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Abstract

We show that for every fixed undirected graigh there is aO(|V(G)|®) time algorithm that tests, given
a graphG, if G containsH as a topological subgraph (that is, a subdivisiorHofs subgraph ofG). This
shows that topological subgraph testing is fixed-parantetetable, resolving a longstanding open question of
Downey and Fellows from 1992.

As a corollary, for everyd we obtain arO(|V (G)|®) time algorithm that tests if there is an immersiortbf
into a given grapl@. This answers another open question raised by Downey afmhsah 1992.

1 Introduction

A graphH is atopological subgraplor topological minoy of graphG if a subdivision ofH is a subgraph o6.
Equivalently,H is a topological subgraph @ if H can be obtained frors by deleting edges, deleting vertices,
and dissolving degree 2 vertices (which means deleting ¢hiex and making its two neighbors adjacent). This
notion appears for example in the classical result of Kuvakbin 1935 stating that a graph is planar if and only
if it does not have a topological subgraph isomorphi&gmr K3 3.

Given graphdd andG, it is NP-complete to decide H is a topological subgraph @ (e.g., a cycle of length
IV (G)| is a topological subgraph @ if and only if G is Hamiltonian). On the other hand, our main result shows
that for every fixedH, there is a cubic algorithm:

Theorem 1.1. For every fixed graph H, there is a((¥ (G)|®) time algorithm that decides if H is a topological
subgraph of G.

Actually, our algorithm is uniform irH, and this shows that the problem of testingHifis a topological
subgraph ofG is fixed-parameter tractable parameterized by the numbegrti€es ofH. Recall that a problem is
fixed-parameter tractablby some parametdcif it can be solved in timef (k) - n®Y for a functionf depending
only onk. Thus Theorerh 1]11 answers a longstanding open questidiraised in 1992 by Downey and Fellows
[3] and then restated at many places, including the operigrolist of the monograph [4]. The problem of testing
for topological subgraphs, which is also known as the syffgl@omeomorphism problem, was already studied
in the 1970s by Lapaugh and Rivest[[10] (also see [7]). Festitopcroft, and Wyllie[[6] studied the directed
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version of the problem and showed that there are simple phgrd such that the problem of testing whether
a given digraphG containsH as a (directed) topological subgraph is NP-complete. In pm@aeakthrough,
Robertson and Seymolir [11] proved that this cannot happamftirected graphs: For every (undirected) graph
H there is a polynomial time algorithm testing whether a gigesphG containsH as a topological subgraph.
(We will discuss Robertson and Seymour’s result in moreilde¢éow.) However, the running time of Robertson
and Seymour’s algorithm i/ (G)|V(H)l. This prompted Downey and Fellows’ questions of whetherpitoblem
is fixed-parameter tractable. Our Theorem 1 answers thistigne

We also study the related problem of testing for immersedsyhs. Aimmersionof a graphH into a graph
G is defined like a topological embedding, expect that theaties corresponding to the edges dfare only
required to be edge disjoint instead of internally vertesjaint. Formally, an immersion df into G is a mapping
a that associates with each vertex V (H) a vertexa (v) € V(G) and with each edge=vw e E(H) a patha (e)
in G with endpointsa (v) anda(w) in such a way that the pattes(e) for e € E(H) are mutually edge disjoint.
Robertson and Seymolir [|14] showed that graphs are weli-Qudasred under the immersion relation, proving a
conjecture of Nash-Williams. Here we obtain the followirigaxithmic result as a corollary to Theorém11.1:

Corollary 1.2. For every fixed graph H, there is a((¥ (G)|3) time algorithm that decides if there is an immersion
of H into G.

Again, our algorithm is uniform itd, which implies that the immersion problem is fixed-paramatectable.
This answers another open question by Downey and FellowH.[3,

Yet another related problem is minor containment testing. Say that grapi is aminor of G if H can be
obtained fromG by deleting vertices, deleting edges, and contracting ®dgeelebrated result of Robertson and
Seymour[[11] shows that for every fixéti there is &O(|V (G)|®) time algorithm for testing iH is a minor ofG.
Their algorithm actually solves a more general rooted warsif the problem. This rooted version contains as a
special case thk-DISJOINT PATHS problem, where given pairs;,t;), ..., (S, ) of vertices, the task is to find
vertex disjoint path®, ..., B such thaP connects andt;. Itis not difficult to reduce testing il is a topological
subgraph ofs to k-Di1sJOINT PATHS. For each vertex of H, we guess a vertex of G, and then for each edgs
of H, we find a path connecting andV in G such that thes¢ge (H)| paths are pairwise internally disjoint. This
approach yields thiy (G)|C(V(H)) time algorithm for topological subgraph testing mentioagdve.

Our algorithm for finding topological subgraphs follows theneral framework of Robertson and Seymour
for minor testing, but it deviates from it significantly. Le$ give a very high-level overview of Robertson and
Seymour’s algorithm [11]. If the treewidth @ is “small,” then standard techniques allow us to solve thdlam
in linear time. If the treewidth o6 is “large,” then we find aiirrelevant vertexwhose deletion provably does not
change the answer to the problem. By iteratively finding aglétthg irrelevant vertices, we eventually arrive to
a G whose treewidth is small. To find an irrelevant vertex if treewidth ofG is large, we use the the so-called
Weak Structure Theorerwhich allows us either to find a large clique minor or to shbattthe graph has a large
“flat wall.”. The case of a large clique minor is easy to handfi¢here are no roots, then it immediately solves
the problem (as every small graph appears in the large clitjper) and even if roots are present, we can argue
that a large part of the clique is irrelevant. The most diffipart of the algorithm is to deal with the case of a
flat wall and to identify an irrelevant vertex there. Indetttls case needs the majority of the work. The analysis
of this case requires the whole series of Graph Minor papmidise structure theorem of [12]. Very recently, a
significantly simpler treatment of this case was presemnidf]i

Let us now give an overview for our algorithm. The case of $imaewidth goes through for topological
minor testing without any difficulty. The new proof in![9] foninor testing in the case when there is no large
clique minor can be adapted for topological minor testingecHically, for the case where there is a large flat wall,
using the unique linkage theorem [13] and its much shorteofd@], we can indeed find an irrelevant vertex in
the middle of the large flat wall. This case is similar to tlmtthe minor testing, however, we may need to change
almost all of the branch vertices of a given topological mimside the flat wall. This gives rise to some amount
of technical difficulties, which we overcome in this papeet us emphasis that our proof of the correctness for
our algorithm does not depend on the full power of the grapomstructure theorem [12], while Robertson and
Seymour’s analysis for their algorithm do needs the whaliesef Graph Minor papers and the structure theorem



of [12]. Utilizing some results in_[9], we are able to avoidttinuch of the heavy machinery of the graph minor
structure theory.

Let us now look at the case when there is a large clique minemtifying a large clique minor was an easy
situation to handle in the case of finding minors, but it is oletious how it is of any use in the case of finding
topological subgraphs. The problem is that the degreeseo¥éitices matter much more in finding topological
subgraphs than in finding minors. Hf is, say, 4-regular and we have found a large clique minor iaraqf G
that contains only degree-3 vertices, then this cliqgue nilo@s not immediately solve the problem. Furthermore,
asG can contain many vertices of degree at least 4 close to tigigechinor and each such vertex is potentially
the image of some vertex ¢f, there is no easy argument that shows that some part of tipgeds irrelevant.
We circumvent these problems by introducing a new operdltiahwas not present in the framework lof [11]. If
a small number of vertices can separate away a large pare gfréiph, then we recursively “understand” this part
and then replace it with an equivalent smaller graph. We statvif no such step can be performed, then we
can completely understand how the large clique minor carsbd by a topological subgraph. This new operation
and the associated recursion changes the high-levelwteuot our algorithm considerably: unlike in11], it is no
longer just an iterative removal of irrelevant vertices.

Similarly to [11], we define and solve a very general rootesiom of the problem (“finding folios™). It is
important to point out that we are solving this rooted gelimation not (only) for the sake of obtaining maximum
generality of the result. In the recursion steps involviegagators, we argue about topological subgraphs using
the separator in a certain way, and the concept of roots dete® express these requirements.

2 Folios

A rooted graphis an undirected grap® with a setR(G) C V(G) of vertices specified as roots and an injective
mappingpg : R(G) — N assigning a distinct positive integer label to each rootever Isomorphism of rooted
graphs are defined the obvious way, i.e., roots must be mappexbts with the same label. We say that two
rooted graph&; andG, arecompatibleif pg, (R(G1)) = pe,(R(G2)), i.e. the same set of positive integers appear
on G; andG; (which means in particular th#R(G;)| = |[R(G2)|).

We say that rooted graph is atopological minorof rooted graphG if there is a mapping (a modelof H in
G) that assigns to eache V(H) a vertexg(v) € V(G) and to eacle € E(G) a pathg(e) in G such that

(1) The verticesp(v) (v € V(H)) are distinct.

(2) Ifu,veV(H) are the endpoints a&fc E(H), then pathp(e) connectsp(u) andg(v).

(3) The pathsp(e) (e € E(H)) are pairwise internally vertex disjoint, i.e., the intakwertices ofg(e) do not
appear as an (internal or end) vertexg¥ ) for any€ # e.

(4) Foreverwe R(H), pc(@(V)) = pH (V).

Even ifH is a topological minor of5, they are not necessarily compatibi&can have more root vertices thiein

Thefolio of G is the set of all topological minors @. Clearly, the folio is closed under isomorphism, i.e., if
rooted graph$d andH’ are isomorphic andfl is in the folio of G, thenH’ is in the folio as well. 1fd > 0 is an
integer, then thé-folio of G contains every topological mindt of G with [E(H)|+is(H) < J, where igH) is
the number of isolated vertices |f. Obviously, every graph in th@-folio has at most 8 vertices.

Observation 2.1. The number of distinct graphs (up to isomorphism) in dhfolio of G can be bounded by a
function ofd and|R(G)].

There are QF«ZG)‘) possible undirected graphs &{iG). For each such grapK, we slightly abuse notation by
definingG + X the obvious way. The rooted gra@+ X has ad-folio, which may or may not be different from

the 5-folio of G. The 4" 2 )-tuple of all thesad-folios will be called theextended-folio of G.

Given an extended-folio F, arepresentativeof F is a rooted grapltc whose extended-folio is 7. We
define the constarit;, to be the smallest integer such that for every rooted g@ptith at mostr roots, the
extended-folio of G has a representative on at mbgt, vertices. Itis clear thdt, is finite.

Lemma 2.2. There is a computable functiaitd,r) with Ls, < ¢(J,r) for everyd,r > 0.
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Proof. Let G be a graph of minimum order with a givénfolio with r roots. Suppose that tlefolio consists of
graphsHy,...,Hm. For each € [m], letH/ be a subgraph d& isomorphic to a subdivision dfi;. LetW C V (H/)
be the set of vertices corresponding to the verticed;pind letP; be the set of paths iH/ corresponding to the
edges oH;. Note thatG = (J" ; H; by the minimality ofG. LetW := " ;W andP := (" ; P. In the terminology
of Section[5,P is a path system. Lékt:= |P|; obviouslyk can be effectively bounded in terms &fandr. It
follows from the Unique Linkage Theorem 5]11, or more pragisCorollary[5.12, and the minimality & that
the treewidth ofG is bounded byw(k) for some computable functiom. The computability ofv can be checked
by going through the proof of the Unique Linkage Theorem []3,

It is easy to see that the folio of a rooted graph can be defimedadnadic-second order logic MSO. That
is, we can find an MSO-sentengestating that a graph has the desired folio. Hence we only tay®ove
that an MSO-sentencg that has a model of treewidth at mdshas such a model of order at magt, /), for
some computable functiom This is well-known. To prove it, we give a translation (st$O-transductionthat
transformsg to a sentencé* in the language of colored trees and associates with evaph@ of treewidth at
most/ and every tree decompositidh of G of width at most/ a colored treél (G, D) of roughly the same size
asG such thatp* is only satisfied by trees of the forfn(G,D), andT (G, D) satisfiesp* if and only if G satisfies
¢ (such a translation is described, for example, in Sectioa @fl[5]). Then we use a theorem due Thatcher and
Wright [16] to (effectively) construct a tree automat@rthat accepts a tre€ if and only if T satisfiesp*. By a
Pumping-Lemma argument, we obtain an effective bduAd such that ifA accepts any tree at all, then it accepts
a tree of size at most(A). As all the transformations involved are computable, tleddg the desired bound on
the smallest model g and thus on the size of the smallest graph with the given.folio O

The (extendedp-folio of a graphG with respect t@ setZ C V(G) is the (extendedd-folio of the graphG/,
whereG' has the same set of vertices and edge§,asut R(G') = Z. We will use this notion to avoid defining
new graphs that differ only in the set of roots. Some stréagiviard observations:

Proposition 2.3. Let G be a rooted graph and Iét> 0 be an integer.

(1) The extended 0-folio of G contains only the empty graph.

(2) Let RC Q CV(G) be two sets of vertices. Tiefolio of G with respect to R can be obtained from the
J-folio of G with respect to Q.

(3) LetR, ..., R be subsets of {G) such that for every subset QR(G) of size at mos2d thereisal <i <t
such that QC R,. Thed-folio of G can be obtained from th&folios of G with respecttoR..., R.

(4) The extended-folio of G can be obtained from th@ + |R(G)|)-folio of G.

2.1 Separations and replacements

A separationof a graphG is a pair(A, B) of subgraphs such thst(G) =V (A) UV (B), E(G) = E(A) UE(B), and
E(A)NE(B) = 0. Theorder of the separatioiA, B) is [V (A) NV (B)].

Let (A, B) be a separation of rooted graffsuch thaV (A)NV (B) C R(G). LetA’ be arooted graph compatible
with A. Replacing Awith A" in the separatioriA, B) gives the graplG’ defined as follows. We havwé(G') =
V(A)U(V(B)\V(A)), G has every edge o' andB\V(A), andG' has the following additional edges: if
ueV(A)NV(B) andve V(B)\V(A) are adjacent i1, andu’ € V(A) is a vertex withoa(u) = pa (U'), thenu’
andv are adjacent i5'. Intuitively, we removeA from G, and replace it b’ such that the role of (A) NV (B) is
taken by the matching root vertices&f The following lemmas show how the folio changes after regaent:

Lemma 2.4. Let(G;,G,) be a separation of a rooted graph G, 1e£3/(G;) NV (Gy), and suppose thatSR(G).
Let G, be a rooted graph compatible withjGuch that G and G, have the same extendéefolio. Let G be the
graph obtained by replacing Gwith G; in the separation(G1,G,). Then G and Ghave the same extended
o-folio.

Proof. Without loss of generality, we can assume tR&G) NV (G1) = S extendingG; such thatv (Gy) fully
containsR(G) does not change the statement of the theorem. Under thispssn, it is sufficient to prove the
weaker statement th& andG’ have the same (not extendedifolio (but the condition thaG, andG] have the
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sameextended-folio is not changed). To see this, consider an arbitraapX onR(G). Let X; be the subgraph
of X induced byR(G) NV (G;1) = Sand letX; = X \ E(X1). Now G+ X has a separatiofG; + X1, G2 + X2) and
G’ + X has a separatiofG] + X1,G, + X2). As G; andG) have the same extendédfolio, graphsG; + X; and
Gj + X1 have the same extendédfolio as well. Therefore, the weaker statement shows @&atX andG' + X
have the samé-folio. As this is true for ever)X onR(G), it follows thatG andG’ have the same extendéefolio.

LetH be arooted graph witlfe(H )| +is(H) < é and letg be a model oH in G. We need to show th&t has
amodely’ in G'.

We define the grapX* on S= R(G) NV (G1) such thauv € X* for someu,v € Sif there is an edgec E(H)
such thatg(e) has a subpath with endpointsandv and every internal vertex iW (Gz) \ V(G;1). For every
uv e E(X*), let R,y be this subpath. Given a pakhin G with endpoints inV(G;), we denote byP]g, the path
obtained by replacing subpaths Bfthat leaveV (G;) by appropriate edges of*. Similarly, if Q is a path in
Gy + X*, then we denote bjQ|® the path ofG obtained by replacing each edge of X* by the corresponding
pathP,,.

We define a grapli* and a modelp of H* in G; + X* as follows. First, grapliH* contains every vertex
veV(H) with g(v) e V(Gy); if ve R(H), thenvis in R(H*) and has the same root numbeHrandH*. For such
vertices, we sefy(v) = ¢(v). We introduce additional vertices and edgesitoas follows. We classify each edge
e=uve V(H) into one of 6 types, and modity* accordingly.

(1) o(u),o(v) € V(G1). For each such edge, there is a corresponding etgeuvin H*. We definey(e*) =
[p(e)]G,-

(2) o(u) eV(Gy), p(v) €V (G1), andg(e) has an internal vertex M(G; ). For each such edge, let us introduce
a new vertexv; that has the same root number as the last vestexX ¢(e) (going fromu to v) that is in
V(G1). Note that this last vertex has to be 81C R(G), hence it is a root vertex. Lep(vy) =w. We
introduce an edge* = uv; in H* and set(e*) = [P]g,, whereP is the subpath of(e) from u to w.

(3) @(u) eV(G1), @(v) £V (G1), ande(e) has no internal vertex M(Gy). This is only possible itie V(G1) N
V(G>), henceuis a root. We modifyH* by makingu a root (if it is not already a root), having the same root
number asp(u).

(4) o(u),p(v) £V (G1), andg(e) has no internal vertex M (G1). No change is done td*.

(5) o(u),p(v) £V (G1), andg(e) has a single internal vertexin V(Gz). This is only possible itv € V(G1) N
V(Gy), and hencav is a root. An isolated root verte¥ is introduced tdH*, with the same root number as
w. Letg(if) =w.

(6) o(u),p(v) £V (Gy1), andg(e) has more than one internal verteXMiG; ). Let ug # Ve be the first and last
vertices, respectively, op(e) (going fromu to v) that are inV(G;). Note thatue andve are inV(Gz) N
V(Gy), hence they are root vertices. Let us introduce root vestgeand u; in H* that have the same
root numbers ase andve, respectively; letp(uy) = ue and (Vi) = Ve. Let us also introduce an edgé
connectingv; andug, and lety(e*) = [P]g,, whereP is the subpath of(e) from ug to Ve.

This completes the description bif*. It should be clear thays is a model ofH* in G; + X*. Furthermore, we
claim that|E(H*)| +is(H*) < |E(H)|+is(H) < d. First, for each edge dfl, we introduce at most one edge in
H* (for type 3-5 edges, we introduce no new edgkli. Moreover, a vertex ofl* can be isolated only if it was
isolated inH, or only type 3 edges were adjacent to it, or it was introdungdduced as a vertag corresponding
to a type 5 edge. This means that the number of isolated verticeld fris at most i$H ) plus the number of type
3-5 edges iH.

As H* is a topological minor of; + X*, it is a topological minor ofG] + X* as well; lety/ be a model
of H* in G} +X*. We show that}’ can be used to define a modglof H in G, what we need to show. For
everyv € V(H) with @(v) € V(Gy), let ¢/ (v) = ¢/'(v) (asv € V(H*) in this case) and for everye V(H) with
o(v) €V(G2) \V(Gy), let ¢ (v) = @(v). The images of the 6 different type of edgedHrare defined as follows.

(1) Letg/(e) == [W'(e)°.
(2) Letw € She the last vertex op(e) from u to v. We obtaing/ (€) by concatenatingy’ (uv5)]® (which goes
from ¢/ (u) to w) and the subpath ap(e) fromwto v.
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(3) ¢'(e) = g(e).

(4) ¢(e) == q(e).

(5) ¢/(e) == q(e).

(6) The pathy/(e) is obtained by concatenating the subpathp() from u to u,, the path{y/ (uiv;)]€, and the
subpath ofp(e) from uy to u.

= ¢
=

It is not difficult to verify that the pathg/(e) defined above are internally disjoint. What is important bserve
is that if a subpath ofp(e) is used in the definition above, then every vertex of this attbinV(G;) NV (Gy)
corresponds to a root &f*, hence it cannot conflict with that patiig(e). Thus¢' is a model oH in G, what we
had to show. O

Lemmd Z.4 implies that a separation allows us to determiaéaiio from the folios of two smaller graphs.

Proposition 2.5. Let (G31,G;) be a separation of a rooted graph G, let=SV(G;) NV (Gz), and suppose that
SC R(G). The extended-folio of G can be computed from the extendetblios of G and G.

Proof. Let 1 and F, be the extended-folios of G; andG,, respectively. Let use brute force to find minimum
representative§) andG; of 71 and 7, respectively. By definition, we hay¥' (G))|,|V (G,)| < Ls r)- BY
Lemmd 2.4, replacin@; with G] in the separatiofiG1, G;) does not change the extend&dolio. With a second
application of Lemm& 2]4, we can replaGe with G,, and obtain a grapls’ on at most 25 r(c) Vertices that
have the same extendéefolio asG. The extended-folio of G’ can be determined by brute force.

O

Given a rooted grapks, let w be a weight function that assigns a positive integer to eactex ofV (G).
The w-boundedd-folio of G contains those membeks$ of the d-folio of G that have a modep satisfying the
additional requirement that for evewye R(H), the degree of in H is at mostw(¢(v)). Note that we do not make
any restriction on the degree of a non-root verex H, even if o(u) happens to be a root vertex @f The term
unbounded®-folio is used when we want to emphasize that we are refetarige original definition od-folio.
Thew-bounded extendedi-folio is defined analogously. Given a weight functiemon the vertices o6, we define
W(S) = S esW(v) for everySC V(G).

Lemma2.#4 does not remain true ferbounded folios: it is not true th& andG’ have the same-bounded
extendedd-folio is not sufficient to require thaB; and G; have the sam&v-boundedextendedd-folio. The
particular point where the proof would fail is that a type §edan make a vertex &f a root which was not a root
in H, and therefore it is not true that the models w-bounded. However, the proof can be fixed if we impose the
additional assumption th&; and G| have the same unbounded extendéd- 1)-folio. This statement will be
used in Sectiohl4 in a situation where thdboundedd-folio of G; is easy to determine and we can use recursion
to compute the unboundéd — 1)-folio.

Lemma 2.6. Let(G1,G,) be a separation of a rooted graph G, 1e£3/(G1) NV (G2), and suppose thatSR(G).
Let w be a weight function that assigns a positive integerachevertex of (G). Let G, be a rooted graph
compatible with G such that G and G, have the same w-bounded extendefblio and the same unbounded
extended d — 1)-folio. Let G be the graph obtained by replacing @ith G; in the separatior(G1,G;). Then G
and G have the same w-bounded extendefilio.

Proof. The proof is the same as the proof Lemima 2.4 with one additemgament. Suppose first thd(H*)| +
is(H*) < 6 — 1. In this case, we know th&t* is in the(d — 1)-folio of G} + X* as well, thus the mode}’ exists
and the modely’ can be constructed. Note th&tG) = R(G;), which means thaf/(v) = ¢(v) for every root
vertex ofH and thereforey’ is w-bounded ifp is w-bounded.

Suppose now thdE(H*)|+is(H*) = 6. We claim that in this casg is w-bounded and hendd* is in the
w-boundedd-folio of G; + X* (not only in the unbounded-folio). The vertices ifvV(H*) \V(H) have degree
at most 1, thus the degree bound holds for such verticesli(tbeaw(((v)) is strictly positive). If a vertex
ve RH*)NV(H) isin R(H), theny(v) = ¢(v) and hence the degree condition holds. Thus we have potential
problems only with vertices itR(H*) NV (H)) \R(H), i.e., vertices that were already present as non-rootoesti
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in H, but became roots iH*. The only way such a vertaxcould have become a root istifwas incident to a type
3 edgeuv. If uisisolated inH*, then the degree bound immediately holdsu i not isolated, then the type 3 edge
uv does not create any edge or any new isolated verték*irthus there is at least one edgetbtthat does not
contribute toward$E (H*)|+is(H*), contradicting|E(H*)| +is(H*) = 8. Thus no such vertex is possible, and
it follows that y is w-bounded. AsG; andG) have the same-bounded extended-folio, the modely’ exists,
and the rest of the proof is the same as before. O

Analogously to Profd. 215, a separation gives a way of detengithew-bounded folio.

Proposition 2.7. Let (G31,G;) be a separation of a rooted graph G, let=SV(G;) NV (Gz), and suppose that
SCR(G). Let w be a weight function that assigns a positive integeedoh vertex of B5). The w-bounded

extendedd-folio of G can be computed from the w-bounded extendldolio of G;, the unbounded extended
(6 — 1)-folio of Gy, and the unbounded extendé&eolio of Gs.

3 Algorithmic framework

The main result of the paper is an algorithmuBFoLIO that determines the extendéefolio of the given graph.

FINDFoOLIO
Input: Rooted grapks, integerd.

Output: The extended-folio of G.

Theorem 3.1. There is an algorithm satisfying the specificationFofip FoLIo that runs in §(3, |R(G)|)- |V (G)|®
steps, for some computable functian f

For technical reasons, we prove Theofeni 3.1 in the follovamngn:

Lemma 3.2. There is an algorithm satisfying the specificationfokp FoLIo on instances withR(G)| < 1652
that runs in §(d) - |V (G)|® steps, for some computable functign f

It is clear that LemmB&_3]2 implies Theorém|3.1: by increaging, say,|R(G)
can be used even|iR(G)| is arbitrary.

First we design three auxiliary algorithms that either mettihe extended-folio, or some information that
is helps our progress: an irrelevant vertex, a clique mioogan appropriate separation. We say that aXsef
vertices idgrrelevantto the (extendedd-folio of G, if rooted graph$s andG\ X have the same (extendedhfolio.
We say that a vertexis irrelevant if the sefv} is irrelevant. Note that even if every vertex of a Xes irrelevant,
the setX need not be irrelevant.

, the algorithm of Lemmpa_3l2

FINDIRRELEVANTORSEPARATION _
Input: Rooted grapks, integerd, integerL.

Output: — The extended-folio of G, or
—avertexv € V(G) irrelevant to the extendedHfolio of G, or
— a separatioliGy, Gy) of G with |V (Gy)|, |V (G)| > L and having order at most4.

We say thaB4y, ..., By are the branch sets ofkg-minor, if they are pairwise disjoint, and for every<li <
] <Kk, there is an edge with one endpointBpand one endpoint iB;.
FINDIRRELEVANTORCLIQUE FINDIRRELEVANTORCLIQUEX
Input: Rooted grapks, integerd, integerk. Input: Rooted grapks, integerd, integerk.
Output: — Thed-folio of G, or Output: — Theextended-folio of G, or
— a vertexv € V(G) irrelevant to thed- —a vertexv € V(G) irrelevant to theex-
folio of G, or tendedd-folio of G, or
— the branch set8,, ..., By of a K- — the branch set8;, ..., Bx of a Kg-
minor in G. minor inG.

Theorem 3.3. There is an algorithm satisfying the specification D IRRELEVANTORCLIQUE that runs in
f2(0,|R(G)|,k) - [V (G)| steps, for some computable function f

7



Algorithm 1 FINDFOLIO
LetL :=45%41.

=

2: LetX :=0 {X isirrelevant to the extendedtfolio of G}

3: Let Ret= FINDIRRELEVANTORSEPARATION(G\ X, d,L).
4: if Retis the extended-folio F of G\ X then

5  return F

6: if Retis an irrelevant vertex then

7. LetX :=XU{v}

8: goto[3

9: if Retis a separatioliG;, Gy) of G\ X then
10: SZ:V(G]_) ﬂV(Gg)
11: G} :=AddRoo{(G1,9)
12.  F =FINDFOLIO(G/, d)
13:  if there is a representativ@] of 7 with at mostL verticesthen

14: G :=(G],Gy)
15: G"” := RemoveRodiG",S\ R(G))

16: return ANDFoOLIO(G”, d)
17:  else

18: LetL:=L+1

19: goto[3

Theoren 3.8 is proved in Sectidh 5. It is easy to show that goridhm for ANDIRRELEVANTORCLIQUE
can be used to obtain an algorithm fanBIRRELEVANTORCLIQUEX:

Corollary 3.4. There is an algorithm satisfying the specificationfFoRDIRRELEVANTORCLIQUEX that runs in
f5(0,|R(G)|,k) - |V (G)| steps, for some computable functign f

Proof. Let us run the algorithm INDIRRELEVANTORCLIQUE given by Theorerh 313 o6 with &' := d + |R(G)|
andk’ := k. If this call returns thed'-folio of G, then by Prop[_2]3(3), we are able to compute and output the
extended-folio of G. If the call returns a vertexthat is irrelevant to thé’-folio of G, then again by Prop. 2.3(3),
vertexv is irrelevant to the extendeadtfolio of G, and hence can be returned as a correct output. Finally, @ min
model of ak-clique inG is a also a valid output forIKDIRRELEVANTORCLIQUEX. O

Sectior_ 4 presents an algorithm fom® | RRELEVANTORSEPARATION:

Theorem 3.5. There is an algorithm satisfying the specificationFoiD | RRELEVANTORSEPARATION that runs
in f3(8,|R(G)|,L) - |V (G)|? steps, for some computable functien f

We prove Theoremh 3.5 and Lemra]3.2 by simultaneous inductlanthe rest of this section, we prove
Lemma 3.2 for som@, assuming that Theorelm B.5 is true for tBiswhile in Sectiori #, we prove Theordm B.5
for somed, assuming that Lemnia 3.2 is true @ 1. Itis clear that these two proofs together prove Thedréin 3.
and Lemma_3]2 for everyy > 0.

Proof (of Lemma3I2)Let L* = max{L5’1252,1662}. This constant will be required only for the analysis of the
algorithm and it does not appear explictly in the descriptid the algorithm. Algorithni]l shows the algorithm
in pseudocode. The functions AddR@BtS) and RemoveRo¢6, S) return a rooted graph whei®is added
to/removed from the set of roots, respectively.

Let L := 462+ 1. We will increasel during the algorithm, but (as we shall séeX L* will always hold.
Initially we setX := 0; it will always hold that the set of verticesis irrelevant to the extendeatolio of G.

Let us run algorithm RDIRRELEVANTORSEPARATION of Theoren{ 3.6 withG\ X, 4, andL. If the output
is the extended-folio of G\ X, then we are done. If the output is a vertexrrelevant to the extended-
folio of G\ X, then letX := XU {v} and call FNDIRRELEVANTORSEPARATION again. It is clear that the new



X is irrelevant to the extended-folio of G. Suppose that (after returning some number of irrelevarticess)
FINDIRRELEVANTORSEPARATION returns a separatiofGs, G,) of G\ X with [V(G1)[,|V(G2)| > L and having
order at most 2. Note thatL > 462, and hencaV (G1) \V(Gy)|, IV (G2) \V(Gy)| > 0.

Let G, G|, G, be the same a6\ X, Gi1, and Gy, respectively, with the difference that every vertex of
S=V(G1)NV(Gy) is a root (in addition to the original roots). Without lossg#nerality, we can assume that
IR(G1)| < |R(Gy)| and hencdR(G})| < |R(G)|/2+|S < 1252. Let us call FENDFoLIO recursively to find the
extendedd-folio of G} and then let us try to construct by brute force a represert& of this folio having at
mostL vertices. If we do not find such a representative, then weasal by one, and go back to callingibd -
IRRELEVANTORSEPARATION (note that this is possible only if < L 1052 < L*, thus we never increaseabove
L*). Otherwise, we replac&; with G in the separatioiG/,G,); let G” be the new graph. By Lemna 2.@,
andG” have the same extend@dfolio. Let G” be the graph obtained fro@” by making those vertices &
non-roots that are non-roots@(i.e., | R(G")| = |R(G)|). Itis clear that the extendedtolio of G\ X andG"” are
the same. Thus we can finish the algorithm by recursivelyngaFiINDFoLIO onG” (note thatt R(G")| < 166°).

Itis obvious from the description that the answer returnethb algorithm is correct. Note that(G))|, |V (G")| <
V(G)], i i

We need to show that the number of steps can be boundgt®y|V (G)|2 for some functiorg. The running
time required for instances with at mdst+ 1 vertices can be bounded by a constant depending ondy. &ile
show that there is a functiogl such that the running time can be boundedgtfy)(|V (G) — L* — 1)|V(G)|? for
instances withV (G)| > L* + 1. We prove by induction ofV (G)| that this holds ify (d) is sufficiently large.

Let us bound first the number of steps without the callsItNFRRELEVANTORSEPARATION and the recur-
sive calls to FlNDFoOLIO. Letx be the number of timesIRDIRRELEVANTORSEPARATION returned an irrelevant
vertex. Then INDIRRELEVANTORSEPARATION was called at most+ L* times (each call either returned an ir-
relevant vertex or increaseéd butL < L* always hold). Therefore, each line is executed at madt* times. Each
step can be done in linear time in the size of the graph, thusandound the running time ey - (x+ 1)|V(G)|?
for some constant; depending ord. By Theoreni 3.5, each call to¥DIRRELEVANTORSEPARATION can be
bounded byfz(5,1662,L)|V(G)|? steps and the maximum possible valueLdé a function ofd, thus the total
time required for these calls can be boundedaby(x+ 1)|V (G)|? for some constart, depending only om.

Finally, let us bound the running time of the recursive cal§iINDFoLI0. If [V(G))| <L*+1or|V(G")| <
L*+ 1, then the number of steps of these calls can be bounded mstaobdepending only ah Let us assume in
the following that|V (G})|, [V (G"”)| > L* + 1. As we noted earliefy (G})|, |V (G")| < |[V(G)|, thus the induction
hypothesis can be used to bound the running time of these dédierefore, the total running time can be bounded
as follows:

(C1+c)(x+ V(G )!2 g(3)(IV (G| —L = NV(G) 2+ g (B)(V(G")| L =NV (G")?
(5)((X+1)—|—|V(G’)|—L* 1+ |V(G")|-L*—1) V(G)|?
(8) (x+1)+|V(Gy)| —L* — 1+|V(Gy) \V(Gy)| ~ 1) [V(G)
<gB)(V(G)|-L ~1V(G).

In the first inequality, we assume tigi{d) > c1 +c,. The second inequality follows frofv (G”)| = |V (G]) U
V(G5)| and|V(G])| <L < L*. The last inequality follows fromX|+ |V (G}) UV (G5)| = [V(G)|. O

4 Using a large clique minor

In this section, we prove Theorédm B.5 for sohessuming that Lemnia 3.2 holds ¢ 1. We use the following
lemma due to Robertson and Seymour ((5.4) of [11]):

Lemma 4.1. Let G be a graph and Z V(G). Lett> (3/2)- .,Bk € V(G) be the branch
sets of a lg-minor of G. Suppose that there is no separati®, G,) of G of order< |Z| with Z C V(G;) and
BpNV(G1) = 0for some ke [k]. Then for every partitioiZ;, ..., Z,) of Z into nonempty subsets there are pairwise
disjoint connected subgraphs,T.., T, C G such that (T))NZ =z for alli € [n].




We say that thé-folio of a graph isgenericif it is as large as possible: it contains every rooted grdphith
E(H)+is(H) <dandpy(R(H)) C pc(R(G)). We say that thé-folio of a graph isrooted-generidf it contains
every such grapi with the additional condition that every vertex ldfis rooted (thus generic implies rooted-
generic, but not necessarily the other way). The notionenégc and rooted-generic are defined analogously for
the extended and-bounded folios. Note that & has a generid-folio, then G+ X has generid-folio for any
graphX on R(G): adding edges can only add more graphs to the folio. Thusxtiem@edd-folio of G is generic
if and only if the d-folio is generic. We can use Lemrmal4.1 to obtain sufficiemditions for generic folios:

Lemma 4.2. Let G be a rooted graph. Let w be a positive integer weighttiancon V(G). Let k> (3/2) -
W(R(G)), and let B,...,Bx C V(G) be the branch sets of axininor of G. Suppose that there is no separation
(G1,Gy) of G withwV(G1) NV (Gz)) < W(R(G)), R(G) CV(G1), and BNV (G1) = 0 for some ie [K].

(1) The w-bounded-folio of G is rooted-generic.
(2) If there are at leas®d vertices v in RG) with w(v) > 24, then the w-bounded-folio of G is generic.

Proof. We need to show that every possible candididtie in thew-boundedd-folio of G. Suppose therefore that
H is a rooted graph withE(H)|+is(H) < d, R(H) =V (H), andpy(R(H)) C pc(R(G)). For everyu e V(H),
let ¢(u) be the vertex oG with the same root number asand assume thak; (u) < w(¢(u)) for everyu e V(H).
We need to show thad is a topological minor of5, i.e., @ can be extended to a modelldfin G.

For everyv € V(G), let us definev (v) = dy (u) if v= ¢@(u) for someu € V(H), and letw'(v) = w(v) if there
is no suchu. Clearly,w (v) < w(v) for everyv € V(G): the degree condition holds for evernye RH) =V (H)
in @. Let G’ be the graph obtained frof@ by extending each vertexc R(G) into a cliqueK; of sizew/(2), i.e.,
we introducew (z) — 1 new vertices that are adjacent to each other, to vertard to every neighbor af The
clique K, containsz and thesav' (z) — 1 new vertices. LeZ := [J,cr) Kz Let us show first that the conditions
of Lemmal4.1 hold foZ in G'. Suppose for contradiction théB,G,) is a separation o&’ of order less than
|Z| =W (R(G)) < w(R(G)) with Z C V(G]) andB, C V(G5) \V(G}) for someb € [k|. LetS :=V(G]) NV (G,)
be the separator. Without loss of generality, we may asshatddr allze R(G), eitherK,NS =0 orK, C S. Let
G1:=G]\ (Z\R(G)) andG; := G, \ (Z\R(G)). Then(Gy,G,) is a separation db; let S=V (G1) NV (G,) be the
separator. Now it is clear that(S) = |S| < |Z| = W (R(G)) < w(R(G)). However, we also hag(G) C V(G1)
andBpNV(G;) = 0, contradicting the assumption of the lemma being proVéwis we can conclude that there is
no such separatiofG], G,), and the conditions of Lemnia 4.1 hold 8randG'.

Let us partitionZ’ in such a way that for every edger € E(H), there is a 2-element class of the partition
consisting of a vertex iy, and a vertex irKy,). As Ky, andKy,) contain exactlydy (u) anddy (v) vertices,
respectively, such a partition exists. Lemma 4.1 gives afspairwise disjoint subgraphs, one for each class of
the partition. For every edgev € E(H), let us denote by, the connected subgraph corresponding to the class
consisting of a vertex oKy, and a vertex oKy, and let us chose a paRj, in T,y that goes from a vertex of
Koy to a vertex ofKy). Itis clear that the collectiof®’ of |E(H)| paths obtained this way are pairwise disjoint
in G'. Let us defineR,, such that wheneveR/, contains a vertex of son&,, then we replace it by, let P be the
collection of these pathg,, for everyuv e E(H). Observe that the wa@’' was defined ensures thayj, is a path
in G. We claim that the paths i are pairwise internally disjoint iG. As the paths irP’ are pairwise disjoint,
the only possible problem is that for somec V(H), vertex@(w) is an internal vertex of some paf), with
w ¢ {u,v}. However, there ardy (W) = [Ky,)| paths in? whose endpoint ig(w) and hence the disjointne$
ensure that there cannot be more thigiiw) paths using verteg(w). We finish the proof of the first statement by
extendingg into a model oH by definingg(uv) to be the pathR,y.

To prove the second statement, lebe a rooted graph witle(H )| +is(H) < &. Let us obtairH” by making
every vertex ofH’ a root: if ve V(H) is not rooted, then let us assign to it a root number that appea a
vertexv € R(G) with w(v) > & and is not already used by a vertextdf As |V (H)| < 29, the conditions of the
lemma show that we can assign root numbers this way. Sinas-tmindedd-folio of G is rooted-genericH’ is
topological minor ofG, which means thatl is also a topological minor d&.

]

We prove Theorermn 3.5, under the assumption that Thebrens &de ford — 1. Let us define the following
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constants:

h: =25
s:= 462
k:=max{L,105%} + |R(G)|

One possible correct output ofND IRRELEVANTORSEPARATION is a separatiofiGy, Gy) of Gwith |V (Gy)|, |V (G2)| >
L and|V(G1) NV (Gy)| < s. We refer to this adinding a small separator.

The algorithm for FINDIRRELEVANTORSEPARATION starts by calling lNDIRRELEVANTORCLIQUEX for
G, 9, andk. If FINDIRRELEVANTORSEPARATION returns an irrelevant vertex or the extendeétblio of G, then
this is a valid output for NDIRRELEVANTORSEPARATION as well. Suppose therefore thaiNB |RRELEVAN-
TORSEPARATION returns &-clique minor with branch set;, ..., Bx. As at mosiR(G)| of these sets intersect
R(G), we can assume without loss of generality tBat. .., B are disjoint fromR(G).

The rest of the section discusses two cases depending onrifigen of vertices with degree at ledsin G'.

4.1 Case 1: Many high-degree vertices

Suppose that there are at lehstertices with degree at lealst LetU be a set oh such vertices.

Let us enumerate every nonempty subset of size at ndoef IR(G)|; let Ry, ..., R be these subsets. Let
be a weight assignment &(G) such thatv(v) = d if ve R UU andw(v) = 1 otherwise. By Propositidd 3, the
folio of G can be obtained from the folids with respect tdRy, ..., R.. Furthermore, thay;-boundedd-folio of G
with respect tdR; is obviously the same as the unboundetblio with respect taR;.

For every 1< i <t, we compute a separati¢®}, G,) of G such thaR UU C V(G}), there is a K b < L with
Bpb C V(G,) \V(G}), andwi(V(G}) NV (G})) is as small as possible. Such a separati®n Gb) can be done by
running, for every K j < L, a weighted minimum vertex cutset algorithm to find a set ofiees that separates
R UU andBj; among thesé separations, we defin@}, G,) to be the one that minimizes;(V (G}) NV (G})).
LetS :=V(G))NV(G,).

Note that(G[R UU],G\ E(G[R UU])) is always a separation that satisfies the requirements,whusan
assume thatvi(S) < w(R UU)d(26 4+ h) =s. As each ofBy, ..., B intersectsV (G), we have|V (G))| > L.
This means that iV (G})| > L also holds, then separati¢}, G,) is a small separation that can be returned as a
valid output of ANDIRRELEVANTORSEPARATION. Thus we can assume in the following ta{G} )| < L. This
implies thatJ C S: if someu € U is not inS, then every neighbor afis inV(G}), and|V (G})| > L follows.

We use Lemm& 412 to show that the-boundedd-folio of Gi2 is genericwith respect to S At most|§| <
wi(RUU) < 6(|R|+|U|) < 462 of the setsBy, ..., BL intersectS, thus we can suppose without loss of generality
thatBy, ..., Bgs2 are disjoint fromS. Suppose thast;‘2 has a separatio(F;,F,) contradicting the conditions of
Lemmal4.2:§ C V(Fy), B, C V(F2) \V(F1) for some 1< b < 662, andw;(V (F1) NV (F2)) < wi(S). Such a
separation can be extended to a separdfgrF;) of G with V(G}) C V(F/), V(F])NV(F) =V (F1) NV (F) and
B, C V(F;) \V(F]). However, such a separation would contradict the minigpalitthe choice ofS. Thus the
conditions of Lemm&4]2 hold, and tiag-boundedd-folio of G‘2 is generic with respect t§.

We use Proposition 2.7 to compute thieboundedd-folio of G with respect tdR U §; by Propositior 28(2),
this can be used to compute teboundedd-folio of G with respect tdR.. As |V (G})| < L, the extended-folio
of G‘l with respect tdR, U § can be determined by brute force in time depending onliz.0ie can determine the
(unbounded) extende@d — 1)-folio of G‘2 with respect td5 by calling ENDFoLIO (recall that we assume in this
section that Lemmia3.2 holds fér— 1 and|S| < 462 < 16(d — 1)2, satisfying the conditions of Lemma 8.2). We
have shown above that the extendeeboundedd-folio of Gi2 with respect td§ is generic. Thus we have all the
information required by Prop. 2.7 at our disposal to complugev;-boundedd-folio of G with respect tdR, U S.
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4.2 Case 2: Few high-degree vertices

LetU be the set of all vertices i&' with degree at leadt; we suppose in this case thak| < h. To determine the
extended-folio of G, for every graphX on R(G), we need to determine tl&folio of G+ X. Fixing such arX,
we setG’' = G+ X and proceed the following way.

We define a grapl on vertex se¥ (G') \ U, where two vertices are adjacent if their distancesin U is
at most 2. As the maximum degree &'\ U is at mostL’ = L + |R(G)|, the maximum degree ¢ is at most
(L")2+1, We say that a subs€ C V(G') \ U of vertices is aclusterif F[C] is connected. Observe that the
maximum number of clusters of size at maghat contain a vertex € V(G') \ U can be bounded by a function
of the maximum degree & andx. Therefore, assuming, |R(G)|, andL are fixed constants, the total number of
clusters of size at mos®2s linear in|V (G')|. LetCy, ..., C be an enumeration of the clusters of size at madst 2

For every 1< i <t, letw; be a weight function oW (G') \ U defined asw;(v) = d for ve C andw;(v) =1
otherwise. For every ¥ i <t, let us choose a separati¢@),Gb) of G'\ U such thatCi C V(G}), there is a
branch seBy, with B, C V(G,) \V(G)), andw;(V (G}) NV (Gh)) is minimum possible. It is easy to see that we
can choose the separation such that every connected com|c13|fr(éi1 contains a vertex of;. LetD; = V(G‘l)
andS =V (G}) NV(G}). The separatiofG'[Ci],G' \ E(G'[Ci])) and the minimality ofv () shows thatv(S) <
wi(Ci) < 28- 6 and hencéS| < wi(S) < 252. Every branch set of the clique intersewt&s),), which means that
V(G)| > L. If [V(G})| > L also holds, the®' has a small separatidi®;, G,) with V (G1) =V (G}) Uu, V(Gy) =
V(G,)UU, and|V(G1) NV(Gy)| = [V(G}) NV (GY)| +|U| < s, which we can return. Thus in the following, we
can assume thab;| < L.

We say that two clustelS;; andC;, areindependenif there is no edge betweéh, andC;, in F.

Proposition 4.3. If clusters G, and G, are independent, then;D0D;, = 0.

Proof. Let us choose a vertexc Dj, NDj,. As |D;,| < L and the component cﬁill containingv contains a vertex

of G, vertexv is at distance at most from some vertex o€;, in G'll, and therefore i’ \U. Similarly, v is at
distance at most from some vertex o€, in G'\U. Thus there is an edge i between a vertex dfi, and a
vertex ofCi,, a contradiction. O

Definition 4.4. We say that clusteiS;, andC;, areequivalentf there is a rooted isomorphism between the graphs
G[Dj, UU] andG[D;, UU] that is the identity otJ, mapsS, to S,, and map<£i, to Ci,.

The following proposition is easy to prove:
Proposition 4.5. The number of equivalence classes of the clusters can beleduy a function od and L.

As we shall see, the topological minor is realized by a smathiner of clusters and paths connecting them.
The following definition tries to capture which paths arddesa cluster and which paths are between clusters.

Definition 4.6. LetH be a rooted graph. Achemef H is a pair(H’,H/) of rooted graphs, where

(1) H'is a subdivision oH (the new vertices are not roots),
(2) H! is a subgraph ofi’, and
(3) every vertex o¥/ (H,) \V(H) has degree at most 1 H.

For everyr-tupleC = (Ciy,...,G;,) of clusters, we defin€® = Ji_, C;;, D° =U_, D;;, andS’ = J{_; §;. We
define two graphsG§ = G'[U UD‘] andG§ = G'\ (D¢ \ ). Note that(G§,GS) is a separation oB. We also
define a weight functiom onV (G) that isé on every vertex o) UCC and 1 on every other vertex.

Definition 4.7. LetH be a rooted graph and Igt’,H) be a scheme dfl. LetC = (Ci,,...,C;,) be anr-tuple of
clusters. We say that this tuplealizesthe scheméH’,H!) if H'\ E(H.) has a moded in G§ such that

(1) every vertex o¥/ (H) is mapped t&J UCC,
(2) every vertex o¥/ (H!) is mapped t&J US’, and
(3) for everyec E(H’)\ E(H.), the internal vertices af(e) are not inU US’.
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Roughly speaking, what we want to show is thhts a topological minor oz if and only if there is a tuple
of independent clusters that realizes a schemid ¢emmag 4.8 and 4.10). Therefore, deciding whettéds
a topological minor essentially reduces to finding a tupléndépendent clusters that realize a given scheme of
H. As the clusters can be classified into a bounded number ofaence classes, the main difficulty is to find
independent clusters of given types, which can be solvewjustandard techniques.

We first prove that if a rooted gragh has model inG’, thenH has a scheme that realized by some tuple of
clusters. We hope the proof sheds light on why schemes areeddfiis way.

Lemma 4.8. Let H be a rooted graph in thé-folio of G'. Then there is a schentél’,H;) of H with [V(H')| <
45 + 252 and a tupleC = (Ci,,...,C;,) of pairwise independent clusters withr2d that realizesH’,H.).

Proof. Let ¢ be a model oH in G'. LetC = {¢g(v) |veV(H)}\U. Each connected component[C]| is a
cluster; letC = (G, ...,Ci,) be these connected components. Clearly, these clustepaiangse independent and
r < |V(H)| < 25. Due to a minor technical detail, we need to handle somecesrtfS” UU in a special way. We
defineX to contain a vertex € S UU if vis an internal vertex of(e) for somee € E(H) and both neighbors of
vin @(e) are inV (G§).

If for somee € V(H), path ¢(e) containsm internal vertices infS” UU) \ X, then let us subdivide with
m new (non-root) vertices; lel’ be the rooted graph obtained this way. & UU| < 252 4 25, we have
IV(H")| < 46 +262. The modelp gives a mode{y of H in G the obvious way (every new vertex of the subdivision
is mapped to a vertex itS° UU) \ X). Let H! be the subgraph dfl’ that contains those verticasfor which
@ (v) € (SUU)\ X and those edgesfor which ¢/ (e) is fully contained inGS.

We claim that(H’,H/) is a scheme off and( realizes this scheme. Conditions 1 and 2 of Definifion 4.6 are
easy to verify. To check condition 3, suppose that vevteX/ (H;) \V (H) has degree more than 1. Since vertex
was obtained as the subdivision of an edgeE (H), vertexv has degree exactly 2 i, and¢/ (v) € (SFUU)\ X.
Let e ande, be the two edges incident toin H.. By definition ofH, ¢/(e1) and¢/(e,) are fully contained in
GS. Thus the two neighbors @i(v) in @(e) are both inV (GS), implying that@(v) € X, a contradiction.

Finally, we show thaty defines a model afi’\ E(H!) in G§ satisfying the conditions of Definitidn 4.7. Let
us verify that the images of the vertices and edges are inte€. It is clear thatg/(v) € V(GY) for every
v eV (H). Let us prove that (e) is fully contained iV (GY) for everye € E(H’) \ E(H.). In fact, we show that
@ (e) has no internal vertex i (G5). Suppose thap' () has an internal vertes, € V(GS). Ase ¢ E(H.), path
@ (e) contains a vertex; € V(G§)\V(G$) (u1 can be an endpoint af/ (e)). Going fromu; to u on ¢/ (e), let
u be the first vertex o¥ (G$); clearly,u € SUU andu # u;. Now u is an internal vertex off (), and the vertex
precedingu is not inV (G5). Thusu € (S UU)\ X, which means that should be the image of a vertex idf in
¢, a contradiction. Thereforeg (e) has no internal vertex i\ (G$) and in particula/ (e) is fully contained in
V(GY) for everye € E(H’)\ E(H.). This means thay' is indeed a model dfi’\ E(H!) in G§ and we also verified
condition 3 of Definitior 4.]7. Conditions 1 and 2 are strafigiward to check. O

We prove now the converse of Lemmal4.8. We show first thatmkgounded folio ong is rooted-generic
(Lemmd4.9). Then we use this fact to route the edgé$, efhen constructing a model éf' in G’ (Lemmd4.1D).

Lemma 4.9. LetC = (Ci,...,C;,) be a tuple of pairwise independent clusters. Either thebaunded W(S")-
folio of G5 with respect to UJ & is rooted-generic (and we can find a model of every graph irfdhe), or we
can find a separatioiG;, G,) of G' with |V (G))|, |V (G,)| > L and|V(G}) NV (G,)| <s.

Proof. If the conditions of Lemm&_412 hold fo’xsg, w€, and set of rootd) U, then we are done. Suppose
therefore that there is a separatidi, F>) of G§ violating the conditions of Lemnia4.2. There is a corresjogd
separationG},G,) of G’ with V(F1) NV (FR) =V (G)) NV(G,), V(G)) CV(F1), andV(G,) =V (R). LetS =
V(F1) NV (F) =V (G))NV(G,), itis clear thatS| <w’(UUS) < s. AsBy CV(G),), we also havéV (G,)| > L.
If V(G})| > L, then we can return the small separati@,G,). Thus in the following, we can assume that
IV(G)])| <L. In particular, this means thbt C S: if uc V(G}) \V(G,) for someu € U, then every neighbor af
isinV(G)) and|V(G})| > L follows.

Let §, be the set of those vertices 8f\ U that can be reached fro®, C V(Gy) \U by a path inG} \U.
We claim that these sets are pairwise disjoint fet 1,....r. Suppose without loss of generality that there is a
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vertexv € §, NY,. This means that there is a vertexc S, and a vertex, € S, that are in the same connected
componenK of G} \U asv. Note thatD;, andD;, are fully contained irG; \ U, thus there is a vertes; € C;,
and a vertexc; € G, in this connected componeKlt As cluster<C;, andC;, are independent by assumption, the
distance of; andc; is at least 2 in G} \ U, which means tha¥/ (G})| > 2L, a contradiction.

AsU,§,, ..., § are pairwise disjoint and C S, the only wayw<(S) < w’(S) is only possible ifn“ (S ) <
WE(S;) for some 1< j <r. However, in this case there is a separatiGi, G;) of G'\U with V(G}) NV (G3) =
§.. Di; CV(G}), andB, C V(G3) \V(G}) for some branch s&,. This contradicts the minimality of the choice
0 Sj. O

Lemma 4.10. Let H be a rooted graph an@H’,H.) be a scheme of H. L&t = (C,,...,C; ) be an r-tuple of
pairwise independent clusters that realiZét,H.). Then we can find either a model of H it @ a separation
(G},G,) of G with [V(G}),|V(G,)| > Land|V(G])NV(G,)| <s.

Proof. Let ¢ be a model oH’\ E(H.) in G§, as in Definition[4]l7. Sinc&{ is a subgraph o5, ¢ can be
considered as a model bf \ E(H)) in G'. We try to extendp to a model ofH’ in G’ by assigning values t@(e)
for everye € E(H.). In order to do this, let us make every vertexbf) S a rootG5, and letH!” be obtained from
H! by making every vertexa root with the same root numbergsv). We try to find ar“-bounded modep of H,
in GS. Note that Definitiofi 417 ensures that sucly aespects the degree condition: for every V (H,) NV (H),
we havey(v) € UUS and hencev*(y(v)) = 8, while the degree of evenyc V(H!)\V(H) is at most 1 irH_.
We use Lemm&419 to find either a small separatiGh, G,), or a modely of H” in G§ with (v) = @(v) for
everyv e V(H). If Lemmal4.9 gives us a separation, then we are done. Otbenlat us setp(e) = (e) for
everye € E(H,). The pathsp(e) for e € E(H]) are pairwise internally disjoint: this follows from the fabat if
e E(H)), then the internal vertices @f(e) = y(e) are inV (GS), while for everye € E(H’) \ E(H!), the internal
vertices of@(e) are not inV (G$) (by Definition[4.7(3)). Thug is indeed a model dff’. O

Having established the correspondence between topolaginars and tuples of clusters realizing a scheme,
we concentrate on finding such a tuple. We observe that oalgdiivalence types of the clusters matter:

Proposition 4.11. Let H be a rooted graph an(H’,H!) be a scheme of H. L¢C;,,...,Ci,) and(C;;,...,Cy,) be
two r-tuple of clusters such thdC;,,...,C;,) realizes(H’,H;) and for everyl < j <r, clusters G and Q/j are
equivalent. TherCy, ...,C;;) also realizegH', H)).

The following lemma is standard: it shows that finding smad#di-size “colorful” independent sets in bounded-
degree graphs can be done in linear time.

Lemma 4.12. Let W be a graph with maximum degree d where the vertices betdd with k different labels. We
can find in time fd,k) - (|V(W)|+ |E(W)|) an independent set of size k where every vertex has a diffefss
(or correctly state that there is no such set).

Lemma 4.13. Given a schemgH’, H!) with |V (H")| < 46 + 262, in time (6, L)|V(G)| (for some function (%))
we can find a tupl€ = (Ci,,...,C;,) of clusters with r< 29 that realizes(H’,H)) (if such a tuple exists).

Proof. Let us enumerate all clusters and sort them into equivaletasses (where equivalence is understood
according to Definition 4]4). Leétbe the number of equivalence classes and let us assign genmnf€;) < [t] to
each cluste€; based on which class it belongs to. For every subseft] of size at most 8, we test whether there
is a tuple(C;,.,...,Ci, ) of pairwise independent clusters wiff1(Ci,),..., 7(Ci, )} = T. In order to do this, we
build a graphWr by introducing a vertex with labal(C;) corresponding to every clust€r with 7(C;) € T. Two
vertices oW, are adjacent if the corresponding clustersraveindependent. We claim that the maximum degree
of Wy can be bounded by a function éfandL. To see this, recall that the maximum degre&afU is at mostL
and that the maximum distance®)\ U between two vertices of a clust€ris O(dL) (asC; induces a connected
subgraph of). Thus ifC; andC; are not independent, th&3) is fully contained in theD(JdL)-neighborhood of
every vertex ofC;; the number of such sets can be bounded by a functiaharfdL. This means that if we use
Lemmd4.1P to find a colorful independent se¥\fp, then the running time is linear in the number of clusters (fo
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fixed & andL). If Lemmal4.12 returns an independent set, then we testi€tinresponding pairwise independent
tupleC = (Ci,,...,Ci,) of clusters realizesH’, H;) (as the size o6 is bounded by a function o¥ andL, this
can be done by brute force). If after trying evanyC [t] of size at most &, no tuple realizingH’,H.) is found,
then by Proposition 4.11 we know that there is no tuple regizH’,H_). O

In Case 2 |U| < h), our algorithm for FNDIRRELEVANTORSEPARATION determines th&-folio of G' =
G+ X the following way. For every candidaté in the d-folio, we enumerate every scherfig’ H.) of H with
IV(H)| < 46 + 252 (the number of such schemes is clearly bounded by a funcfidy.oFor each scheme, we
use Lemma 4.13 to check if there is a tuple of clusters thdizesathis scheme. If there is such a tuple, then
by Lemma[4.ID, we can obtain a modelléfin G’ or a small separation; if there is no such tuple, then the
(contrapositive) of Lemmia 4.8 shows thdt is not a topological minor o&'. It is easy to verify that for fixed
andL, the running time i©(|V(G)|?).

5 No clique case

It remains to prove Theoreln 3.3. Let us recall the statement.

There is an algorithm satisfying the specification 0§l RRELEVANTORCLIQUE that runs inf1 (9, |R(G)|,k) -
IV (G)| steps, for some computable functién

Throughout the proof of Theoreim 8.3, we will have to analymgances of topological minors. To do so, we
will typically think of the topological minor as given as at# internally disjoint paths. To make this explicit,
we define gath systento be a setP = {Py,...,R} of internally disjoint paths. We allow that an elemé&hbf
a path system is trivial, however in this case, we requirefiauch thatv/ (R) C V(P;). Thus every trivial path
R of P forms a 1-vertex component of the grdg}il R. A special type of path system which we will frequently
consider is dinkagewhere the elements of the system are pairwise vertex disjévie will useV(P) andE(P)
to refer to the vertex and edge sets of the gr@ﬁgﬂ. Finally, we say that a path syste@his equivalentto P if
they have the same order and for every elenfreatP there exists an elemef@ € Q such that? andQ have the
same endpoints.

This section is organized as follows. In the next subsegcti@agive a key result, the so-called “weak structure
theorem”, which also plays an important role in the the graghor algorithm by Robertson and Seymaur][11].
We will need a stronger version of the theorem with an ada#igroperty ensuring that for any “piece” of a
topological minor in the structure, one can find many digjoiopies of this piece. The exact statement of this
stronger version will require additional notation, whicle wresent in the second subsection before stating the
theorem. In Subsectidn 5.3, we state the main theorem, &hdr9, of this section, and present the proof of
Theoreni 3.8 assuming Theorém]5.9. The proof of Thedrem 3l@edupy the rest of the section. We introduce
the Unique linkage theorem in Subsectlon]5.4. In Subse@i8n we give several technical lemmas on path
systems in graphs almost embedded in the disc or in the eylifdnally, in Subsection 5.6, we give the proof of
Theoreni 5.D.

5.1 The weak structure theorem

For our proof, we will need to consider what Robertson anch®ey dubbed societies. gocietyis a pair(G,Q)
whereG is a graph and is a cyclic ordering of a subset of the vertices®fln a slight abuse of notation, we will
useQ to refer both to the set of vertices as well as the cyclic onger

We will often restrict our attention to societies which canrtearly embedded in the plane.

Definition 5.1. A society (G,Q) embeds in the disc up to 3-separatiofighere exist pairwise edge disjoint
subgraphssg, Gy, ..., Gn, for some non-negative integerwhich satisfy the following.

i. G=UgGiandQ CV(Gp).
i. V(Go)|NV(Gj)| <3forall1<i<mandV(G)NV(Gj) CV(Go)foralll<i<j<m
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iii. Forall 1<i<mand distinct verticeg,y € V(G;j) NV (Gp), there exists a pathin G; from x to y intersecting
V(Gi) NV (Gp) exactly in the verticeg andy.

iv. Ifwe let D be the closed unit disc, then for alkli < m, there exist pairwise disjoint open disssC D and
an embedding : G — D — (UY'4A) such that

a. the vertices o65g embedded on the boundary Dfare exactly the vertices @ in the cyclic order
indicated byQ, and

b. for every 1< i < m, the vertices 0f5o embedded on the boundary &f are exactly the vertices of
V(Gi)NV(Gp).

We define the grapls, called theclosure of G, to be the graph obtained frofs, by adding an edge between
every non-adjacent pair of verticasindv such that there exists an indewith u,v € V(Gg) NV (G;).

We will often consider a societyG, Q) embedded in the disc up to 3-separations with a minimal numbe
of edges with respect to some desirable property. The nesdroation lays out whe — e embeds up to 3-
separations as well. The proof follows immediately fromdleénition and we omit it here.

Remarls.2 Let (G, Q) be a society which embeds in the disc up to 3-separationdet{@®o, G1,...,Gm}, 0,{A1,...,Am})
be a fixed embedding up to 3-separation$@fQ). If ec E(Gp), then({Go—€,Gx1,...,Gm},0’,{l1,...,An}) is

an embedding up to 3-separations(6f— e, Q) whered’ is the restriction o to the graphGy —e. If e € E(G;)

forie {1,...,m}, then({Go,Gy,...,Gi—¢,...,Gn},0,{A1,...,An}) is an embedding up to 3-separations if and

only if eis not a cut edge separating verticesvdfs;) NV (Gp) in Gi. In general, for alle € E(G), the society
(G—e,Q) embeds in the disc up to 3-separations, although it mightbessary to modify a given embedding of
(G,Q) to obtain one fofG —e Q).

We will need some somewhat technical notation for desagilsiets of cycles in societies embedded up to
3-separations. L€iG,Q) be a society and 16{Gg, Gy, ...,Gm},0,{A1,...,Am}) be an embedding of the society
in the disc up to 3-separations. A cydlein G is groundedif V(C) "V (Gp) > 3. If we consider a grounded
cycleC, then the subgrap@ N Gy is either a cycle where every edge®fis contained inGg or it is a union of
(possibly trivial) disjoint paths. In the case where it israam of disjoint paths, we can label the components
Po,...,RA_1 for some positive integdrand label the endpoints &f asx; andy; for 1 <i < such that the vertices
X0,Y0,X1,Y1,---,X—-1,¥1—1 occur onC in that order when traversing the cycle. In the case Bhé a trivial path,
we letx; =y;. For every index, 0<i <|—1, there exists an indekand a path, call iQ;, such thatx, andy;
are contained iV (Gj) NV (Gp) and the patlQ; is a subpath 06; linking y; andx;,.1 with the subscript notation
taken moduld. While it is possible that two pathg; andQ; will be contained in the same subgra@h of the
decomposition, they will be internally disjoint, possibiytersecting only in one vertex & (G;j) NV (Go). We
define the cycl€ in the closure of5y obtained by restricting to the vertices of5o and replacing each missing
subpathQ; contained irC — E(Gg) by an edge oE(Gp) \ E(Gp), whereGj again is the closure dbg. CallC the
projection of C to G. Note that the requirement that(C) NV (Gg)| > 3 ensures that is a well defined cycle of
Gp-

For the grounded cycl€, the projectiorC of C to G defines a closed subdié€ of the disc. LetG§ be the
induced subgraph dBo with vertices inA°. We letnt be a positive integer an@y, ..., G, be the (re-labeled)
set of{G; : V(Gj) NV (Gp) C (V(G§))}. Let G be the subgraph d& given byG® = GguU U{ilGi". Let Q° be the
natural cyclic order o¥/ (C). We refer to the societyG®, Q°) as theembedding-induced society the grounded
cycleC. Observe that the embedding up to 3-separationgsof)) immediately yields an embedding up to 3-
separations ofG® Q°). Note, it is possible that the cyd&is not contained irG°, specifically when there exists
a Gj with |V(Gj) NV (Gp)| = 3 containing a subpath & such that exactly two vertices @;j are contained in
V(G°) and one vertex is “outside” the disc boundedyin this case, if we |ef2§ be the natural cyclic order of
the vertices/ (C) given byC, then(G°UC, Q3) has an embedding up to 3-separations as well.

We will be specifically interested in embeddings up to 3-sa&ji@ns which contain a large grid-like graph.
Towards this end, we now considsalls.
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For positive odd integers, define a graph, (called thebasic r-wal) as follows. LetR,...,R ber vertex

disjoint paths of length2+ 1, sayP, = ). v'2r+1 LetV(H;) = U1V (R) \ {V3, V51 }, and Iet

(UE \{vo\/o,v’Zr\/ZrH}) U{\/jvij*l: iodd,jeven; 1<i<r;0<j< 2r+1}
U{v‘jv‘j“: i even,jodd; 0<i<r;1<j< 2r+l}.

Note that the restriction af to be even ensures that the indices are more nicely behaved6-Tycles irH, are
its bricks In the natural plane embedding Hf, these bound its ‘finite’ faces. The outer cycle of the unique
maximal 2-connected subgraphdf is theboundary cycleof H,. The pathd?,...,P are called théorizontal
pathsof the wall. Let the pati®; for 0 <i < r be the path oH, induced by the set of vertices?', v2'+1 1<j<

r— 13U {vZ v2*1}. TheQ; will be called thevertical pathsof the wall.

The cycleC of H; is arectangleif C is a subgraph of the union of exactly two horizontal and twdival
paths ofH;. Note that the bricks as well as the boundary cyclélofre rectangles. Thaiameterof a rectangle
contained in the union d®, R/, Q;,Q; is the max|i —i’|,|j — j’|}. Thus the rectangles of diameter 1 are exactly
the bricks ofH,.

Any subdivisionH of H, will be called anr—wall or awall of size t The bricks andboundary cycleof H
are its subgraphs that form subdivisions of the bricks andhflary cycle, respectively. Recall that to dissolve a
vertex of degree 1 or 2 in a graph, we simply contract an imtidelge. Given such a wal of sizer, let X be a
subset of vertices dfi containing every vertex of degree 3khsuch that dissolving every vertex of degree two
inV(H)\ X results in the grapl;. Call such a seX of verticespegsof the wall. We can label the set of pegs
vi', 0<i<2r+10< j<r according to their position in the wall after suppressing vhrtices of degree two in
V(H)\ X. Call such a labeling theanonical labeling of the peg<iven a set of pegs of a wal, the horizontal
and vertical paths of a walll are the subdivided paths Bif corresponding to the horizontal and vertical paths of
H:. We let the rectangles be the cycledbforming the subdivisions of the rectanglesthf

Definition 5.3. Letr andt be positive integers. Aearly flat r-wall decomposition with apex boundfta graph
Jis given by a 5-tupléA,G,H, W, X) such thatA C V(J), G andH are subgraphs af, W is anr-wall in J andX
is a set of pegs diV which satisfy the following. Le€ be the boundary cycle 6.

i. J—A=GUH andW is a subgraph of.
i. V(H)NV(G) CV(C), and if we letQ be the natural cyclic order & (H) NV (G) given by the cycle&, the
society(G, Q) has an embedding up to 3-separati¢f&o, G, ...,Gm},0,{A1,...,Am}}.
iii. The setX of pegs is contained ¥ (Gyp).
iv. |A] <t and for everyx € Aand every brickB of W, x has a neighboy in the embedding induced society of
the brickB and there exists a path froyrto B in the embedding induced society.

The goal of this subsection is to present a theorem saying wieecan find a large nearly flat wall decompo-
sition. Essentially, we will see that we can always find sude@mposition or the graph must hda@uinded tree
width or a largeclique minor We remind the reader that a gra@containsk; as a minor if there exist pairwise
disjoint subset;, ..., X of vertices such thaB[X;] is connected for all KX i <t and for all 1<i < j <t, there
exists an edge with one endpointXpand one endpoint iXj. These sets are referred to as linanch setf the
minor.

Finally, we will refer to thetreewidthof a graphG, denotedw(G). However, we will not need the technical
definition here and so omit it.

We are now ready to give the weak structure theorem.

Theorem 5.4 (Weak Structure Theorem, [[11], Theorem (9.4))For all t > 1, r even, there exists a value
w = w(t,r) such that the following holds. Let J be a graph on n verticeseswidth at least w. There exists
an O(|V(G)|) time algorithm that outputs either sets of vertide§, X, ..., X%} forming a Kk minor or outputs
(A,G,H,W, X) forming a nearly flat r-wall decomposition with apex bouAd t
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Note that Robertson and Seymour][11] gives@(¥ |(G)|?) time algorithm to output either the nearly-flat
r-wall decomposition or &; minor. The time complexity is improved ihl[8] ©(|V (G)|).

5.2 Strengthening Theordm b.4

In this subsection, we present a strengthening of the weaktste theorem which will allow us to find an irrele-
vant vertex.

We will first need some notation describing sets of cycleoiiaties embedded up to 3-separations.
Definition 5.5. Let (G, Q) be a society and l1€{ G, G1,...,Gn},0,{A1,...,An}) be an embedding of the society
in the disc up to 3-separations. Amesis a seC = {C;1,C,,...,Cs} of disjoint cycles which satisfy the following.

i. Forall1<i<s, G is_grounded. 3
ii. Forall 1<i <s, letC; be the projection o€; to Gy. Then for allj > i, the verticed/ (C;) are contained in
the subdisc bounded I6. !

As with path systems, we will uge(C) to refer to the edge séjf-.c E(C) andV (C) for the vertex setJc.-V (C).

Definition 5.6. Let C = {Cy,...,Cs} be a set ofs disjoint cycles in a grapl. We say the path systeff =
{P1,...,R} is perpendicular tcC if the following conditions hold for all K i <k.

i. Foralliandj, if V(R)NV(C;j) #0, then for allj’, 1 < j’ <s,V(R)NV(Cy) # 0.
ii. There does not exist an elemdhi P containing vertices,y,z such that when traversirig from one end
to the other we encountery, z in that order and distinct indices j* such tha,z € V(C;) andy € V(Cj).
iii. Forallindices, 1<i<kandforallj,1<j<s RNC;jisa(non-empty) subpath @f.

We say thafP is nearly perpendiculaif it satisfiesi andii.

We will need to define a canonical set of concentric cyclegémh rectangle. LéA, G,H,W, X) be a nearly
flat wall decomposition, and I€ be a rectangle of W, and letbe a positive integer. Tha-target centered at C
is ad-nest{Cy,C,,...,Cq} satisfying the following

i. Forall 1<i<d,C;isarectangle diV.
ii. Forall 1<i <d, the embedding induced society@fcontains bottC andC; for all j > i.
ii . With respect ta andii, Cy,...,Cq are chosen to minimize the embedding induced socieGg of

Thus, ad-target centered & can be thought of as the nextectangles surrounding in the wall decomposition.
Note that thal-target is in fact uniquely determined &y

We are now ready to present the additional property which vileadd to Theoreni 5J4. We define what we
will call a pattern in a nearly flat wall decomposition. A matt can be thought of as a piece of a topological
minor in a graph admitting a nearly flat wall decompositioolsthat this piece has the additional property that it
intersects nicely with a given nest contained in the wall.

Definition 5.7. Letr, |, andk be positive integers. Lekbe a graph, and I\, G,H,W, X) be a nearly flat-wall
decomposition ofl. LetC be a rectangle. Aattern centered at ©f orderk and deptH consists of a path system
P of orderk satisfying the following properties. LdCy,...,C/} be thel-target centered a&. Let Jc be the
subgraph ofl given by the union of the embedding induced societ€ @nd all the edges with one endpoint in
the embedding induced society and one endpoirA.irSimilarly defineJc,. ThusJc, contains all thd-target

{C4,...,C}.

i. The path systerf? is contained in the subgragh, .
ii. ForallP e P, P has no internal vertex containedAn

ii. ForallPeP,if PN(V(J,)\V(k)) # 0 thenP has exactly one endpoint W(Jc), the other endpoint in
V(Cy), andP is perpendicular t§Cy,Cy, ..., }. ?

IThus the “inner” cycle i€s and the “outer” cycle i€;.
2Note we have to modify the definition of perpendicular towllmaths that don’t have both endpoints contained in the nest
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Note, specifically we require that thearget centered & be defined.

Let| andk be positive integers and &t andP’ be patterns of orddrand deptH centered at the rectangl€s
andC/, respectively. Let the set of endpoints of element®a&nd P’ be SandS, respectively. We say tha is
homeomorphid¢o 7’ if there exists bijectionss : S— S ande : P — P’

i. Forallxe (SUS)NA, 1 (X) = 1 1(X) = X.
ii. For allP € P with endpointsx andy, the endpoints ofi(P) arer (x) and rz(y).

Moreover, if we fix an orientation of the embedding®fn the plane and label it clockwise, we have the following
property.

iii. If we letxy,...,% be the vertices 08NV (C;) so that they occur in that clockwise order ¥(C;), then
T (X1),..., T8 (%) occur onCy in that clockwise order.

We are now give the following strengthening of the weak stmectheorem.

Theorem 5.8. For all positive integers td,1,d > 1 and r even, there exists a value=ww(t, d,l,d,r) such that
the following holds. Let J be a graph on n vertices witlidiw> w. There exists an Qv (G)|) time algorithm that
outputs either the branch sets of adinor or outputs(A, G,H,W, X) forming a nearly flat r-wall decomposition
with apex bound4with the following property.

v. For all rectangles C of diameter at most d admitting an I-&trgnd for every patter® centered at C of
depth | and order at mosi we have that for every brick B admitting an I-target theresexia patterri®’
centered at B of depth | which is homeomorphi®to

Again, Robertson and Seymour [11] give @iV |(G)|?) time algorithm to output the structure in Theorem
[5.8; the complexity was improved @©(|V (G)|) in [8]. The structure guaranteed by Theoien] 5.8 is very sintd
the one defined i [11], which is called a “homogeneously lldbevall”. This wall has many “similar”, disjoint
subwalls, each of which can play an equivalent role witheesto the folio. The exact statement of Property v. in
Theoreni 5B is derived to be more friendly to maintainingotogical subgraphs. An algorithm to construct the
structure given in Theorem 5.8 can be easily obtained frosofdn{5.4. In fact, (10.1) in [11] is almost exactly
the statement above, however we must modify the structighbtlsi in order to ensure that condition holds.
Given the structure in Theordm b.4 and the algorithm of (i §11], it is straightforward to obtain a@(n) time
algorithm to find the structure as in Theoreml 5.8 (the stat¢rfadiows from a typical Ramsey type argument as
in the proof of (10.1) in[[11]. We omit the proof here).

5.3 Proof of Theorem 3.3

In this subsection, we present the proof of Theofenmh 3.3. @umgpy tool in doing so is the following which
connects the structure given in Theorlem 5.8 to the existehiceelevant vertices. Recall from Sectibh 3 that a set
X of vertices isirrelevantto the d-folio of G, if rooted graphss andG\ X have the samé-folio. We say that a
vertexv is irrelevant if the sefv} is irrelevant.

Theorem 5.9. Letd and t be positive integers. There exist values(d,t), d=d(d,t), and |=1(d,t), which
satisfy the following. Let J be a rooted graph with rootsR Assume that J admits a nearly flat r-wall decom-
position (A, G,H,W, X) with apex bound t satisfying properties i-v. Assume th@ RV (G) = 0. Finally, let the
pegs have the canonical labeling. Then the pféﬁ ig irrelevant to thed-folio of J.

Note that algorithmically, given thewall decomposition in the statement of Theoffeni 5.9, itivéatto output
the pegv,r-/2 in constant time. The proof of Theordm 5.9 will occupy the a@mder of this section; we delay the
proof until the later subsections and continue with the podd heoreni 3.8.

The second result which we will need is the following, shayihe d-folio can be solved in polynomial time
if the treewidth is bounded.

Theorem 5.10 (See |1, 11])For integers w andd, there exists gw + 8)°W+2O(|V(G)|) time algorithm for
computing the-folio in graphs of treewidth w.
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We are now give the algorithm for Theoréml3.3, satisfyingghecifications of NDIRRELEVANTORCLIQUE
defined in Sectiohl3.

LetJ be our graph with rootR(J) and constants$ andk be given as input. Fix=r(5,k?), d = d(&,k?), and
| =1(&,k?) from Theoreni5)9. Let’ = |[R(J)|r, and letw = w(k, &,d,1,r’) as in Theorerh 518.

Step 1. The small treewidth caseAs a first step, test whether or nbhas treewidth at least. This can be
done by the algorithm of Bodlaendér [2].Jdoes havéw(J) < w, then apply Theorein 5.110 to obtain thdolio.
Otherwise, go to Step 2.

Step 2. Apply the weak structure theorem.Apply Theoreni 5.B td with t = k. The algorithm either outputs
the branch sets of ik minor, or we find the structuréA, G,H,W, X) forming a flatr’-wall decomposition with
apex bound?. Go to Step 3.

Step 3. Find an irrelevant vertex. We would like to apply Theorefn 5.9 to output an irrelevanteer As
a final technicality, it is possible that there are rootd®k@J) contained in the subgrap® of the decomposition.
However, by our choice af, there exists an-subwallW’ of W with boundary cycleC’ such that the embedding
induced societyG’ of C' does not contain any vertices BfJ). Let H' and X’ be accordingly defined so that
(A,G',H’ W' X') forms a flatr-wall decomposition witiR(J) "V (G') = 0. Note that we can find such a subwall
W’ in linear time. Apply Theorem519 to the decompositi@gnG’,H’,W’, X") to obtain an irrelevant vertex, which
we then output.

Let us clarify the time complexity of this algorithm. Stepdncbe done ifO(|V (G)|) time because we apply
Theorem[5.10 and the algorithm of Bodlaender [2], and bothinuO(|V (G)|) time. Step 2 can be done in
O(|V(G)|) time by Theorem 5]8. Step 3 can be don®iiiV (G)|) time by Theorem 519. Thus the overall runtime
is O(|V(G)|), as desired.

Thus, all that remains is to prove Theoreml 5.9. We do so inraksteps. In the next two subsections, we give
several auxiliary results before presenting the proof afdrbni 5.9 in subsectidn 5.6. Let us emphasize here that
our proof of Theorem 5|9 does not depend on the full power @fgitaph minor structure theorem [12]. We can
avoid the structure theorem, because there is now a shooef for the correctness of the graph minor algorithm
in [9]. Utilizing some results in [9], we are able to avoid tmeich of the heavy machinery of the graph minor
structure theory.

5.4 Unique Linkage Theorem

Our primary tool in the next subsection will be a powerfuldfem of Robertson and Seymour known as the
Unique linkage theorem [13].

Theorem 5.11 ([13]). For all k > 1, there exists an integer (k) satisfying the following. Let G be a graph afd
a linkage of order k contained in G such that®) =V (P). If tw(G) > w(k), then there exists a vertexaV (G)
and a linkageP’ equivalent taP with V(P') CV(G) —v.

To describe the existence of such a ver@nd linkageP’ as in Theorerh 5.11, we will often say that the path
systemP can be re-routed to avoid some vertex v of\@e will need to apply Theorem 511 in a slightly more
general context. Towards that end, we give the followingltary.

Corollary 5.12. For all k > 1, there exists an integer (k) satisfying the following. Let G be a graph ala
path system of order k contained in G. LetZv €V (G) : degv) > 3}. Assume that Z V(P). If tw(G) > w(k),
then there exists a vertexavZ and a path systerR’ equivalent taP with V(P') CV(G) —v.

Proof. Assume the claim is false, and IBtand a path syster® of orderk be a counterexample. L8tbe the set
of endpoints of elements 7. Letw(k) be the function given in Theorem 5]11. We assume the trekvwaiit
is at leasw(k). Assume that from all such counterexamples, we pick a coexdenple minimizing R— |S§ and
subject to this, we pick a counter example on a minimum nurabedges. .

First, observe that if there exists a vertexf degree one or two iV (G) \ S then if we letG be the graph
obtained by dissolving andP the path system obtained by dissolvimghen by our choice of counterexample,
there exists a path system equivalenPtavoiding some vertex of degree three. This path system witespond
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to a linkage inG which is equivalent to® and avoids some vertex of degree 3 as well, a contradictitws We
see thaV (G) =V (P) and that every vertex &f (G) \ Shas degree at least 3.

Note that if X— |§ = 0, thenP is a linkage and the claim follows from Theorém 5.11. Thus,see that
2k—|S > 1 and that there exist two elememsandP, of P sharing a common endpoint Let G’ be the graph
obtained by deleting the vertexand adding two vertices; andv, each adjacent &’ to every vertex of the
neighborhood irG of the vertexv, i.e. Ng(v1) = N&(v2) = Ng(v). Let P be the path irG’ obtained by adding
the vertexv; to the subpathiP, —v. For allP € P — Py, if vis an endpoint oP, let P’ be the path of5’ obtained
by addingv; to the subpatt® — v. If vis not an endpoint oP € P — P, letP’ =P, and letP’ = {P': P € P}. By
construction, the path systefhcan be rerouted i to avoid some vertex if and only if the path syst@hcan be
rerouted inG’ to avoid some vertex as well.

The graphG is a subgraph o', and so we have thaiv(G') > tw(G) > w(k). Moreover, if we letS be the
set of endpoints of elements ®f, we see thalS| = |§ + 1. Thus, X— [S| < 2k— |§, contradicting our choice
of counterexample. This proves the claim. O

5.5 Routing for discs and cylinders

In this subsection, we will give several technical lemmasceoning almost planar graphs embedded in the disc
and cylinder. These lemmas look at how path systems intelaeg®e societies embedded in the disc up to 3-
separations. Specifically, we will see how large nests ineiimbedded societies allow us to reroute the path
systems to achieve certain desirable properties.

First, we make a simple observation on nests in embeddeét®sci For anys-nestC = {Cy,...,Cs} in a
society(G, Q) with an embedding in the disc up to 3-separatitfSo, G1,...,Gm},0,{A1,...,An}), we have the
following property. LetG' = G% andQ' = Q% with (G', Q') equal to the embedding induced societyfCpfWhile
it is certainly possible that the cyd will not be contained irG', we do have that; will be a subgraph o' for
alli < j <s. Itis an easy observation thét= {Ci;1,...,Cs} form an(s—i)-nest in the societyG', Q') with the
natural induced embedding up to 3-separations.

We will need the concept of a bramble which certifies when plgleas large treewidth. Given two subgraphs
H; andH, of a graphG, we say thaH; andH, touchif either there exists an edge with one endvifH;) and
the other end itV (H;), or alternatively, the subgraphs have a vertex in commobrainbleis a set of pairwise
touching, connected subgraphs. A subset V(G) coversa bramble if every element contains a vertexxof
Theorder of a brambleB, denotedord(53), is the minimum size of a cover of the bramble. The next theooé
Seymour and Thomals [15] shows the relationship betweernzbeta bramble and the treewidth of a graph.

Theorem 5.13 ([15]). Let G be a graph. Then

~max ord(B) =tw(G) + 1.
B is a bramble
We will be considering a similar set-up in the following lermsa We formalize it in the following common
hypothesis.

Hypothesis 1.Let G andH be graphs, and letbe a positive integer. Le® be a cyclic ordering of
the vertices oV (H) NV(G). LetW be the graptGUH. Let ({Go,G1,...,Gm},0,{A1,...,Am}) be
an embedding ofG, Q) in the discA up to 3-separations. Lét= {C,...,Cs} be ansnestin(G,Q).
For1<i<s, let (W, Q;) be the embedding induced societyGyf

We will need one more definition before proceeding. BetindQ be paths such th& has both endpoints on
P. Let the ends oP bexp,yp and the ends a beXxg, yo and assumep, Xg, Yo, yp Occur onP in that order. Then
the path obtained bgerouting P through Qs the pathkpPxgQyoPye.

The following lemma essentially shows that given an almosbedded planar graphs embedded in the disc
with a large number of nested cycles and a linkage with a#riigpoints contained outside the nested cycles, then
we can re-arrange the linkage so that no path hits a deeptgchegcle.
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Lemma 5.14. Let t, k be positive integers, and letlW) be the value given by Corollafy 5]12. Assume Hypothesis
1. LetP be a path system of order k in W such that for every P, the endpoints of P are contained if{N). If
s>t -+ 2w(k) + 2, then there exists a path syst@thequivalent tdP such thatP’ is disjoint from W._;.

Proof. We assume the lemma is false, and pick a counter-examplainig a minimal number of edges. Thus,
we may assume that there does not exist any ed@wafich can be deleted without changing the embedding up
to 3-separations of the graphlt immediately follows from Remark 5.2 th&(Go) C 71 E(Ci) UUpep E(P).

Our first claim below will look at when some grafh can contain edges as well which are not contained in
E(C) UUpcp E(P). We now add the assumption that, with respect to containiminanal number of edges, we
pick an embedding witm minimized.

Claim 1. The valuemis 0, i.e.G is planar and5p = G.

Proof. Assumem > 1 and consideGy. As |V (Go) NV (Gm)| < 3, we see that at most one cycle(nd at most
one element of° contains an edge & (G,). Let T be a spanning tree @, containing(_; E(Ci)) NE(G).

If E(P)NE(Gm) # 0, we letP’ be a linkage equivalent t® such thatE(Gny) NE(zP) C E(T). Otherwise,
we let P’ = P. If there exists an edge of E(Gy,) \ E(T), then it follows thatG — e with the embedding up to
3-separation${Go, G1,...,Gn—e},0,{A,...,An}) violates our choice of counterexample to contain a minimal
number of edges.

We conclude thaG,, = T. However, in this case, we can embés, in the discA,, with the vertices of
V(Gm) NV(Gp) on the border. ThussoU Gy, embeds ilA — (Ui”jllAi) whereA is the disc. As a technicality,
if Gj intersectsGy, in at least one edge, then in order to ensure that the subgvamains unchanged, we need
that G, embeds intd\, with the subpattC; N G, on the boundary of the disk,,. Given thatG, is a tree, this
is possible. We conclude that the original embedding up $ef@arations violates our choice to minimireand
consequentlyn = 0 proving the claim. &

There are two important consequences of Cl@im 1. First, wehsE (W) = (J7_, E(Ci) UUpep E(P). Sec-
ondly, it now follows that there does not exist an eégeE (W) \ E(C) and a path systerR’ equivalent toP such
thate¢ E(P’), lest we again contradict minimality. We now show that tleewidth ofw is bounded by Corollary
B.12.

Claim2. tw(W) < w(k).

Proof. If the tw(W) > w(k), then there exists a path syst@hequivalent tdP in W and a vertex € V(W) \V (P’)
by Corollary[5.12. Moreover, the vertexhas degree 3, and so consequently there exists aneanfg& incident
vwhich is contained ife(P) \ E(C), a contradiction. &

We define adive to be a subpathR contained in?’ such thatR is an Q-path contained irG. Lett’ =
max<i<sV (R)NV(Ci) # 0. We refer ta’ as thedepthof the diveR.

Claim 3. For alll > 2, if there exists a dive of depththen there exists a dive of dedth 1.

Proof. Consider a diver of depthl. The pathR in the discA has both endpoints on the boundaryfThus, it
defines two closed sub discs &fintersecting inR. We fix Ag to be the sub-disc oA which does not intersect
Ci11 (whenl = s, we fix Ag arbitrarily). We now fixR to be a dive of depth minimizing Ar by inclusion. As
C_1 intersectd)\r, we see that there exists a subp@thontained irC;_; with both endpoints iR and no internal
vertex inR. Assume thaP is the element o containingR. Observe that there exists at least one edd? oall

it e which is contained in the subpath Rfnith both endpoints equal to the endpoints@but is not contained in
E(C).

3The reason we would like to maintain the embedding is thastigraphaV for 1 < i < s are dependent on both tlsenest as well
as the embedding. Further analysis could show that the airigedan be chosen so that the subgrégh: does not change; instead we
limit ourselves to deleting edges which do not alter the eddbey.
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Assume as a case thatis internally disjoint fromP. Let P’ be the path obtained from reroutithroughQ
and letP’ = (P —P)U{P'}. It follows thatP’ is a path system equivalent ®and does not contain the edge
contradicting our assumption of minimality.

It follows that Q has an internal vertex contained# Thus, there exists a diy& intersecting an internal
vertex of Q. If R intersectsC; as well, it follows thatR has deptH and thatAg is strictly contained imAg,
contradicting our choice d®. Otherwise R has depth — 1, as desired by the claim. &

Observe that for any two distinct div&andR/, any vertexv € V(R) NV (R') must be contained if.

We now finish the proof of the lemma. Lest the lemma hold, we asspme that there exists a dive of depth
at leasts—t. Consequently by Clairnl 3, for all £ i < s—t, there exists a div&® of depthi. By planarity,
R intersectsC; for all 1 < j <'i, and the pathR — Q intersectsC; for all 2 < j <i. We conclude that the set
{(R—Q)UCGCi : 2 <i < 2w(k)+ 2} is a bramble. To see the order of this bramble, first obseraette paths
R — Q andR; — Q are pairwise disjoint for all X i < j < 2w(k) + 2. It now follows that every vertex is
contained in at most two distinct subgraplfs — Q) UC; for 2 <i < 2w(k) + 2. We conclude that there does not
exist a cover of sizev(k), and consequently, the bramble has order at lést+ 1. Theoreni 5.13 and Claini 2
yield a contradiction, completing the proof of the lemma. O

We now extend Lemmia5.114 to the “cylinder” case. The follgyiemma essentially shows that given an
almost planar graph embedded in a cylinder with a large nummbleomotopic cycles and a path system with all
it's endpoints contained in the boundary of the cylindegntive can re-arrange the linkage so that only a bounded
number of elements intersect a smaller middle portion ofcilimder. Moreover, given a cylindrical grid in this
middle portion of the cylinder, we can ensure that the neww pgstem follows the grid when traversing the middle
portion of the grid.

Lemma 5.15. Let |, t, and k be positive integers. Assume Hypothesis lw{lgtbe the value given by Corollary
(.12. LetP be a path system of order k, and assume that for eveey/Pthe endpoints of P are contained
in V(H)UV(Ws). LetR be a linkage of order t which is orthogonal t If s> 15w(k)2 +1 > 2(3(2w(k) +
2)(w(k)) + (I +3w(k)) + 1 and t> 7w(k), then the following hold. There exists a linka§eC R of order at most
w(k), a path syster®’ equivalent tdP, and an index i such that for everydPP’, the subgraph F/ (W) \V (W)]

is contained in (R/).

Proof. Assume the lemma is false, and Wtalong with the path systeni8 and’R form a counterexample on
a minimal number of edges. Subject to having a minimal nunuferdges, we pick an embedding up to 3-
separationg{Go, Gy, ...,Gn},0,{A1,...,An}) of G which minimizesm. Observe that there does not exist an
edge ofGp which is not contained i@ UP UR by our choice to minimize the number of edges. We will need to
consider several different path systems throughout thefpamd in anticipation, fixP; = P.

We proceed in several steps. The first claim parallels Claimtfie proof of Lemma5.14.

Claim4. There does not exigte {1,...,m} with G; a subgraph o6 —V (Ws).

Proof. Note that no element dP; has an endpoint contained (G) \ (V (Ws) UV (C1)). Assumej is an index
such thaiG; is a subgraph o6 —V (Ws). At most one elemer@; intersects an edge @;, and similarly, at most
one element ofR intersects an edge @;. For allRc R andC € C, we have thaRUC does not contain any
cycle other than the cycl€. Thus, we see that there exists a spanning Tremntained inG; such that both
UGN G;j andgrer RN G;j are both subgraphs af. If we consider hoviP; can intersect the edges @f, we see
that there exists at most one elemBrdf P; which intersects an edge Gfj. If P cannot be rerouted i6; to use
only edges ofT, we see that there exists an edgef G; and a path syster®; equivalent toP; such that for all
P’ € P, P'NG;j is a subgraph of +e. Note here we are using the fact that no elemerfphas an endpoint in
V(Gj)\V(Gp). For this reason, we are not able to prove the stronger stateimatm = 0 andG is planar, because
some of the endpoints may be contained {f\).

If there exists an edgécontained irE(G;) \ (E(T)U{e}), we see thal — f forms a counter-example on fewer
edges. Thus we may assume t@at="T (or T +-ewhen the edgeis defined). However, by embeddifig(T + €)
in the discA; with the vertices o¥ (Go) NV (G;j) on the border, we see th@ U Gj embeds il — (Ui; Ai). As
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in Claim[, we need to embéel (T + €) with any vertices o¥/ (T) NV (C) on the boundary of the digk; in order
to avoid altering the subgraphig for 1 <i <s. Thus, we contradict our choice of embedding up to 3-sejpast
to minimizem, proving the claim. &

Let W' be the subgrapl® — (V(Ws_1) —Cs_1). Thus,W' is the subgraph obtained frof by deleting the
portion of G contained “inside” the disc bounded B¢ ;. By the previous claimyV’ is a subgraph o€, and
embedded in the disc.

Let the elements dR be labeledry, ..., R such that if we let; be the endpoint oR; in C; for 1 <i <t, we
have the,r2,... 1 occur orCy in that order. Defin®V* to be the subgrapi, i — (V (Ws_awk)) —V (Cs—aw()))-
Let R = Rayi+i for 1 <i <w(k) and letR* be the linkaggRj, . . ., R’;V(k)}. LetC* be the unique cycle contained
inRjU R Y ((Cawk) UCs—aw(k)) — V(Ru1)) and let(J*, Q") be the embedding induced society®f. Finally, let
Q be the linkage given byCi —V (J*) : 3w(k) <i < s—3w(k)}.

Pick a path syster®, equivalent toP; satisfying the following.

i. V(P2) is disjoint fromV (J%).
ii. The grapiJoeo QUUpep, P has as few vertices of degree at least 3 as possible.

To see that such a path systét exists, it suffices to show that there exists a path systeisfysag i. Let C' =
{C1,--- .Gy } e the planar nest witl the unique cycle contained .1 UR—iU(Ci —V(Ry))U(Cs-i =V (Ry))
for 1 <i < 3w(k). Note that sinc€/ is contained itW’, it is trivially grounded and by constructidti satisfies the
definition of an 3v(k)-nest. Moreover, if we let)’, Q(J’)) be the embedding induced society ®); we see that
the path syster®; has all it's endpoints disjoint frorl —V (C;). Note as well thaC’3W(k) = C*. Thus by applying
Lemmd5.14, we see that there exists a path system equitalBntvhich is disjoint from the embedding induced
society ofCéW(k) = J*, as desired. Note, we are assuming herewli} > 3 in order to simplify the constants.

Claim5. The graph formed byJo.o QUUpep, P has treewidth strictly less tham(k).

Proof. Let A be the graph given by)o. o QUUpcp, P- Notice that by construction, every vertex of degree atleas
3inAis a vertex ofP,. If tw(A) > w(k), then by Corollary 5.72, there exists a path system, calitequivalent

to /P, contained inA avoiding some vertex of degree at least 3. However, the draph, QU Upepé P will have
strictly fewer vertices of degree at least three, conttadicour choice ofP, and proving the claim. &

If every elemenP of PP, could be divided into subpaths which each were perpendituthe nes{Csy ), - - - ,Cs_awk) }
then it would be an easy task to reroute each element thrdweggubgrapld* so that it would followR;" for some
i when restricted t&V* and prove the lemma. However, the pakhs P, are not necessarily so well behaved,;
the pathP may “bounce” around between the various cycle$@fy ), - - -,Cs_aw(k }- The next claim shows that
these “bounces” are of bounded size.

We first need a definition to make explicit what we mean by “lma&in A reversalof P, is a subpattP of
some element dP, such that

i. Pis contained irw*, and

ii. there exists an indek 3w(k) < j <s—3w(k) such that both endpoints &fare contained i¥ (Cj) and no
internal vertex oP is contained iV (C;).

Thedepthof a reversaP with endpoints irC; is the maximum value dfj — j’| such that 8/(k) < j’ < s—3w(k)
andV(P)NV(Cy) # 0.

Claim6. Every reversal o, has depth at moswZk).

Proof. The proof follows the proof of Claiml3. L& be a reversal of depthwith endpoints contained ig; for
some indexj, and letDp be the subdisc oA bounded byP and the subpath &; — R} containing the endpoints

of P. We claim that there exists a rever§éicontained irDp with endpoints irC; and deptm— 1. Assume not,
and pick such & with n minimal, and subject to that, withpr minimal by containment. By symmetry, we assume
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thatV(P) NV(Cj) # 0 with j’ — j = n. InsideDp, there exists a subpath 6§ _; with both endpoints P and
otherwise disjoint fronP. Call it Q. If Q were disjoint fromP,, then we could rerout®, throughQ to avoid
some vertex o€ and violate our choice dP, to satisfyii. We conclude that there exists a reveiBatontained
in Dp with both endpoints il€; of depth at least— 1. If P” has deptin, we violate our choice of to minimizBp
by containment, and so we see that the desired revetsdldepthn — 1 exists. Note thaP’ is disjoint fromP
except for possibly at its endpoints@;.

Now assume that there exists a reveBgl 1 of depth 2v(k) + 1 with endpoints contained iG;. By
symmetry, we may assume thas, ), 1 intersects the pat@;, o)1 We have just seen that there must exist
reversalsR; of depthi for 1 <i < 2w(k) + 1, each with endpoints o@;. Moreover, if we letD; be the disc
bounded byR, and the subpath &; — R} connecting its endpoints, we have thatC D C - - C Doy 1. FOr
all1<i< j<2w(k)+1, if R intersectsR;, the intersection must lie d@;. Thus, if we letR = R —V(C;) for
1<i<2w(k)+1, we have tha¥ (R) NV (Rj) = 0 fori # j. By planarity, it follows that the elements of the set
{RUC;i:1<i<2w(k)+1} are pairwise intersecting and form a bramble. Every vegéxat most two distinct
elements of the fornfR UC;ji, and consequently, the bramble has ondék) + 1 in P, U Q, a contradiction to
Theoreni 5.13 and Claifd 5. &

We will now see that the elementsB$ can be subdivided into components which are nearly perpeladito
a subset of the cycléSs ), - - -,Cs_aw)- First, we give the following definition. Lef be a path system, and let
Se S be an element with at least one internal vertex. Let the eh8&ex andy, and letv be an internal vertex. We
say that the path systefi is obtained bysubdividing the element S Sfat the vertex ¥f S’ = (S —S) U{xSvvSy}.
The path systens’ is arefinement of if S’ is obtained by repeatedly subdividing elements of

We fix the set of cycles fo€" = {Ciaw()) : 2 < i < 2W(K) 42} U{Cs iz : 2 <1 < 2w(k) +2}. We note
that by our assumption osithats > 12(w(k))?. Thus cycles in{Ciau) : 2 < i < 2w(k) + 2} and cycles in
{Cs iz + 2 < i < 2w(k) + 2} are disjoint.
Claim 7. There exists a refinemefg of P, which is nearly perpendicular to the set of cyal®sThe order ofP3
is at mostw(k) +k, and at mostv(k) elements ofP intersectCe k) -

Proof. We pick a set of verticeX C V(P,) satisfying the following properties.

i. Forallxe X, xeV(Coy))-
ii. ForallP e P, andxy € V(P)NX, there exists a vertexon the subpatixPy such thatz € V (Cayx)) U
V(Cs_ank))-
iii. Subject ta andii, the setX is chosen withX| maximal.

We now define a sef as follows. For every € P, such that there exists distinety € X NV (P), there exists a
vertexz € Z such thatz € V (xPy) N (V (Caw) ) UV (Cs_aw(k)))- Moreover, we pickZ to be minimal over all such
sets. Thus, the set can be thought of as selecting a verkgor each time the path systeR} returns to the cycle
Cew(k) after first visiting one of the “outside” cycléSy, k) or Cs_awk). The setZ then consists of vertices on the
cyclesCsay k) andCs_ayk) SEParating any pair of vertices ¥fcontained in the same element/ayf.

Let P3 be the refinement gP, obtained by subdividing the elements7f at the vertices oZ. We claim that
Ps is the refinement desired by the claim. First, we see Fhais nearly perpendicular to the set of cyclés
Propertyii in the definition follows immediately, as if we had verticey, z violating ii, it would yield a reversal
of depth 3v(k), contradicting Clainll6. To see that Propeirtyolds, first observe that for & € P, P contains a
vertex inCqy (). Moreover,P has no endpoint ilVa,, ) —Ws_zy k- It follows by the planarityay ) —Ws_aw(k)
and the fact thaP cannot contain a reversal of orden() that P intersects every elemeqt, proving thatP3
satisfiesi.

We now show that the order G?; satisfies the desired bounds. Assume that there exist atvigls+ 1
elements ofP3 which intersecCqg,k). If we let S be the set of endpoints @%3, we see tha{P —S: P € P}
contains a linkagéP; of orderw(k) + 1 such thatP; is nearly perpendicular t4Csw ) : 2 < i < 2w(k) + 2}.
However, the set = {PU (Ciawi) —V(J*)) : P € P3,1 <i < 2w(k) + 2} forms a bramble of ordew(k) + 1
which is contained inP3 U Q, contradicting Claini5. Thus, we see that at megt) elements ofP; intersect
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Cew(k)- The bound on the order %3 now follows from the fact that any element Bg which does not intersect
Cew(k) is an element of; as well, and there are at mdssuch elements. <&

Fix Pz as in Claim¥. We now pick an appropriate path systmwhich is equivalent tdP3. First, we
give some notation. Lt be a non-negative integer. Lt be the subgrapiVa o, 2wk — (Ws-3(20+2)w(k) —
Cs_3(2r+2)w(k) ), @nd letd; be the subgraph* NW;. We let

Ct/’ = {C3iw(k) 242 <i< ZW(k) —|—2}U{C —3iw(K) 242 <i< ZW(k) —|—2}

ThusCj = C'. We now fix P4 to be a path system equivalent/ and fix non-negative integet satisfying the
following properties.

. 30 (Uper, P) is equal tak; (UL R ).
ii. There exist at most(k) —t’ elements which interse@; — J; and every such an element is nearly perpen-
dicular toCy,.
iii. No element ofP, intersects botld;; andW; —V (J;).

Moreover, we pickP, andt’ over all such possibilities to maximize the valuet©fNote that such a path system
P4 exists, asP3 satisfies-iii with t’ = 0 since by Clainil7 at most(k) elements ofP; intersect the elements of
C'. The next claim will essentially complete the proof of thentaa.

Claim8. There do not exist an element B which intersects the subgrapt —V (J;).

Proof. Assume the claim is false. We will derive a contradiction tw ohoice ofP; to maximizet’. Observe
thatt’ < w(k). Fix a vertexv in RV 1N Cs 342wk, and letP € P4 be the first path we encounter when
traversingCs_sov 4 2)w(k) Starting fromv and moving away from the vertices bfi(l%* NCs 32 +2)w(k))- Letu
be a vertex oP N Cs_31or42)w(k), and letSbe the subpath ds 32wk With endpointsu andv intersecting
Rk N Cs-32t+2w(k)- LetV be a vertex oRy 1N Cyar 2wk LetU be a vertex oPNCqa 1 2)w(k) and letS be
the subpath o3 (o 2)w(k) linking u" andv’ intersectinﬂv(k) NCs a2k~ Finally, letD* be the subgraph of
W* contained in the disc bounded by the pa®js, N J;, P, SandS.

We claim that there does not exBte P,, P’ # P, and indexj, 3(2t' 4+ 3)w(k) < j < s—3(2t' + 2)w(k) such
thatC;j € C;, andP’ intersectsCj N D*. Assume otherwise. AB' does not intersect any of the patR, N Jy,
PN D*, or Shy construction, and by the planarity bf, we see that there exist verticeandy on P’ such that
X,y € V(P) NV (Cj_awk)) and the subpatkP'y intersectsC;. However, this contradicts the fact th@j is nearly
perpendicular t@;,. We conclude that no sud exists.

Let S’ be a subpath o324 3)w(k) mtersectlngij(k) and linking a vertex oRy | ;1 NCaa43)w(k) and a vertex
of PNCaor43wk)- We have just seen th&t must be disjoint from all elements 1, except forP. LetP” be the
path obtained by rerouting through the patfsu S’ U (Ri,; NJ/). It now follows that if we letP; be the path
system(P, — P) UP”, we satisfyi - iii above with the integef’ + 1, contradicting our choice dp, andt’. This
contradiction completes the proof of the claim. &

The path syster®, is equivalent to a refinement @&, which itself is equivalent to the original path system
P1. ConsequentlyP, contains a path systefs which is equivalent t@;. The path syster®s satisfied Jp.p, PN
W = UL R NW;. Moreover, by our choice of the origina] we see thas— 2(3(2t' 4+ 2)w(k)) > |, and SOW
containd consecutive cycle§;,Ci.1,...,Ci., as desired. O

5.6 Proof of Theoreim 5.9

In this section, we give the proof Theoréml5.9, completirggptoof of Theorerh 313.

Intuitively, we fix a copy of a topological minor which has &wfendpoints in the flatwall decomposition
as possible. Let the topological minor be given by a pathesy9?. We can always find a large belt of the
wall that has the cylindrical grid structure and does not@ionany of the endpoints ¢P. If indeed none of the
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endpoints are contained in the inside ring of the cylindrgrid as well, then we apply Lemnia 5114 and find a
copy of the topological minor which doesn’t contain the nhéddertices of ther-wall decomposition, the desired
outcome. Thus, we reduce to the case when some of the enslpbiitare contained in the inside ring. We then
apply Lemma5.15 and use propevtyo move at least one of the endpoints outside the cylindetradicting our
choice of P and completing the proof.

Proof (Theorem 519)Let 6 andt be given. LetA,G,H,X,W) be the given nearly flatwall decomposition with
apex bound. Letw(d +t) be the value of the function in Theorém 5.12. We let

m=2(2(5+1)) (15W(5 +1)]> + 2l +W(S +1)).

We fix a brick containing the verte;{/z, and let{C;,C;,...,Cn} be them-target centered at this brick. We assume
r > 2m, ensuring that the cycles are defined.

Fix a rooted graptsin the d-folio. For any given model o§in J, we may assume that it is given as a path
systemPs. We letP be the refinement oPs obtained by including as a terminal any vertexfoWhich is an
internal vertex of some element 8. We letP be the path system given §f? — A: P € P}. Note thatP has at
mostd +t elements. We define the valuesfor 1 <i < 2(d +t) as follows,

n =i (15w(d +1)]*+ 2 +w(5+1)).
We are now able to give our requirements lf@andd.
| =d+tandd = 2(5+t)n2(5+t).

Let G(i) be the embedding induced society@ffor 1 <i <m. For an indexj, 0 < j <2(d+t), we define
aj = aj(P) to be the maximum indeix 1 <i < m, such that

I. There are exactly distinct endpoints of elements &f which are contained iG(a;),
i. aj <m-—14w(d+t)l, and
iii . subject ta andii, G(a; —nj) — G(a;) contains no endpoint of any element/f

It is not necessarily the case tregtwill be defined for every value of. However, as we will see below, for any
path systenP arising from a given model din J, there exists at least one indgsuch that; is defined and the
value is bounded by a function défandt.

Claim 1. There exists an integgrsuch that the valua; is defined. Moreover, for alj for which a; is defined,
then there exists an indgk< j such thaty is defined andy < m—2(6+t)ny5.).

Proof. The subgraph&((i — 1)ny5,1)) — G(inys.41)) for 1 <i <2(5+t) + 1 are disjoint. As the linkag® has at
mostd +t elements, it has at most@+-t) distinct endpoints. Thus, there exists an indeand valuej such that
G((I" = D)ny541)) — G(i'ny541)) s disjoint from the set of endpoints of elementsaNdG(i'ny5.4)) contains
exactly j endpoints of elements @fs. Note that(2(d +t) + 1)Ny(s.1) < M—15w(d +1)? < m—14w(d +t), and
soii in the definition ofa; is satisfied. We conclude thaf is defined.

The same argument shows thaajfis defined for some indek then there exists a valye< j such thag;] is
defined andyy < m—2(8 +t)Ny5.1)- <&

We now fix the path syster®s forming a model ofS such thata; is defined for the path systef® and
the valuej is minimal over all such path systems and choices;of By the previous claim, we see that >
m—2(3 +1t)nys541). To help keep the notation simple, &t a;. LetZ be the set of endpoints of elementsjaf
The next claim is the crux of our proof of Theoréml5.9. In tharal, we pick a path system forming a model of
Smoving at least one of the vertices 8 G(a) further outside then-nest, and thus derive a contradictionjto
minimal.

Claim2. The valuej is 0, i.e.Z is disjoint fromG(a).
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Proof. Our first goal will be to find a path syste®; contained inJ — A which is equivalent t¢® and intersects
nicely with the nesC = {Cy_1,...,Ca n;}. LetR be a linkage of orderw(J +t) which is orthogonal ta’
comprised of subpaths of the horizontal paths of the WallWe additionally require that R,R € R are subpaths
of thei-th andi’-th horizontal paths d#V, then|i —i’| > 2I; that is, we choose horizontal paths which are pairwise
separated by at least @ther horizontal paths & not included inR. Note that to ensure the existence of such a
linkageR, we use the upper bound argiven byii.

Apply Lemmd5.15 to the nestand the orthogonal linkagR to get a path syste®; equivalent toP satisfy-
ing the statement of the Lemima5.15. Fix the indesuch that every subpath @ contained irG(a — (nj_1+ 2l +w(d+t))) -
G(d) is contained in the linkag®. Note that we may assume that> a— 15w(J +t)]. After first finding a
path systen®, equivalent toQ; which eliminates a technicality, the remainder of the pnodf proceed as fol-
lows. We find a pattern contained @& centered aCy of depthl which can be replaced by a pattern contained
in G(&@ — (nj_1+2l)) — G(a’ —nj_1), and thus move at least one endpoint of the path system tiitie cycle
G(a —nj-1). Thus, we will contradict our choice @?.

First, we consider the technicality mentioned above. Wmiakte the possibility that elements intersect the
graphG(a) “needlessly”. Consider an element @f, and letQ be a component of the restriction to the vertex
set of G(&) such thatQ has both endpoints contained\i{Cy). If we consider the embedding (&) in the
disc, then the patk divides the disc into two sub-disds (Q) andA;(Q). We say tha is wastefulif at least
one of the disc#\j(Q) does not contain a vertex @ We claim that there exists a path systéln equivalent to
Q1 such thatQ, intersectsG(a — (nj_1+2l)) — G(&') exactly in the a subset of at mostd +t) components
of R, and, moreoverQ, does not contain a wasteful pafh To see this, consider a wasteful p&thin Q; and
assume thah; (Q) does not contain a vertex @ Assume we pick such @ to minimizeA;(Q) by containment.

It follows that no other element @@, intersect?\;(Q). To see this, such a component cannot contain an element
of Z by the choice of). Furthermore, if there exists a compon@htintersecting); (Q), thenQ" must be wasteful

and we violate the choice @ to minimizeA;(Q). We conclude, by reroutin® through a subpath in the cycle
Ca—(nj_1+2+w(s+1)), We can find a path system equivalent@g which satisfies the property that the intersection
with the subgraplG(a’ — (nj_1+ 2l +w(d+t) — 1)) — G(&) is contained iR and which has one less wasteful
subpath thar@;. Thus, by inductively iterating this process at magbd +t) times, we arrive at the desired path
systemQs.

Consider a componeit of the grapioc o, QNG(@ —1) such thaw (X) NZ # 0, and lefT be the path system
associated to the graph There possibly exist edges of the original path sysiewith one endpoint itV (T)NZ
and the other endpoint ih. Let T be the union off and all such edges. By constructidn is a pattern centered
atCy of depthl.

The patternd * come in two slightly different types: eithdr* can intersec€y_,, or alternatively, the path
systemT could be entirely contained iG(a). If such aT exists of the second type, we fixto be such a path
system, and fixA to be a subdisc of the embedded graf® —|) containingT and otherwise not intersecting
V(Q2)\V(T).

Alternatively, we consider the case when every choic€ afust intersecV (Cy_;). We claim thafl * can be
chosen so that there exists a subfatif Cy_| such that. contains all the vertices & (T+) NV (Cy_|) andL is
otherwise disjoint fronV (Qy). To ensure thalt is unique for everyT ™, we fix an edgee € E(Cy-) \ E(R), and
pick the pathL so that it does not contain the edge~or every sucf *, fix L(T) to be a minimal subpath &
containing all the vertices &f (T™) NV (Cy_,) and not containing the edge Fix T such that_(T) is minimal by
containment. Given the embedding up to 3-separatio¥ &@f— ) in the disc, there exists a subdi&containing
the vertices ofl such that every vertex in the boundary/ofs either contained iff or in L(T). If there existed a
T’ intersecting the disf, then every vertex of (T') NV (Cy_;) would be contained ih(T) by planarity. Thus,
L(T’) would be a proper subpath bfT), a contradiction. Alternatively, if some subpda@of Q, not contained in
T intersectd), then as we have just segpcannot contain any vertex in. Therefore, the existence @fimplies
the existence of a wasteful path, again a contradiction. dvelade thath intersectsQ, only in the vertices of
V(T).

We now will replace the pattefi™ by a homeomorphic pattern containeddfe — (nj_1+2) —G(& —nj_1)
to find a new path syster@g forming a model ofSin J. Moreover, if we construc@* and Q* analogously tg?
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andP, we see thaa;_1(Q*) will be defined, contradicting our choice Bfto minimize j.

We first consider the case wh@ndoes not contain any vertex & _;. In this case, we pick a bricB in
G(a — (nj—1+2l)) — G(a — nj_1) which does not intersed®. By propertyv, the brickB admits an-target and
so contains a patterfi™ homeomorphic tal . In fact, as the patteri ™ does not intersed®y |, we see that
V(T*)\Ais contained in the embedding induced society of the HBickhus,V (T*) is disjoint from the linkage
R, and consequently, frov(Q,). Let Q& be a model foiSin J obtained fromQ, by deleting the vertices of
V(T) and adding the corresponding pathgih. _

We now consider the alternative case when at least one eteh&n intersect,_;. We letR be the subset
of elementsRk of R such thatR is contained in some element ¢f, andR has an endpoint ih(T*). As we
have seen in the above paragraph, for elRky R, R has one endpoint iW(T). Let R; andR; be elements
of R containing the endpoint df(T*). We now turn our attention to the graj@(a — (nj_1+ 21)) and it's
embedding up to 3-separations in the disc. By constructioere exists a subdisc of the embedding, cadl it
such thatA is bounded only by verticeR, T, and a subpath of the cyc(éa/_(njfﬁz,). We also assume that the
disc A in fact contains all the elements & containing the endpoint df(T*). If we look at the subgraph of
G(a — (nj—1+2)) — G(a —n;_1) contained im, then by property of Theoreni5.B this subgraph contains an
|-target centered at a brick and a patt&rh homeomorphic td *. We may assume, in fact, that for any element
P € T* such thatP has an endpoint contained e R, the corresponding elemeRtin T+ has as the other
endpoint a vertex RNV (C(z 4n, ,+21)). Thus, by deleting all the vertices &f, contained il —V (Cg n; ;1 21))
from Ps and addingrl ~, we find a path syster@g forming a model ofSin J.

Given the path syster@g, we defineQ* and Q* as in the definition of® andP. In either of the two cases
above, we conclude that the constructed path syskérhas at mosi — 1 endpoints contained in the subgraph
G(a') and no endpoint contained ®(a’ — nj_1) — G(&'), contradicting our choice gP and proving the claim.
Note that we are using here the property that there are ne odt contained inG to ensure that the new path
system@g does in fact form a model of the (rooted) topological mino6of &

TheorenT 5.9 now follows by the upper bound @and Lemma 5.14. As the grafgB(a) contains the nest
{Cm,--..,Cm-a} and no endpoint of the path systémthere exists a path systeRt in the subgrapl UH which
is equivalent taP and does not contain any vertex®fm). Specifically, by extendin@* to a model ofSin J using

edges incident the apex $etwe see that there is a model®#hich does not contain the pardz €V(G(m)), as
claimed. O

6 Immersion
Let G,H be graphs. Aimmersionof H in G is a functiona with domainV (H) UE(H), such that:

e a(v)eV(G)forallveV(H), anda(u) # a(v) for all distinctu,v eV (H),
o for each edge of H, if e has distinct ends, v thena(e) is a path ofG with endsa (u), a(v), and ifeis a
loop incident with a vertex thena (e) is a cycle ofG with a(v) € V(a(e)), and

e for all distincte, f € E(H),E(a(e)na(f))=0.
In fact, we may impose on another condition in the definitibmonersion, that
e forallveV(H)andec E(H), if eis not incident withvin H thena (v) € V(a(e)).

Let us call this “strong immersion”.

In this section, we show that our main theorem, Thedrein 1pliémthat the immersion containment problem
is also fixed-parameter tractable parameterized by the afdé(H)|. However, our reduction from Theorem
1.1 does not work for the “strong immersion” containmentlgea. We conjecture that the strong immersion
containment is fixed-parameter tractable parameterizetiogrder of E(H)|, too.

Theorem 6.1. For every fixed graph H, there is a((¥ (G)|®) time algorithm that decides if H is an immersion in
G.
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Proof. Let k = |E(H)|+ |V (H)|. We construct first a new grap® from G by subdividing each vertex and
replacing each original vertex byduplicates. Formally, for eache E(G), there is a verte¥' in G’; for each
vertexv € V(G), there arek verticesvy, ..., v in G/, and ifv € V(G) is an endpoint ok € E(G), then vertex
€ e V(@) is adjacent targ, ...,  in G'. Note that the degree @f is 2k.

Let ¢ = 2k|V(H)|+ 1 and let us use the algorithm of Theoreml 1.1 to firl, aopological minor inG'. We
claim that if there is such a topological minor modeiV (K,) — V(G'), thenH has an immersion iG. To see
this, observe first thap(v) is a vertex with degree at leaét- 1 > 2k, thus¢(v) = u; for someu € V(G); let us
definea (v) = uin this case. Itis clear that maps at mosgk vertices ofH to the same vertex @&. As//k > |V (H)|
holds, one can select vertices ..., Xy ) Whose images i are all distinct. Forany X i, j <|V(H)], the path
®(xX;) betweenp(x;) and@(x;) in G’ gives a patta (x;xj) betweern (x;) anda (x;) in a natural way. As the paths
@(xx;) are pairwise internally vertex disjoint i@, the pathsx (xx;) are pairwise edge disjoint i6: a vertex
€ € E(G') can be used by at most one of the pagiigxj). Therefore,p shows thaKy ) has an immersion in
G, which immediately implies thatl has an immersion it. This means that we are done in the case weis
a topological minor of5'.

Suppose now thad, is not a topological minor o&&’. We modifyG’ to obtain a new grap&” as follows. For
everyv € V(G), we introduce a new copy &, and identifyv; with a vertex ofK,. Thus the number of vertices
of G"is [V(G)|+|V(G)|(¢—1). Similarly, we obtainH” from H by introducing for eaclu € V(H) a new copy
of Ky and identifyingu and a vertex oK, (so |V (H”)| = ¢V (H))).

We claim thatH” is a topological minor 06" if and only if H has an immersion is. For the if part, suppose
thata is an immersion of in G. In this case, it is easy to construct a mogeif H” in G”: if a(u) = v for some
ueV(H) andveV(G), then we setp(u) = v, map the clique attached wn H” to the clique attached ta, and
transform each path (uyu,) in G into a corresponding pati(uiup) in G”. We can ensure that the pathsgrare
internally vertex disjoint: the paths im are edge disjoint (so we can ensure that each veftex/(G”) is used
at most once) and thieverticesvy, ..., v in G” are sufficient to accommodate the at m@tH )| paths going
throughvin a.

For the only if part, suppose thatis a model ofH” in G”. Consider a vertex of H” that also appears iH
(i.e., itis not a vertex introduced by a new clique). The degsfuin H” is more thar? — 1 (assuming that has
no isolated vertices) andlis part of and-clique inH”. Thusg(u) is a vertex ofG” having degree more than- 1
and part of a topological minor model ofeclique. We claim thatp(u) = v; for somev € V (G). Every model of
an/-cligue is fully contained in a biconnected componenG8f As G’ has no/-clique topological minor, such
a biconnected component must be one ofkhliques created in the construction ®f. Furthermore, the new
vertices of such a clique have degree exaétlyl, thus¢(u) can be only a vertex; for somev € V(G). Thus
@ restricted toH is a topological minor model dfl that does not go inside the cliques, which means that it is a
topological minor model oH in G'. Arguing as in the first part of the proof, it follows thidt has an immersion
in G.

Let us estimate the running time of the algorithm. First, \aa assume thaE(G)| < cy|V(G)| for some
constantcy depending only od: by a classical result of Mader, if the average degre® & sufficiently large,
then G has aKy(y) topological minor, immediately implying that has an immersion iG. Therefore, the
number of vertices 06’ is k|V(G)| + |E(G)| = O(]V(G)]) (for fixed H). The construction o65” increases the
number of vertices by a factor éf hencelV(G”)| = O(|V(G)|) also holds. Thus both invocation of Theorem| 1.1
needsO(|V(G)|3) time. O
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