
Exact (Exponential) Algorithms
for NP-hard Problems

Fabrizio Grandoni

Università di Roma “La Sapienza”
grandoni@di.uniroma1.it

Exact (Exponential) Algorithmsfor NP-hard Problems – p.1/23

Outline
• Exact Algorithms
• Independent Set Problem
• A Toy-Algorithm
• Memorization
• Folding
• Measure & Conquer
• Other Results
• Open Problems

Exact (Exponential) Algorithmsfor NP-hard Problems – p.2/23

Exact (Exponential) Algorithms
Prb: Designing exact algorithms for NP-hard
problems with the smallest possible worst-case
running time.
• Need for exact solutions (e.g. decision problems).
• Reducing the running time from, say, 2n to 1.5n

increases the size of the instances solvable by a
constant multiplicative factor.
• Classical approaches (heuristics, approximation
algorithms, parameterized algorithms...) have limits
and drawbacks (no guaranty, hardness of
approximation, W [t]-completeness...).
• New combinatorial and algorithmic challenges.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.3/23

Maximum Independent Set
Prb: given an n-node graph G = (V,E), determine
the maximum cardinality of a subset of pairwise
non-adjacent nodes (independent set).

1
2 3

45
OPT = 2

Exact (Exponential) Algorithmsfor NP-hard Problems – p.4/23

Maximum Independent Set
• NP-hard.
• Hard to approximate within n1−ε.
• W [1]-complete (no fast parameterized algorithm).

• No exact c o(n) algorithm (unless SNP⊆SUBEXP).
⇒ The best we can hope for is a 2c n algorithm for
some small c ∈ (0, 1].

Exact (Exponential) Algorithmsfor NP-hard Problems – p.5/23

Maximum Independent Set
• [Tarjan&Trojanowski’77]: O(20.334n) poly-space.

• [Jian’86]: O(20.304n) poly-space.

• [Robson’86]: O(20.296n) poly-space,
O(20.276n) exp-space.

• [Fomin,Grandoni&Kratsch’06]: O(20.288n)
poly-space.
• [Beigel’99, Chen,Kanj&Xia’03]: better results for
sparse graphs.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.6/23

Domination
Lem: If there are two nodes v and w such that
N [v] ⊆ N [w], there is a maximum independent set
which does not contain w (N [x]=N(x)∪{x}).
Prf:

v w

1 2 3

⇒
v w

1 2 3

Exact (Exponential) Algorithmsfor NP-hard Problems – p.7/23

A Toy-Algorithm
int mis(G) {

if(|G| ≤ 1) return |G|; //Base case
if(∃ component C ⊂ G) //Components

return mis(C)+mis(G − C);
if(∃ nodes v and w: N [v] ⊆ N [w]) //Domination

return mis(G − {w});
//“Greedy” branching
select a node v of maximum degree; //d(v) ≥ 2

if(deg(v)=2) return poly-mis(G); //cycles
return max{mis(G−{v}), 1+mis(G−N [v])};

}

Exact (Exponential) Algorithmsfor NP-hard Problems – p.8/23

A Toy-Algorithm
• The algorithm produces a search tree of exponential
size, where branching takes polynomial time.
• Thus the analysis reduces to bounding the number
of subproblems generated.
• The bound is obtained by defining a measure of the
size of the subproblems. Each branching rule leads to
some linear recurrences in the measure, which are used
to lower-bound the progress made by the algorithm at
each branching step.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.9/23

A Toy-Algorithm
Lem: Algorithm mis runs in time O(20.465n).
Prf:
• Let P (n) be the number of subproblems solved to
solve a problem on n nodes. Then

P (n) ≤



























1 base case/cycles;

1 + P (|C|) + P (n − |C|) connected components;

1 + P (n − 1) domination;

1 + P (n − 1) + P (n − 4) branching (d(v) ≥ 3).

• The base of the exponential factor is obtained from

cn ≥ cn−1 + cn−4 ⇔ c4 − c3 − 1 ≥ 0.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.10/23

Memorization
• The same subproblem may appear several times.
• Memorization consists in storing the solutions of
the subproblems solved in an (exponential-size)
database, which is queried each time a new
subproblem is generated.
• This way, no subproblem is solved twice.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.11/23

Memorization
Thm: Algorithm mis, combined with memorization,
has running time O(20.426 n).
Prf:
• The subproblems involve induced subgraphs of the
original graph. Thus there are at most

(

n

k

)

different
subproblems on k nodes.
• From standard analysis, such subproblems are upper
bounded also by 20.465(n−k).

• Altogether, using Stirling’s formula,

P (n) ≤

n
∑

k=1

min

{

20.465(n−k),

(

n

k

)}

= O(20.426 n).

Exact (Exponential) Algorithmsfor NP-hard Problems – p.12/23

Folding
Lem: For every node v, there is a maximum
independent set which either contains v or at least two
of its neighbors.
Prf:

v
⇒

v

Exact (Exponential) Algorithmsfor NP-hard Problems – p.13/23

Folding
Def: Folding a node v, N(v) = {w, u}, with w and u
not adjacent, means
• replacing v, w, and u with a new node v′;
• adding edges between v′ and N(w)∪ N(u)−{v}.

v

w u

3 4 5

⇒
v
′

3 4 5

Lem: When we fold a node v, the maximum indepen-
dent set size decreases exactly by one.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.14/23

Folding
int mis’(G) {

if(|G| ≤ 1) return |G|; //Base case
if(∃ component C ⊂ G) //Components

return mis’(C)+mis’(G − C);
if(∃ nodes v and w: N [v] ⊆ N [w]) //Domination

return mis’(G − {w});
if(∃ v foldable) //Folding

return 1 + mis’(fold(v,G));
//“Greedy” branching
select a node v of maximum degree; //d(v) ≥ 3

return max{mis’(G−{v}), 1+mis’(G−N [v])};
}

Exact (Exponential) Algorithmsfor NP-hard Problems – p.15/23

Folding
Lem: Algorithm mis’ runs in time O(20.406n).

Prf: If the algorithm branches at a node of degree 3,
then a node of degree 2 is left

P (n) ≤







































1 base case/poly-case;

1 + P (|C|) + P (n − |C|) connected components;

1 + P (n − 1) domination;

1 + P (n − 1) + P (n − 5) branching (d(v) ≥ 4);

1 + P (n − 3) + P (n − 4) branching (d(v) = 3).

• Folding is not compatible with memorization.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.16/23

Measure & Conquer
• Exact recursive algorithms are often very
complicated (tedious case analysis).
• But the measure used in their analysis is usually
trivial (e.g. number of nodes in IS, as before).
⇒ Measure & Conquer approach consists in focusing
on the choice of the measure.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.17/23

Measure & Conquer
• Removing nodes of high degree reduces the degree
of many other nodes. This pays of on long term since
nodes of degree ≤ 2 can be filtered out without
branching.
• This phenomenon is not taken into account with
standard analysis/measure.
⇒ The idea is to give a different (smaller) weight to
nodes of different (smaller) degree:

W (v) =







0 if d(v) ≤ 2;

α ∈ (0, 1] if d(v) = 3;

1 if d(v) ≥ 4.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.18/23

Measure & Conquer
Thm: Algorithm mis’ has running time O(2362 n).
Prf:
• First we need to enforce that folding does not
increase the size of the problem: α ≥ 0.5.
• When we branch by discarding a node v, the size of
the problem decreases because of: (1) the removal of
v, and (2) the decrease of the degree of the neighbors
of v.
• When we branch by selecting a node v, the size of
the problem decreases because of: (1) the removal of
v, and (2) the removal of the neighbors of v.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.19/23

Measure & Conquer
Prf: Let P (k) be the number of subproblems solved
to solve a problem of size k ≤ n. Then

P (k) ≤































































































1 + P (k − 1) + P (k − 6);

1 + P (k − 1 − α) + P (k − 5 − α);

1 + P (k − 1 − 2α) + P (k − 4 − 2α);

1 + P (k − 1 − 3α) + P (k − 3 − 3α);

1 + P (k − 1 − 4α) + P (k − 2 − 4α);

1 + P (k − 5 + 4α) + P (k − 5);

1 + P (k − 4 + 2α) + P (k − 4 − α);

1 + P (k − 3) + P (k − 3 − 2α);

1 + P (k − 2 − 2α) + P (k − 2 − 3α);

1 + P (k − 1 − 3α) + P (k − 1 − 3α).

Exact (Exponential) Algorithmsfor NP-hard Problems – p.20/23

Measure & Conquer
Prf:
• By solving the recurrences, P (k)=O(c k)=O(cn),
where c = c(α) is a quasi-convex function of α
[Eppstein’04].

• Imposing α = 0.6, one obtains c < 20.362.

Exact (Exponential) Algorithmsfor NP-hard Problems – p.21/23

Other Results
• Minimum Dominating Set in time O(20.598 n).

• Maximum Cut in time O(20.792 n).

• Steiner Tree in time O(20.773 n).

• Cubic TSP in time O(20.334 n).
• Chromatic Number in time O(2.415n).

• 3-Colorability in time O(1.3289n).
• 3-Satisfiability in time O(1.4802n).

• Knapsack in time O(20.5 n).
•

Exact (Exponential) Algorithmsfor NP-hard Problems – p.22/23

Open Problems
• Current best for Hamiltonian Path is poly-space
Ω(2n).
• Same for TSP, but exp-space.
• Current best for SAT is trivial Ω(2n).
• Current best for Feedback Vertex Set is trivial
Ω(2n).
•

Exact (Exponential) Algorithmsfor NP-hard Problems – p.23/23

	Outline
	Exact (Exponential)
Algorithms
	Maximum Independent Set
	Maximum Independent Set
	Maximum Independent Set
	Domination
	A Toy-Algorithm
	A Toy-Algorithm
	A Toy-Algorithm
	Memorization
	Memorization
	Folding
	Folding
	Folding
	Folding
	Measure & Conquer
	Measure & Conquer
	Measure & Conquer
	Measure & Conquer
	Measure & Conquer
	Other Results
	Open Problems

