. We proceed step by step to emphasize how an
algorithm can be extracted from the proof.

Assume that we are given a graph G, and R = Kt. Assume that a tangle T of order Θ is given. We will
specify Θ and α = α(t) later.

Step 1. Finding a large wall W , controlled by the tangle T . We first apply Theorem A.2 to obtain
a wall W of size q(t, r), controlled by this tangle T (where q(t, r) comes from Theorem A.7, and r will be
determined later). Note that we can find such a wall W in O(n) time as in Theorem A.2.

We assume Θ ≥ f2(q(t, r)), where f2(.), q(., .) come from Theorems A.2 and A.7, respectively. We also
assume r >> 3α.

This wall W is one of the keys. Specifically, for each separation (A,B) of order at most 3α, we are interested
in the “big” side B. This wall W gives a certificate which side is “big”, because B always contains all but
at most 3α nails of W . In other words, A contains at most 3α nails of W . Therefore the wall W always
indicates which side is “big” for each separation of order 3α.

Step 2. Applying the Weak Structure Theorem to the wall W . We now apply Theorem A.7 with
this wall W . Thus either G has a Kt-minor, controlled by the tangle T (as remarked just after Theorem
A.7), or else there is a vertex set A of order t2, such that G− A can be decomposed into subgraphs H and
G′ with G−A = G′ ∪H. Moreover, the graph H has a flat r-wall decomposition H0, H1, . . . ,Hn, a subwall
W ′ of size r of W , and a boundary cycle C satisfying:

i) ∂G−A(V (G′)) ⊆ V (C) ∩ V (H0), and

ii) every vertex of degree 3 in W ′ is contained in V (H0).

Thus for each i ≥ 1, Hi ∪ A is a small side in the separation (Hi ∪ A,G − (Hi −H0)), with respect to the
tangle T . The value r will be determined later. This structure can be obtained in O(n) time, see [20].
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Step 3. Growing a surface. In this step, we give the setting for our induction. We first let k, l be as
in Lemmas F.4 and F.5. We also take s1 ≤ s2 ≤ s3 as in Lemmas F.3, F.4 and F.5. We introduce two
parameters g1(i), g2(i) as follows.

1. g1(i) is an increasing function such that g1(0) = t2, and g1(i) = g1(i− 1) +a(k, l) + g2(1), where a(k, l)
comes from Theorem E.1 and g2(i) is as below;

2. g2(i) is a decreasing function with i ≤ t2, such that g2(t2) = f ′(t,Σ), where f ′(t,Σ) comes from
Theorem A.8. Moreover, g2(i) = 2w(f(2g2(i + 1) + a(k, l), k)) + 2(2g2(i + 1) + a(k, l) + s3), where
w(.), f(., .) come from Theorem C.2 and Theorem E.1, respectively.

We also set r ≥ 2g2(0) ≥ 2t
2
f ′(t,Σ). Intuitively, g1(i) is a bound for the number of apex vertices while g2(i)

is a bound for the representativity, for the step i.

Let Hi, Fi, Zi, Gi and Σi be the following.

i. G has a vertex set Zi with |Zi| ≤ g1(i).

ii. G− Zi = Hi ∪Gi and Hi ∩Gi = Fi.

iii. Hi has a 0-nearly flat embedding in Σi of euler genus at least i, i.e, Hi consists of edge-disjoint
subgraphs Hi,0, . . . ,Hi,m such that

1.
⋃m
j=0Hi,j = Hi,

2. for all j1, j2 ≥ 1, j1 6= j2, V (Hi,j1) ∩ V (Hi,j2) ⊆ V (Hi,0),
3. for all j > 0, |V (Hi,0) ∩ V (Hi,j)| ≤ 3, and
4. there exist pairwise disjoint open discs ∆i,1, . . . ,∆i,m and an embedding σ : Hi,0 ↪→ Σi−

⋃m
j=1 ∆i,j

such that the only vertices contained in the boundary of ∆i,j are exactly the vertices of Hi,j∩Hi,0.

iv. For each j ≥ 1, Hi,j ∪Zi is a small side in the separation (Hi,j ∪Zi, G− (Hi,j −Hi,0)) with respect to
the tangle T .

v. If i > 0, then the embedding of H̄i,0 in Σi has representativity at least g2(i). If i = 0, then H̄0,0

contains a wall of size g2(0). Moreover, Fi bounds a disc in the embedding of H̄i,0 in Σi.

vi. Let Ωi be Fi with the natural cyclic ordering of Fi. Then (Gi,Ωi) is a g2(i)/2-nested society.

We first show that such a choice i satisfying i.− vi. is possible. More precisely;

Claim If i = 0, then there are desired H0, F0, Z0, G0 and Σ0 satisfying i.− vi..

Subproof. By Step 2, we have that the vertex set A which will correspond to Z0. We assume the notations
given in Step 2. Observe that the notations in Step 2 and iii. actually match.

We pick a g2(0)/2-nest C1, . . . , Cg2(0)/2 in H, where C = C1, so that H0 = H −∆g2(0)/2 still has a wall of
size g2(0), where ∆j is the disc bounded by Cj such that ∆g2(0)/2 ⊇ . . . ,∆1. Such a choice is clearly possible
because H contains a flat r-wall with r ≥ 2g2(0). Let F0 = V (C̄g2(0)/2) and G0 = G′ ∪∆g2(0)/2 ∪ F0. Let
Ω0 be F0 with the natural cyclic ordering of F0. Then (G0,Ω0) is a g2(0)/2-nested society. Clearly for each
j ≥ 1, H0,j ∪ Z0 is a small side in the separation (H0,j ∪ Z0, G − (H0,j −H0,0)) with respect to the tangle
T , because H0,0 contains many more than 3α nails of W . Thus H0, F0, Z0, G0 and Σ0 satisfy i − vi. This
proves the claim.

Let us observe that the structure in Step 3 with i = 0 can be easily found in O(n) time once the structure
as in the weak structure theorem A.7 is given (which is done in Step 2).

Note that Hi, Fi, Zi and Σi are the structures that appear in Theorem 2.1. What remains is to analyze the
society (Gi,Ωi). Thus, the remainder of the proof is to analyze the structure of the society.

We pick an index i and Hi, Fi, Zi, Gi and Σi satisfying i− vi with the value i to be maximal.
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Step 4. Applying the society theorem to the society (Gi,Ωi). From Step 4 to Step 6, we shall work
on the society (Gi,Ωi). Let k1 = 2g2(i + 1) + a(k, l). We apply Theorem A.6 to the g2(i)/2-nested society
(Gi,Ωi) with k̂ = k′(k1, k)), l̂ = l′(l) (k′(.) and l′(.) come from Lemma F.2, and f(., .) comes from Theorem
E.1). If the outcome is 2, then we get the desired structure as in Theorem 2.1, with α(t) = α(k̂, l̂), where
α(k̂, l̂) is as in Theorem A.6.

Suppose the outcome is 1. If we get a (k′, l′)-cross pattern, then by Lemma F.3, Gi has a Kt-minor (which
is actually controlled by the tangle T , as easily seen). If we get a k′(f(k1, k))-crosscap, we go to Step 6. If
we get a (k′(f(k1, k)), l′(l))-leap pattern, then we go to Step 5.

Let us observe that the structure in Step 4 can be found by the constructive proof of Theorem A.6, which
can be converted in an O(n2) time algorithm.

Step 5. Analyzing a (k′(f(k1, k)), l′(l))-leap pattern in the society (Gi,Ωi). At the moment, there
is a (k′(f(k1, k)), l′(l))-leap pattern in the g2(i)/2-nested society (Gi,Ωi). We apply Lemma F.2 to this
(k′(f(k1, k)), l′(l))-leap pattern in the g2(i)/2-nested society (Gi,Ωi). If we get either a f(k1, k)-crosscap or
a f(k1, k)-handle, then we go to Step 6.

Suppose the third outcome of Lemma F.2 happens. Thus the g2(i)/2-nested society (Gi,Ωi) contains a
pattern P ∪ Q such that P consists of k independent Ω-paths, and for every component of P ∈ P, there
exist l ≥ k distinct components of Q which cross P . Then by Lemma F.4, Gi has a Kt-minor (which can be
shown to be controlled by the tangle T ).

Finally, if we get a (k, l)-cross pattern in the g2(i)/2-nested society (Gi,Ωi), then by Lemma F.3, Gi has a
Kt-minor (which is actually controlled by the tangle T , as easily seen).

Let us observe that the structure in Step 5 can be found by the constructive proof of Lemma F.2, which can
be converted in an O(n) time algorithm. Moreover, Kt-minors in Lemmas F.3 and F.4 can be constructed
in O(n) time by following the proofs.

Step 6. Finding a new society in the society (Gi.Ωi). At the moment, the g2(i)/2-nested society
(Gi,Ωi) contains either a f(k1, k)-crosscap P or a f(k1, k)-handle P. By Theorem C.2, (Gi,Ωi) has either a
f(k1, k)-crosscap P ′ or a f(k1, k)-handle P ′, which is equivalent to P, and a (k1 + s3)-nest C1, . . . , Ck1+s3 ,
such that P ′ and C1, . . . , Ck1+s3 are orthogonal. Note that s3 comes from Lemma F.3.

Let G′i = ∆s3 ∪ C̄s3 , and let Ω′i be V (C̄s3) with the natural cyclic order of the cycle C̄s3 . So G′i contains the
graph contained in the disc ∆s3 . Thus (G′i,Ω

′
i) is the s3-nested society. Let P ′′ be the pattern of P ′ induced

by (G′i,Ω
′
i). Thus P ′′ is either a f(k1, k)-crosscap pattern or a f(k1, k)-handle pattern.

Let the annulus bounded by Ck1+s3 and Cs3 be Qi. This Qi will be used to maintain the representativity of
Hi+1,0 when we construct Hi+1, Fi+1, Zi+1, Gi+1 and Σi+1. Note that the annulus Qi has f(k1, k) disjoint
paths obtained by the pattern P ′ in Qi, such that they are orthogonal to the k1-nest Cs3 , . . . , Ck1+s3 in Qi.

We apply Theorem E.1 to the s3-nested society (G′i,Ω
′
i) with either a f(k1, k)-crosscap pattern P ′′ or a

f(k1, k)-handle pattern P ′′. If we get a (k, l)-cross pattern or a (k, l)-twisted cross pattern in the s3-nested
society (G′i,Ω

′
i), then by Lemma F.3, G′i has a Kt-minor (which is controlled by the tangle T , as can be

easily seen). Thus the first outcome of Theorem E.1 cannot happen.

Suppose the second outcome of Theorem E.1 happens. Thus there exists a segment S of Ω′i such that if we
let Ω′′ be the cyclic order of Ω′i \ S induced by Ω′i, then there exists a pattern P ∪ Q in (G′i,Ω

′′) such that
P consists of k independent Ω′i-paths P1, . . . , Pk and for every component of P ∈ P, there exist l distinct
components of Q which cross P . Then by Lemma F.5, G′i has a Kt-minor (which again must be controlled
by the tangle T ).

Finally, suppose the third outcome happens. Thus, after deleting at most a(k, l) vertices (call the set
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Z ′), and adding Z ′ to Zi (and let Zi+1 be the resulting vertex set), there is a pattern P̂ in the society
(G′i−Zi+1,Ω′i−Zi+1), which is obtained from P ′ induced by G′i−Zi+1, such that P̂ is either a (k1−a(k, l))-
crosscap or a (k1 − a(k, l))-handle. Moreover, if we embed this pattern P̂ into the disc bounded by Ĉs3 ,
then there is one “special” face F in the embedding in such a way that G′i − Zi+1 −∆F has a 0-nearly flat
decomposition. Note that the annulus Qi has 2g2(i + 1)-paths, which can connect the pattern P̂ to obtain
the pattern P̂ ′ for the society (Gi−Zi+1,Ωi−Zi+1). Note that the pattern P̂ ′ is either a 2g2(i+ 1)-crosscap
or a 2g2(i+ 1)-handle. Moreover, they are orthogonal to the 2g2(i+ 1)-nest in Qi, too.

Let H ′i = Hi ∪ (Gi −∆F − Zi+1). We claim that H ′i has a 0-nearly flat embedding in Σi+1 of euler genus
at least i + 1 such that representativity of Ĥ ′i,0 is at least 2g2(i + 1). It is clear that H ′i has a 0-nearly
flat embedding in Σi+1 of euler genus at least i + 1. It remains to show that representativity of Ĥ ′i,0 is
at least 2g2(i + 1). It is easy to see that the pattern P̂ ′, together with the 2g2(i + 1)-nest in Qi, can be
embedded on a torus or a projective plane with representativity at least 2g2(i+ 1). We claim that there is
no contractible curve C ′ of order at most 2g2(i + 1) in Ĥ ′i,0, such that the disc bounded by the curve C ′,
together with V (C ′), contains the face F . Otherwise, we delete the vertices (call T ) that hit the curve C ′,
and add T to Zi+1. Then we have a resulting graph Hi+1 of H ′i that has a 0-nearly flat embedding in Σi of
euler genus at least i, such that Hi+1, Zi+1 and Σi satisfy the structure in Theorem 2.1. Note that in this
case, there are no Fi+1 nor Gi+1. Clearly for each j ≥ 1, Hi+1,j ∪ Zi+1 is a small side in the separation
(Hi+1,j ∪Zi+1, G− (Hi+1,j−Hi+1,0)) with respect to the tangle T , because Hi+1,0 contains much more than
3α nails of W . Hence we are done. Thus we do not have such a contractible curve, which means that we
can maintain representativity of H ′i,0 that is at least 2g2(i+ 1), as claimed.

Since H ′i has a 0-nearly flat embedding in Σi+1 of euler genus at least i + 1 and representativity of H̄ ′i,0
is at least 2g2(i + 1), we can take g2(i + 1)/2 nested cycles C ′1, . . . , C

′
g2(i+1)/2 in H ′i so that C ′1 = F and

the embedding of H̄ ′i,0 − ∆g2(i+1)/2 has representativity at least g2(i + 1) in Σi+1 (see [26]). Let Gi+1 be
the graph contained in ∆g2(i+1)/2 ∪ C ′g2(i+1)/2. Then (Gi+1,Ωi+1) is a g2(i + 1)/2-nested society such that
Ωi+1 = V (C̄ ′g2(i+1)/2) and the cyclic order of Ωi+1 is the natural way of C̄ ′g2(i+1)/2. Let Fi+1 = C ′g2(i+1)/2.

Thus we get Hi+1, Fi+1, Zi+1, Gi+1 and Σi+1 with Hi+1 = H ′i − ∆g2(i+1)/2 and Fi+1 = V (C̄ ′1/2g2(i+1)).
Clearly for each j ≥ 1, Hi+1,j ∪Zi+1 is a small side in the separation (Hi+1,j ∪Zi+1, G− (Hi+1,j −Hi+1,0))
with respect to the tangle T , because Hi+1,0 contains much more than 3α nails of W . This contradicts the
maximality of i. Note that if i ≥ t2, then we can find a Kt-minor by Theorem A.8. This completes the proof
of Theorem 2.1.

Let us observe that the structure in Step 6 can be found by the constructive proof of Theorem E.1, which
can be found in time O(n2). Moreover, the Kt-minor in Lemma F.5 can be constructed in O(n) time by
following the proof. Since we know the bound i ≤ t2, thus we have at most t2 iterations to perform Steps
4–6. We conclude that we construct the structure desired in Theorem 2.1 in O(n2) time,

Finally, it follows from our proof that we can get slightly stronger conclusions than Theorem 2.1. Namely,
either we can find a Kt-minor, controlled by the tangle T , or we can get the structure as in Theorem 2.1.
Moreover, given the inputs as in Theorem 2.1 with R = Kt for fixed t, we can reach one of these two
conclusions in O(n2) time for fixed t.
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