Exact (Exponential) Algorithms for NP-hard Problems

Fabrizio Grandoni

Università di Roma "La Sapienza" grandoni@di.uniroma1.it

Exact (Exponential) Algorithmsfor NP-hard Problems – p.1/2.

Outline

- Exact Algorithms
- Independent Set Problem
- A Toy-Algorithm
- Memorization
- Folding
- Measure & Conquer
- Other Results
- Open Problems

Exact (Exponential) Algorithms

Prb: Designing exact algorithms for NP-hard problems with the smallest possible worst-case running time.

• Need for exact solutions (e.g. decision problems).

• Reducing the running time from, say, 2^n to 1.5^n increases the size of the instances solvable by a constant *multiplicative* factor.

• Classical approaches (heuristics, approximation algorithms, parameterized algorithms...) have limits and drawbacks (no guaranty, hardness of approximation, W[t]-completeness...).

• New combinatorial and algorithmic challenges.

Maximum Independent Set

Prb: given an *n*-node graph G = (V, E), determine the maximum cardinality of a subset of pairwise non-adjacent nodes (independent set).

OPT = 2

Maximum Independent Set

- NP-hard.
- Hard to approximate within $n^{1-\epsilon}$.
- W[1]-complete (no fast parameterized algorithm).
- No exact $c^{o(n)}$ algorithm (unless SNP \subseteq SUBEXP).
- ⇒ The best we can hope for is a 2^{cn} algorithm for some small $c \in (0, 1]$.

Maximum Independent Set

- [Tarjan&Trojanowski'77]: $O(2^{0.334n})$ poly-space.
- [Jian'86]: $O(2^{0.304n})$ poly-space.
- [Robson'86]: $O(2^{0.296n})$ poly-space, $O(2^{0.276n})$ exp-space.
- [Fomin,Grandoni&Kratsch'06]: $O(2^{0.288n})$ poly-space.

• [Beigel'99, Chen,Kanj&Xia'03]: better results for sparse graphs.

Domination

Lem: If there are two nodes v and w such that $N[v] \subseteq N[w]$, there is a maximum independent set which does not contain w $(N[x]=N(x)\cup\{x\})$.

Prf:

A Toy-Algorithm

int mis(G) { if $(|G| \leq 1)$ return |G|; //Base case if $(\exists \text{ component } C \subset G)$ //Components **return** mis(C)+mis(G-C); if $(\exists \text{ nodes } v \text{ and } w: N[v] \subseteq N[w])$ //Domination **return** mis $(G - \{w\})$; *//"Greedy" branching* select a node v of maximum degree; $//d(v) \ge 2$ if(deg(v)=2) return poly-mis(G); //cycles return max{mis($G-\{v\}$), 1+mis(G-N[v])};

A Toy-Algorithm

• The algorithm produces a search tree of exponential size, where branching takes polynomial time.

• Thus the analysis reduces to bounding the number of subproblems generated.

• The bound is obtained by defining a measure of the size of the subproblems. Each branching rule leads to some linear recurrences in the measure, which are used to lower-bound the progress made by the algorithm at each branching step.

A Toy-Algorithm

Lem: Algorithm mis runs in time $O(2^{0.465n})$. **Prf:**

• Let P(n) be the number of subproblems solved to solve a problem on n nodes. Then

 $P(n) \leq \begin{cases} 1 & \text{base case/cycles;} \\ 1 + P(|C|) + P(n - |C|) & \text{connected components;} \\ 1 + P(n - 1) & \text{domination;} \\ 1 + P(n - 1) + P(n - 4) & \text{branching } (d(v) \geq 3). \end{cases}$ • The base of the exponential factor is obtained from $c^n \geq c^{n-1} + c^{n-4} \Leftrightarrow c^4 - c^3 - 1 \geq 0.$

Memorization

- The same subproblem may appear several times.
- Memorization consists in storing the solutions of the subproblems solved in an (exponential-size) database, which is queried each time a new subproblem is generated.
- This way, no subproblem is solved twice.

Memorization

Thm: Algorithm mis, combined with memorization, has running time $O(2^{0.426 n})$.

Prf:

• The subproblems involve induced subgraphs of the original graph. Thus there are at most $\binom{n}{k}$ different subproblems on k nodes.

• From standard analysis, such subproblems are upper bounded also by $2^{0.465(n-k)}$.

• Altogether, using Stirling's formula,

$$P(n) \le \sum_{k=1}^{n} \min\left\{2^{0.465(n-k)}, \binom{n}{k}\right\} = O(2^{0.426n}).$$

Lem: For every node v, there is a maximum independent set which either contains v or at least two of its neighbors.

Prf:

Def: Folding a node v, $N(v) = \{w, u\}$, with w and u not adjacent, means

- replacing v, w, and u with a new node v';
- adding edges between v' and $N(w) \cup N(u) \{v\}$.

Lem: When we fold a node v, the maximum independent set size decreases exactly by one.

int mis'(G) { if $(|G| \leq 1)$ return |G|; //Base case if $(\exists \text{ component } C \subset G) // Components$ **return** mis' (C)+mis' ($\overline{G} - C$); if $(\exists nodes v and w: N[v] \subseteq N[w])$ //Domination return mis' $(G - \{w\});$ $if(\exists v \text{ foldable}) //Folding$ **return** 1 + mis' (fold(v, G));*//"Greedy" branching* select a node v of maximum degree; $//d(v) \ge 3$ return max{mis' $(G - \{v\}), 1 + \text{mis'} (G - N[v])$ };

Lem: Algorithm mis' runs in time $O(2^{0.406n})$. **Prf:** If the algorithm branches at a node of degree 3, then a node of degree 2 is left

 $P(n) \leq \begin{cases} 1 & \text{base case/poly-case;} \\ 1+P(|C|)+P(n-|C|) & \text{connected components;} \\ 1+P(n-1) & \text{domination;} \\ 1+P(n-1)+P(n-5) & \text{branching } (d(v) \geq 4); \\ 1+P(n-3)+P(n-4) & \text{branching } (d(v)=3). \end{cases}$ • Folding is not compatible with memorization.

• Exact recursive algorithms are often very complicated (tedious case analysis).

• But the measure used in their analysis is usually trivial (e.g. number of nodes in IS, as before).

 \rightarrow Measure & Conquer approach consists in focusing on the choice of the measure.

• Removing nodes of high degree reduces the degree of many other nodes. This pays of on long term since nodes of degree ≤ 2 can be filtered out without branching.

• This phenomenon is not taken into account with standard analysis/measure.

 \Rightarrow The idea is to give a different (smaller) weight to nodes of different (smaller) degree:

$$W(v) = \begin{cases} 0 & \text{if } d(v) \le 2; \\ \alpha \in (0, 1] & \text{if } d(v) = 3; \\ 1 & \text{if } d(v) \ge 4. \end{cases}$$

Thm: Algorithm mis' has running time $O(2^{362n})$. Prf:

• First we need to enforce that folding does not increase the size of the problem: $\alpha \ge 0.5$.

• When we branch by discarding a node v, the size of the problem decreases because of: (1) the removal of v, and (2) the decrease of the degree of the neighbors of v.

• When we branch by selecting a node v, the size of the problem decreases because of: (1) the removal of v, and (2) the removal of the neighbors of v.

P(k

Prf: Let P(k) be the number of subproblems solved to solve a problem of size $k \le n$. Then

$$) \leq \begin{cases} 1 + P(k-1) + P(k-6); \\ 1 + P(k-1-\alpha) + P(k-5-\alpha); \\ 1 + P(k-1-2\alpha) + P(k-4-2\alpha); \\ 1 + P(k-1-3\alpha) + P(k-3-3\alpha); \\ 1 + P(k-1-4\alpha) + P(k-2-4\alpha); \\ 1 + P(k-5+4\alpha) + P(k-5); \\ 1 + P(k-4+2\alpha) + P(k-5); \\ 1 + P(k-3) + P(k-3-2\alpha); \\ 1 + P(k-3) + P(k-3-2\alpha); \\ 1 + P(k-1-3\alpha) + P(k-1-3\alpha). \end{cases}$$

Prf:

• By solving the recurrences, $P(k)=O(c^k)=O(c^n)$, where $c = c(\alpha)$ is a quasi-convex function of α [Eppstein'04].

• Imposing $\alpha = 0.6$, one obtains $c < 2^{0.362}$.

Other Results

- Minimum Dominating Set in time $O(2^{0.598 n})$.
- Maximum Cut in time $O(2^{0.792 n})$.
- Steiner Tree in time $O(2^{0.773 n})$.
- Cubic TSP in time $O(2^{0.334n})$.
- Chromatic Number in time $O(2.415^n)$.
- 3-Colorability in time $O(1.3289^n)$.
- 3-Satisfiability in time $O(1.4802^n)$.
- Knapsack in time $O(2^{0.5 n})$.

Open Problems

• Current best for Hamiltonian Path is poly-space $\Omega(2^n)$.

• Same for TSP, but exp-space.

• Current best for SAT is trivial $\Omega(2^n)$.

• Current best for Feedback Vertex Set is trivial $\Omega(2^n)$.

• • • • •