Exact (Exponential) Algorithms for NP-hard Problems

Fabrizio Grandoni

Università di Roma “La Sapienza”
grandoni@di.uniroma1.it
Outline

- Exact Algorithms
- Independent Set Problem
- A Toy-Algorithm
- Memorization
- Folding
- Measure & Conquer
- Other Results
- Open Problems
Prb: Designing exact algorithms for NP-hard problems with the smallest possible worst-case running time.

- Need for exact solutions (e.g. decision problems).
- Reducing the running time from, say, 2^n to 1.5^n increases the size of the instances solvable by a constant multiplicative factor.
- Classical approaches (heuristics, approximation algorithms, parameterized algorithms...) have limits and drawbacks (no guaranty, hardness of approximation, $W[t]$-completeness...).
- New combinatorial and algorithmic challenges.
Maximum Independent Set

Prb: given an n-node graph $G = (V, E)$, determine the maximum cardinality of a subset of pairwise non-adjacent nodes (independent set).

![Graph](image)

$OPT = 2$
Maximum Independent Set

- NP-hard.
- Hard to approximate within $n^{1-\epsilon}$.
- No exact $c^{o(n)}$ algorithm (unless SNP \subseteq SUBEXP).

\Rightarrow The best we can hope for is a 2^{cn} algorithm for some small $c \in (0, 1]$.
Maximum Independent Set

- [Tarjan&Trojanowski’77]: $O(2^{0.334n})$ poly-space.
- [Jian’86]: $O(2^{0.304n})$ poly-space.
- [Robson’86]: $O(2^{0.296n})$ poly-space, $O(2^{0.276n})$ exp-space.
- [Fomin,Grandoni&Kratsch’06]: $O(2^{0.288n})$ poly-space.
- [Beigel’99, Chen,Kanj&Xia’03]: better results for sparse graphs.
Domination

Lem: If there are two nodes v and w such that $N[v] \subseteq N[w]$, there is a maximum independent set which does not contain w ($N[x] = N(x) \cup \{x\}$).

Prf:

![Diagram showing the relationship between nodes and their neighborhoods, illustrating the lemma and proof.](image)
A Toy-Algorithm

```c
int mis(G) {
    if(|G| \leq 1) return |G|; //Base case
    if(∃ component C ⊂ G) //Components
        return mis(C)+mis(G – C);
    if(∃ nodes v and w: N[v] ⊆ N[w]) //Domination
        return mis(G – {w});
    //“Greedy” branching
    select a node v of maximum degree; //d(v) \geq 2
    if(deg(v)=2) return poly-mis(G); //cycles
    return max{mis(G-{v}), 1+mis(G–N[v])};
}
```
A Toy-Algorithm

- The algorithm produces a search tree of exponential size, where branching takes polynomial time.
- Thus the analysis reduces to bounding the number of subproblems generated.
- The bound is obtained by defining a measure of the size of the subproblems. Each branching rule leads to some linear recurrences in the measure, which are used to lower-bound the progress made by the algorithm at each branching step.
A Toy-Algorithm

Lem: Algorithm mis runs in time $O(2^{0.465n})$.

Prf:

• Let $P(n)$ be the number of subproblems solved to solve a problem on n nodes. Then

$$
P(n) \leq \begin{cases}
1 & \text{base case/cycles;} \\
1 + P(|C|) + P(n - |C|) & \text{connected components;} \\
1 + P(n - 1) & \text{domination;} \\
1 + P(n - 1) + P(n - 4) & \text{branching ($d(v) \geq 3$)}.
\end{cases}
$$

• The base of the exponential factor is obtained from

$$
c^n \geq c^{n-1} + c^{n-4} \iff c^4 - c^3 - 1 \geq 0.
$$
Memorization

- The same subproblem may appear several times.
- **Memorization** consists in storing the solutions of the subproblems solved in an (exponential-size) **database**, which is queried each time a new subproblem is generated.
- This way, no subproblem is solved twice.
Memorization

Thm: Algorithm mis, combined with memorization, has running time $O(2^{0.426n})$.

Prf:

- The subproblems involve **induced subgraphs** of the original graph. Thus there are at most $\binom{n}{k}$ different subproblems on k nodes.
- From standard analysis, such subproblems are upper bounded also by $2^{0.465(n-k)}$.
- Altogether, using Stirling’s formula,

$$P(n) \leq \sum_{k=1}^{n} \min \left\{ 2^{0.465(n-k)}, \binom{n}{k} \right\} = O(2^{0.426n}).$$
Folding

Lem: For every node v, there is a maximum independent set which either contains v or at least two of its neighbors.

Prf:

![Diagram]

For every node v, there is a maximum independent set which either contains v or at least two of its neighbors.
Folding

Def: Folding a node v, $N(v) = \{w, u\}$, with w and u not adjacent, means

- replacing v, w, and u with a new node v';
- adding edges between v' and $N(w) \cup N(u) - \{v\}$.

Lem: When we fold a node v, the maximum independent set size decreases exactly by one.
Folding

```c
int mis'(G) {
    if(|G| \leq 1) return |G|; //Base case
    if(\exists \text{ component } C \subset G) //Components
        return mis'(C)+mis'(G - C);
    if(\exists \text{ nodes } v \text{ and } w: N[v] \subseteq N[w]) //Domination
        return mis'(G - \{w\});
    if(\exists v \text{ foldable}) //Folding
        return 1 + mis'(fold(v, G));
    //“Greedy” branching
    select a node v of maximum degree; //d(v) \geq 3
    return \max\{mis'(G - \{v\}), 1+mis'(G - N[v])\};
}
```
Folding

Lem: Algorithm mis’ runs in time $O(2^{0.406n})$.

Prf: If the algorithm branches at a node of degree 3, then a node of degree 2 is left

$$P(n) \leq \begin{cases}
1 & \text{base case/poly-case;} \\
1 + P(|C|) + P(n - |C|) & \text{connected components;} \\
1 + P(n - 1) & \text{domination;} \\
1 + P(n - 1) + P(n - 5) & \text{branching ($d(v) \geq 4$);} \\
1 + P(n - 3) + P(n - 4) & \text{branching ($d(v) = 3$).}
\end{cases}$$

• Folding is not compatible with memorization.
Measure & Conquer

- Exact recursive algorithms are often very complicated (tedious case analysis).
- But the measure used in their analysis is usually trivial (e.g. number of nodes in IS, as before).

⇒ **Measure & Conquer** approach consists in focusing on the choice of the measure.
Measure & Conquer

- Removing nodes of high degree reduces the degree of many other nodes. This pays off on long term since nodes of degree ≤ 2 can be filtered out without branching.

- This phenomenon is not taken into account with standard analysis/measure.

\Rightarrow The idea is to give a different (smaller) weight to nodes of different (smaller) degree:

$$W(v) = \begin{cases} 0 & \text{if } d(v) \leq 2; \\ \alpha \in (0, 1] & \text{if } d(v) = 3; \\ 1 & \text{if } d(v) \geq 4. \end{cases}$$
Measure & Conquer

Thm: Algorithm mis' has running time $O(2^{362n})$.

Prf:
- First we need to enforce that folding does not increase the size of the problem: $\alpha \geq 0.5$.
- When we branch by **discarding** a node v, the size of the problem decreases because of: (1) the removal of v, and (2) the decrease of the degree of the neighbors of v.
- When we branch by **selecting** a node v, the size of the problem decreases because of: (1) the removal of v, and (2) the removal of the neighbors of v.
Prf: Let $P(k)$ be the number of subproblems solved to solve a problem of size $k \leq n$. Then

$$P(k) \leq \begin{cases}
1 + P(k - 1) + P(k - 6); \\
1 + P(k - 1 - \alpha) + P(k - 5 - \alpha); \\
1 + P(k - 1 - 2\alpha) + P(k - 4 - 2\alpha); \\
1 + P(k - 1 - 3\alpha) + P(k - 3 - 3\alpha); \\
1 + P(k - 1 - 4\alpha) + P(k - 2 - 4\alpha); \\
1 + P(k - 5 + 4\alpha) + P(k - 5); \\
1 + P(k - 4 + 2\alpha) + P(k - 4 - \alpha); \\
1 + P(k - 3) + P(k - 3 - 2\alpha); \\
1 + P(k - 2 - 2\alpha) + P(k - 2 - 3\alpha); \\
1 + P(k - 1 - 3\alpha) + P(k - 1 - 3\alpha).
\end{cases}$$
Prf:

• By solving the recurrences, \(P(k) = O(c^k) = O(c^n) \), where \(c = c(\alpha) \) is a quasi-convex function of \(\alpha \) [Eppstein’04].

• Imposing \(\alpha = 0.6 \), one obtains \(c < 2^{0.362} \).
Other Results

- **Minimum Dominating Set** in time $O(2^{0.598n})$.
- **Maximum Cut** in time $O(2^{0.792n})$.
- **Steiner Tree** in time $O(2^{0.773n})$.
- **Cubic TSP** in time $O(2^{0.334n})$.
- **Chromatic Number** in time $O(2.415^n)$.
- **3-Colorability** in time $O(1.3289^n)$.
- **3-Satisfiability** in time $O(1.4802^n)$.
- **Knapsack** in time $O(2^{0.5n})$.
-
Open Problems

- Current best for **Hamiltonian Path** is poly-space $\Omega(2^n)$.
- Same for **TSP**, but exp-space.
- Current best for **SAT** is trivial $\Omega(2^n)$.
- Current best for **Feedback Vertex Set** is trivial $\Omega(2^n)$.
-