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- SAM: Se faccio ancora un passo, non saro mai stato cosi lontano da casa mia.
- FRODO: Forza, Sam. Ricorda cosa dceva Bilbo: "E pericoloso, ...

- BILBO: ... Frodo, uscire dalla porta. Ti metti in strada, e se non dirigi bene 1
piedi, non si sa dove puoi finire spazzato via”.

(1l Signore degli Anelli - La Compagnia dell’Anello)



Abstract

This dissertation considers network models where information items flow
from a source vertex to a sink vertex, specifically standard flows networks
with capacity on edges. Starting from the characterization of graph topolo-
gies ensuring that every saturating flow under every capacity-to-edge assign-
ment is maximum in [7], the dissertation provides a polynomial-time algo-
rithm for checking this property. Such a property is called edge-weakness. A
notion strongly related to edge-weakness is that of minimal edge separator
(or mes): by examining if there exists a path in the graph touching twice a
mes, it is possible to conclude that such a graph is edge-weak. Since there
is no need to examine all the minimal edge separators in the graph, the dis-
sertation also provides an algorithm for building a chain of mes iteratively.
Such an algorithm comes out from that of the enumeration of all minimal
edge separators in the graph (which is always reported in this dissertation).
Finally, the dissertation shows the implementations of the algorithms.
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Chapter 1

Introduction

Flow networks lie between several research fields, including applied mathematics,
computer science, engineering, management, operational research and so on (see
[16][20][4]). The field has a rich and long tradition, tracing its roots back to the
work of Gustav Kirchhof and other early pioneers of electrical engineering and
mechanics who first systematically analyzed electrical circuits. Specifically, a flow
network is a directed graph with a chosen pair of vertices called source and sink
(resp. s and t). In the standard model of flow networks, edges are endowed with
capacities and a flow is possible only if it does not exceed the capacity of all edges
it passes through. Moreover, a flow saturates a network if, for every path from
s to t, there exists at least an edge having capacity equal to the amount of flow
passing on it.

In studying flow networks one of the main issues is trying to send as much flow
as possible between s and ¢ without exceeding the capacity of any edge. Such a
problem is called mazimum flow. Examples [16][13] of the maximum flow problem
include determining the maximum amount of cars in a road network, messages
in a telecommunication network, and electricity in an electrical network. For
calculating a maximum flow in a net, sophisticated algorithms are needed. These
algorithms are of two types [16][12] [9]:

1. Augmenting path algorithms, that incrementally augment the flow along
paths from the source node to the sink node.

2. Preflow-push algorithms, that incrementally relieve the flow from nodes with
excesses by sending flow from the node forward toward the sink node or
backward toward the source node.

Clearly, every maximum flow is a saturing flow. The opposite is not true. For
this purpose, consider the example of Figure 1.1 (a): the maximum amount of
information units that can pass through the net is 3 (as shown by paths s vy vy t,
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Figure 1.1: (a) A flow network with edges labeled with their capacities. (b) The graph
under the network. The red edges form a mes, the not dashed edges form an edge-critical
path, the edge with the double arc is the critical edge. Clearly, the graph is edge-weak.

s vg vs t and s v3 vg t). However, in a distributed scenario, due to partial knowl-
edge of the net, the flow could take the path s v3 vg v5 t and the net would be
saturated by exchanging two information units only (in other words, such a net
has a maximum flow of value 3, but admits a saturating flow of value 2). Hence,
there exist flow networks that, under some capacity-to-edge assignment, can have
a non-maximum saturating flow. The graphs underlying such a type of flow net-
works are called edge-weak. An algorithm [7] that non-deterministically chooses
paths and saturates them always calculates a maximum flow if and only if the
graph is not edge-weak.

Recognizing if a graph is edge-weak by checking all possible capacity assigne-
ments is not a decidable problem. Indeed, since for each edge it is possible to
assign any real, the capacity functions for a flow network are infinite.

To avoid this issue, edge-weakness is addressed in a different way and the focus
is on the topology of the graph. Indeed, recalling from [7], a graph is edge-weak if
and only if there exists a minimal edge separator and a path touching it at least
twice. A minimal edge separator (or mes) is a minimal set of edges whose removal
from the graph disconnects s from ¢. A mes is a bit different from a cutset (that
is always a set of edges). Indeed, a cutset comes from a bipartition of the vertex
set of the graph, whereas a mes leads to a bipartition of the vertex set of the
graph. In both cases, each edge of the set has one endpoint in one vertex subset
and the other endpoint in the other vertex subset; however, if a cutset separates
the graph in two connected components, a mes separates the graph in two special
subgraphs. If G is the graph and X is the mes, then such subgraphs are called GX
and Gi*. G¥ is the subgraph containing all vertices reachable from s, while G is
the subgraph containing all vertices reaching .

The characterization of edge-weakness in those new terms is close to that of
weakness. Weakness [6][8] is a form of inefficiency in depletable channels. A de-
pletable channel is like a flow network, except flow networks have edges endowed
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Figure 1.2: A flow network (a) and its edge-expansion (b). The ‘expanded edges’ are
labeled with v, where e is the corresponding edge in the original graph.

with capacities and depletable channels have vertices endowed with charges; the
function allocating charges is always called flow. The underlying graph of a de-
pletable channel is called weak if there exists a charge assignment to vertices such
that the resulting depletable channel admits a non-maximum saturating flow.

Anyway, weakness and edge-weakness do not coincide. In particular the stan-
dard translation from edge-capacitated to vertex-capacitated networks can not be
used to reason about edge-weakness in terms of weakness. Let edge expansion de-
note the translation of a network to the corresponding channel. Such a channel is
obtained by adding, for each edge in the network, a vertex (called expanded edge)
endowed with the capacity of the original edge; the original vertices are endowed
with infinite charge. On one hand, every edge-weak graph is edge-expanded to a
weak graph (each mes becomes an mvs in the translation); on the other hand, a
non edge-weak graph can be edge-expanded in a weak graph. For this purpose,
consider the flow network in Figure 1.2 (a) with its corresponding channel trans-
formation depicted in Figure 1.2 (b). The graph underlying the network is not
edge-weak but the graph underlying its edge-expansion is weak. This happens
because not all the mvs in the edge-expanded graph have their counterpart in the
original graphs. Indeed, the mvs {v;} in Figure 1.2 (b) (which causes weakness)
has not a corresponding mes in Figure 1.2 (a). Thus, if by executing the algorithm
for weakness on an edge-exapanded graph we obtain that such a graph is not weak
then the original graph is also not edge-weak; but if such a graph is weak then
there is no way to determine if the original graph is edge-weak or not (see Figure
1.2). Hence, if in many cases the models with capacities on vertices and those with
capacities on edges are interchangeable, in this context such an interchange is not
possible.

In [6] the authors characterize weakness in terms of the existence of a path that
passes at least twice through a minimal vertex separator, which is a minimal set
of vertices whose removal disconnects s and ¢. A trivial algorithm [6] to determine
if a graph is weak is to generate all mvs and, for each of them, check if there exists
a walk that touches the mvs twice. Unfortunately, the number of mvs in a graph
can be exponential in the number of vertices [14]. However, the authors show that
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Figure 1.3: A flow network (a) and its edge-expansion (b) to show the dramatic increase
of mvs.

it is enough to examine at most a chain of mvs. The method for building a chain
of mvs relies on the study of the enumeration of all minimal vertex separator in
undirected graphs [18]. In [18] the authors give an algorithm which uses a greedy
approach and enumerates all minimal vertex separators via a level-by-level adjacent
vertex replacement scheme, where the separators at each level are generated by
replacing every vertex of each separator in the previous level with a set of its
adjacent vertices, thus avoiding expanding all previously generated separators and
making the search considerably more efficient. Moreover, the authors in [6] give a
polynomial-time algorithm for checking weakness.

As previously described each minimal edge separator in a graph becomes a
minimal vertex separator in the edge-expaded graph. For this purpose, let G and
G’ be the graphs in Figure 1.3 resp. (a) and (b). Each mes in G matches with
the mvs in G’ formed by the expansion of the edges of the mes. For example,
the mes {(s,v1),(s,v2)} in G matches with the mvs {v(y,), Vs } in G', the
mes {(s,v2), (v1,v2), (v1,t)} in G matches with the mvs {v(su,), Ui, 02), Vw1 ,0) }> the
mes {(s,v1), (v, )} in G matches with the mvs {v(s,), U, } in G’ and the mes
{(v1,t), (v2,1)} in G matches with the mvs {v(,, ), V(w,} in G'. Anyway, finding
this mes with the enumeration of the mvs in the expanded graph is computationally
heavy: from a graph with n vertices we move to one with n + m vertices. The
problem is that the number of mvs in a graph is exponential in the number of the
graph’s vertices [6]; hence, this increase from O(n) to O(n?) is dramatic (indeed
the number of mes in G is 4 whereas the number of mvs in G’ is 12).

A problem similar to the one above is that of the enumeration of all cutsets in
graphs (e.g. [19][3][15]). For example in [19] the authors constructs two efficient
algorithms to enumerate all minimal st-cutset separating two specified vertices s
and ¢ in undirected graphs. Both the algorithms have time complexity O((n +
m)(pn + 1)), where g denotes the number of st-cutsets in a given graph. Notice
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that these publications consider only undirected graphs.

Hence, the notion of minimal edge separator is different from that of minimal
vertex separator and from that of cutset. Indeed, an mvs (like a cutset) leads to
connected components while a mes leads to the special subgraphs described above.
Moreover also the enumeration of all mes is a bit different from that of all mvs.
Indeed, as described below, it is not enough do a nodes-to-edges transformation
for obtaining the corresponding mes enumeration.

Starting from the edges outgoing from s, the generation of all mes proceeds via
edges substitution. If G is the graph under consideration and X is a minimal edge
separator, for generating a new mes, the successor of a minimal edge separator
with respect to any of its edges is defined. Such a set is computed by replacing
the edge under consideration with its immediate successors (that are the edges
outgoing from the last endpoint of the edge) and by removing all edges in the set
under construction that have not one endpoint G¥ and the other in G;X. This
process is done for all edges in all mes and it ends when no new mes is generated
(other than one consisting of the incoming edges in t). To ensure that all mes are
enumerated, a level is associated to each minimal edge separator.

Following the notion of successor of a minimal edge separator, it is possible
to build a chain of mes. A sequence of mes Xj...X, is a chain if, for all i s.t.
0 <i<mn, X; C X;41. The order relation [ is edge set-coverage. This relation
compares two mes. If X and X’ are two minimal edge separators, than X covers
X' if every path from every edge in X’ to t passes through X. Such a chain is
complete if between X; and X, there are no other mes.

Like weakness, also edge-weakness can be detected checking only a chain of
mes. If X is the first mes of a chain (i.e. the set of the edges outgoing from s),
testing edge-weakness is done by generating the successor of X and by checking if
such successor is edge-critical. A mes is edge-critical if there exists an edge-critical
path, i.e. a path containing two edges of the same mes. Figure 1.1 (b) provides an
example of edge-critical path. If the successor of X is edge-critical, the graph is
edge-weak. If the successor of X is not edge-critical, then it is required a way to
check if any of its edges is critical. For this purpose, for each edge e in the successor
of X, the e-minimal mes is computed. An e-minimal mes is a mes s.t. e does not
belong to none of the mes covering it. Hence, by choosing one of the edges of the
e-minimal mes, a predecessor (that is like a successor but in backwards direction)
of the successor of X is computed. If such predecessor is critical the cause is that
e is critical (since, if e is critical, all e-minimal mes are e-critical) thus the graph
is edge-weak; otherwise a new mes in the chain is generated and this process is
repeated for the new mes.

Thanks to the implementation of the algorithm on edge-weakness, some tests
on graphs have been conducted. The results of such tests show that it is possible



to note a linear behavior in the number of vertices and edges of the graph under
consideration: with the increase of the edges in respect of vertices, the probability
that a graph is edge-weak increases. Such a probability is 0 if the number of
vertices and edges is the same and it becomes certain with the maximum amount
of edges.

This dissertation is structured as follows. The second chapter provides a back-
ground to the main topic of this dissertation describing some basic definitions
and properties of graphs. Then, the focus is moved on flow network and on the
maximum flow problem. Finally the chapter ends with an introduction to edge-
weakness. The third chapter is divided into three parts. The first one is prelim-
inary. The second one is on the enumeration of all minimal edge-separators in
graphs and the third one is on edge-weak graphs. For each section, it is shown the
algorithm related to the problem handled by the same section. Chapter 4 provides
the implementation of the algorithms in Chapter 3 and it shows the results of the
tests conducted on the graphs.



Chapter 2

Basic Definitions on the Model

The aim of this chapter is to provide a background to the main topic of this
dissertation. Therefore the following sections describe some basic definitions and
properties of graphs which are substantial in the discussion. For this part, the
references are [10] for Graph Theory, [11] and [16] for Flow Networks. Since edge-
weakness is a problem whose origin lies in flow networks, to flow networks is ded-
icated more attention. This chapter ends with an introduction to edge-weakness,
which is thoroughly discussed in Chapter 3.

2.1 Background on Graph Theory

A directed graph (or di-graph) G is a pair (V) E), where V' is a finite set and E is a
binary relation on V. V is the vertex set of G and its elements are called vertices.
E is the edge set of G and its elements are called edges.

If (u,v) is an edge of a directed graph G = (V, E), it is said that (u,v) is
incident to u and v, or that it is an outgoing edge from u and an incoming edge
in v. The set of the outgoing edges of a vertex v in G are denoted out(v) =
{(v,a) € E'| a € V} and the set of incoming edges of a vertex v in G are denoted
in(v) = {(a,v) € E | a € V}. A source (respectively, sink) is a vertex which is
only incident with outgoing edges (respectively, incoming edges). Instead, a vertex
with both incoming and outgoing edges is called an intermediate vertex.

In directed graphs, vertices have both outdegrees and indegrees. The outdegree
of a vertex is the number of edges leading away from that vertex, and the indegree
of a vertex is the number of edges leading to that vertex. Let v a vertex of di-graph
G = (V, E), the outdegree of v is denoted deg” (v) = |out(v)| and indegree of v is
denoted deg™ (v) = |in(v)].

A directed path [17] (also called dipath) is a path with the added restriction
that all edges of the path must be directed in the same direction. A path from a
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vertex a to a vertex b is a sequence of vertices (v, vy, ...,v;) where v9 = a and
v = b, s.t. (v;_1,v;) belongs to E for all 1 <+i < k— 1. In such a case, the path
has length k£ and it contains (or passes through) the vertices vg, v, ..., v and the
edges (vg,v1), (v1,v2), ..., (Vg_1,v%). An a-b dipath is denoted a ~» b. Moreover,
if @ = b then the dipath is a cycle. A di-graph is defined acyclic if it contains no
cycles.

The distance between two vertices a and b in a di-graph is defined as the number
of edges in a shortest directed path from a to b and it is denoted as d(a, b).

A di-graph G’ = (V', E') is a subgraph of G = (V, E) if V' CV and E' C F; in
such a case one writes G’ C (G. Hence, a subgraph of a di-graph is a subset of a
di-graph’s edges (and associated vertices) that constitutes a di-graph. A spanning
subgraph [5] of G is a subgraph obtained by edge deletions only. If X is the set
of deleted edges, this subgraph of G is denoted G \ X. In other words G \ X is
a subgraph whose vertex set is the entire vertex set of G and whose edge set is a
subset of the edge set of G.

A di-graph G = (V, E) is strongly connected if every pair of its vertices is
strongly connected, that is if in G there exists at least one dipath between each
pair of vertices; otherwise the graph is disconnected.

An st-cut is a is a partition of vertex set into two parts X and X defined with
respect to two distinguished vertices s and ¢, such that s € X and ¢t € X. Each
cut defines a cutset that is the set of edges that have one endpoint in X and the
other endpoint in X.

2.2 Flow Networks

In this section we use the following convention: if ¢ is a function on edges (nodes)
and X is a set of edges (nodes), then ¢(X) =3 ().

A Flow Network is a directed graph G = (V, E, s,t,¢), where s and ¢ are two
special vertices respectively called source and sink, and c is a capacity function,
c:V? = RT, associating to every edge (a,b) € E a non-negative capacity c(a, b),
and a zero capacity to every (a,b) ¢ E. The next definition describes the notion
of flow in flow networks:

Definition 2.2.1 (Flow [11]). A flow on G is a function f: V? — R* satisfying
the following three constraints:

1. Capacity: fla,b) < c(a,b) V(a,b) e V xV
2. Conservation: f(in(a)) = flout(a)) Va eV \{s,t}
3. Antisymmetry: fla,b) = —f(b,a) ¥(a,b) eV xV
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The main issue in How networks is knowing the amount of information that
can pass from source to sink. To this end the value of flow is defined.

Definition 2.2.2 (Value of flow [11]). Given a flow f, |f | denotes the amount
of flow outgoing from the source: |f| = fout(s)).

Moreover, it is well known that flout(s)) = f(in(t)).
If every edge in the network has a capacity equal to zero, then nothing can
pass on the network. In such a case the net has a zero flow.

Definition 2.2.3 (Zero flow [11]). A zero flow is a function f : V? — RT s.t.
f0<€> = 0, Ve e L.

Diametrically opposed to zero flow is the maximum flow.

Definition 2.2.4 (Maximum flow [11]). A maximum flow * is a flow s.t. || =
maxilf |.

Since networks are pervasive, they arise in numerous application settings and in
many forms. Surely, given a flow network one wants to monitor the objects passing;
and surely, one wants to transfer these objects, without exceed the capacity of the
edges in the network. For this purpose, it is defined the residual capacity of edges.

Definition 2.2.5 (Residual capacity [11]). The residual capacity r(e) of an
edge e w.r.t. a flow fis r(e) £ c(e) — fle).

Definition 2.2.6 (Capacity of a path [11]). Given a path p in a network G,
the capacity of p, ¢(p), is the minimum capacity of its edges: c(p) = minee,c(e).

Definition 2.2.7 (Capacity of an st-cut [11]). Given an st-cut (X, X) in a
network G, the capacity of (X, X) is: ¢(X,X) £ c(z, 7).

The maximum flow problem is one of the standard problems in flow networks.
Such a problem arises in a wide variety of situations and in several forms. Indeed,
the maximum flow problem occurs as a subproblem in the solution of other
network issues and it also arises in a number of combinatorial applications. In
particular, in this chapter the maximum flow problem is mentioned because it
represents the starting point to study edge-weakness.

Definition 2.2.8 (Maximum flow problem [16]). In a capacited network, the
maximum flow problem is the problem of sending as much flow as possible between
two special vertices, a source vertex s and a sink vertex ¢, without exceeding the
capacity of any edge.



To solving the maximum flow problem there are a number of algorithms.
In [16] it is written that these algorithms are of two types: augmenting path
algorithms and preflow-push algorithms.

Augmenting path algorithms are essentially based on the observation that
whenever the network contains an augmenting path, it is possible to send addi-
tional flow from the source to the sink. An augmenting path is a path constructed
by repeatedly finding a path of positive capacity from a source to a sink and then
adding it to the flow. The algorithm proceeds by identifying augmenting paths
and augmenting flows on these paths until the network contains no such path [16].

The correctness of augmenting path algorithms rests on the renowned maz-flow
min-cut theorem of network flows, that establishes an important correspondence
between flows and cuts in networks.

Theorem 2.2.1 ([16]). The mazimum value of the flow, from a source node s to
a sink node t, in a capacitated network, is equal to the minimum capacity among
all st-cuts.

As described in [11] the amount of flow passing through every cut is equal to
the amount of flow passing from source vertex to sink vertex. Furthermore, as
stated in Theorem 14.3 (always in [11]), a flow fis a maximum flow if and only if
there exists a cut such that its capacity is |f].

The downside of augmenting path algorithms is the computational limitation.
In general in worst-case the computational complexity is O(nmC'), where C' =
max.cpc(e). Moreover, for problems with irrational capacity data, augmenting
path algorithms might not find an optimal solution.

Examples of algorithms employing the method of augmenting paths are the
algorithm of Ford and Fulkerson and the algorithm of Edmonds and Karp whose
pseudocodes are in [11].

Preflow-push algorithms work more efficiently than augmenting path algo-
rithms, by augmenting flows not along a whole path but along single edges. In such
a case it is defined the preflow as function, f, which satisfies the capacity constraint
of flow (see Definition 2.2.1) and for which excessf(v) > 0 for all v € V'\ {s,t},
where excess(v) = f(in(v)) — flout(v)). A vertex v s.t. excesss(v) > 0 is called
active.

The basic operations of all preflow-push algorithms are flow push and relabel.
The first operation is a function, push, which adds a value ¢ = min{excess¢(v),
c((v,w))} to f{(v,w)), if excessg(v) > 0, h(w) < h(v) and (v,w) € E, where h
is a function which assigns a non-negative integer to all v in V. The latter is
a function, relabel, which increases by one h(v) if excessf(v) > 0, for all w s.t
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(v,w) € E, h(w) > h(v). Hence, in general preflow-push algorithms terminate
when the network contains no active node.
Examples of preflow-push algorithms are in [16].

2.3 Edge-Weakness

As described in the previous section, flow networks arise in a wide variety of
situations. An example of such a type of situations are channels for transmitting
informations. Here the network is modelled as a di-graph with two special vertices
called source and sink, resp. s and t. At a given time, an amount of informations
passes from s to t [7].

Ideally, one wants to transfer the maximum amount of informations from source
to sink. However, in a distributed scenario, due to partial knowledge of the net,
the maximum transfer of informations may not happen. Clearly, this is a form of
inefficiency, since not all possible flow is delivered.

Definition 2.3.1 (Edge-Weak[6]). A graph is edge-weak if there exists a ca-
pacity assignment to edges such that the resulting flow network admits a non-
maximum saturating flow.

The problem of Edge-Weakness in terms of Definition 2.3.1 is algorithmically
undecidable. Indeed, since for each edge it is possible to assign any real, the
capacity functions for a flow network are endeless and to check if the graph is
edge-weak each of these capacity functions should be assigned to the net under
consideration. For this purpose edge-weakness is addressed in a different way [6][7].

Anticipating the notion of minimal edge-separator:

Definition 2.3.2 (Edge separator, minimal edge-separator). An edge sepa-
rator is any X C E such that G\ X is a graph where there is no path between s and
t. An edge-separator is minimal if it does not properly contain any edge-separator
and it is referred to as mes.

Edge-weakness is characterised as follows in [7]:

Theorem 2.3.1 ([7]). G is edge-weak if and only if there exists a mes X and a
path p touching it at least twice.

Consider the network in Figure 2.1 (a); here the maximum amount of infor-
mations passing at a given time is 2. However, such a net admits a saturing flow
of value 1 by sending all the flow along the path p = s v; vy t. Consider now
the graph under the network as depicted in Figure 2.1 (b). The edges belonging
to {(s,v1), (ve,t)} constitute a minimal edge-separator. Since by Theorem 2.3.1 p
touches those edges twice, the graph is edge-weak.

11
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Figure 2.1: (a) A network with capacity assignment proving its weakness and (b) the
edge-weak graph under network

Theorem 2.3.1, which graph-theoretically characterises the notion of edge-
weakness, leads to the implementation of an algorithm to checking edge-weakness
in polynomial time without having to use the notion of capacity function.

The purpose of the next chapter is to deepen this connection between edge-
weakness and minimal edge-separators and to show how the theory legitimises the
correctness of such polynomial algorithm.
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Chapter 3

Checking Edge-Weakness

The chapter is divided into three parts. The first one is preliminary. The second
one is on the enumeration of all minimal edge-separators in graphs and the third
one is on edge-weak graphs.

For each section, it is shown the algorithm related to the problem handled by
the same section. Such algorithms are presented with their pseudocodes, see the
next chapter for their implementation.

3.1 Preliminaries

In this chapter we only consider directed simple st-graphs, that are directed graphs
without self-loops and parallel edges, with a fixed source vertex s and sink vertex
t. In the considered graphs each node belongs to at least one st-path. Throughout
the sections, reference is made to a graph G = (V, E) s.t. |V| =n, |E| =m. An
additional assumption is that the source vertex has no incoming edges and the
sink vertex has no outgoing edges e.g. in(s) = out(t) = (.

Before dealing with the main issue, it is necessary to state some definitions to
which reference is made in subsequent sections.

Definition 3.1.1 (Immediate successors of an edge ¢). The immediate suc-
cessors of e = (a,b) € E is the set of edges denoted by next(e) = {(b,v) € E | v €
V}.

Definition 3.1.2 (Immediate predecessors of an edge ¢). The immediate
predecessors of e = (a,b) € E is the set of edges denoted by prev(e) = {(v,a) €
E|lveV}.

Definition 3.1.3 (Distance between source node and an edge). If ¢ =
(z,y) € E, then h(e) £ d(s,z) is the distance from s to e.

13
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Figure 3.1: A simple graph to show the difference between edge-separator and minimal
edge-separator. The set containing blue edges is a minimal edge-separator; the set
containing coloured arrows is only an edge-separator.

3.2 Efficient enumeration of all minimal
edge-separators in a graph

As written in the introduction of this chapter, [18] describes an efficient algorithm
for enumerating all minimal a-b separators separating two given non-adjacent ver-
tices a and b in an undirected connected simple graph. The algorithm requires
O(n?’Ra,b) time for solving this problem, where R, ; is the number of minimal a-b
separators.

Choosing a and b as s and t respectively, via such an algorithm it is possible
to enumerate all minimal vertex separators in graphs.

A problem similar to the one above is that of the enumeration of all minimal
edge separators.

3.2.1 Definition and characterization of minimal edge-separator

An edge-separator, as Definition 2.3.2 sets out, is a set of edges of G for which all
paths between s and ¢t must pass. Such a set is minimal if the removal of any of
its edges does not make it an edge-separator.

Figure 3.1 depicts a simple example of edge-separator and minimal edge-
separator.

As mentioned in Chapter 3.1, this dissertation only considers directed graphs.
Therefore, it is not possible to state that an edge-separator (or a minimal edge-
separator) separates GG in at least two disjoint connected components (and def-
initely not in at least two disjoint strongly connected components). Thus, let
X C E be a generic set of edges; then GX and G¥ are two subgraphs of G\ X s.t.
G¥ ={(Vxs Exs) | Vs 4w e G\X,Yvep Yeep.veVxsNe € Exg} and
GX ={(Vxy, Exy) | Yo bt e G\ X, Yo€p,VYe€p. vEVx,Ae€ Ex,}.

What follows is necessary to prove Lemma 3.2.2.

14



Lemma 3.2.1. If X is a minimal edge-separator, then Vx s and Vx, are a bipar-
tition of V.

Proof. Looking for a contradiction, assume that X is a minimal edge-separator
and v € V then two cases are possible:

(i) If v € Vx5 and v & Vx, then in X there must be two edges (z,v) and (v,y)
contradicting minimality of X.

(ii) If v € Vx, and v € Vx, then X would not be a separator. Indeed, 3s ~ v €
G¥ and also Jv~ t € G¥. Hence Is ~v~t e G\ X.

Thus for every vertex v in V, v € Vx4 Vo e Vxi O

Definition 3.2.1 (Isolated sets of edges). For any X C FE, it is possible to
define the isolated sets of edges of X, denoted by Z;(X) and Z,(X), as follows:
Z,(X) = {e € X | next(e) N Ex; = 0} and Z,(X) £ {e € X | prev(e) N Ex, = 0}.

Now it is possible to characterise the notion of minimal edge-separator:

Lemma 3.2.2. Let X be an edge-separator of the st—graph G = (V, E). Then X
is a minimal edge-separator of G if and only if every edge in X has the first end
in GX and the last end in G;¥.

Proof. (Only if) Looking for a contradiction, assume that X is a minimal edge-
separator and in X there exists an edge ¢ = (a,b) that has not the first end in GX
and the last end in G;*. Then three cases are possible:

(i) Ifa € GX and b ¢ G then all paths from s to ¢, passing through e, must pass
also through another edge in X since by Lemma 3.2.1, b € G (since it does
not belong to GX). Hence deleting e from X would still yield a separator
(against minimality of X).

(ii) If a ¢ GX and b € G the same of point (i) happens.

iii) If a ¢ G¥ and b € G;° then all paths from s to t, passing through e, must
s t

pass also at least through another two edges in X since a ¢ GX and b € G*.

Hence deleting e from X would still yield a separator (against minimality of

X).

(If ) Looking for a contradiction, assume that X is not a minimal edge-separator.
Then there exists an edge e which can be removed from X. Since by hypothesis
e has the first end in G and the last end in G}¥, in G there exists a path from s
to t not passing through X \ {e}. Hence X cannot be an edge-separator without
e. O

15



3.2.2  Definition and characterization of successor and predecessor
of a minimal edge-separator

Let X = out(s), from Lemma 3.2.2 it is clear that X is a minimal edge-separator.
A new minimal edge-separator can be generated from X by replacing any edge e
in X with all its immediate successors and deleting all edges in the isolated set
of edges Z; (the same can be done in backwards from X = in(t)). Hence, each X
may generate at most | X| new minimal-edge separators. This leads to reason in
an incremental manner to enumerate all mes in (G. To this aim, it is defined the
successor of a minimal edge-separator and, similarly, the predecessor of a minimal
edge-separator.

Definition 3.2.2 (Successor of a minimal edge-separator with respect to
any of its edges). The successor X, of a mes X with respect to an edge e € X,
is the mes defined by the following equation:

X, = (X \ {e})Unext(e)) \ T,((X \ {e}) U next(e)) (3.1)

Lemma 3.2.3. Let X be a minimal edge-separator and e € X. If e & in(t) then
X, defined by the equation (3.1), is a minimal edge-separator and X, # X.

Proof. Since by hypothesis X is a minimal edge-separator then also X’ = (X \
{e}) U next(e), for any e € X sit. e ¢ in(t), is an edge-separator. Indeed by
construction X’ is made up from X’s edges (except for e) and e’s immediate
successors. To make X’ minimal, it is necessary to remove from X’ those edges
that have not the first end in GX and the last end in GX (by Lemma 3.2.2), de
facto these edges are Z;((X \ {e}) U next(e)). O

Definition 3.2.3 (Predecessor of a minimal edge-separator with respect
to any of its edges). The predecessor X of a mes X with respect to an edge
e € X, is the mes defined by the following equation:

X2 (X \{e}) Uprev(e)) \ Z,((X \ {e}) U prev(e)) (3.2)

Lemma 3.2.4. Let X be a minimal edge-separator and any e € X. If e ¢ out(s)
then X., defined by equation (3.2), is a minimal edge-separator and X°¢ # X.

Proof. The same as in Proof of Lemma 3.2.3. |

Consider the graph depicted in Figure 3.1. Let X be the mes {(v1,v2), (v3, v2),
(v3,v4)}, the successor of X with respect to the edge e = (vq,v2) is the mes X, =
{(v2,v4), (v3,v4)}. Indeed, next(e) = {(ve,v4)}, thus (X'\{e})Unext(e) = {(vs, v2),
(vs,v1), (v2,v4)} and Zy((X \ {e}) U next(e)) = Li({(v3,v2), (vs,04), (v2,04)}) =
{(v3,v2)}. Hence X = {(uvs, v2), (vs,v4), (v2,04)} \ {(vs,02)} = {(v2,v4), (v3,04)}.
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Similarly, X¢ = (X \ {e}) U prev(e) \ Zu((X \ {e}) U prev(e)) = (({(v1,2),
(vs,v2), (vs,va)} \ {(vr,02)}) U {(s,00)}) \ Zs((({(v1,0v2), (vs,02), (vs,va)} \
{(Ub 'UZ)}) U {(5> 'Ul)})) = {('U3a UQ)’ ('U?n U4)’ (5> 'Ul)} \ {(U3> 'U2)> (U3> 'U4)} = {(Sa Ul)}'

When e € in(t), since e cannot be replaced with its immediate successors
(because edges entering into ¢ have no successors), the removal of the edges in X,
from G cannot block paths from s to t via e. The same reasoning is made for X*¢
if e € out(s). Thus X, (or X¢) is not an edge-separator. So:

Lemma 3.2.5. Let X be a minimal edge-separator and e € X Nin(t); then X, is
not an edge-separator.

Proof. If e € in(t) then next(e) = (), so formula (3.1) is reduced to (X \{e})\Z;(X\
{e}). Since X is a mes then, because of Lemma 3.2.2, 3s ~ a € Gand db~t € G,
a € Vxsandb € Vx,, where e = (a,b). Hence 3s ~ a — b~ t € G\ (X \{e}); this
means that X \ {e} is not an edge-separator thus also X, is not an edge-separator
(since X, C X \ {e}). O

Lemma 3.2.6. Let X be a minimal edge-separator and e € X N out(s); then X
15 not an edge-separator.

Proof. The same as in Proof of Lemma 3.2.5. O

The next lemma shows that formule (3.1) and (3.2) are inverses of each other.
Indeed, by applying (3.2) to a mes X and then by applying (3.1) to the result, we
obtain X. Moreover, the following lemma is crucial to prove Theorem 3.2.1:

Lemma 3.2.7. VX minimal edge-separator Ve € X and Vf € prev(e), it holds
that (X°¢); = X.

Proof. Let e = (a,b) € X and out(a) = AW B, where A = out(a) N X and
B = out(a) \ X. Because of formula (3.2), the predecessor of X with respect to e
is X¢ = ((X\{e})Uprev(e)) \ Zs((X \ {e}) U prev(e)). So from X U prev(e) must
be removed those edges that have not immediate predecessors in G& \(<H2Prev(©)
These edges are nothing more than the successors of the predecessors of e in X.
Since prev(e) = {(w,a) € E | w € V'} the edges to eliminate are A.

Moreover only these edges are deleted. Indeed, looking for a contradiction let
e = (a,V) € X\A (soa # a) be an edge to remove, then X would not be minimal.
Indeed, the only cause to remove €’ from X is that, by adding prev(e) = in(a) to
X, every path passing through €’ passes also through prev(e). Since a’ # a, X
has to contain some edges linking prev(e) to €’ against minimality of X (because
X \ {e} would still be a separator). Hence X¢ = ((X \ {e}) U prev(e)) \ A.

Let f = (c,a) € prev(e). Compute (X¢); = [(X\ {f}) Unext(f)] \ Z.([(X°\
{f}) Unext(f)]). Let X' = [(X®\ {f}) U out(a)], since next(f) = out(a) then
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(X9 = X'\ Zt(X'). Clearly, by construction, ((X \ {e}) U prev(e)) \ {f} € X’
and so [((X \ {e}) U prev(e)) \ {/}] \ Ti(X') € X'\ T,(X).

Since X is a minimal edge-separator, it must be Ve’ € B, Vp path s.t. € € p
Jde” € X s.t. €’ € p. Indeed, looking for a contradiction suppose 3¢’ = (a,b') € B
st. € ¢ T,(X’). This means that ¥ € GX ie. I ~ t € G\ X', because
of Definition 2.3.2. Given that X' = (((X \ {e}) U prev(e)) \ {f}) U B then
(b ~ t) N X = (. In addition, because a € GX then 3s ~» a € G\ X (always by
Definition 2.3.2). Hence s ~ a — V' ~ t € G\ X, contradicting the assumption
that X is a mes. So it must be B C Z;(X’). Moreover, because e € out(a) then
e € X’ and prev(e) C Z;(X').

Furthermore Z;(X") contains only the edges of prev(e) U B. Indeed, looking for
a contradiction suppose 3¢’ € X s.t. € € Z,(X’). Since X' = [(X¢\ {f}) Uout(a)],
the only reason to remove ¢’ from X' is that, by adding out(a) to X¢\ {f}, every
path passing through e’ passes also through out(a). Since ¢’ ¢ B, X has to contain
some edges linking A to €’ against minimality of X (because X \ {e} would still
be a separator).

Hence because Z;(X") = prev(e) UB, [((X \{e})Uprev(e)) \{f}\Z:(X’') = X.
Since X is a mes and even (X¢)y is a mes (by Lemma 3.2.3 and Lemma 3.2.4)
then X ¢ (X°)s so it must be X = (X°);. O

Consider the graph depicted in Figure 3.1. Let X be the mes {(vq, v2), (v3, v2),
(v3,v4)}, € = (v3,09) and so X¢ = {(vy,v2), (v1,v3)}. Let f = (v1,v3) € prev(e),
then (X)r = [({(v1,v2), (vi,v3)} \ {(v1,03)}) U {(v3,v2), (vs,02)}] \ O = {(v1,02),
(Ug,’UQ), (U3,’U4)} = X.

3.2.8  Enumerating all minimal edge-separators

The approach explained in the previous section shows that starting from out(s) it
is possible to generate each minimal edge-separator. This process continues until
every edge, in the preexisting mes, does not belong to in(t).

It makes sense to introduce the concept of level of minimal edge-separator.
Level 0 contains only one separator out(s); the following levels contain the minimal
edge-separators generated from some other mes in the same level or in the previous
one.

What follows provides an inductive definition of level of a minimal edge-
separator:

Definition 3.2.4 (Level of a minimal edge-separator). The level of a minimal
edge-separator is defined as follows:
lev(out(s)) =0
lev(X)+1 ifee X and h(e) = lev(X)
lev(X) if e € X and h(e) < lev(X)
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From Definition 3.2.4 it seems clear that the notion of level of a mes X is really
bound to the notion of maximum distance between s and the edges in X. Indeed:

Lemma 3.2.8. If lev(X) =k, then h(e) < k, Ve € X.
Proof. The proof proceeds by induction on k.
(i) If £ = 0 then lev(X)=0. Hence, since X = out(s) then h(e) =0, Ve € X.

(ii) If £ > 0 then lev(X) > 0. Hence let X =Y./, for some ¢’ € Y. Two cases are
possible:

1. If e € Y, then by induction h(e) < lev(Y) < lev(X).
2. If e €Y, then e € next(e’). Two cases are possible:
a) If h(e') < lev(Y') then h(e) < lev(Y) < lev(X).
b) If h(e¢') = lev(Y) then h(e) = lev(Y) + 1 = lev(X). 0

Always refering the graph in Figure 3.1 and its mes X = {(v1,vq), (v1,v3)}
having lev(X) = 1, then it is possible to compute the mes X, 1,) 5.t Xy, 04) =
{(v1,v2), (vs,v2), (vs,v4)}. From Definition 3.2.4 the level of Xy, ) is 2,
since h((vy,v3) = 1 = lev(X). Moreover Lemma 3.2.8 is respected given that
h((vy,v2)) =1, h((vs,v2)) = 2 and h((v3,v4)) = 2.

Because to every minimal edge-separator can be assigned a level, it makes sense
to partition minimal edge-separators according to their level.

Definition 3.2.5 (Clustering of minimal edge-separator according to
level). L; is the set of minimal edge-separator at level i ie., L; = {X C E | X is
ames A lev(X) = i}.

Finally, starting from Definition 3.2.5 the following theorem illustrates that
every minimal edge-separator can be placed in some set of mes in which every
minimal edge-seprator has the same level. This means that the union of all L;,
0 <i<d(t)—1, is equal to the set of all mes in G.

Theorem 3.2.1. If X s a mes, then Ft s.t. X € L;.

Proof. For any minimal edge-separator X in G, it is possible to compute a value
h(X). Clearly h(X) grows in the transition from X to X., Ve € X.
The proof proceeds by induction on h(X).

(i) If h(X) =0 then Ve € X, h(e) = 0. Hence X C out(s). Since by assumption
X is a mes, then X must contain all edges of out(s); this means that X =
out(s). Therefore, because of Definition 3.2.4 and Definition 3.2.5, X € Ly.
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(ii) If h(X) > 0 then there exists e € X s.t. h(e) > 0. Because of Lemma 3.2.7
X = (X)y, for some f € prev(e). Let Y = X°¢ because X = Y then
h(Y) < h(X); thus by induction Y € L; for some i s.t. 0 < i < d(t) — 1.
Hence the level of X may be calculated as in Definition 3.2.4. Indeed, by
Lemma 3.2.8 if h(f) = lev(Y') then X € L, otherwise X € L;. O

3.2.4  An Algorithm for enumerating all minimal edge-separators

Based on the approach described above, the algorithm for generating all minimal
edge-separators is presented below.

The algorithm enumerates all minimal edge-separators according to Theorem
3.2.1. Each minimal edge-separator is generated correctly by Lemma 3.2.3.
Starting from out(s), all edges of all minimal edge-separators are considered: for
each mes it is determined the successor with respect to everyone of its edges. The
minimal edge-separators are distinct since duplicates are excluded by Step 11.
The generation proceeds until the mes in the last level contains in(t).

Algorithm 1 Generating all minimal edge-separators
Input: An st-graph G = (V, E)
function st—minimal edge-separators(G)

1: 74 0;

2: Lj < {out(s);

3: while L; # () do

4: Lj+1 — @,

5. for all X € L; do

6: for all e € X \ in(t) do

7: Compute the subgraph G\ \teh)next(e).
8: if GIXMEDnete) £ g then

9: Compute Z;((X \ {e}) U next(e));
10: X' = ((X\{e})Unext(e)) \ Z:((X \ {e}) U next(e));
11: if X' ¢ /%) L; then

12: if h(e) = j then

13: Lj+1 < Lj+1 U {X’},

14: else

15: L+ L U{X"};

16:  jJ<4+7+1;

The correctness of this algorithm is proved by the results in the section above;
its complexity is now discussed.
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Analysis

In Step 2 the determination of out(s) takes time O(deg’ (s)) hence O(n).

In Step 7 one needs to compute G\X ) which can be done by building
the incidence matrix with ¢ < n rows and p < m columns.

Step 9 takes time O(m): if the subgraph G MeNnext(©) 4o vapresented using
the incidence matrix, then checking if the edge e has an immediate successor in
GEMENInext(€) 0 he done by scrolling one row of the matrix.

The total number of edge-separators is O(2™); if the union of L;, 0 < j <
d(t) — 1, consists of a minimal size expansion tree, then Step 11 costs O(m?) as in
Lemma 5 in [18].

The loop at Step 6 is executed at most m times. Therefore, let p the num-
ber of minimal edge-separators in GG, then function minimal edge-separators costs
O(m3u), or alternatively O(n%u) (since the maximum number of edges in a simple
directed graph is n(n —1)/2).

An example of Algorithm 1 execution

Let G be the graph in Figure 3.2 (a).

- Initialization and 1st iteration of while:

1. In the beginning j < 0 hence L; = Ly < {out(s)} =

{{<37 Ul)? (37 U2>7 (37 U3>}}‘

2. Since Ly contains only one mes that is different to in(t), the while is executed.

(X\{e})Unext(e)

a) For e = (s,vy) it is computed the subgraph G, depicted in

Figure 3.2 (b).
b) X' < {(v1,v4), (v1,v5), (v1,02), (5,2), (5, v3)} is produced.

c¢) Since X' is not present in L; 1y = Ly and h(e) =0, X’ is added to L.

(X\{e})Unext(e)

d) For e = (s,vy) it is computed the subgraph G; depicted in

Figure 3.2 (c).
e) X' <+ {(vg,v3), (v2,v5), (s,01), (s,v3)} is produced.

f) Since X' is not present in L; 1 = Ly and h(e) =0, X' is added to L;.

(X\{e})Unext(e)

g) For e = (s,v3) it is computed the subgraph G; depicted in

Figure 3.2 (d).
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Figure 3.2: Execution of Algorithm 1 on graph (a). In blue the edges of G, in black
the edges of Gi¥, in red the edges of the mes. The edges not in GX, Gi¥ or in the mes
are not shown.
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h) X' <+ {(vs,vs5), (v3,v6), (s,01), (8,v2)} is produced.
i) Since X’ is not present in L, = L; and h(e) =0, X' is added to L.

j) Now L; contains three mes: {(vi,v4), (v1,vs5), (v1,02), (s,v2), (s,v3)},

{<U27 U3)7 <U27 U5)7 (Sv Ul)v (Sv U3)} and {(U37 U5>7 <U37 U6>7 (87 U1>7 (87 U2>}-
The value of j is increased.

- 2nd iteration of while:
Since L, contains a mes different to in(t), while is executed.

1. For X = {(v1,vy), (v1,v5), (v1,02), (8, 02), (8, v3) }:

a) For e = (vy,vy) it is computed the subgraph G MeDnext(e) qonicted
in Figure 3.2 (e).

b) X' {('Ula U5)a (’Ula U?)a (Sa U?)a (Sa U3)a (U4a t)} is prOduced'
c¢) Since X' is not present in L;i; = Ly and h(e) =1, X’ is added to Ls.

d) For e = (v1,vs) it is computed the subgraph G\¥ (&Y€) qapicted
in Figure 3.2 (f).

e) X'+ {(vi,v4), (v1,02), (8,02), (8,v3), (vs,v4), (vs5,t)} is produced.

f) Since X’ is not present in L1 = Lo and h(e) = 1, X' is added to L.

g) For e = (vy,vy) it is computed the subgraph G MeDnext(e) qonicted
in Figure 3.2 (g).

h) X'« {(v1,v4), (v1,05), (8,03), (v2,v3), (v2,v5) } is produced.

i) Since X’ is not present in L1 = Lo and h(e) = 1, X' is added to L.

j) For e = (s,vy) it is computed the subgraph G, (X\{e})Unext(e)

Figure 3.2 (g).

depicted in

k) X'« {(v1,v4), (v1,05), (8,03), (v2,v3), (U2, v5) } is produced. Note that
(v1,v9) is not in X’ because its immediate successors are in X'

1) Since X' is already present in L1 = Lo , it is not added.

m) For e = (s,v3) it is computed the subgraph G; (X\{e})Unext(e)

Figure 3.2 (h).

depicted in

23



n) X' < {(vi,v4), (v1,05), (v1,02), (8, v2), (v3,06), (v3,v5)} is produced.

o) Since h(e) =0 and X' is not present in L; = Ly, X’ is added to L.

2. The same procedure is applied for the other mes in L;.

3. At the end: Ly = {{(v1,v4), (v1,05), (v1,02), (8, 12), (s,v3)},
{(v2,03), (v2,v5), (s, v1), (5, v3) },
{(USaUS) (U3>'U6)>(5>'U1)>(8 UQ)}
{(577)2) <U17U2> <U17U4>7(U17U> (U37U5> (U37U6>}7
{( (v2,05), (

S, v3), (v2,v3), (v2,v5), (v1,v4), (V1,v5)}}

—
I~
iy
<
—
—~
»
<

vs, V4), (8, v1), ), (vs,t)

$,v3), (v1,v4), (v1,Vs5), (v2,v3), (V2,v5)}

$,v9), (v1,v2), (v1,v5), (v3,v5), (v3,v6), (Va, )}
v1,v4), (V1,05), (v3,05), (3, V6), (V2,v5) }
(v1,v4), (vs,v4), (v3,06), (vs, 1)} }.

- 3th iteration of while:
Since L contains a mes different to in(t), while is executed.

1. For X = {(vy1,v4), (vs,v4), (vs,1), (v3,06) }:

a) For e = (v1,vs) it is computed the subgraph G\ M) qepicted
in Figure 3.2 (i).

b) X"« {(v4, 1), (vs,t), (v3,v6)} 1s produced.

c¢) Since h(e) =1 and X’ is not present in L; = Lo, X’ is added to L,.

d) For e = (vs,vy) it is computed the subgraph GX\ep)next(e

in Figure 3.2 (i).

deplcted

e) X'« {(v4,1), (vs,1), (v3,v6)} is produced.

f) Since X' is already present in L; = Lo, X' is not added.
2. For X = {(v3,vg), (v4,1), (vs,1)}:
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GgX\{e})Unext(e)

a) For e = (vs3,v5) it is computed the subgraph depicted

in Figure 3.2 (1).
b) X' < {(v4,1t), (vs,t), (ve, t)} is produced.

c¢) Since X' is not present in L; = Lo, X’ is added to Ls.

3. At the end: Ly = {{(v1,v4), (v1,05), (v2,v5), (v2,v3), (S, v3)},
{<U17 U2>v (U47 t)? <U17 U5>7 (37 U3>7 (37 U2>}7
{<U17 U2>v (U57 U4>v (U57 t)? (Ulv U4>v (Sv U3>v (37 U2)}7

s,01), (ve, 1), (8,v2), (ve, v5), (v3,v5)},

$,01), (vs, vy), (vs, 1), (v3,06) },

S, Ul) <U57 U4>v <U57 t)? <U27 U3>7 (37 U3>}7

Hence, {{(v4,1), (vs,1t), (vs,t)}} = in(t) € Ly. Thus since Ly = () the loop
ends and the algorithm terminates.

3.3 Edge-Weakness

3.3.1 Characterization of Edge-Weakness

As described in Chapter 2 the downside of Definition 2.3.1 is that it describes the
problem of edge-weakness in an undecidable way.

Thanks to Theorem 2.3.1 in [7], edge-weakness can be detected without re-
course to an algorithm considering capacity-to-edge assignment. So, stemming
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V3 —> Vs

.

§ — Uy t

N

Vg —> Vs

Figure 3.3: A simple graph to show a complete chain of mes

from Theorem 2.3.1, a trivial algorithm to determine if a graph is edge-weak is to
generate all mes and, for each of them, check if there exists a path touching the
mes twice.

Despite the number of mes in a graph can be exponential, the following sections
prove that it is enough to examine at most a complete chain of mes that is linear
in the size of the graph.

By Theorem 2.3.1 it makes sense to define a terminology to identify these
main ingredients. For this purpose the following definition sets out the notion of
edge-critical path, critical edge and critical mes.

Definition 3.3.1 (Edge-critical path, critical edge, critical mes). A path
a ~ bin G is edge-critical if there exists a mes X such that (a,v), (v2,b) € X
where (a, v1), (vg, b) are both edges in a ~» b. In such a case (vg,b) = e is a critical
edge and X is a critical mes (or e-critical mes).

Consider the graph in Figure 2.1 (b) and its path p = s v vy t. Clearly p is an
edge-critical path because it touches the mes X = {(s,v1), (v2,t)} twice, (ve,t) is
a critical edge and X is a critical mes.

3.3.2  FEdges set-coverage and complete chain of mes
Consider the relations defined below:

Definition 3.3.2 (Edge-coverage). An edge e is covered by a set of edges H,
written e C H, if all paths v ~» t with e as first edge in the path, touch at least
an edge ¢/ € H.

Definition 3.3.3 (Edges set-coverage). A set of edges H' is covered by a set
of edges H, written H' C H, if e C H,Ve € H'.

Definition 3.3.4 (Edge-precedence). A set of edges H precedes an edge e,
written H < e, if all paths s ~ v with e as last edge in the path, touch at least
an edge ¢/ € H.
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Definition 3.3.5 (Edges set-precedence). A set of edges H precedes a set of
edges H', written H < H', if H <e,Ve € H'.

Lemma 3.3.1. The set of mes is a partially order set w.r.t C and <.

Proof. Clearly C is reflexive. The relation is antisymmetric; looking for a contra-
diction, let X and X’ two mes and assume that if X C X’ A X' C X then X # X'
By contradiction there exists an edge e s.t. e € X \ X".

Consider those two propositions:

Prop. 1: ifee X Nin(t) A X C Y thenec Y.
Prop. 2: if X is a mes then Ve € X dp s.t. p is a simple st-path and pN X = {e}.

Obviously, Prop. 1 is true since if e € in(t) then e = (v,t), v € V. Hence e C Y
only if e € Y. Moreover, Prop. 2 is true since, otherwise, X would not be a
minimal edge-separator but only an edge-separator.

By Prop. 1, e € in(t). Because of Prop. 2, there exists a simple st-path p touching
X only in e. Let p’ = e ~» t where ¢ € p, Ve/ € p/. Since X T X', p/ passes
through X’. Let ¢ € X’ Np’ then: ¢ # e because e ¢ X'; ¢/ ¢ in(t) otherwise,
by Prop. 1, ¢ € X. Let p” = ¢ ~ t where ¢’ € p/, Ve’ € p”. Since X' C X, p”
passes through X. Let ¢/ € X Np” then:

(i) If ¢” = e then p would not be simple.
(ii) If €” # e then p would not touch X only in e.

Finally the relation is also transitive: let X C X’ and X’ C X”. Thus e C X',
Vee X,and ¢ C X", Ve/! € X'; hence e C X", Ve € X, ie. X C X”. The same is
for <. O

For example consider the graph in Figure 3.3. Let A = {(s,v2)} then A is triv-
ially covered by itself. Let B = {(vq,v3), (v2,v4)} and C' = {(va, 1), (vs,t), (vs, t)}
then AC B and BC C but also AC C. Clearly C'IZ B and also C' [ A.

Always by referring the graph in Figure 3.3. Let A = {(v4,1), (vs,1), (vs, 1)}
then A is trivially preceded by itself. Let B = {(vs,v5), (v4,1), (vg,t)} and C' =
{(s,v2)} then B < Aand C' < B but also C' < A. Clearly B A C' and also A A C.

Thanks to relation in Definition 3.3.3, it is possible to define a chain of minimal
edge-separators with minimum element out(s) and maximum element in(t).

Definition 3.3.6 (Complete chain of mes). A sequence of mes Xy, Xi,..., X,
is a chain if X; T X;1,Vi € {0,...,n — 1}. The chain is complete if X, =
out(s), X, = in(t) and if X; C X C X, ; then either X = X; or X = X, ;.

Some examples of complete chains of minimal edge-separators are in the next
section.
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3.3.8 Correctness of Checking Edge-Weakness

In [6] a specific critical node could not appear in a complete chain of mvs; the
same happens with mes and critical edges. For this purpose, let G be the graph
in Figure 3.2 (a) and C' a complete chain of G:

ZISIN, (2SN,
Nizp TNz e
ZININ, L ZISh,
Nizp TNz e
JZINDN L ZIND,

Since in G there exists a path p = v3 vg v5 vy the edge (vs,v4) is a critical edge in
{(v1,v4), (v3,06), (v5,v4), (vs,t)}. However consider C":
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V) —> U4 V) —> U4

SN N

N ZaN
NN LN,
NN
ZININ LIS
NV NI
ZININ,
NI

The critical edge (vs,v4) does not belong to any mes in C’ but at the same
time C’ contains (v4,t) that is a critical edge.

Naturally, because of Theorem 2.3.1 G is edge-weak.

Again like [6], the above observation leads to Theorem 3.3.1. To prove such a
theorem it is necessary the following lemma:

Lemma 3.3.2. Ife &€ H and either H < e ore C H, then HU{e} € X for every
mes X.

Proof. Looking for a contradiction, assume that in a graph G there is an edge
e = (a,b) such that H < e and a mes X such that H U {e} C X. Since X is
a separator, all paths from s to ¢ cross X in some edge of X. Consider a path
s~ a — b~ t; since X contains H and H < e, if the e is removed from X,
X what we obtain would still be a separator. Indeed all paths s ~» b ending in e
would pass through H. Hence X cannot be a minimal edge-separator. The same
happens if e C H. O
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Theorem 3.3.1. If the graph is edge-weak, then in every complete chain of mes
Xo, X1,..., X, there exists at least a X; that contains a critical edge.

Proof. Looking for a contradiction, assume that in a graph there is an e-critical
mes X, where e = (a,b), but there exists a complete chain Xy, X7,...,X,, such
that every X; does not contain any critical edge.

Trivially, e Z Xy and e C X, (this happens for every e € E'\ out(s)); thus let i
be an index such that e Z X; and e C X;,1, where X, is generated through any
edge that belongs X;. Trivially e € X; and e & X, 1.

Let prev*(e) = {(u,z) € E | 3s~ a — bs.t. (u,z) € s~ a — b} be the set of
many-steps predecessors of e, and let P = prev*(e) N X; be the set of many-steps
predecessors of e in Xj.

(i) By hypothesis e [Z X; this implies that X; < e. Indeed since X; is a mes all
paths from the source node to the target node must cross X;. So either every path
from s to b, passing through e, finds X; or every path from a to ¢, passing through
e, finds X;.

Since X; < e and P is built by removing from X; those edges that do not appear
in the paths from s to b passing through e, P < e; thus trivially P # ().

(ii) If some ¢’ = (a/,V') € P belonged to X;41, it could be found a path @’ — V' ~
a — b~ a” — b where (a”,0") € X;1; this would make X;,; a critical mes. So,
PNnX; =0

Since P C X; and by hypothesis X; C X;,q, also P C X;;;. Thus Ve’ € P,
¢ C X;;1 and ¢ € X;,q. Let Xf' be the separator obtained from X; via some
¢ € P. If Xf # X;y1 then Xy, X1, ..., X, would not be a complete chain because
there would exist a mes X¢ such that X; C X¢ C X;,1, that contradicts Definition
3.3.6 and thus also the hypothesis. So X¢' = X;,, Ve’ € P.

(iii) Let U = X,;41 \ X; be the set of new edges added from X; to X;,i; it is
possible to prove that e C U. Indeed if it was not, there would be a path from
a to t, starting with e, passing either through an edge ¢’ € X; \ X;; or an edge
¢’ € X;NX;1. Both these cases are not possible otherwise by point (i) X; would be
critical. Moreover because of point (ii) every edge in U is an immediate successor
of every edge in P.

It is now possible to use these facts to contradict the assumption that e is a critical
edge. Consider all the paths of the form s ~ v — 2z — x ~ t, with (u,z) € P
and (z,z) € U. Every mes, to cut such paths, must contain either a set of edges
P’ < P or aset of edges U' J U. In both cases, since P’ < e and ¢ C U’ (because
of (i) and (iil)), e cannot belong to any mes (see Lemma 3.3.2) and hence cannot
be a critical edge. O
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Note that Definition 3.3.1 does not define a mes critical if it contains a critical
edge, but it is critical if there exists a path between two of its edges. Moreover
Theorem 3.3.1 is not enough to conclude that any complete chain of mes in an
edge-weak graph contains at least a critical mes.

By continuing to refer to graph in Figure 3.2 (a), let C” be another complete
chain:

V)
=
v
4
o
V2)
=
v
4
o
I

V)
<
S
<
ot
Va)
<
S
<
ot
I

V)
=
v
4
o
V2)
=
v
4
o
I

V1 —> U4

SN,

S V2 Vs

N

V3 —> Vg

It is evident that it is required a way to check if any edge e is critical (and
hence check the existence of an e-critical mes).
For this purpose, Theorem 3.3.2 is given which makes use of e-minimal mes.

Definition 3.3.7 (e-minimal mes). A mes X is e-minimal if e € X and e ¢ X,
for every mes X' C X.

Theorem 3.3.2. If e is a critical edge, then all e-minimal mes are e-critical.
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Proof. Let e = (a,b) be an edge and X be an e-critical mes, where ¢’ = (a/,0') € X
is such that a’ — o ~ a — b. By contradiction, assume the existence of a mes
X* that is both e-minimal and not e-critical. Clearly, ¢/ & X*, because X* is not
e-critical.

Since X* is a mes, all paths from s to ¢ cross X*. If X* < ¢’ then there exists a
path that starts in X* and reaches €’; because of the existence of a’ — b ~ a — b,
X* would be an e-critical mes. Therefore, it must be ¢/ C X*.

Let A={f=(u,2) e X*|d =V ~u—z#ab}={f,...,f.}

Since X* is an e-minimal mes, it must contain at least the edge e. If A = ()
then ¢’ C e, against minimality of X. Then it must be A # ().

For each element f; € A, consider the mes X} T X*. By e-minimality of X*, e
does not belong to X7. This implies that there exists a set of edges P; C prev(f;)
such that P < e. Indeed, by construction X7 is made up from (some of) X*’s
edges (except for f;) and f;’s predecessors. Considering that e cannot be preceded
by edges in X*, e must be preceded by edges that are only in X7, i.e. some of
those in prev(f;).

Note that P; # {€'} otherwise ¢’ < e and so e,e’ could not belong to the same
mes because of Lemma 3.3.2. Therefore, for each i € {1,...,n}, consider the set
of edges B; C P; that are on a path of the form s ~ a — b that does not pass
through e’. Moreover, B; # () otherwise all paths from s to b, ending in e, would
pass through €’.

Fix an ¢ € {1,...,n} where f; = (uy,,25) € A and consider all paths of the
form s ~ w, — 2, ~> uy, — 25, ~ t, for all (uy,, 2,) € B;. Notice that z,, = uy,
because f; must be an immediate successor of b;. Given that b; € X and f; € X,
because in the former case e could not belong to X and in the latter case €’ could
not belong to X (since in either way X woud not be a mes), all these paths must
cross X in some way.

(i) If X is crossed in the path s ~ w,, — z,, = uy, — 2y, then there exists a set of
edges L; C X containing the predecessors of (up,, 2s,), S0 L; =< (uy,, 2,). Since this
argument works for every 4, consider L = |J, L; € X. Then, L=J, L, <, B; =
B. But again, since LU {e'} = BU{¢'} < eand LU {€'} C X therefore e ¢ X
because of Lemma 3.3.2.

(ii) If X is crossed in the path w,, — z,, = uy, — 2y, ~ t then there exists a set of
edges R; C X containing the successors of (uy,, zy,), so (uy,, zf,) C R;. Since this
argument works for every i, consider R = |J, R; € X. Then, A= {fi,...,f,} C
\U; R: = R. But again, since ¢ T AU {e} C RU{e} and RU {e} C X, therefore
e’ ¢ X because of Lemma 3.3.2.

Hence e and €’ cannot both belong to the same mes, contradicting the existence
of X. O
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Hence, with respect to the mes {(v1,v4), (vs,v4), (vs, 1), (vg, )} in C”, it suffices
to produce {(vy,vy), (v3,v6), (vs,v4), (vs,t)} which is a critical mes.

3.83.4  Polynomial-time Algorithm to checking Edge- Weakness

Based on the approach described above, the algorithm for checking edge-weakness
is presented below. Algorithm 2 requires a di-graph G and it gives in output true
if G is edge-weak, false otherwise.

To check edge-weakness a complete chain of mes is examined. For this purpose,
X is initially equal to out(s) and the while is executed until X is different from
in(t).

For each iteration of the loop, in Step 3 Algorithm 4 generates a new mes X'.
Such a mes is the immediate successor of the mes X in the building chain. In
detail Algorithm 4 chooses an edge from those belonging to the mes in input, pro-
duces a new mes following equation (3.1). Anyway the new mes is not necessarily
an immeddiate successor (w.r.t. ) of X. To abtain an immediate successor of
X it suffices to consider the mes X’ = min.cx X., where the minimum is calcu-
lated w.r.t. C. Indeed, always considering the graph in Figure 3.2 (a), if X =
{(s,v1), (vs,v4), (vs,1), (v, 1)} then X,y = {(v1,v4), (vs,04), (vs,1), (v6,8)} T
Xwswa) = {(va,t), (vs,1), (ve, 1) }. At last Algorithm 4 gives such a minimum mes
in output.

At this point, G is an edge-weak graph if either X’ is a critical mes (hence there
exists a path between two edges in X’) or X’ is an e-minimal mes. In the former
case Algorithm 2 terminates giving in output true; in the latter case all edges in
X’ must be checked to determine if any of them is critical. To this aim, Algorithm
3 is called on every edge in X’ \ X (edges in X have already been controlled).

Algorithm 3 in Step 1 produces an e-minimal mes according to the edge and the
mes in input. The condition f ¢ out(s) is added in Step 1 and in Step 5, to avoid
an infinite loop. Hence, the algorithm chooses an edge f in the e-minimal mes
and it generates the predecessor of the mes in input with respect to f, following
equation (3.2). At the end, Algorithm 3 gives in output a new mes X* which is a
predecessor of X.

At this stage the criticality of X* is checked. If the mes is critical then Algo-
rithm 2 ends giving in output true, otherwise the next loop iteration is executed
with X’ replacing X.

If the main algorithm terminates at Step 11 then G has not chains with critical
mes and hence it is not edge-weak.

The correctness of Algorithm 2 is given by Theorem 3.3.1 and by Theorem

3.3.2; the correctness of Algorithm 4 is proved by Theorem 3.2.1, Lemma 3.2.3
and Lemma 3.2.4. Indeed it adapts the pseudocode at lines 7 to 10 of Algorithm
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1 in order to build a complete chain of mes generated from the bottom mvs out(s)
to in(t). The correctness of Algorithm 3 is given by the following result.

Theorem 3.3.3. X is e-minimal if and only if (X Uprev(f))\{e} < e, for every
feX.

Proof. Given a mes X and two edges e, e’ € X, consider the mes X, C X. Note
that e € X if and only if e € Z,(X Uprev(e')), i.e. (X Uprev(e'))\{e} < e. Since
every predecessor (w.r.t. ) of X can be obtained as X, for some ¢/ € X, none
of X, can contain e in line with Definition 3.3.7. O

Algorithm 2 Checking Edge-Weakness
Input: A directed st-graph G = (V| E), s is the source and ¢ is the sink
function isEdgeWeak(G)
1: X « out(s);
2: while X # in(t) do
3: X' < immediateMesRight(X)
if X' is edge-critical then
return TRUE
for alle € X'\ X do
X* = minimalMes(X', e)
if X* is edge-critical then
return TRUE
10 X« X’
11: return FALSE

Algorithm 3 Generating an e-minimal mes smaller (w.r.t. C) than X

Input: A mes X, an edge e € X

function minimalMes(X, e)

r A {f e X | f¢out(s) N (X Uprev(f)) \{e} 2 e}
2: while A # () do
3:  choose f € A
4: X « X/
)
6

—_

A {f e X | [ ¢out(s) N(XUprev(f))\ {e} £ e}

. return X
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Algorithm 4 Generating next minimal edge-separator
Input: An st-graph G = (V, E), a mes X
function immediateMesRight(G, X)

1 X+ @;

2. L+ @;

3: for all e € X'\ in(t) do

Compute the subgraph GX\eh)unext(e),

if GI\EDnexte) g then

Compute Z;((X \ {e}) U next(e));

X' = ((X'\ {e}) Unext(e)) \ Z((X \ {e}) U next(e));
if X' ¢ L then

L+ LU{X'};
10: for all Y € L do
11: if Y C X' then
12: X' «Y;
13: return X’;

Analysis

It is possible to calculate the reachability relation for every pair of edges in O(n?),
one can fill a n X n matrix to check wheter X is critical in O(n?) in Alg. 2. Indeed,
the time spent to see if an edge (a,b) reaches another edge (a’,b’) corresponds to
that to see if b reaches a’.

Function immediateMesRight in Alg. 4 costs O(m?): in Step 6 if the subgraph
G MeDDnext(©) 5o apresented using the incidence matrix, checking if an edge has
an immediate successor in G\~ (DU takes O(m). Moreover, a mes can have

at most m edges and the for loop at Step 10 costs O(n?).

Function minimalMes costs O(m?): there are at most O(m) iterations of the
while at Step 2 in Alg. 3 and each iteration costs O(m) because of Step 4. Such a
function is called at most O(m) times. Indeed, if an edge e appears as a new node
in X’ \ X, it cannot have already appeared in a X” X’ of the chain, otherwise
there wolud exists a path from e to e and hence X" (as well as X') would be critical
and consequently function isEdgeWeak would have terminated in line 5 returning
true as result. Thus, minimalMes costs O(m?) but at Alg. 2 it costs O(m?).

Finally, the while at Step 2 of Alg. 2 is executed at most O(m) times, hence
the total cost of isEdgeWeak is O(m*). Since in a di-graph the maximum number
of edges is n(n — 1)/2, the function in Alg. 2 costs O(n®).
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An example of Algorithm 2 execution

Let G be the graph in Figure 3.2 (a).

- Initialization and 1st iteration of while:
1. At the beginning X <« out(s) = {(s,v1), (s, v2), (s,v3)}.

2. Since X is different to in(t), the while is executed.

a) Algorithm 4 is called:

i. For e = (s,v) it is computed the subgraph G\¥\erexte) go.

picted in Figure 3.2 (b).
. X'« {(v1,v4), (v1,05), (v1,02), (s,v2), (s,v3)} is produced
b) Since X’ is not critical, Algorithm 3 is called for every edge in X'\ X:
i. For e = (v1,vy4), it computed the e-minimal mes A = (). The same
happens for (v, v5) and (v, vg).
ii. Since Algorithm 3 has always given X’ in output, X* = X’ is not

critical.

¢) The value of X is updated to X".

- 2nd iteration of while:

1. Since X = {(v1,v4), (v1,v5), (v1,v2), (S, v2), (s, v3)} is different to in(t), the
while is executed.

a) Algorithm 4 is called:

i. For e = (s,vy) it is computed the subgraph GEMehunext(e) e
picted in Figure 3.2 (g).

. X'« {(v1,v4), (v1,05), (v2,v5), (va, v3), (s,v3)} is produced
b) Since X’ is not critical, Algorithm 3 is called for every edge in X'\ X:

i. For e = (v, vs5), it computed the e-minimal mes A = (). The same
happens for e = (vq, v3).

ii. Since Algorithm 3 has always given X’ in output, X* = X’ is not
critical.
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¢) The value of X is updated to X'.

- 3rd iteration of while:

1. Let X = {(s,v3), (v1,v4), (v1,05), (v, v3), (va,v5)t}. Since X is different to
in(t), the while is executed.

a) Algorithm 4 is called:
X\{e})Unext(e) d

i. For e = (s,v3) it is computed the subgraph Gg
picted below.

e_

. X'« {(v1,v4), (v1,v5), (v, v5), (v3,05), (v3,06) } is produced
b) Since X’ is not critical, Algorithm 3 is called for every edge in X'\ X:

i. For e = (vs,u5) it computed the e-minimal mes
A = {(vi,v4), (v1,05), (V2,05) }. Choosing f = (v2,05),
X = {(v, ), (v1,vs), (v3,05), (v3,06), (8, 02), (v, v2)} s
produced. Since A = {(vy,vy), (v1,05), (v1,v2)} # 0, a sec-
ond iteration of the while is made. Choosing f = (vy,vs),
X7 = {(vs,v5), (v3,05), (8,v2), (5,v1)} is produced.

ii. Since Algorithm 3 has given X* = X/ in output and X/ is critical
because the existence of the path from (s, v1) to (vs, ve), Algorithm
2 ends giving in output true.

Hence G is edge-weak.
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Chapter 4

Implementation

This chapter provides the implementation for the algorithms previously discussed.

The programming language used for such an implementation is Python 3.6.
As described in Python official home [1]: “Python is an interpreted, interactive,
object-oriented programming language. It incorporates modules, exceptions, dy-
namic typing, very high level dynamic data types, and classes. Python combines
remarkable power with very clear syntax. It has interfaces to many system calls
and libraries, as well as to various window systems, and is extensible in C or
C++. It is also usable as an extension language for applications that need a pro-
grammable interface. Finally, Python is portable: it runs on many Unix variants,
on the Mac, and on Windows 2000 and later.”

Hence, the reasons for this choice of programming language lie in the strengths
of Python: simplicity, libraries and a huge user community.

Apart from standard libraries, also the NetworkX 2.0 library is used in the
implementation process. This package [2] provides classes for graph objects, gen-
erators to create standard graphs, 10 routines for reading in existing datasets,
algorithms to analyze the resulting networks and some basic drawing tools.

4.1 Code Organization
The source code is distributed between seven files:

e algl.py, alg2.py, alg3.py, alg4.py contain, respectively, the implementa-
tion of Algorithm 1, Algorithm 2, Algorithm 3 and Algorithm 4.

e utils.py contains some functions of utility: two functions are for the creation
of the graphs (the first one can create graphs from file .txt and the second
one can create graphs from one of NetworkX’s generators); three functions
are for monitoring (in details these functions check if an edge is in the graph,
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12
13
14
15
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18
19

if a set of edges are in the graph and if a minimal edge separator is really
minimal).

e vgraph.py, gui.py contain some functions for the graphic representation of
the graphs. More specifically vgraph.py draws graphs and gui.py launches
the application Graph Viewer. Such an application lets users choose how to
build a graph (from database or from generator) and after it shows such a
graph with some information. This information is the number of nodes, the
number of edges and if the graph suffers from edge-weakness. Moreover, if
the graph is edge weak on its picture is highlighted the path touching twice
the mes (also the mes is highlighted).

More detailed information on functions is reported on ‘pythondocs’ of each

function.

4.2 Source Code

4.2.1 Algorithm 1

from networkx.algorithms import approximation as approx
from alg4 import *

from utils import x*

import networkx as nx

import random

The function computes the immediate successor of ’'mes’ with respect
to ’edge’ in ’'graph’.

@param graph: the starting digraph

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@param mes: the mes of which the immediate successor is computed

@type mes: <class ’'list’>

@param edge: the edge under which the successor of mes is computed

@type edge: <class ’tuple’>

@return: the immediate successor of mes_edge

@rtype: <class ’list’>

@raise: networkx.NetworkXException if graph not contains mes or the
mes is not minimal

def successor_mes_edge(graph, mes, edge):
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if not is_minimal (graph, mes): raise nx.NetworkXException(str(mes
) + ’ is not a minimal edge—separator’)

s=0
t=len(graph.nodes())—1

in_t=list(graph.in_edges(t)) #edges incoming in t
if edge in in_t: return mes #an edge incidents to t has no
successors

x_e_next=mes+(list(graph.edges(edge[1])))
x_e_next.remove (edge) #(X\{e}) U next(e)

g=graph.copy () #deep copy
g_-t=compute_gt(g, x_e_next) #(G_t)A((X\{e}) U next(e))

ist=[]1 #I_t((X\{e}) U next(e))
ed_g=1list(g.edges())
ed_gt=1list(g-t.edges())

for e in x_e_next:
next_e=list(graph.edges(e[1]))
1=[e2 for e2 in next_.e if e2 not in ed_gt]
if len(l)==len(next_e) and e not in in_t:
i_t.append(e)

mes_r=[e for e in x_e_next if e not in i_t] #((X\{e}) U next(e))
\#I_t ((X\{e}) U next(e))

return mes.r

The function computes the set of all minimal edge separators in
graph’. The number of keys of the dictionary, containing all these
mes, is equal to the maximum number of levels in ’'graph’, that is
equal to the shortest path from s to t.

@param graph: the starting digraph of which the set of all minimal
edge separators is computed

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@return: the dictionary having as key the integers indicating the
level of the minimal edge separators, and as values the list of
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minimal edge separators

@rtype: <class ’dict’>

def st_minimal_edge_separators(graph):
s=0
t=1len(graph.nodes())—1

max_lev=0 #number of levels
temp_lev=0
in_t=list(graph.in_edges(t)) #edges entering in t
for edge in in_t:
if edge[0]!=0 and approx.node_connectivity(graph,
>0:

0, edge[0])

temp_lev=nx.shortest_path_length(graph, 0, edge[0])

if temp_lev>max_lev:
max_lev=temp_lev

L:{} #dict containing all mes
i=@
while i<=max_lev+1l:

L[i]=[]

i+=1
out_s=graph.edges(s)

j=0
L[jl+=[set(out_s)]

while j<=max_lev:
1_j=L[j].copy() #L_j
1_j1=L[(j+1)].copy() #L_j+1
len_lj=len(l_j)

1 j_jl=__st_minimal_edge_separators_aux__(graph,
1.3, 131, 3D

for mes in 1_j_j1[0]: #mes in L_j
if mes not in L[j]:
L[j].append(mes)
for mes in 1_j_j1[1]: #mes in L_j+1
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if mes not in L[(j+1)]:
LL(j+1)].append(mes)

if len_1lj==len(L[j]): #no new mes are added to L_j hence all
mes in L_j were examined

j+=1

for mes in L[(max_lev+1)]:
if mes not in L[max_lev]:
L[(max_lev)]+=[mes]
del L[(max_lev+1)]
return L
>’’’ The function computes all immediate successors of all minimal
edge separators in ’'l’ and puts each computed mes either in ’1_j’

or in ’_jl1’ with respect to ’j’. The function returns a tuple with
1.7’ and ’1_.j1’ (containing the computed mes).’’’
def __st_minimal_edge_separators_aux__(graph, 1, 1_j, 1_j1, j):
s=0

t=len(graph.nodes())—1

for mes in 1:
for edge in mes:
h_e=nx.shortest_path_length(graph, s, edge[0]) #distance
from s to edge
mes_r=set(successor_mes_edge (graph, list(mes), edge)) #
immediate successor of mes with respect to edge

if mes_r not in 1_j+1_jl1: #mes_r must not be just
computed
if h_e==j:
1_j1.append(mes_r)
else:
1_j.append(mes_r)

return (l1.j, 1_.j1)
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4.2.2  Algorithm 2, Algorithm 3, Algorithm /

from utils import x*
from alg3 import *
from alg4 import *

The function tests if ’'graph’ is edge—weak. If ’graph’ is edge—weak
the function returns a tuple. Such a tuple contains a bool value (
True), a list (the path) and another list (the mes that is touched

twice by the path). This choice of return type is done for
facilitating the edge—weakness visualization of the graph.

@param graph: the starting digraph

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@return: False if the graph is not edge—weak, (True, path, mes)
otherwise

@rtype: <'bool’> / <’tuple’>

def is_edge_weak (graph):
s=0
t=len(list(graph.nodes()))—1

mes=1list(graph.edges(s)) #first mes of every chain
in_t=list(graph.in_edges(t)) #last mes of every chain

while mes!=in_t:
mes_r=immediate_mes_right (graph, mes) #an immediate successor
of ’'mes’
bool_path=__is_edge_critical__(graph, mes_r)
if bool_path[0]==True:
return (True, bool_path[1l], mes_r)

diff=[e for e in mes_.r if e not in mes] #e in X\X’
for e in diff:
mes_m=minimal _mes (graph, mes_r, e) #Xx
bool_path=__is_edge_critical__(graph, mes_m)
if bool_path[0]==True:
return (True, bool_path[1l], mes_m)

if mes!=mes_r:

mes=mes._r
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else:
break

return False

The function tests if there exists a path between two edges of
mes’ in ’'graph’ '’’’
def __is_edge_critical__(graph, mes):
for edge in mes:
for edgel in mes:
if edge!=edgel and (approx.node_connectivity(graph, edge
[1], edgel[0])>0):
paths = nx.all_simple_paths(graph, edge[l], edgel[0])
m=map(nx.utils.pairwise, paths) #paths expressed in

edges
11=[]
for path in m:
1=[edge]

1+=1ist(path)
1.append(edgel)
11.append (1)
return (True, ll[random.randint(®, len(l1)—1)1)
return (False, [])

from networkx.algorithms import approximation as approx
from utils import *

import networkx as nx

import random

The function computes (G_s)*edges.

@param graph: the digraph on which the subgraph (G_s)%*edges is
computed

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@param edges: the set of edges to remove from graph

@type edges: <class ’list’>

@return: the digraph (G_s)*edges

@rtype: <class ’'networkx.classes.digraph.DiGraph’>

@raise: networkx.NetworkXException if graph not contains edges

def compute_gs(graph, edges):
are_edges (graph, edges)
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s=0
graph.remove_edges_from(edges)

g=nx.DiGraph()
g.add_edges_from(graph.edges(s
for e in graph.edges():

))

if e[0]!=s and approx.node_connectivity(graph, s, e[0])>0: #

edges reachable from s
g.add_edge(e[0], e[1])
return ¢

The function tests if all paths from s to

@param graph: the starting digraph

"edge’ pass through

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

"set_e

@param set_e: the set of edges on which the edge—precedence is tested

@type set_e: <class ’'list’>

@param edge: the edge on which the edge—precedence is tested

@type edge: <class ’tuple’>

@return: True if edge is preceded by set_e, False otherwise

@rtype: <class ’bool’>

@raise: networkx.NetworkXException if graph not contains edge or

set_e

def edge_prec(graph, set_e, edge):
are_edges (graph, set_e)
is_edge (graph, edge)
s=0

if edge in set_e: return True

if edge[0]==s and edge not in set_e:

paths = nx.all_simple_paths(graph,

return False

target=edge[0])

m=map (nx.utils.pairwise, paths) #paths expressed in edges

for path in m:
1=1list(path)

inter=[e for e in 1 if e not in set_e]
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if inter==1:
return False

return True

The function tests if all paths from s to each edge in ’'edge_sl’ pass
through ’'edge_s2’.

@param graph: the starting digraph

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@param edge_sl: the set of edges on which the edges set—precedence is
tested

@type edge_sl: <class ’'list’>

@param edge_s2: the set of edges on which the edges set—precedence is
tested

@type edge_s2: <class ’list’>

@return: True if edge_sl is preceded by edge_s2, False otherwise

@rtype: <class ’bool’>

@Graise: networkx.NetworkXException if graph not contains edge_sl or
edge_s2

def edge_set_prec(graph, edge_sl, edge_s2):
are_edges (graph, edge_sl)
are_edges (graph, edge_s2)

is_in=[]
for edge in edge_sl:
is_in.append(edge_prec(graph, edge_s2, edge))

if False not in is_in:
return True

return False

LA ]

’ ’

The function computes the immediate predecessor of ’'mes’ with respect
to ’edge’ in ’'graph’.

@param graph: the starting digraph

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@param mes: the mes of which the immediate predecessor is computed

@type mes: <class ’'list’>

@param edge: the edge under which the predecessor of mes is computed
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@type edge: <class ’tuple’>

@return: the immediate predecessor of mes*edge

@rtype: <class ’list’>

@raise: networkx.NetworkXException if graph not contains mes or the
mes is not minimal

def predecessor_mes_edge(graph, mes, edge):
if not is_minimal (graph, mes): raise nx.NetworkXException(str (mes

) + ’ is not a minimal edge—separator’)

s=0
t=1len(graph.nodes())—1

out_s=1list(graph.edges(s)) #edges outgoing from s
if edge in out_s: return mes #an edge incidents to s has not
predecessors

Xx_e_prev=mes+list(graph.in_edges(edge[0]))
X_e_prev.remove (edge) #(X\{e}) U prev(e)

g=graph.copy () #deep copy
g-s=compute_gs(g, x-e_prev) #(G.s)"((X\{e}) U prev(e))

i_s=[1 #I_s((X\{e}) U prev(e))
ed_g=list(graph.edges())
ed_gs=list(g-s.edges())

for e in x_e_prev:
prev_e=list(graph.in_edges(e[0]))
1=[e2 for e2 in prev_e if e2 not in ed_gs]
if len(l)==len(prev_e) and e not in out_s:
i_s.append(e)

mes_l=[e for e in x_e_prev if e not in i_s] #((X\{e}) U prev(e))\
I_s((x\{e}) U prev(e))

return mes_1

The function computes an ’edge’—minimal mes smaller (w.r.t. set—
coverage) than ’'mes’.
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@param graph: the starting digraph
@type graph: <class ’'networkx.classes.digraph.DiGraph’>
@param mes: the mes of which the ’'edge’—minimal mes is computed
@type mes: <class ’list’>
@param edge: the edge under which the ’'edge’—minimal mes is computed
@type edge: <class ’tuple’>
@return: ’edge’—minimal mes
@rtype: <class ’list’>
def minimal_mes (graph, mes, edge):
x=mes.copy ()
a=__compute_a__(graph, x, edge)
while len(a)>0:
f=a[random.randint (0, len(a)—1)]
xl=predecessor_mes_edge (graph, x, f) #X+f
x=x1.copy (O
a=__compute_a__(graph, x, edge)
return x

The function computes the set A:{f in 'mes’ | f not in out(s) and

("mes’ U prev(f))\{’edge’} not precedes ’edge’}. T

def __compute_a__(graph, mes, edge):

s=0

out_s=1list(graph.edges(s))

a=[]

for £ in mes:

if £ not in out.s:

prev_edge=1list(graph.in_edges(£f[0]))
x_f_prev=mes+prev_edge
x_f_prev.remove (edge)

if not edge_prec(graph, x_f_prev, edge):
a.append(f)
return a

from networkx.algorithms import approximation as approx
from utils import *

import networkx as nx

import random
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The function computes (G_t)Aedges.

@param graph: the digraph on which the subgraph (G.t)*edges is

computed

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@param edges: the set of edges to remove from graph

@type edges: <class

list’>

@return: the digraph (G_t)*edges

@rtype: <class ’'networkx.classes.digraph.DiGraph’>

@raise: networkx.NetworkXException if graph not contains edges

def compute_gt(graph,
are_edges (graph,

edges):
edges)

t=len(graph.nodes())—1
graph.remove_edges_from(edges)

g=nx.DiGraph()

g.add_edges_from(graph.in_edges(t))

for e in graph.edges():

if e[1]!=t and approx.node_connectivity(graph, e[1l],

edges reaching t

g.add_edge(e[0],

return ¢

The function tests if all paths from

e[1])

@param graph: the starting digraph

’edge’

to t pass through

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

t)>0: #

"set_e

@param set_e: the set of edges on which the edge—coverage is tested

@type set_e: <class

list’>

@param edge: the edge on which the edge—coverage is tested

@type edge: <class ’tuple’>

@return: True if edge is covered by set_e,
@rtype: <class ’'bool’>
@raise: networkx.NetworkXException if graph not contains edge or

set_e

def edge_cover (graph,
are_edges (graph,

set_e,
set_e)

edge):

20
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is_edge (graph, edge)

t=len(graph.nodes())—1

if edge in set_e: return True

if edge[l]==t and edge not in set_e: return False

paths = nx.all_simple_paths(graph, edge[l], target=t)

m=map (nx.utils.pairwise, paths) #paths expressed in edges

for path in m:
1=1list(path)
inter=[e for e in 1 if e not in set_e]
if inter==1:
return False

return True

The function tests if all paths from each edge in ’edge_sl’

pass through ’edge_s2’.
@param graph: the starting digraph
@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@param edge_-sl: the set of edges on which the edges set—coverage is

tested
@type edge_sl: <class ’'list’>

@param edge_s2: the set of edges on which the edges set—coverage is

tested
@type edge_s2: <class ’'list’>

@return: True if edge_sl is covered by edge_s2, False otherwise

@rtype: <class ’bool’>

@raise: networkx.NetworkXException if graph not contains edge_sl or

edge_s2

def edge_set_cover (graph, edge_sl, edge_s2):
are_edges (graph, edge_sl)
are_edges (graph, edge_s2)

is_in=[]

for edge in edge_sl:
is_in.append(edge_cover (graph, edge_s2, edge))

ol

to

t,



79 if False not in is_in:

80 return True
81 return False

82

83 "’

’ ’

84 The function computes all immediate successors of ’'mes’ and returns
one of them.

85 @param graph: the starting digraph

86 @type graph: <class ’'networkx.classes.digraph.DiGraph’>

87 @param mes: the mes of which the immediate successor is computed

88 @type mes: <class ’list’>

89 @return: the immediate successor of mes

90 @rtype: <class ’list’>

91 @raise: networkx.NetworkXException if graph not contains mes or the
mes is not minimal

92 '’

93 def immediate_mes_right (graph, mes):

94 if not is_minimal (graph, mes): raise nx.NetworkXException(str (mes

) + ’ is not a minimal edge—separator’)

95

96 s=0

97 t=len(graph.nodes())—1

98

99 L=[]

100 mes_r=[]

101

102 g=graph.copy () #deep copy

103 x=mes . copy ()

104

105 in_t=1list(g.in_edges(t)) #edges incoming in t
106

107 if mes==in_t: return mes #in_t is the last mes in every chain
108 diff=[e for e in mes if e not in in_t]

109

110 for e in diff:

111 x_e_next=mes+(list(graph.edges(e[1])))

112 x_e_next.remove(e) #(X\{e}) U next(e)

113

114 g_t=compute_gt(g, x_e next) #(G t)A((X\{e}) U next(e))
115
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it=[1 #I-t(X\{e}) U next(e))

ed_g=1list(g.edges())
ed_gt=list(g_t.edges())

for e in X_e_next:

next_e=list(graph.edges(e[1]))
1=[e2 for e2 in next_e if e2 not in ed_gt]
if len(l)==1len(next_e) and e not in in_t:

i_t.append(e)

mes_r=[e for e in x_e.next if e not in i_t] #((X\{e}) U next(

eN\I_-t((X\{e}) U next(e))

L.append(mes_r)

mes_r=[]

Xx_e_next=[]
g=graph.copy () #deep copy
x=mes.copy ()

if len(L)>0:

X1=L[random.randint(®, len(L)—1)]

for X in L:

if edge_set_cover(graph, X, X1):

X1=X
return X1

return []
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4.2.3  Graph Viewer

from alg2 import *

from algl import *

from vgraph import x*

from tkinter import filedialog as fd

from tkinter import messagebox

from tkinter import *

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import tkinter as tk

LA

This is a gui application for viewing graphs. Such graphs may be
obtained taking a database in input, or the may be generated by a
generator.

The application displays the graph (which is drawn by function in
vgraph.py) and shows some informations about the graph.

The gui is realized using Tkinter package. The gui consists of a
PanedWindow in which two Buttons are placed, a Canvas in which the

drawn of the graph is palced and of another PanedWindow in which
the Label with the informations on the graph is placed.

When the user clicks on ’Draw Graph from Database’ the graph is
directly shown; when the user clicks on ’'Draw Graph from Generator
’ a new window is shown. This window (DIALOG) contains two Labels

with two Entries for entering the minimum and the maximum number

of nodes for the graph under contruction. Once ’'Compute the graph’
is clicked the graph is displayed.

WIN=tk.Tk ()

WIN.title(’Graph Viewer’)
w=1000

h=1000
ws=WIN.winfo_screenwidth ()
hs=WIN.winfo_screenheight ()

x = (ws/2) — (w/2)

y = (hs/2) — (h/2)
WIN.geometry (’%dx%d+%d+%d’ % (w, h, x, y))
WIN.wm_iconbitmap("icona.ico")
WIN. focus_set ()
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f=plt.figure(figsize=(5,4))
a=f.add_subplot(111)

draw_digraph(nx.Graph(, 0, 0)

canvas=FigureCanvasTkAgg(f, master=WIN)
canvas.show ()

label_info=Label (WIN, justify=LEFT, font=("Helvetica", 12),
wraplength=500)

def show_graph(g):
s=0
t=len(g.nodes())—1

is_edge=is_edge_weak (g)
is_edge_str="No’
if (is_edge==False):
draw_digraph(g, s, t)
else:
draw_digraph(g, s, t, is_edge[l], is_edge[2])
is-edge-str:’Yes.\n’+‘— In the graph there exists the path: \
n’+str(is_edge[1])+’\n’+‘— The path passes twice through the mes:
\n’+str(is_edge[2])

canvas.draw ()

label_info[’text’]=’Number of node: ’+str(1en(g.nodes()))+’\n’+’
Number of edges: ’+str(1en(g.edges()))+’\n’+’The graph is edge—
weak? ’'+is_edge_str

def new_graph_from_bd(Q):
a.clear ()
g=create_graph_from_file(’prova.txt’)
show_graph(g)

def choose_min_max_node():
DIALOG=tk.Tk (O
DIALOG.title(’Choosing number of nodes’)
DIALOG.resizable(False, False)
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w=400

h=200

ws=WIN.winfo_screenwidth ()
hs=WIN.winfo_screenheight ()

x = (ws/2) — (w/2)

y = (hs/2) — (h/2)

DIALOG.geometry (’%dx%d+%d+%d’ % (w, h, x, y))
DIALOG.wm_iconbitmap ("icona.ico")

DIALOG. focus_set ()

labelframe=LabelFrame (DIALOG, bg='white’, relief = FLAT)
labelframe.pack(fill = "both", expand = "yes")

label _message=Label (labelframe, bg='white’, justify=LEFT, text:’\

n Please enter the minimum and the maximum number of nodes \n to

compute the graph \n’)
label _message.pack(side=tk.TOP)

label_entry_min=PanedWindow (DIALOG)

label min=Label (label_entry. min, text=’Minimum number of nodes
D)

label_min.pack(side=LEFT)

content = StringVar ()

entry_min=Entry(label_entry._min, bd=3, textvariable=content)
entry_min.pack(side=RIGHT)

label_entry_min.add(label_min)

label_entry_min.add(entry_min)

label _entry_min.pack(fill=tk.BOTH, expand=1)

label_entry_max=PanedWindow (DIALOG)

label_max=Label (label_entry_max, text=’Maximum number of nodes
cn: )

label _max.pack(side=LEFT)

entry_max=Entry(label_entry_-max, bd=3)
entry_max.pack(side=RIGHT)

label_entry_max.add(label_max)

label_entry_max.add(entry_max)
label_entry_max.pack(fill=tk.BOTH, expand=1)

callback():
s_min=entry_min.get()
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100 s_max=entry_max.get()

101 if smin.isdigit() and s_max.isdigit():

102 min_n=int(s_min)

103 max_n=int(s_max)

104 if min.n>1 and min.n<=max.n:

105 print(min_.n, max_n)

106 DIALOG.destroy ()

107 new_graph_from_generator(min_n, max_n)

108

109 button_ok=tk.Button(DIALOG, text="Compute the graph", command=
callback)

110 button_ok.pack(side=tk.BOTTOM, fill=tk.BOTH, expand=1)

112 def new_graph_from_generator (min_n, max_n):

113 a.clear(Q)

114 g=create_graph_with_nx_generator(min_n, max._n)
115 show_graph(g)

116

117 buttons_pained=PanedWindow ()

119 graph_db=tk.Button(buttons_pained, text="Draw Graph from Database",
command=new_graph_from_bd, font=("Helvetica", 12))

120 graph_gen=tk.Button(buttons_pained, text="Draw Graph from Generator",
command=choose_min_max_node, font=("Helvetica", 12))

122 buttons_pained.add(graph_db)
123 buttons_pained.add(graph_gen)

125 buttons_pained.pack(side=tk.TOP)
126 canvas.get_tk_widget () .pack(fill=tk.BOTH, expand=1)
127 label_info.pack ()

129 tk.mainloop ()

1 import networkx as nx
2 import numpy as np
3 import matplotlib.pyplot as plt

6 This function draw ’'graph’. If ’path’ and 'mes’ are in input, then
the function highlights red edges in ’'path’ and in yellow edges in
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1

‘mes’ .

@param graph: the graph to draw

@type graph: <class ’'networkx.classes.digraph.DiGraph’>

@param s: the starting node in ’graph’

@type s: <class ’'int’>

@param t: the ending node in ’graph’

@type t: <class ’int’>

@param path: the edges in path

@type path: <class ’list’>

@param mes: the edges in mes

@type mes: <class ’'int’>

def draw_digraph(graph, s, t, path=None, mes=None):
pos=nx.circular_layout (graph)

valmap = {s: 'r’, t: 'r’}
values = [val_map.get(node, ’b’) for node in graph.nodes()]

nx.draw_networkx_nodes (graph, pos, node_color =values, alpha=0.9)
nx.draw_networkx_edges (graph, pos, edge_color='black’, style=’
dashed’, arrows=True)

if path!=None:
nx.draw_networkx_edges (graph, pos, edgelist=path, width=2.0,
edge_color="red’, arrows=True)

if mes!=None:
nx.draw_networkx_edges (graph, pos, edgelist=mes, width=3.0,
alpha=0.7, edge_color="yellow’)

labels={}
labels[s]=r’$s$’
labels[t]l=r’$t$’
for node in graph.nodes():
if nodel!=s and node !=t:
labels[node]l=node
nx.draw_networkx_labels(graph,pos, labels, font_size=16)

plt.axis(’off’)
from networkx.algorithms import approximation as approx
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import networkx as nx
import random

This function creates a digraph starting from a file.txt.
@param path_graph: the path (relative or absolute) of the file
containing the graph
@type path_graph: <class ’str’>
@return: the digraph G
@rtype: <class ’'networkx.classes.digraph.DiGraph’>
def create_graph_from_file(path_graph):
g=nx.DiGraph ()
with open(path_graph) as f£:
line=random.choice(f.readlines())
line=line[:len(line)—4]
line=line.split(’ {{’)[11.split(C’}, {"
for 1 in line:
11=1.split(’,’)
nl=11[0].strip(Q)
n2=11[1].stripQ)
g.add_edge(int(nl),int(n2))

return ¢

This function creates a digraph with networkx random generator. The
graph in output is a simple graph, and all its vertices belong to
an st—path.

@param min_n: the minimum number of nodes

@type min_n: <class ’'int’>

@param max_n: the maximum number of nodes

@type max_n: <class ’'int’>

@return: the digraph G

@rtype: <class ’'networkx.classes.digraph.DiGraph’>

def create_graph_with_nx_generator(min_.n, max_n):
n=random.randint(min_.n, max_n)
m=random.randint(n, (n—1)+(n—2)*x(n—2))
g=nx.gnm_random_graph(n, m, directed=True)
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65
66
67
68
69
70

71
72
73

g.remove_edges_from(list(g.in_edges(0))) #remove nodes incoming
in s

g.remove_edges_from(list(g.edges(len(g.nodes())—1))) #remove
nodes outcoming from t

g.remove_nodes_from(list(nx.isolates(g))) #remove isolated nodes

t=len(list(g.nodes()))—1

if 0 in g.nodes() and t in g.nodes() and approx.node_connectivity
(g, 0, t)>0: #remove nodes not in an st—path
paths=1list(nx.all_simple_paths(g, 0, t))
nodes_ok=[]
nodes_no=[]
for path in paths:
nodes_ok+=path
for node in g.nodes():
if node not in nodes_ok:
nodes_no.append(node)
g.remove_nodes_from(nodes_no)
relabel nodes={}
for i in list(range(len(list(g.nodes())))):
relabel_nodes[list(g.nodes())[i]l]l=1i
g=nx.relabel_nodes (g, relabel_nodes)

else:
g=create_graph_with_nx_generator(min_.n, max._n)

return ¢

The function tests if ’edge’ is in ’'graph’. If ’edge’ not in
graph’, the function raises an exception. ’'’’
def is_edge(graph, edge):

if not graph.has_edge(edge[0], edge[l]):

raise nx.NetworkXException(str(edge) + not in graph’ )

return

The function tests if ’'edges’ are in ’graph’. If ’edges’ not in
graph’, the function raises an exception. '’
def are_edges(graph, edges):

for edge in edges:

is_edge(graph, edge)
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7’ The function tests if ’mes’ is minimal, hence if 'mes’ is a
minimal edge separator and not only an edge separator. ’’’
def is_minimal (graph, mes):

are_edges (graph, mes)

s=0
t=len(graph.nodes())—1

if (mes==1list(graph.edges(s))): return True

g=graph.copy )
x=mes.copy ()

rem=[]
for edge in mes:
x.remove (edge)
g.remove_edges_from(x)
if approx.node_connectivity(g, s, t)==0:
rem.append(edge)
g=graph.copy ()
x=mes . copy ()

return len(rem)==0

4.2.4  Ezample of Graph Viewer

Figure 4.1 shows an example of Graph Viewer application. Figure 4.1 (a) displays
how the window looks with edge-weak graph (the graph drawn in figure is that
in Figure 3.2). Figure 4.1 (b) displays how the window looks with not edge-weak
graph.
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(a)

Draw Graph T Dalabase | Draw Gaph on Gensealo

MHumoor of node: U

Murmiber of sives, 15

Tha granh is edgeweak® Yas

-Inhe grannihors custs ihe patn

B, 101, 23,02, 50

- The path passes fwirs through the mas:
IO 3 12,24, 02, 50, 1, 1

(b)

Do Graph Tom Database | Draw Giaph fom Ganealo

Flurrken ol nwde. 4
Mk ot nogns: 4
e raph s ege vk’ Me

Figure 4.1: Examples of Graph Viewer: (a) the graph is edge-weak, (b) the graph is
not edge-weak
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4.3 Remarks

Figure 4.2: Diagram representing the relation between edge-weakness and amount of
nodes and edges. The horizontal axis is labeled with pairs of nodes-edges and the vertical
axis is labeled with the probabilities (in percentages) of the graph to be edge weak

The diagram in Figure 4.2 shows the results of the experiment conducted
on 2719 graphs. Such an experiment concerns the execution of the function
is_edge_weak(graph) on the above mentioned graphs for measuring the relation
between edge-weakness and the amount of nodes and edges.

Looking at graphs with n nodes and varying on the number of edges, most of
all graphs are generated and the following results are achieved:

- 4 nodes and 4 edges: 9\ 9 graphs are not edge-weak;

- 4 nodes and 5 edges: 7\ 13 graphs are not edge-weak and 6 \ 13 graphs are
edge-weak;

- 4 nodes and 6 edges: 7\ 7 graphs are edge-weak;
- 4 nodes and 7 edges: 1\ 1 graph is edge-weak;

- 5 nodes and 5 edges: 66 \ 66 graphs are not edge-weak;
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- 5 nodes and 6 edges: 157\ 277 graphs are not edge-weak and 120\ 277 graphs
are edge-weak;

- 5 nodes and 7 edges: 103\ 607 graphs are not edge-weak and 504 \ 607 graphs
are edge-weak;

- 5 nodes and 8 edges: 6\ 774 graphs are not edge-weak and 768 \ 774 graphs
are edge-weak;

- 5 nodes and 9 edges: 596 \ 596 graphs are edge-weak;

- 5 nodes and 10 edges: 278\ 278 graphs are edge-weak;

- 5 nodes and 11 edges: 78\ 78 graphs are edge-weak;

- 5 nodes and 12 edges: 11\ 11 graphs are edge-weak;

- 5 nodes and 13 edges: 1\ 1 graph is edge-weak.

- 6 nodes and 6 edges: 504 \ 504 graphs are not edge-weak.

- 6 nodes and 7 edges: 2431 \ 4243 graphs are not edge-weak and 1812\ 4243
graphs are edge weak.

- 6 nodes and 8 edges: 4169\20038 are not edge-weak graphs are not edge-weak
and 15869 \ 20038 graphs are edge weak.

- 6 nodes and 9 edges: 2697\60759 are not edge-weak graphs are not edge-weak
and 58062 \ 60759 graphs are edge weak.

- 6 nodes and 10 edges: 624 \ 126642 are not edge-weak graphs are not edge-
weak and 126018 \ 126642 graphs are edge weak.

- 6 nodes and 11 edges: 379926 \ 379926 graphs are not edge-weak.

- 6 nodes and 12 edges: 1139778 \ 1139778 graphs are not edge-weak.
- 6 nodes and 13 edges: 200000 \ 200000 graphs are not edge-weak.

- 6 nodes and 14 edges: 76000 \ 76000 graphs are edge-weak.

- 6 nodes and 15 edges: 37470\ 37470 graphs are edge-weak.

- 6 nodes and 16 edges: 14639 \ 14639 graphs are edge-weak.

- 6 nodes and 17 edges: 4337\ 4337 graphs are edge-weak.
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- 6 nodes and 18 edges: 1057\ 1057 graphs are edge-weak.

- 6 nodes and 19 edges: 177\ 177 graphs are edge-weak.

- 6 nodes and 20 edges: 14\ 14 graphs are edge-weak.

- 6 nodes and 21 edges: 1\ 1 graph is edge-weak.

- 7 nodes and 7 edges: 4198 \ 4198 graphs are not edge-weak.

Therefore, it is possible to note a linear behaviour in the number of nodes and
edges: with the increase of the edges in respect of nodes, the probability that a
graph is edge-weak increases. Such a probability is 0 if the number of nodes and
edges is the same and it becomes certain with the maximum amount of edges.
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Chapter 5

Conclusion

The dissertation shows from a graph theoretic prospective a type of inefficiency,
called edge-weakness, in the standard flow network model. It also shows a poly-
nomial time algorithm for checking this property. The algorithm iteratively builds
a chain of mes and iteratively checks wheter the mes is critical or not. The prob-
lem is, if the mes is not critical then, for every edge e in the mes, the algorithm
computes an e-minimal mes and checks if it is critical. Moreover, the algorithm
elaborated for computing the minimal mes, is not very functioning. Since the
computational complexity of the algorithm for testing edge-weakness is O(n®), a
more efficient algorithm could be developed.
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