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Preface

The aim of this monograph is to make a body of tools for estabhing concen-
tration of measure accessible to researchers working in tesign and analysis of
randomized algorithms.

Concentration of measure refers to the phenomenon that a fction of a large
number of random variables tends to concentrate its values & relatively narrow
range (under certain conditions of smoothness of the funoti and under certain
conditions on the dependence amongst the set of random vdilies). Such a result
is of obvious importance to the analysis of randomized algthhms: for instance,
the running time of such an algorithm can then be guaranteedtbe concentrated
around a pre-computed value. More generally, various oth@arameters measur-
ing the performance of randomized algorithms can be providgight guarantees
via such an analysis.

In a sense, the subject of concentration of measure lies atetltore of modern
probability theory as embodied in the laws of large numb 3 oCentral Limit
Theorem and, in particular, the theory of Large Deviation . However, these
results are asymptotic { they refer to the limit as the numberof variablesn, goes
to in nity, for example. In the analysis of algorithms, we typically require quan-
titative estimates that are valid for nite (though large) values ofn. The earliest
such results can be traced back to the work of Azuma, Cherno nal Hoe ding
in the 1950s. Subsequently there have been steady advangesticularly in the
classical setting of martingales. In the last couple of dedes, these methods have
taken on renewed interest driven by applications in algotiims and optimization.
Also several new techniques have been developed.

Unfortunately, much of this material is scattered in the lierature, and also rather
forbidding for someone entering the eld from a Computer Sence/Algorithms
background. Often this is because the methods are couchedthe technical
language of analysis and/or measure theory. While this mayebstrictly necessary
to develop results in their full generality, it is not neededvhen the method is
used in computer science applications (where the probabjlispaces are often

11
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nite and discrete), and indeed may only serve as a distraain or barrier.

Our main goal here is to give an exposition of the basic methedor measure con-
centration in a manner which makes it accessible to the reseher in randomized
algorithms and enables him/her to quickly start putting them to work in his/her
application. Our approach is as follows:

1. Motivate the need for a concentration tool by picking an gplication in the

form of the analysis of a randomized algorithm or probabili€ combina-
torics.

2. Give only the main outline of the application, suppressm details and iso-
lating the abstraction that relates to the concentration ofmeasure analysis.
The reader can go back to the details of the speci c applicatn following
the references or the complementary book used (see belowdoggestions).

3. State and prove the results not necessarily in the most ganal or sharpest
form possible, but rather in the form that is clearest to undestand and
convenient as well as su cient to use for the application at And.

4. Return to the same example or abstraction several timesing di erent
tools to illustrate their relative strengths and weaknesseand ease of use
{ a particular tool works better than another in some situatons, worse in
others.

Other signi cant bene ts of our exposition are: we collect ad systematize the
results previously scattered in the literature, explain tem in a manner accessible
to someone familiar with the type of discrete probability ued in the analysis of
algorithms and we relate di erent approaches to one another

Here is an outline of the book. It falls naturally into two pats. The rst part
contains the core \bread-and-butter" methods that we beliee belong as an abso-
lutely essential in ient in the toolkit of a researchemirandomized algorithms
today. Chapter E&'s@t%tt%jth the basic Cherno {Hoe ding (CH) bound on the
sum of bounded independent random variables. Many simple maomized al-
gorithms ¢ (r:h:t&%_%nqlé/sed using this bound and we give some itygd examples
in Chapter E_Tgp_[ Ince this topic is now covered in other recent books, wevgi
only a few examples here and refer the reader to these bookscahihca be read
pro tably together with this one (see suggestions below). Kapter bﬁp‘small
interlude on probabilistic recurrences which can often g%c ery; g%ick estimates of
tail probabilities based only on expectations. In Chapte#, we give four versions
of the CH bound in situations where the random variables areoh independent
{ this often is the case in the analysis of algorithms and we stv examples from
the recent literature where such extensions simplify the atysis considerably.



CONTENTS 13

The next series of chapters is devoted to a powerful extensiof the CH bound
to arbitrary functions of random variables (rather than jug the sum) and where
the assumption of independence can be relaxed somewhat. dt$ achieved
via the concept of amartingale. These methods are by now rightly perceived
as being fundamental in al 'Qmic applications and havedgun to appear in
introductory bo 0g.uch a , albeit very scantily, and, more thoroughly, in
the more recent[?]. Our treatment here is far more comprehensive and nuanced,
while at the same time also very accessible to the beginner.eVdlso o er a host
of relevant examples where the various methods are seen it di Bged
below, ours can serve as a companion book for a course basef?pand [?] and
the tools developed here can be applied to give a more complenalysis of many
of the examples in these books.

Chapter }%hgmi—\(/)te)g an introduction to the basic de nition and theory of nartin-
gales leading to the Azuma inequality. The concept of martgales, as found
in probability textbooks, poses quite a barrier to the Compter Scientist who
is unfamiliar with the language of lters, E‘%‘ ns and measurable sets from
measure theory. The survey by McDiarmi Is the authoritative reference for
martingale methods, but though directed towards discrete athematicians inter-
ested in algorithms, is still, we feel, quite a formidable j@spect for the entrant
to navigate. Here we give a self-contained introduction to apecial case which
is su cient for all the applications we treat and to those found in all analyses of
algorithms we know of. So we are able to dispense with the maestheoretic
baggage entirely and keep to very elementary discrete prdikty. Chapter %%isme
devoted to an inequality that is especially packaged nicelipr applications, the

so called Method of Bounded Di erences (MOBD). This form is ery easy to ap-

ply and yields surprisingly powerful results in many di eret settings where the
function to be|c%pnq%%ggp‘i)§_2”smooth" in the sense of satisfyina Lipschitz condi-
tion. Chapter [7 progresses to a stronger version of the inequality, whichevhave
dubbed the Method of Average Bounded Di erences (MOABD) andapplies in
situations where the function to be analysed, while not smd¢ioin the worst case
Lipschitz sense, nevertheless satis es some kind of "avged smoothness prop-
erty under the given distribution. This version of the metha is somewhat more
complicated to apply, but is essential to obtain meaningfulesults in many algo-
rithms. One of the special features of our exposition is totimduce a very useful
concept in probability called couplingand to show hc%wmic;bgan be used to great
advantage in working with the MOABD. In Chapter }B,Tegive another version
of the martingale method we call the Method of Bounded Variazes (MOBV)
which can often be used with great e cacy in certain situatims.

lch:kim-vu-jan-ruc .. . .
Chapter 971s a short interlude containing an introduction to aome resnt spe-

cialized methods that were very successful in analyzing ta&n key problems in
random graphs.
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We end Part | with Chapter I%:S(\)/\?ﬁlncﬂeltgcgn introduction to isoperimetric in-
eqgualities that are a common setting for results on the conateation of measure.
We show how the MOBD is essentially equivalent to an isopergtric inequality
and this forms a natural bridge to a more powerful isoperimat inequality in
the following chapter. It is also an introduction to a methodthat is to come in
Part II.

Part 1l of the book contains some more advanced techniques camecent devel-
opments. Here we systematize and make accessible some veasgful tools that
appear scattered in the literature and are couched in termsuge unfamiliar to

computer scientists. From this (for a computer scientist) ecane body of work we
distill out what is relevant and useful for algorithmic appications, using many
non-trivial examples showing how these methods can be put gmod use.

Chapter Eri%%—%oduction to Talagrand's isoperimetric theory,a theory de-
veloped in his 1995 epic that proved a major landmark in the bject and led to
the resolution of some outstanding open problems. We give tat®ment of the
inequality that is simpler, at least conceptually, than theones usually found in
the literature. Once again, the simpler statement is su ciat for all the known
applications. We defer the proof of the inequality to after he methods in Part
Il have been developed. Instead, we focus once again on agions. We high-
light two nicely packaged forms of the inequality that can beut to immediate
use. Two problems whose concentration status was resolvey the Talagrand
inequality are the Traveling Salesman Problem (TSP) and théncreasing subse-
guences problem. We give an exposition of both. We also go k@ some of the
algorithms analysed earlier with martingale techniques a@hreanalyse them with
the new techniques, comparing the results for ease of appldity and strength
of the conclusion.

Ich:isoperimetric-2 . ) . .
In Chapter 12, we give an introduction to an approach from information tie-

ory via the so-calledTransportation Cost inequalities. |(‘:I;]hllss >3 r%%gﬁyields very
elegant proofs of isoperimetric inequalities in ChaptetO. This approach is par-
ticularly useful since it can handle certain controlled degndence between the
variables. Also Kati Marton has shown how it can be adapted tprove inequal-

ities Fha}t imply thelc‘ﬁ%@%g%g]sig&%%metr!'cb(i)rluglquaIi.ty, and we give an account
of this in Chapter [13. In Chapteril4, we give an introduction to another ap-
proach from information theory that leads to concentrationinequalities { the

so-calledEntropy method or Log-Sobolevinequalities. This approach also yields
short proofs of Talagrand's inequality, and we also revisthe method of bounded

di erences in a di erent light.
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How to use the book

The book is, we hope, a self-contained, comprehensive andtglaccessible re-
source for any person with a typical computer science or mathatics background
who is interested in applying concentration of measure metks in the design and
analysis of randomized algorithms.

This book can also be used as a textbook in an advanced counseandomized
algorithms (or related courses) as a supplement and complem with some well
established textbooks. For instance, we recommend usingfdr a course in

Randomized Algorithms  together with the books

R. Motwani and P. Raghavan, Randomized Algorithms Cambridge
University Press 1995.

M. Mitzenmacher and E. Upfal, Probability and Computing Cam-
bridge University Press, 2005.

Probabilistic Combinatorics together with the classic

N. Alon and J. Spencer,The Probabilistic Method Second edition,
John Wiley 2000.

Graph Coloring together with the book

M. Molloy and B. Reed, Graph Coloring and the Probabilistic Method
Springer 2002.

Random Graphs together with the book:
S. Janson, T. Luczak and A. RucinskiRandom Graphs Wiley 2000.
Large Deviation Theory  together with the book

F. den Hollander,Large Deviations Fields Institute Monograph, Amer-
ican Mathematical Society 2000.
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ch:CH-bound

Chapter 1

Cherno {Hoe ding Bounds

[Cherno {Hoe ding Bounds]

1.1 What is \Concentration of Measure"?

The basic idea of concentration of measure is well illustradl by the simplest of
random experiments, and one lying at the fountain{head of pbability theory:
coin tossing. If we toss a fair coin once, the result is compdéy unpredictable
{ it can be \heads" or \tails" with equal probability. Now sup pose we toss the
same coin a large number of times, say, a thousand times. Thet@ome is now
sharply predictablé Namely, the number of heads will be \very likely to be around
500". This apparent paradox, which is nevertheless familido everybody, is an
instance of the phenomenon of the concentration of measuralfhough there are
potentially a large number of possibilities, the ones thatra likely to be observed
are concentrated in a very narrow range, hence sharply pretible.

In more sophisticated forms, the phenomenon of the conceation of measure
underlies much of our pysical world. As we know now, the world made up of
microscopic particles that are governed by probabilistialvs { those of quantum
and statistical physics. The reason that the macroscopic gperties determined by
these large ensembles of particles nevertheless appeaedatnstic when viewed
on our larger scales is precisely the concentration of measuthe observed pos-
sibilities are concentrated into a very narrow range.

Given the obvious importance of the phenomenon, it is no sutipe that large
parts of treatises on probability theory are devoted to its tsidy. The various
\Laws of Large Numbers" and the \Central Limit Theorem" are some of the

17
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most central results of modern probability theory.

We would like to use the phenomenon of concentration of measun the analy-
sis of probabilistic algorithms. In analogy with the physial situation described
above, we would like to use it to argue that the observable batiour of ran-
domised algorithms is \almost deterministic”. In this way, we can obtain the
satisfaction of deterministic results, while at the same e retaining the bene ts
of randomised algorithms, namely their simplicity and e ciency.

In slightly more technical terms, the basic problem we wanta study in this
monograph is this: given a random variableX with mean EX], what is the
probability that X deviates far from its expectation? Furthermore, we would
like to understand under what conditions the random variald X stays almost
constant or, put in a di erent way, large deviation from the the mean are highly
unlikely. This is the case for the familiar example of repeat coin tosses, but, as
we shall see, it is a more general phenomenon.

There are several reasons that the results from probabilittheory are somewhat
inadequate or inappropriate for studying these questions.

First and foremost, the results in probability theory areasymptotic limit
laws applying in the in nite limit. We are interested in laws that apply in
nitary cases.

The probability theory results are oftenqualitative: they ensure conver-
gence in the limit, but do not consider therate of convergence. We are
interested in quantitative laws that determine the rate of convergence, or
at least good bounds on it.

The laws of probability theory are classically stated undethe assumption
of independence This is a very natural and reasonable assumption in prob-
ability theory, and it greatly simpli es the statement and proofs of the
results. However, in the analysis of randomised algorithm#hose outcome
is the result of a complicated interaction of various process, independence
is the exception rather than the rule. Hence, we are interesd in laws
that are valid even without independence, or when certain kwn types of
dependence obtain.

We shall now embark on a development of various tools and tetues that meet
these criteria.
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1.2 The Binomial Distribution

Let us start with an analysis of the simple motivating examp of coin tossing. The
number of \heads" or successes in repeated tosses of a fainé®a very important
distribution because it models a very basic paradigm of thergbabilistic method,
namely to repeat experiments to boost the con dence.

Let us analyse the slightly more general case of the number\béads" in n trials
with a coin of bias p, with 0 p 1ie. Pr[Head§ = p and Pr[Tails ] =
1 p. Thisis a random variableB (n; p) whose distribution is called theBinomial
distribution with parametersn and p:

Pr[B(n;p) = i] = ?piq” 0 i n (1.1) [eq:binomial ]

The general problem de ned in the previous section here beues the following:
In the binomial case the expectation i€B (n;p)] = np, we would like to get a
bound on the probability that the variable does not deviate do far from this
expected value. Are such large deV|at|ons t,gnllkely fd (n; p)? A direct compu-
tation of the probabllltesmeBg]bR) e i P ' is far too unwieldy.
However, see Problerii.8 for a neat trlck that ylelds a good bound. We shall now
introduce a general method that successfully solves our jplem and is versatile
enough to apply to many other problems that we shall encounte

1.3 The Cherno Bound

| sec:chernoff |

P
The random variableB (n; p) can be written as a sumX = ;,., X;, by intro-
ducing the indicator random variablesX;;i 2 [n] de ne by

X, = 1 if the ith trial is a success,
' 0 otherwise

The basic Cherno technique we are going to develop now applin many situ-
ations where such a decomposition as a sum is possible.

The trick is to consider the so{calledmoment{generating functionof X, de ned
asHe* ] where > 0is a parameter. By formal expansion of the Taylor series,
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we see that

Ee* ]

I
X_.,ﬂ]
|

I

=]
A
o)

This explains the name as the functiorge” ] is the exponential generating func-
tion of all the moments ofX { it \packs" all the information about the moments
of X into one function.

Now, for any > 0, we have

PriX>m] = Prle* >e™]
HeX ].

em

(1.2) |eq:chernofftect

The last step follows byMarkov's inequality: for any non{negative random vari-
ableX, PriX >a] HX]=a

Let us compute the moment generating function for our examei

He*] = Hg ]
= H ]

He* ']; by independence

(pe + )" (1.3)

leg:chernofftechnique
Substituting this back into (|1 Z), and using the parametrisationm := (p+ t)n

which will lead to a convenient statement of the bound, we get

pe +q "

PriX >m ] NCE)

We can now pick > 0 to minimise the value between the paranthesis and by a
simple application of Calculus, we arrive at the basic Chem bound:

gt "

p+t

p q

PIIX > (p+ O] ot g

n

p+t q t
= exp (p+t)InT (q t)InT : (1.4) |eq:chernoffent
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What shall we make of this mess? Certai%'é/c;ﬂ%@dﬁo%ts the mbsonvenient form
of the bound for use in applications! Inx 1.6 we shall derive much simpler and
more intellegible formulae that can be used in applicationsFor nAV e | erahll
pause a while and take a short detour to make some remarks an4). ThiS IS
for several reasons: First, it is the strongest form of the lnad. Second, and
more importantly, this same bound appears in many other siitions. This is no
accident for it is a very natural and insightful bound { when poperly viewed!

For this, we need a certain concept from Information Theory.

on a space of cardinalityn, the relative entropy distancebetween them,H (p; q)
is de ned by 1 X
cA) Pi.
H(p;q) := P Ioga-
. L . I . leg:chernoffent .

The expression multiplying n in the exponent in (I.4) IS exactly the relative
entropy distance of the[eq;scrieernganJ’ t;q t from the distribution p; gon the two
point spacef 1;0g. So (L.4) seen from the statistician's eye says: the probability
of getting the \observed" distribution fp+t;q tgwhen thea priori or hypothesis
distribution is f p; g falls exponentially in n times the relative entropy distance

between the two distributions.

By considering X, we get the same bound symmetrically foPr[X < (p t)n].

1.4 Heterogeneous Variables

As a rst example of the versatility of the Cherno technique, let us consider the
situation where the trials are heterogeneous: probabilés of success at qgrgg:ecrp]tvatalbin
trials need not be the same. In this case, Chvatal's proof inrBblem 1.871S
inapplicable, but the Cherno method works with a simple modcation. Let p

be the probability of success at theth trial. Then we can repeat the calculation

of the moment{generating functionHge* ] exactly as in E?fg‘ except for the last

line to get: v
He* 1= (pe +q): (1.5)

Recall that the arithmetic{geometric mean inequality staes that

I
1)@ \n 1=n

INote that when q is the uniform distribution, this is just the usual entropy of the distri-
bution p up to an additive term of log n.
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foralla 0. Now employing the arithmetic{geometric mean inequalitywe get:

« Y
He” ] = (pe + q)
IP N
(pe +q)

n

= (pe + 0"
P o mgf
wherep:= —=,andq:=1 p. This is the same as}:%g;%r”)n%vith p taken as the

arithmetic mean of thep;s. Thg rest o rft e proof is as before and we conclude
g.cgnernojlien
that the basic Cherno bound (IJ. 4) holds.

1.5 The Hoe ding Extension

A further extension by the same basic techniqug, is possible heterogeneous
variables that need not even be discrete. LeX := ; X; where eachX;;i 2 [n]
takes values in [01] and has meanp,. To calculate the moment generating
function e* , we need, as before, to compute each individual . This is no
longer as simple as it was with the case whebg took only two values.

However, the following convexity argument gives a simple per bound. The
graph of the function e* is convex and hence, in the interval [d], lies always
below the straight line joining the endpoints (1) and (1;e ). This line has the

equationy= x + where =l1and =e 1. Thus
He™ '] X i+ ]
= pe +q:
Thus we have v Y

He™ | He* 1= (pe + q);

i i
L . leg:heter )
It would be which is the same bound as mh(%)i. and the rest of the proof is concluded as

useful to write
the nal bound before.

1.6 Useful Forms of the Bound

sec:usefulforms |

The following forms of h%bCh%Rno {Hoe ding bound are most wseful in applica-
tions (see also Problen%‘IzsL
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P
useful-forms | Theorem 1.1 LetX := i2pn] Xi WhereX;;i 2 [n] are independently distributed

in [0;1]. Then
For all t> 0,
PriX > X]+ t;PriX < X] t] e &= (1.6)
For 0< < 1,

2 2
Pr[X > (1+ )HX]] exp §E[X] ; PriX< (1 )EX]] exp EE[X]

(1.7) |eq:relbound
PriXx >t] 2% (1.8)

) i :chernoffent
Proof. We shall manipulate the bound in '6943_ Set

If t> 2eHX], then

p+t

f(t)=(p+ tin Pt 1 (g t)|nq—qt:

We successively compute

p+t q t
f{t) =1In In :
1) . ]

and
1

0 — .
0= oro@ o

Now, f (0) =0 = f Y0) and furthermoref °¢t) 4forall0 t qbecausexy %
for any two non{negative reals summing to 1. Hence by Tayl@'Theorem with
remainder,

2
f(@t) = fO)+ fyo)t+ % )%; 0< <t
2t%: '
-absbound
This gives, after simple manipulations, the boundh(gﬁie. .S o0

Now considerg(x) := f (px). Then gqx) = pf {px) and g°¥x) = p?*f ¢px). Thus,
g(0) = 0 = g40) and g*{x) = m 2P Now by Taylor's theorem,

b
gt felbotind
g(x) px?=3. This gives the upper tail in hgni e.

-relbound
For the lower tail in (eI.7r)e, ggtnh(x) = g( x). Then h{x) = ¢¥{ x) and
h%x) = g°¢ x). Thus h(0) = 0 = h%0) and h%{x) = (ppx‘;w p. Thus by
Taylor's theorem, h(x)  px?=2 and this gives the result.
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say which
chapter

| sec:chVariance |
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:2ebound b:mrch
For the (%—Pe. ?soéjg robIen*ﬁ‘IZir.0 e |

Often we would like to apply the bopunds above to a surlr:; . Xi where we do not
know the exact values of the expectationE[X;] but only upper or lower bounds
on it. In such situations, one can neverthelesss apply the Cbbunds with the
known bounds instead as you should verify in the following excise.

. P, , th:useful-forms
Exercise 1.2 SupposeX := i—; Xi as in Theorem[L.1 above, and suppose

L H. Show that

(a) For any t> 0,
PrX > w+ P X< [ t] e?™

(b) For 0< < 1,

2 2
PriX > (1+ ) 4] exp FH PriX< (1 ) .] exp 5L
You may need to use the following useful and intuitively obus fact that we
will prove in a later chapter. LetX;; ;X, be independent random variables
distributed in [O; 1] with EX;] = p; for eachi 2 [n]. LetY;; ;Y,andZ;;, ;Z,
be independent random variables witHY;] = g and E[Zi]:,: ri for eaghi 2 [n].
Now suppose}  pi T for eachi 2 [n]. Then, if X ;=  X;;Y = Y and
Z:= Zj, foranyt,

PriX>t] Pr[z>t];, and PriX<t] Pr[y <t}

1.7 A Variance Bound

Finally, we shall give an application of the basic Cherno tehnique to develop a
form of the bound in terms of the varainces of the individuallemnmands, a form
that can be considerably sharper than those derived abovendone which will

be especially useful for applications we will encounter iatier chapters.

Let us return to the basic Cherno technique with X :
Xi 2 [0; 1] for eachi 2 [n]. Set ; := HX;]and := HX]

1+ + X, and
i. Then

X -
PriX> +1t] = Pr[ (X i)>1]
= Pr[eppi(xi V>e!]
He i (Xi i)]:et;
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for each > 0. The last line follows again from Markov's inequality.

We shall now use the simple inequalities thag¢* 1+ x + x? for 0 < jxj < 1,
ande* 1+ x. Now, if max( ;1 ;)< 1 foreachi 2 [n], we have,

P Y
He i (Xi i)] - E[e(xi i)]

Y
Hi+ (X0 )+ (X )7
Y
- T as 2y
Y 2 2
e I
_ ez 2;

where 2 is the variance ofX; for eachi 2 [n] and 2 is the variance ofX . Thus,

2 2 t

PriX> +1t] e =e';

for satisfying max( j;1 ) < 1 for eachi 2 [n]. By calculus, take := 2t_2
and we get the bound:
t2
PriX> +1t] exp 12 ;

fort< 2 2=max max( i;1 ).

Exercise 1.3 Check that for random variables distributed ifi0; 1], this is of the
same form as the CH bound derived in the previous section umnstant fac-
tors in the exponent. You may need to use the fact that for a dom variable
distributed in the interval [a; d, the variance is bounded byb a)?=4.

The following bound is often referred to as Bernstein's ineaqlity:

Theorem 1.4 (Bernstein's inequality) Let the random variablLesX 1, 3 Xn
be |nc|§pendent withX;  HX;] bforachi 2 [n]. Let X := X; and let
2 be the variance ofX . Then, for any t> 0,

i
t2
2 2(1+ bt=B ?)

Pr[X > X]+1t] exp

Exercise 1.5 Check that for random variables in0; 1] and t < 2 2=l this is
roughly the same order bound as we derived above.
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In typical applications, the "error" term bt=3 2 will be negligible. Suppose the
random variablesX 1; : X have the same bounded distribution with positive
variancec?, so 2 = nc?. Then fort = o(n), this bound is exp (1 + 0(1))2t—22
which is consistent with the Central Limit Theorem assertia that in the asymp-
totic limit, X  EX] is normal with mean 0 and variance 2.

Exercise 1.6 Let X := P i Xi where theX;;i 2 [n] are i.i.d with Pr[X; =1]= p
for eachi 2 [n] for somep 2 [0;1]. Compute the variance ofX and apply and
compare the two bounds above as well as the basic CH bound.ciCtieat when
p =1=2, all these bounds are roughly the same.

1.8 Bibliographic Notes

i . . Cher52 . .
The original technique is from Cherno »[Hg]*although the idea of using the
moment{generating function to derive tail bounds is attrituted to N 2gm-
stein. The extension to continuous N 'ggles is due to W. Hakng

’ pPorb:chvatalbin

presentg;tion was much in ue gﬁd [48]. The quick derivation in ProblemsI.8
and E‘gir.o éic'rvtvardue to V. Chatal AR
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1.9 Problems

Problem 1.7 A set of n balls is drawn by sampling with replacement from an
urn containing N balls, M of which are red. Give a sharp concentration result
for the number of red balls in the sample drawn. 5

Problem 1.8 In this problem, we outline a simple proof of the Cherno boud
due to V. Chwatal.
(a) Argue that for all x 1, we have

X n .

PrB(n;p) k] C Pt XK

i 0 !
(b) Now use the Binomial Theorem and thereafter Calculus toatimise the value
of x. 5

Problem 1.9 [Hypergeometric Distribution] A set ofn balls is drawn by sam-
pling without replacement from an urn containing\ balls, M of which are red.

The random variableH (N; M; n) of the number of red balls drawn is said to have
the hypergeometric distribution

(@) What is H(N; M;n)]?

(b) Can you apply CH bounds to give a sharp concentration redor H(N; M; n)?

Now we outline a direct proof due to V. Ch\atal for the tail of the hypergeometric

distribution along the lines of the previous problem.

(c) Show that

M N M N ‘!
PriH(N;M;n) = k] = K Nk N
(d) Show that
XM N M n M !
i n i j i N

i
(e) Use the previous part to show that for everx 1,
X T
M N M N X' (L+(x 1M=N)":
o n i n
()] C_ombine parts (c) th{e%gg]grg%}fgrﬂd optimise the value ok to derive the same
relative entropy bound T.4):

qt "

p ™' g
PrlH(N;M;n) (p+ t)n] m ﬁ

wherep:= M=N andq:=1 p. 5



prob:ch-cond ‘

begin new

28 CHAPTER 1. CHERNOFF{HOEFFDING BOUNDS

Problem 1.10 Show that for 0< 1=2,

X
n oH(On.

0 k n

whereH ( ) := log (1 )log(1 ) is the binary entropy function. 5

Problem 1.11 [Weierstrass Approximation Theorem] Prove: For every con-
tinuous function f : [0;1] ! R and every > 0, there is a polynomialp
g.lch thatjf (x) p(x)j < for everyx 2 [0;1] (Hint : Consider pn(X) :=

o n XL x)" 'f(i=n).) 5

Problem 1.12 Repeat the basic proof structure of the CH bounds to derive &

identical), and X := , Xj, then for any > 0,
e EX]
Prix (1+ )EX]] @+ )a
(a) Compare this bound to the %ra(:ach%prt%}%%g by setting := HX]=n in the

relative entropy bound derived in [[.4).
(b) Argue further that the right side is bounded by (;2-)®* J8XI and hence infer
thatif > 2e 1, then

PriX (1+ )gEX] 2 @8]

Problem 1.13 Let Xq; ; X, be random variables bounded in [A] such that
for eachi 2 [n],

BXij Xy 5 Xid o
Show that in this case, the upper tail for ,X; can be upper bounded by
the upper-tail CH-estiamte for an independent set of varidbs X9, ;X2 with
HXJ = p. Formulate and prove a symmetric condition for the lower tdi 5

Problem 1.14 Let X4;:::;X, be a set of binary random variables satisfying
the condition " #
N Y
Pr X;=1 PriX; = 1]
i2S i2S

for aIbsubsetsS. Prove that under this condition the Cherno bound holds for
X = ; Xi. 5
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Problem 1.15 In this problem, we explore a further extension of the CH bouds,
namely to variables that are bounded in some arbitrary intesals, not necessarily

[ai;h] for some realsy;h.
(a) Supposea; = aand b = bfor eachi 2 [n]. Derive a bound by rescaling the
Hoe ding bound for [0; 1].
(b) Does the rescaling work for non{identical intervals?
(c) Derive the following general bound for non{identical itervals by repeating
the basic proof technique:

2t2

PrjX HX]j t] 2exp FW

Problem 1.16 [Sums of Exponential Variables] Letz = Z; + + Z, where
Zi;i 2 [n] are independent and identically distributed with the exponential
distribution  with parameter 2 (0;1). The probability density function for
this distribution is

f(x)= e *;
and the corresponding cumulati\ée distribution function is

F(x) = Xf(t)dtzl e X
0

Give a sharp concentration result for the upper tail oZ. 5

Solution. Note that for eachi 2 [n],

1 Z 1 1
Hzi] = xf (x)dx = xe Xdx= =:
0 0
Hence X n
HzZ]=  HZ]= —:

We cannot apply the Cherno {Hoe ding bounds directly to Z since the sum-
mands are not bounded. One solution is to use the method wlincation. Let

Z%i 2 [n] be de ned by

z2:=min(Zi;n); i2][n];
P
for some 0< < 1 to be chosen later. LetZz?:= . Z2 Observe rst that
HZ9 HZz]. Second, that since for each2 [n],Pr[Zi>n ] 1 F(n)=e",
N

P[ Zi=2Z] 1 ne":
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Finally, since the summandsZ? are bounded (0 Z? n rOflg):reenarl‘%l:rr‘]iez [n]), one

can apply the Cherno {Hoe ding bounds from Problem[I.15. Hence,
Pr[z > HZ]+ t] Pr[z°> HZ]+ t]+ ne "
Pr[z°> HzZ9+ t]+ ne "

t2
n .
exp 12 +ne":
Fort:= HZ]= I, this gives
2n1 2
Priz> (1+ )HZ]] exp ——— +ne":
To (approximately) optimise this, choose = % Then,
2n1=3 123
Prz > (1+ )HZ]] exp +ne "

Another approach is to apply the Cherno technique directly Compute the
moment generating function

YA 1
He”']= e*e *dx= ——;
0
for)< < . Thus
n
Hez] = -
! n
: 1
1 _
Hence,
He” ]
Pr[z >t] ot
— 1 .
et 1 -
Using Calculus,we nd the optimal value of to be := T and substituting

this gives the bound:
t
Priz >t] — e ttm
n

With t :=(1+ )HZ], this gives

e
1+

This is a much better bound than that achieved by truncation. 4

Pr[z > (1+ )HZ]]
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Problem 1.17 Give a sharp concentration bound on the upper tail a2+ :::+
Z2 where Z;;i 2 [n] are i.i.d. variables with the exponential distribution asin
the previous problem. 5

Solution. For eachi 2 [n], note that
yA 1
Hz?] = x%e * dx =

and hence

Denote this by .

Apply the method of truncation as in the previous problem. Wh the same
notation as in the previous problem,

t2

Prizz+ +2Z2> +1t] Priz2+ +2Z2> +1t] exp e +ne " :

With t := | this gives,
Prizz+ +2Z2>(@1+ )] exp 4(-)nt? +npe":

Pick = % to approximately optimise this. 4

Problem 1.18 Suppose a fair die is tossed times and let X be the total sum
of all the throws.

(a) Compute HX].

(b) Give a sharp concentration estimate onX by applying the result of the
previous problem.

(c) Can you improve this by deriving the bound from scratch usg the basic
technique? 5

Problem 1.19 In this problem, we shall explore the following question: Hwo
does the concentration bound on non{identically distribu¢d variables depend on

denote the sumber of successes rnindependent trials where the probability of
success at theth trial is p;. Let

L(c;p) := Pr[B(n;p) ¢l U(c;p):= Pr[B(n;p) ¢l
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Fix some > 0. We shall explore how. and U are related for di erent p in the
region X
D()=fpj0 p 1, p= @
i
Let
p()=n Gy ) pO)=@@5nL [ 10:::50)
The rst corresponds to the identical uniform case and the send (with [ ] ones
andn [ ] 1 zeroes) to the other extreme. Note that botp ( );p( ) 2 D( ).
(a) Show that for anyp 2 D( ),

L(c;p) L(cp) L(cp) if0O c b 2c;

and
U(c;p) U(cip) U(cp) ifb +2c ¢ n:
(b) More generally, letp; p®2 D be such that there is a doubly stochastic matrix
with p°= p. Equivalently, if
Pay Pe % PO IOOO(l) IOOO(z) e IOOO(n)?

then foreach 1 k n, X X

o .
P @ P oy
i k i k

The vector p is said tomajorise the vector p® Show that

L(c;p) L(c;p9 if0O c b 2c;

and
U(c;p) UcpY ifb +2¢c ¢ n:

Verify that this generalises part (a). 5



Chapter 2

Interlude: Probabilistic
Recurrences

Karp}f%%%'eveloped an attractive framework for the analysis oiindomized al-
gorithms. Suppose we have a randomized algorithm that on inop x, performs
\work" a(x) and then produces a subproblem of sizd (x) which is then solved
by recursion. One can analyze the performance of the algdmih by writing down
a \recurrence":

T(x) = a(x)+ T(H(X)): (2.1)

Super cially this looks just the same as the usual analysisfalgorithms via
recurrence relations. However, the crucial di erence is #t in contrast with
deterministic algorithms, the slze of the subproblem prodwed here,H(x) is a
random variable, and so ﬁgr)ﬁaprobablllstlc recurrenceequation.

What does one mean by the solution of such a probabilistic necence? The
solution T(x) is itself a random variable and we would like as much inforntian
about its distribution as possible. While a complete desgiiion of the exact
distribution is usually neither possible nor really neceasy, the \correct" useful
analogue to the deterministic solution is a concentrationfameasure result for
T(x). Of course, to do this, one needs some information on the glibution of the
subproblemH (x) generated by the algorithm. Karp gives a very easy{to{apm
framework that requires only the bare minimum of informatio on the distribution
of H(x), namely (a bound n.)reth expectation, and yields a concemttion result
for T(x). Suppose that in EQT we haveHH (x)] my P for some function 0
m(x)  x. Consider the \deterministic" version of o tained by replacing
the random variableH (x) by the deterministic bound m(x)

u(x) = a(x) + u(m(x)): (2.2)

33
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P .
The solution to this equation isu(x) = ; ja(m'(x)), where m°(x) := 0 and
m'*1(x) = m(m'(x)). Karp gives a concentration result around this valueau(x):

. . leq;recl
Theorem 2.1 (Karp's First Theorem) Suppose that in 2.&), we haveeH (x)]

m(x) for some function0 m(x) x and such thata(x); m(x); m)((x) are all non{
decreasing. Then

m(x) '

Pr[T(x) > u(x) + ta(x)] x

We have stated the result in the simplest memorable form thataptures the
essence and is essentially correct. However, technicallyetstatement of the
theorem above is actually not quite accurate and we have orteétd some continuity
conditions on the functions involved. These conditions usil A IdLin all cases
where we'd like to apply the theorem. Moreover, as shown , some of these
conditions can be discarded at the cost of only slightly weaking the bound. For
instance, we can discard the condition thaf@ is non{decreasing; in that case,

t
the bound on the right hand side can be essentially replacegt bmax, y « @

Also, in the formulation above, we assumed that the distribtion of H Qr( 9the
size of the derived subproblem depends only on the input sixe Karp gives
a more general formulation where the subproblem is allowed depend on the
actual input instance. Suppose we have a \size" functios on inputs, and on
processing an inputz, we expend worka(s(z)) and get a subproblemH (z) such
that Hs(H(z))] m(s(z)). The probabilistic recurrence is now

T(2) = a(s(2)) + T(H(2)):

By considering T{x) := maxs(,=x T(2), one can bound this by a recurrence of
the earlier form and apply the Theorem to give exactly the saesolution. Thus
we can apply the Theorenper seeven in this more general situation.

We illustrate the ease of applicability of this cook{book stle recipe by some
examples (taken from Karp's paper).

Example 2.2 [Selection] Hoare's classic algorithm for nding thekth smallest
element in an{element setS, proceeds as follows: pick a random elemen2 S
and by comparing each element its nr with r, partition Snr into two subsets
L:=fy2Sjy<rgandU:=fy2 Sjy>rg. Then,
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If jLj Kk, recursively nd the kth smallest element inL.
If jLj =k 1, thenreturnr.

If jLj <k 1, thenrecursively ndthek 1 j Ljth smallest elementinU.

The partitioning step requiresn 1 comparisons. It can be shown that the
expected size of the subproblem, namely the sizelofor U is at most =4, for
all k. Thus Karp's Theorem can be applied withm(x) = 3x=4. We compute
u(x) 4x. Thus, if T(n; k) denotes the number of comparisons performed by the
algorithm, we have the following concentration result: foallt 0,
3 t
Pr[T(n;k) > 4n+ t(n 1)] 2 :

This bound is nearly tight as showed by the following simplergument. De ne a

bad splitter to be one Wherej”m. log logn or J%J log logn. The probability of

this is greater than W The probability of picking loglogn consecutive bad
splitters is ( mﬁjm). The work done for log logh consecutive bad splitters

IS

1 1 2 . 1 loglog n

n+n +n 1 +::n 1
log logn log logn log logn

which is ( nloglogn). Compare this with the previous bound using = log log n.
5

Example 2.3 [Luby's Maximal Independent Set Algorithm] Lubﬁ%%sives a
randomized parallel algorithm for constructing a maximalndependent set in a
graph. The algorithm works in stages: at each stage, the cemt independent
set is augmented and some edges are deleted form the graph.e Tdigorithm
terminates when we arrive at the empty graph. The work perfoned at each
iteration is equal to the number of edges in the current graph Luby showed
that at each stage, the expected number of edges deleted isledst one{eighth
of the number of edges in the complete graph. T (G) is the number of stages
the algorithm runs and T{G) is the total amount of work done, then we get the
concentration results:
t

Pr[T(G) > logg_; n + t] g :

PrTYG) > (8 + t)n]
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Example 2.4 [Tree Contraction] Miller and Reif%%%sgive a randomizedree con-
traction algorithm that starts with a n node tree representing an arithmetic ex-
pression and repeatedly applies a randomized contractioperation that provides
a new tree representing a modi ed arithmetic expression. Ehprocess eventually
reaches a one node tree and terminates. The work performedtire contraction
step can be taken to be proportional to the number of nodes imé tree. Miller
and Reif show that when applied to a tree withn nodes, the contraction step
results in a tree of size at most @4=5. However the distribution of the size may
depend on the original tree, not just the original size. De B the size function
here to be the number of nodes in the tree in order to apply the ane general
framework. Let T(z); TYz) denote the number of iterations and the total work
respectively when the contraction algorithm is applied toree z. Then, Karp's
Theorem gives the measure concentration results:

Pr[T(z) > logs,n+ t]  (45);

and
PriTYz) > (5+ t)n] (4=5)":

Under the weak assumptions on the distribution of the inputKarp's First The-
orem is essentially tight. However, if one has additional farmation on the dis-
tribution of the subproblem, say some hﬁgeher oments, theme can get sharper

. . c.martingales
results which will be explored below irx 777.

Karp also gives an extension of the framework for the very uské case when

the algorithm might generate more than one subproblem. Suppe we have an
algorithm that on input x performs worka(x) and then generates a xed number

k 1 sub{problemsH(x);:::;Hk(x) each a random variable. This corresponds
to the probabilistic recurrence:

T() = a)+ T(Hi)+  + T(H(x): (2.3)

To obtain a concentration result in this case, Karp uses a derent method which
requires a certain condition:

e

. ‘rec2
Theorem 2.5 (Karp's Second Theorem) Suppose that in }293)* we have that

HT (x)] HT(xi)]: (2.4) |eq:karpconditic
i
Then, we have the concentration result: for abt and allt> O,
PriT(x) > (t+ 1)ETX)]] <e "
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.. eq:karpcondjtion : .
The condition (bgm_‘)—dTFm. says that the expected work in processingny sub{problems
that can result from the original one can never exceed the eagted cost of the

processing the original instance. This is a very strong assption and unfor-
tunately, in many cases of interest, for example in computetnal geometry, it
does not hold. Consequently the theorem is somewhat sevgrémited in its
applicability. A rare case in which the condition is satis @l is for

Example 2.6 [Quicksort] Hoare's Quicksort algorithm is a true classiani Com-
puter Science: to sort a sef of n items, we proceed as in the selection algorithm
from above: select a random elememt2 S and by comparing it to every other
element, partition S as into the setsL of elements less tharx and U, the set of
elements at least as big as. Then, recursively, sortL and U. Let Q(n) denote
the number of comparisons performed by Quicksort on a setwfelements. Then
Q(n) satis es the probabilistic recurrence:

T(n)=n 1+ Q(Ha(n))+ Q(Hz(n));
where Hy(n) = jLj and Hy(n) = jUj. For Quicksort we have \closed-form"
solutions for ¢, := HQ(n)]which imply that ¢, g+ ¢ i 1+ n 1 for any
0 i<n, which is just the condition needed to apply Karp's Second Téorem.
Thus we get the concentration result:

PrQ(n) > (t+1)a] e":

Actually one can get a much stronger bound by applying Karp'&irst Theorem
suitably! Charge each comparison made in Quicksort to the n{pivot element,
and let T(") denote the number of comparisons charged to a xed elementhen
Quicksort is applied to a list . Use the natural size functions(’) := j'j, which
gives the number of elements in the list. Then we have the retance, T(") =
1+ T(H()), wheres(H (") = jj=2 since the sublist containing the xed element
(when it's not the pivot) has size uniformly distributed in [0;jj]. So applying
Karp's First Theorem, we have that fort 1,

PrT() > (t+1)logj’j] (1=2)""=jj "

Thus any xed element in a list of n elements is charged at mostt(+ 1) log n
comparisons with probability at least 1 n . The total number of comparisons
is therefore at most { + 1) nlogn with probability at least 1  n' 1,

This is an inverse polynomial concentration bound. In a latesection we shall
get a somewhat stronger and provably optimal bound on the coaentration. 5

It would naturally be of great interest to extend the range ofKarp's Second
Theorem by eliminating the restrictive hypothesis. For inance, it would be of
interest to extend the Theorem under the kind of assumptions Karp's First
Theorem.
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Chapter 3

Applications of the
Cherno -Hoe ding Bounds

ch:CH-appls

In this chapter we present some non-trivial applications dhe Cherno -Hoe ding
bounds arising in the design and analysis of randomised aljloms. The exam-
ples are quite di erent, a fact that illustrates the usefulress of these bounds.

3.1 Probabilistic Ampli cation

The following situation is quite common. We have a probabaitic algorithm that,
on input X, computes the correct answef (x) with probability strictly greater
than % For concreteness, let us assume that the success probapik p % and
that the algorithm has two possible outcomes, 0 and 1. To batosur con dence
we run the algorithm n times and select the majority answer. What is the
probability that this procedure is correct?

Let X be the number of occurrences of the majority value. TheE|X] = pn > %n.
The majority answer is wrong if and only ifX < 7. Note that here we do not

know the exact value ofX ], but only an upper bound. In our case we hava
independent trials X, ea%hw%gv rcT‘QSsucceeds with probability 2. Usin th%sbound
fact noted in Exermsal Z, one can apply the CH bound directly. Recalllnd%gﬁi
if we sett := 7, we have that
h [
n _
Pr X< = e "™
2

eq:relbo
The reader can check that ﬁ97)—lﬂlyle S worse estimates. Probler% 4 asks to
generalize this to the case when the algorithm takes valuas an in nite set.

39
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3.2 Load Balancing

Suppose we have a system in whiam jobs arrive in a stream and need to be
processed immediately on one of a collection ofidentical processors. We would
like to assign the jobs to the processors in a manner thaalancesthe workload
evenly. Furthermore, we are in a typicaldistributed setting where centralized
coordination and control is impossible. A natural \light-weight" solution in such
a situation is to assign each incoming job to a processor ckosuniformly at
random, indepndently of other jobs. We analyse how well thischeme performs.

Focus on a particular processor. leX;;i 2 [m] be th eindicator variable for
whether job nlgmberi is assigned to this processor. The total load of the processo
isthen X := ; X;. Note that Pr[X; = 1] = 1 =n bacuse each job is assigned to
a processor chosen uniformly at random. Als&X,; X, are independent.

P
First let us consider the SASE Wh nthen = 6ninn. Then EX] = HX|] =
m=n=61In n. Applying ( We see that the probability of the processors load
exceeding 12Im is at most

Pr[X > 12Inn] e 2" 1=n?%

Applying the union bound, we see that the load of no processexceeds 6Im
with probability at least 1 1=n.

et!gﬁ s consider the case whem = n. In this case,HX] = 1. Applying
hg;%iwe See that

Pr[X > 2logn] 2 2'°9"  1=p?

Applying the union bound, we see that the load of no processexceeds 2log
with probability at least 1 1=n.

rob:mrch
However, in this case, we can tighten the analysis using th@ind in (E‘IZBL.

e E[X].

PriX (1+ )BX]] m

Set(1+ ):= ¢, then
1

e :
Prix>e]< S @)

To pick the appropriate ¢ to use here, we focus on the functiom*. What is
the solution to x* = n? Let (n) denote this number. There is no closed form
expression for (n) but one can approximate it well. If x* = n, taking logs gives
x logx =log n, and taking logs once more gives log+loglog x = loglog n. Thus,

2logx > logx +loglogx = loglogn >> 766 logx:
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Using this to divide throughout the equationxlogx = log n gives

1 logn _
2° loglogn (n):
Thus (n) = ( peiis).
ic-int
Settingc:= e (n) in (bgﬁ—ﬁe. ,Ir{/\?er ave:
e 1 e c 1 e (n) 1 2 (n)
Pr[X > < — < - = — < — =1=
e () ™ "

Thus the load of any one processor does not exceedn) = (log n=loglogn)
with probability at least 1 1=n?. Applying the Union bound, we conclude that
with probability at least 1  1=n, the load of no processor exceeds this value. It
can be shown that this analysis is tight { with high probabilty some processor
does receive (logn=loglogn) jobs.

3.3 Data Structures: Skip Lists

The second example concerns the design and analysis of dataictures. We
shall discuss a useful data structure known as Skip List.

3.3.1 Skip Lists: The Data Structure

We want to devise a data structure that e ciently supports the operations of
inserting, deleting and searching for an element. Elementye drawn from a
totally ordered universeX of sizen, which can be assumed to be a nite set of
natural numbers. The basic idea is as follows. Order the elemts and arrange
them in a linked list. We call this the Oth level and denote it ly L. It is convenient
to assume that the list starts with the element1 . With this convention

Lo= 1! Xp b X b il Xy

We now form a new linked listL ; by selecting every second element froin, and
putting 1 in front.

L= 1! Xol Xa! 001 X

Identical elements in the two lists are joined by double poters, including 1 's.
Continuing in this fashion we obtain a structure with O(logn) levels like the
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Figure 0.1: A skip list for 16 elements. Boxes storé 's, circles store the data.|fig:example

one in Figure%gf—x%%&structure resembles a binary tree and likewise aWs for
e cient searches. To search for an elemerny we start from the top list L; and
determine the largest element ok which is smaller than or equal toy. Denote
such element bye,. Then we go down one level, position ourselves on the copy
of ¢ and look for the largest element of.; ; smaller than or equal toy. To do
so we only need to scah; ; to the right of . Continuing in this fashion we

than or equal toy. Clearly, y is present in the data structure if and only ifey = .

Although an element could be encountered before reachihg, we assume that
the search continues all the way down. This makes sense in &pations for

which the elements are keys pointing to records. In such casene might not
want to copy a whole record at higher levels. This conventioalso simpli es the
probabilistic analysis to follow.

When performing a search we traverse the dat L structure in dgzzag fashion,
making only downturns and left turns (see Figur%gzz)g‘ﬂ%. . The cost of the traversal
is proportional to the sum of the height and the width of this @th, both of which
are O(logn). The width is O(logn) because each time we go down one level
we roughly halve the search space. Searches are inexpenas/dong as the data
structure stays balanced. The problem is that insertions ahremovals can destroy
the symmetry, making maintenance both cumbersome and exmve. By using
randomization we can retain the advantages of the data strture while keeping
the cost of reorganizations low.

3.3.2 Skip Lists: Randomization makes it easy

As before,L is an ordered list of all the elements. Subsequent levels dailt

according to the following probabilistic rule: Given that an elementx appears in
level i, it is chosen to appear in level + 1 with probability p, independently of
the other elements. Thus, the highest level that an elementppears in obeys a
geometric distribution with parameter p. If we denote byH; the highest level to
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O—»O—»i
I—»O—»O

Figure 0.2: A zig-zag path through the data structure genetad by a search.

which x; belongs, then

PrH, = k1= P ) (3.2)

H; is called theheightof x;. The data structure is organized as before, with each
level being an ordered list of elements starting withil , and with copies of the
same element at di erent levels arranged in a doubly linkeddt. Such a data
structure is called askip list.

A search is implemented as before. To insert an elementve do as follows. First,

in Lo betweengy and its successor. Then we ip a coin; if the outcome i&il we
stop, otherwise we inserk in L; betweene, ; and its successor. And so on, until
the rst Tail occurs. Although we could stop when the last level is reachede
do not do so because this would slightly complicated the prabilistic analysis.

To remove an elemenk, we rst locate it by means of a search and then remove
all occurrences ok from all levels, modifying the pointers of the various listsn
the obvious way.

How expensive are these operations? When inserting or délgt an elementx;
the cost is proportional to that of a search forx; plus H;. As we shall see, the
cost of each search is upper-bounded by tteightof the data structure, de ned

as
H = max Hi: (3.3) |def:height

The cost of a search forx; is proportional to the length of a zig-zag path of
height H; H and width W;. We will prove that with high probability the
orders of magnitude ofwW; and H are the same. Intuitively, this is because the



44 CHAPTER 3. APPLYING THE CH-BOUNDS

data structure stays roughly balanced. For we expect one ivery 1=p elements
of Ly to belong toLy+; When Ly is sizable large deviations are unlikely.

We now study the random variableH . First, we prove that H = O(logn) with
high probability.

p:shallowHeight ‘ Proposition 3.1 Pr[H >a logn] n &%, foranya> 0.

Proof. The height H; of any elementi 2 [n] in the list is a geometrically
distributed random variable with the parameterp:

PriH; = k]= p‘q; k O (3.4)

Hence fors 1,

Pr[H; > "]

X
Pr[H; = K]

X

= P

k>

- pe @)

The height of the skip list,H is given by

H = max H;: (3.6)

Hence,
Prfl[H>"] = Pr[ H;>"]
X i

Pr[Hi > ]

i

= mp: 3.7
In particular, for = := alog,n 1;(a> 0),
Pr[H>alog,n] n *: (3.8) [eq:Hgeqclogn |

Refer now to Figure%‘c.l'zz._'g'lz‘%%:ost of a traversal is equal to the number éfs plus
the number of! 's. If an #-edge is traversed then the element must be stored
in the two consecutive leveld  and Ly.; of the data structure. This means that
whenx ipped its coin to determine whether to percolate up fromLy to Ly+; the
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outcome wasHead . Similarly, if an elementx is entered from the left with a!

it means that whenx ipped its coin at level Ly the outcome wasTail . We label
each# with p{ denoting successand each! with g denoting failure. Then,
the number of arrows in the path is equal to the number of timeseded to toss a
coin with biasp in order to obtain H successesThe distribution of the random
variable de ned as the number of tosses of a coin with bigsneeded to obtain
k successes, is callegegative binomialand the random variable is denoted by
W (k; p). W(k;p) is closely related to the binomial distributionB (n; p).

In order to show that W (k; p) = O(logn) with high probability we can proceed
in several di erent ways, some of which are is explored in theroblem section.
Perhaps the simplest approach is to start by establishing aonnection with the
binomial distribution.

Proposition 3.2 Pr(W(k;p) m)=Pr(B(m;p) k):

lprob:equivalence
Proof. See Exercis&.b. |

Let a and b be two parameters to be xed later. De ne

k
m

alogn
blogn:

The rst of these two values will upperboundH while the second will upperbound

the time of a search i.e. the total number offs and! 's of a traversal. By
[proprequivalence

Proposition 3.2

Pr(W(k;p) >m) =Pr(B(m;p) <k)

which translates the problem into that of estlmathg Y?pns of the binomial
-:userul-rorms

distribution below the mean. Recalling TheoremL 1, 1.e. the CH-bounds in
usable forms,

Pr(B(m;p) <E [B(m;p)] t)=Pr(B(m;p)<pm t) e 2™

By setting
k=pm t

and solving fort, we get
t=(pb a)logn;
which gives
1

PrB(M;p) <k) ey
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. " rop:shallowHeight
Recalling Proposmonlg.f,) andJ s\f\éttllr?ga =2,b=8,and p=1=2

Pr(cost of search> m) =
Pr(cost of searclbm jH  k)Pr(H k) +
Pr(cost of searcte m jH >k )Pr(H > k)
Pr(cost of searctem jH Kk)+Pr(H >k)
Pr(W(k;p)>m)+Pr(H >k)

1 N 1
n(pb a)?=b na 1
2
" n

Therefore with probability at least 1 % no search ever takes more than 8 log
steps. Furthermore, with at least the same probability, nonsert or delete ever
takes more thanW(H;p)+ H (a+ b)logn = 10logn steps.

3.3.3 Quicksort

ch-appl:gsort ‘

The randomized version of well-known algorithm quicksortsione of, if not \the"
most e ective sorting algorithm. The input of the algorithm is an array

of n numbers. The algorithm selects an element at random, the sadled pivot,
denoted here ap, and partitions the array as follows,

where theys are less than or equal t@ and the zs are strictly greater (one of
these two regions could be empty). The algorithm continuesith two recursive
calls, one on they-region and the other on thez-region. The end of the recursion
is when the input array has less than two elements.

We want to show that the running time of the algorithm isO(nlogn) with prob-
ability at least 1 % The overall running time is given by the tree of recursive
calls. The tree is binary, with each node having at most two dadren corre-
sponding to they- and the z-region obtained by partitioning. Since partitioning
requires linear time, if we start with an array ofn elements, the total work done
at every level of the tree iSO(n). Therefore to bound the running time it su ces
to compute the height of the tree. We will show that, for any laf, the length of
the path from the root to the leaf is at most 4logn, with probability at least
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1 niz The claim will then follow from the union bound, since in thetree there
are at mostn nodes. Denoting withP a generic path from the root to a leaf,

Pr[9P;jPj> 4log,n] nPr[jPj> 4log,n] %:

We now bound the probability that a path has more than 4 logn nodes. Call a
node goodif the corresponding pivot partitions the array into two regons, each
of size at Ieast% of the array. The node isbad otherwise. If a path containst
good nodes the size of the array decreases as

2 2 tn_
St 3St 1 3 :
It follows that there can be at most
log, n
t= < 2log, n
00, %

good nodes in any path. We now use the Cherno -Hoe ding boursdto show
that

S 1
Pr[jPj > 2log, n] < F:

Let " := jPjand let X; be a binary random variable taking the value 1 if nodeis

bad, and O g it is good. TheX;s are independent and such that PH; = 1] = %
Thus X = _ .éB())éﬁdis the number of bad nodes in the pathP and X] = =3.

Recalling hgs%_f_be.' ,fort> 2e'=3,

1
PrIX>t] 2 =

provided that 3
S log, n:

Therefore the total number of good and bad nodes along any padoes not
exceed 4 logn with probability at least 1 % By ddling with the constant it
IS possible to show that the rlunnlng time of randomized qull(%%tobsd%ga_lgg n)
with probability at least 1 —, for any xed k. In Chapter [7"we will derive a
stronger bound by using martingale methods.

3.4 Packet Routing

Packet routing is a fundamental problem in the.context of pallel and distributed
computation. The following set up, followin ], captures many of its combina-
torial intricacies. The underlying communication networkis modelled as a simple
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graph G = (V;E) with jVj = nandjEj = m. In the network there areN packets

tion. The goal is that of nding a routing algorithm, or schedulethat minimizes
the time to deliver all packets. The key constraint is that iftwo or more packets
are to traverse an edge at time t, only one packet can traverse it (packets queue
up at edge endpoints if necessary, and the algorithm must dde which goes on
next).

It is instructive to look for a lower bound for completion time. Since for every
time unit each packet can traverse at most one edge, the follmmg quantity, called
the dilation, is a lower bound:

d := max jryj:
p

A second trivial lower bound is the so-calledongestion Given an edgeg, let Pe
denote the set of packets that must traverse to reach their destination. Then,

C:= mngPej

is a lower bound for completion time in the worst case. A trial upper bound
is then then ¢ d time units. Unless care is exercised in the routing policy ¢
schedulecan be as bad. A remarkable result stzﬁaﬁzthat, for every input,here is
always a schedule that takes onl{p(c+ d) stepsi??. In what follows we exhibit
a very simple schedule and show, using the Cherno bounds,atit delivers all
packets inO(c+ dlog(mN)) steps with high probability. The basic idea is for
each packet to pick a random delay 2 [r] and then start moving. The maximum
congestion possible at an edgeis bounded byjPsj c. If r were large enough,
a random delay would ensure that, with high probability, forevery edgee and
any given timet, the queue fore at time t would consist of at most one packet.
The resulting schedule would then deliver all packets withiO(r + d) steps. For
this to work however,r must be too large.

Exercise 3.3 How large mustr be so that all packets are delivered within+ d
steps with probability at least %?

A way out is to accept to have more than one packet per edge atyagiven time,
but to keep this number always below a certain maximunt. If congestion for
any edge at any time is at mosb, we can route all packets withinb(r + d) steps
using the following simple algorithm,

Pick a random delay 2 [r] uniformly at random, independently of other
packets.
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Traverse each edge of the path from source to destination ngib time units
for every edge.

Note that time is grouped in macro-steps ob time units each, and that every
packet uses a full macro-step to traverse an edge. l.e. a peick traverses tehkth
edge of its router, at a time t in the interval [(k 1)b+1;kb]. Since queues never
have more thanb packets every packet will have a chance to traverse an edge
within a macro-step. The time bound follows. We will show thathe parameters

r and b can be chosen so that(r + d) = O(c+ dlog(mN)).

For the analysis, x an edgee and a macro-steps, and let X ¢s denote the number
of packets that queue up at at macro steps when following the above algorithm.
We can decompos& s as the sum of indicator random variable yes for every
packet p 2 P, where X ¢ indicates if p queues up ate at macro steps or not.

Thus, X

and X c
HXes] = E[X pes] :
P2Pe
The bound on the expectation follows, since each packet pgcla random delay
2 [r] uniformly at random and jPej c. Note that, for the samee and s, the
Xpes's are independent and we can therefore apply the Cherno bads. Since
we do not know the expectaﬁion bu{hggmd’m upper bound, we makuse of the

:Ch-
bound developed in Exerciseﬁi(z% v\\llvlltn H =Srt and get,

Pr(X> (1L+ )c=r) exp %c3r

For de niteness, let = 1. We de ne

3c
0= 27
and . c
" 12 log(mN)
so that 1
Pr(Xes>hb) (N :

Let E be the event that some edge has more thamqueuing packets at some
macro-step. Since there aren edges and ¢ N macro-steps, we can bound
Pr[E] using the union bound,

1 1

X
Pr[E] Pr(Xes>b) mN N (mN) I

e;s
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By choosing = 2 the probability that no edge ever has more tharb queuing
packets is at least 1 ﬁ Assuming this, the total time needed to deliver all
packets is at most

b(r + d) = O(c+ dlog(mN))
as claimed.

3.5 Randomized Rounding

Work in progress...

3.6 Bibliographic Notes

90
Skiplists are an invention of W. PugHFS%Lu

3.7 Problems

Problem 3.4 A randomized algorithmA, on input x, gives an answeA(x) that
is correct with probability p > %. A(x) takes values in the set of natural numbers.
Compute the probability that the majority outcome is corred¢ when the algorithm
is run n times. How largen must be to have a @9 con dence that the answer is

correct? 5

Problem 3.5 The following type of set SYStgms is a crucial ingredient inhe
construction of pseudo-random generato . Given a universelJ of sizejUj =

cn a family F of subsets ol is agood familyif (a) all sets in F haven elements;
(b) given any two setsA and B in F their intersection has size at most; and,
(c) jFj =2(m,

Show that there is a value ofc for which good families exists for every (Hint:
partition the universe into n blocks of sizec and generate sets oh elements
independently at random by choosing elements randomly in eéa block. Then
compute the probability that the family generated in this fashion has the desired
properties.) 5

In the next three problems, we shall derive bounds on the suno$ independent
geometrically distributedvariables. Let W(1;p) denote the number of tosses
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required to obtain a \heads" with a coin of biasp (i.e. Pr(heads) = p;Pr(tails) =

1 p=:q. Note that PrfW(1;p) = ']= q 'p, for* 1. LetW(n;p) denote
the number of tosses needed to gatheads. Note thatW(n;p) = 5, Wi(1;p),
where the W;;i 2 [n] are independent geometrically distributed variables wit
parameterp. The variableW (n; p) is said to have anegative binomial distribution

b:equivalence ‘ Problem 3.6 Prove that Pr(W(k;p) m)=Pr(B(m;p) k): 5 This is actually

an exercise...

prob:negbin2 ‘ Problem 3.7 A second approach to derive concentration results oW (n; p) is
to apply the basic Cherno technique. Consider for simplity the casep = % =g

(a) Show that for any integerr 1, and for any 0< < 1In2, Does this work
if we replace 2

(r+1) N with 1 =p?

PIW(nip) 2+ 0n] S

(b) Use Calculus to nd the optimal and simplify to derive the bound that for
r 3,

PrW(n;p)  (2+1)n] e ™%
You may nditusefultonotethatl x e *andthatl+r=2 €& 4forr 3.
Compare this bound with the one from the previous problem. 5

Solution. Work in progress... 4

prob:negbin3 ‘ Problem 3.8 Here is a third approach to the negative binomial distributon.
(a) By explicit computation, show that

. nX t 1
PrW(mp) 1= © T ¢ -
q . n
P t 1
(b) Let S, =  .qd '~ . Show that
1
Sh = g g ! n +Sh 1
Hence deduce that
. . X n+l i 1
PrW(n;p) =g '° o
0i n p |

(c) Consider the casgp = 1=2 = gand nd a bound for Pr[W(n;p) (2 + r)n]
and compare with the previous problem. 5
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Solution. Work in progress... 4

Problem 3.9 Prove a sharp concentration result for the space used by a gki
list. 5

Solution. The space used by the data structure is
X

= H 39

i2[n]

In view of AR is is therefore a sum of geometrfgcr pagg lom Ivarlablem S, =
W(%l%)o eguHaeE[CS ] = n=p. Recalling Propositioni3.Z {or, equivalently, Prob-

lem 3.6), forr > G,

PriS,  (r+1=pn] = Pr[B((r +1=pn;p) n]
= Pr[B((r+1=pn;p) (rpn+n) rpn]
= Pr[B((r +1=pn;p) HB((r +1=pn;p)] rpn]
exp 2r?p’n

where the last line follows by the Cherno bound on the binonal distribution.
4

Problem 3.10 What is the best value ofp in order to minimize the expected
time of a search operation in a skip list? 5

Problem 3.11 In this rlﬁlf‘ we deal with a very elegant data structure tad
treaps (see for instancg’g—% . A treap is a binary tree whose nodes contain
two values, akeyx and apriority ps. The keys are drawn from a totally ordered
set and the priorities are given by a random permutation of th keys. The tree
is a heap according to the priorities and it is a search tree earding to the keys
(i.e. keys are ordered in in-order).

(&) Show that given a totally ordered sefX of elements and a functiorp assign-
ing unique priorities to elements inX, there always exists a unique treap
with keys X and priorities p.

Treaps allow for fast insertion, deletion and search of aneshent. The cost
of these operations is proportional to height of the treap. nl what follows we
will show that this quantity is O(logn) with high probability. Analyzing treaps
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. : . K .
boils down to the following problems on random permutaﬂon&%B]. Given a
permutation p: [n]! [n] of the n elements, an element isheckedf it is larger
than all elements appearing to its left inp. For instance, if

p=31548627

the elements that are checked are in bold. It is convenient tgenerate the per-
mutation by ranking n realsr; 2 [0;1] chosen independently and uniformly at
random for each element (the elemernitwith the smallestr; is the rst element
of the permutation, and so on. Ties occur with probability ze).

(b) Denoting with X,, the elements that are checked whep is random, prove

that L L
HXn =1+ =+ :::+ ﬁ:
(It is known that the quantity H, := ., % the nth harmonic number is
(log n).
(c) Let Y; be a binary random variable denoting whether elemerntis checked.
Prove that
: 1
PrIYi =1 Yn =y Yier = Vist] = K i+l
for any choice of theys.
(d) Is the following true?

1
I

h;|
(e) Using the generalization of ProbleMprove that X, is O(logn) with
high probability.

(f) Show that the number of nodes X; px) such that x < k that lie along the
path from the root to (k; px) is given by X.

(g) Prove an analogous statement for the elements > k and conclude that
the height of a treap isO(log n) with high probability.

Problem 3.12 The following type of geometric random graphs arises in the
study of power control for wireless networks. We are givam points distributed add refs?
uniformly at random within the unit square. Each point connets to the k closest
points. Let us denote the resulting (random) graph a&y.
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Show that there exists a constant such that, if k

connected with probability at least 1 %

Show that there exists a constant such that, if k
not connected with positive probability.

logn, then G} is

logn, then G} is



Chapter 4

Cherno -Hoe ding Bounds In
Dependent Settings

[CH-bounds with Dependencies]

In this chapter, we consider the sum

X=X (41

2A

whereA is a index set and the variablexX ; ; 2 A may not be independent. In
some dependent situations, the Cherno -Hoe ng bound can besalvaged to be
applicable (as is, or with slight modi cations) to X ..

4.1 Negative Dependence

The results in this section are from D. Dubhashi and D. Ranjan\Balls and
Bins: A Study in Negative Dependence"Random Structures and Algorithms13
(1998), no. 2, 99{124.

We consider the sum E,Q'I(j)g\%r%]eA = [n]. Random variablesX; ;X, are
said to benegatively dependenif, intuitively, the conditioned on a subsetX;;i 2
I [n] taking \high" values, a disjoint subsetX;;j 2 | [n] with 1\ J = ;
take \low" values. One way to formalize this intuitive notion is

De nition 4.1 (Negative Association) The random variableX;;i 2 [n] are
negatively associated if for all disjoint subsetsl;J  [n] and all non-decreasing

55
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functions f and g,

HF (X1 2 1)g(X;5) 2 D] B (X0 2 118g(X;:i 23): (42)

Exercise 4.2 Show that ifX,; X, are negatively associated, then
BXiX;] HXi[HX;]; 6]
More generally, show that iff;;i 2 [n] are non-decreasing functions, then

Y Y
H fi(X))] | Hf i (Xi)]:

In particular, Y
He' X1t +Xn)] eXi: (4.3) [eq:exp-prod
i2[n]
Theorem 4.3 (CH Bounds with Nngative Dependence) The Cherno -Hoe ding
bounds can be applied as is % := i2[n] X, if the random variablesX;; :Xn
are negatively associated.
:exp-prod
Proof. Use &lgs%_grgﬂfe. Xa roe relevant step in the proof of the CH bound. |

Thus one needs techniques to establish the negative asstioracondition. Al-
though the de ntion looks formidable, it is often easy to estblish the condition
without any calculationsusing only montonicity, symmetry and independence.
The following two properties of negative association are neuseful in these ar-
guments.

Closure under Products  If Xq; : X, and Yiq: : Yn are two independent
families of random variables that are separetely negatiyehssociated then,
the family X ; X Y, : Y IS also negatively associated.

Disjoint Monotone Aggregation If Xi;i 2 [n] are genatively associated, and

A is a family of disjoint subsets of ], then the random variables
fa(Xi;i2 A);A2A;

is also negatively associated, wheffg; A 2 A are arbitrary non-decreasing
(or non-increasing) functions.

Exercise 4.4 Show that these two properties follow directly from the ddtion
of negative association.
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Example 4.5 [Balls and Bins] Consider the paradigm example of negativeed
pendence: m balls are thrown independently inton bins. We do not assume
the balls or bins areF;dentical: ballk has probbaility p.x of landing in bin i, for

i 2 [n],':,k 2 m (with  ;px =1 for eachk 2 [m]). The occupancy numbersare

Bi == Bix. Intuitively it is clear that Bj; ; B, are negatively dependent.
To prove this, we rst show that a simpler set of variables sa$ es negative asso-
ciation, and then use the properties of disjoint monotone a@gegation and closure
under product.

Consider the indicator random variables:
1; ball k falls in bin i

Bik := (4.4) |eq:bik-indicators

0; otherwise

We have

Proposition 4.6 For each k, the random variablesBi;i 2 [n] are negatively
associated.

Proof. Let I;J be disjoint subsest ofj] and let f;g be non-decreasing func-
tions. Translating by a constant, we may assumé& and g are non-negative and
f(O; ;0=0= 9g(0; ;0). Then,

Hf (Xi;i 2 1)g(X;;) 23)]=0  Hf (Xi;i 2 DIHA(X;] 2 I)]:
]

Now by closure under products, the full seBi. ;i 2 [n]; k 2 [m] is negalgvely asso-
ciated. Finally, by disjoint monotone aggregation, the vaablesB; = |, Bjxi 2
[n] are negatively associated. 5

Example 4.7 [Distributed Edge Colouring of Graphs] The application in his
example is from A. Panconesi and A. Srinivasan, \Randomizddistributed Edge
Colouring via an Extension of the Cherno -Hoe ding Bounds'; SIAM J. Com-
puting, 26:2, pp. 350{368, 1997.

Consider the following simple distributed algorithm for ede colouring a bipartite
graph G = (B; T;E). (The bipartition is made up of the \bottom" vertices B
and the \top" vertices T). For simplicity, assumejBj = n = jTj and that the
graph is regular. At any stage of the algorithm,

1. In the rst step, each \bottom" vertex makes a proposal by atentative
assigment of a random permutation of [] to its incident edges.



58CHAPTER 4. CHERNOFF-HOEFFDING BOUNDS IN DEPENDENT SETTING S

2. In the second step, a \top" vertex chooses from among alldident edges
that have the same tentative colour, a winner by using an arbtvary rule
(lexicographically rst or random for instance). The winne gets success-
fully coloured and the losers are decoloured and go to the nestage of the
algorithm.

The basic question to analyse is: how many edges are sucaglys€oloured in one
stage of the colouring algorithm. The situation at a \top" vertex is exactly a balls
and bins experiment: the incident edges are the balls falgninto the bins which
are the colours. Call a edge that receives a nal colour susstully a \winner",
and otherwise a \loser". Recalling that there are edges and colours, the
number of losing edges is bounded as follows:

# balls  # winners
# bins  # non-empty bins
= # empty bins :

# losers

F)
Thus we need to analys& := , Z; whereZ; is the indicator random variable
for whether bini is empty i 2 []. These random variables are manifestly not
independent. However, they are negatively associated basa

Zi=[Bi OFi2[n]

are non-increasing functions of disjoint sets of the occupey variablesB,; B
whcih are negatively associated by the previous example.

The analysis of the \bottom" vertices is signi cantly more mmplicated and will
require the use of more sophisticated techniques. 5

Example 4.8 [Glauber Dynamic an613(3raph Colouring] The application intis
example is from Thomas P. HayeEg]‘

Glauber dynamicsis a stochastic process generating a sequeriigef ;;  ;fy;

of random k]-colourings of the vertices of a graplec := (V;E). The colouring
fo is arbitrary. Given f; 1, the colouring f; is determined as follows: select a
vertex v = (t) uniformly at random and a colourc 2 [k]nf; (( Vv)) unifromly
at random. The colouringf; is identcal to f; ; except thatf(v) = c.

In the analysis of the convergence of the process to statioitg one needs con-
centration oflg,he following random variableX . Fix a time to, and a vertexv 2 V.
Then, X =, () Xw Where the indicator random variableX, is 1 if w was
selected by the colouring schedule in the time window [t, Cn;tg + Cn] for
some constantC > 0. The random variablesX,,;w 2 ( v) are not independent.
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However, they are negatively associated. To see this, catesi the indicator ran-
dom variables [(t) = v];v 2 V;t 1. These are exactly like the Balls and
Bins indicator variables: the \balls" are the time instantsand the \bins" are the
vertices. Hgnce ([(t) = v];v 2 V;t 1) are negatively associated. Now note
that X, t, cn t w+cnl (1) = w]are non-decreasing functions of disjoint in-
dex sets, and hence by the disjoint monotone aggregation perty, the variables
Xw;w2 (v) are also negatively associated. 5

Exa é 4 [Geometric Load Balancing] This application in this examm@ is
from

Let n points be thrown uniformly at random on the unit circle. Thissplits the unit
circle into n arcs which we can number 1 n in counterclockwise order starting
from an arbitrary point.. Let Z; = 1 if the i arc has length at leastc=nand O
otherwise. The variablesZ;;i 2 [n] are manifestly not independent. However
they are negatively associated. To see this, ldtj;i 2 [n] denote the lengths
of the arcs. Intumvely |t |Dscgjl1es§rsutrp1aet (Li;i 2 [n]) are negatively dependent
and indeed by Problem4 26, [Ci;1 2 [n]) are negatively associated. TheiZ; =
[L; c=nl;i 2 [n] are non-decreasing functions of disjoint sets of negatiye
associated variables, and hence, by the disjoint monotonggregation property,

are themselves negatively associated. 5

4.2 Local Dependence

ano4
The following results are from S. JansoFiZB%

Consider the sum 591%%%% there may be onlyocal dependencén the following

well known sense. Call a graph on vertex sef a dependency grapfor (X ; 2

A) if when there is no edge between 2 A and A’ A ,thenX is independent
of (X o; “2A°. Let () denote the fractional chromatic number of .

The chromatic and fractional chromatic number (G) of a graphG = (V;E) are
de ned as follows. LetB be thejVj m matrix whose columns are characteristic
vectors of independent sets . The chromatic number of G is the minimum
number of colours needed in a proper colouring &. Equivalently,

(G):=min 1'xjBx 1L;x2f0;1g"

The fractional chromatic number (G) is the relaxation of this to non-negative
vectorsx:
(G):=min 1"™xjBx ILx O:

Clearly (G) (G).
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Exercise 4.10 Compute (C,) and (C,) whereC, is the circle withn points.

eg:dep-sum
th:loc-dep | Theorem 4.11 SupposeX is as in (hgr)_p_ﬂm a X b for real numbers

a b: 2A. Then, fort> 0,

2
P[X HX]+t] P[X HX] t] exp ()P Zt(b BE
2A

ExerC|set 2 heck that () =1 i the variables X are independent, so
Theoremh 1T |s a proper generalization of the Hoe ding inequality.

Example 4.13 [U-Statistics] Let ;; ; , be independent random variables,
and let X
X = i GiaCins i)
1 i1< <ig
This is a special case ofhgl%_p_rl‘roe.' eV\_/f rnA := [n]¢ and includes the so-calledU-
Statistics. The dependency graph has vertex setil¢ and (; )2 E()i \ B!
:, when the tuples ; are regarded as sets. One can check (see Probﬁ?ﬁZﬁro el

that
n
d .
0O bn=dc’
Hence, ifa fi. .i,(i,; ;i) bforeveryiq; iqg for some reala b, we
have the estimate of Hoe ding:
n 2bn=dct?
P X HX]+t q exp b a7
Sincedbon=dc n d+1, we have () d”l and we have a bound that looks
somewhat simpler:
_ 2di(d  1)!t?
d 1=2
P X HX]+tn exp b a2

Example 4.14 [Subgraph Counts] LetG(n; p) be the random graph on vertex
set [n] with each possible edgei;(j ) present independently with probability p.
Let X den te rtnhe number of triangles inG(n;p). This can be written in the
form (4. A = [ and X is the indicator that the edges between the
three vertlces in are all present. Note thatX and X are independent even
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if \ =1 (but not 2). The dependency graph has vertex set [l and
(; )2E()I \ =2. Notethat ()=3( n 3)and hence

0 0O 0O+1 3n:

We computeEX]= 3 p? and hence

PIX (1+ )EX]] exp =exp ( *n°p) :
This estimate can be improved taking into account the variace of the summands.
5

4.3 Janson's Inequality

Let R = Rp,. .5, be a random subset ofrf] formed by including eachi 2 [n] in
R with probability p;, independently. LetS be a family of subset ofrj], and for

eachA 2 S, introduce the indicators
N

Xa:=[A R]= [i2R]:
i2A
P
Let X := 5, Xa. Clearly the summands are not independent. In the terminil-

ogy of the last section, a natural dependency grapB for (X ;A 2 S) has vertex
setS and an edgeA;B)2 Gi A\ B 6 ;: in this case, we writeA B.

P P
Theorem 4.15 LetX := , Xa asabove, andlet := X]= , Pr[Xa =1].
De ne X X

= HXaXg] = PriXa =1= Xg]; (4.5) ‘eq:janson—delta

A B A B
where the sum is oveordered pairs. Then, forany0 t HX],

t2

PriX HX] t] exp >4

Exercise 4.16 Check that when the setd 2 S are disjoint, then this reduces to
the CH-bound.

In particular, taking t := EX] gives a avrey useful estimate on the probability
that no set in S occurs which is important enough to deserve a separate statent
of its own:
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th:janson-ineq | Theorem 4.17 (Janson's Inequality)

2

PrIX =0] e =

As veri ed in the exercise above, when the sets are disjoinlye are in the inde-
pendent case, More importantly, when the dependence is \sifta.e. = of ),
then, we get neraly the same bound as well.

Example 4.18 [Subgraph Counts] Consider again the random grap(n;p)
with vertex set [n] and each (undirected) edgeiyj ) present with probability p
independently and focus again on the number of triangles imé random graph.
An interesting regime of the parametepis p := c=n The base set here is ! |
the set of all possible edges and the random set of edgedGrpicked as above
is object of study. LetS be a set of three edges forming a traingle, and ltg
be the indicator that this triangle is present inG(n; p). Tpen PriXs =1] =
The property that G is triangle-free is expressed as := ¢ Xs = 0 where the
sum is over all such 3 subsets of edgeS. If the X s were independent then, we
would have
A Y
PriX =0]= Pr Xs=0 = PrXs=0]=(@1 p)BE) e G ¢ =
S S

Of course theX s are not independent. But ifA and B are collectiosn of subsets
such that eachS 2 A is disjoint from eachT 2 B, then (Xs;S 2 A) is mutually
independent of K+;T 2 B).

th:j -i
We can thus apply Janson's inequality, Theorerﬁrf?—H an.s Ine'rr:ae = HX]= 3 p?
c3=6. To estimate , we note that there are nchoos&(n 3) = O(n*) ordered
pairs (S;T) with S\ T 6 ;, and for each such pairPr[Xs =1 = X7] = p°.
Thus, = O(n*)p°>= n *°W = o(1). Thus, we get the bound
c® 3=36

PI’[X = O] eXp m (S} ;

which is (asymptotically) almost the same (upto constarl%s&s ti'l)e es%mate g\bove
assuming the variables were independent. In probled 30 you are asked to
generalize this from traingles to arbitrary xed graphs. 5

Example 4.19 [Randomized Rounding] The following example is taken frorma
analysis 2on '%ion algorithms for the so-calledroup and covering Steiner
problems%ggﬁw. e are given a full binary tred rooted at a special vertex .

In the group Steiner problem, we are also given grougs;; ;A of subsets of
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the leaves ofT. The objective is to select a subtree of minimum size rooted a
whoses leaves intersect each of tmegroups.

The rst step in the problem is to formulate a linear program which provides a
lower bound on the size of any such tree. Solving this Iinearqg,ram gives a set
of valuesx, 2 [0;1];e2 T. These values have the property that _,. x. 1 for
any set of edges that forma cut between and a groupg,. Thus these valuex,
can be used as a guide to constructing the required subtree.

This is done via the following variant of therandomized roundingmethodology:
for each edgee 2 T, include e independently with probability x.=x; wheref is
the unique parent edge connectingto the next vertex up the tree. Ifeis incident
on the root, we include it with probability x. (alternatively imagine a ctitious
parent edgee ; with x. , = 1). Then pick the unique connected component
rooted atr.

The rounding procedure has the property that any edge 2 T is included with
probability X.. To see this, note that an edge is included i all the edges =
€;€&; ;€ on the path up to the root from e are included, and this happens
with probability

Xey Xe,  Xep 1Xep _ .

- - T - - Xe.

Xe, Xes Xe, 1
Let us focus attention on a particular groupA and estimate the probability that
this group is not \hit". We can identify the gropu A with the corresponding
pendant edges. LeX g2 A be the indicator for whether the elemene 2 A is
selecetd, and letX :=  _,, X¢. Then

X
BHX]= HXe] = Xe 1

e2A e2A

where the last inequality is because of the cut-property ohe X, values.

Note however that the Xe; e 2 A are not independent : the dependencies arise
because of shared edges on the path up the tree. Let us estimatin this
situation. To this end, rst we note that the event X, = 1 = X; for distinct
e;f 2 A occursi (a) all edges up to and inclusing the common ancestq of e
aandf are picked, and (b) the remaining edges frorg to e and f are all picked.
Thus, PriXe=1= X{] = XeXt =Xg.

Exercise 4.20 Check this!

ThUS, X X
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To continue with the estl QP We make some simplifying asimptions (which
are justi ed in the paper m we assgme that the groupA is contained in a
single subtree of heighd := djAje, that  _,, Xe = 1 nally, that for any vertex
v in the tree whose parent edge is, we have

X

Xt Xe; (4.6) |eq:sub-tree-floy
f270

whereTCis either the left or the right subtree rooted atv.

Now, to return to , consider an edge eis the rst summation. Number the path
up from eto the root r = vp;vi; Vi 1;Vi wheree= v, 1v;. Let T;;0 ] [
denote the subtree rooted at; which does not includee,. Then,

X X
= XeXf =Xg

X X X
= fX Xt =Xg
e 0 if2T,

X Xe X 1 b (|eq :sub-tree-flow
xe 0 j i
= (i+1)Xe

e X
(d+2) X

= (d+2):

Thus applying Janson's inequality, we get that the probabity that the group A

n 1=(3+l A
fails to be \hit" is at most e =Btlog jA) 1 3|ogJAJ 5

4.4 Limited Independence

One key objective in modern complexity theory has been to deevays to re-

duce the amount of randomness used by probabilistic algdnins. The ultimate

objective of course would be to remove the randomenss alttiger leading to a

deterministic algorithm via a completederandomization of a randomized algo-
rithm. In this quest, a reduction in randomization leads to eme progress in the
form of a partial derandomization.
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One approach to reducing randomness comes from the obseimatthat some
algorithms do not need full independence of their source oAndom bits. We
say that a set of random variables<;; X, is k-wise independentf for every
| [n]with jlj K,
" #
Y Y
Pr Xi=X%X = PriX; = xil:
i21 i21

Fully independent varaiables correspond to-wise independence.

. . . SS95 - .

In this section, we outline the approach ok%ﬂ%ﬂo obtaining CH-like bounds for
the case of random variables with limited dependence i.e. i they are only
k-wise independent for som& <n.

Consider theelementary symmetric functions

X Y
Sk(X1; $ Xn) = X
I [nliti=k 21
Observe that for G=1 variablesxq; : Xn, and an integerm 0O,
X m
Xi=m $  Si(X1; i Xn)= K
i
Also, if X ; : X, are k-wise independent, then:
2 3
XY
E[S«(X1; :Xn)] = E4 X;o
jli=k i2l
X Y
= E Xi
j%:kY i21
= HXi]
jli=k i2l

In the last line, we use thek-wise independence of the variables.

Hence, ifX = X1+ + X, for binary random variablesX ¢; : Xy Which are
k-wise independent andgX;] = Pr[X; = 1] = p for eachi 2 [n], then

PriX >t]

Pr Sc(Xy; i Xn) >

EIS«(Xs;  (Xn)]= lt(

n Ak
k P
T




66CHAPTER 4. CHERNOFF-HOEFFDING BOUNDS IN DEPENDENT SETTING S

In Problem %%%are asked to check that this bound holds also wheneth
variable are not identically distributed and when they takevalues in the interval
[0; 1]. This yields the following version of the CH-bound for vaables with limited
independence:

Theorem 4.21 Let X;;  ;X, be ragdom variables with0  X; 1 and

HXi] = p for eachi 2 [n]. Let X ;= ,X; andset := X]andp:= =n.
Then, for any > 0, if Xy; ; X are k-wise independent fork k =
d=(1 pe

PrIX 1+ )] l? ok = (1k+)

Exercise 4.22 Check that this bound is better than the CH-boured ?2 derived
in the previous chapter.

R94
Another approach due to Bellare and Rompe‘Eﬂ‘goes via thek{th moment
inequality:
PriX j>t] = Pr[(X )*>tX];sincek is even
HX M.

< ——— " =:by Markov's inequality: (4.7) |eq:limmarkov

tk

To estimate H(X )¥], we observe tbat by expanding and using linearity of
expectation, we only need to comput&] ~,,(X; )] for aulti{sets S of sizek.
By the k{wise independence property, this is the same & i2$()@i i)], where
Xi:i 2 [n] are fully independent random variables with the same mangals as
Xi;i 2 [n]. Turniri}g the manipulation on its head, we now use Cherno {Hbe ding
bounds onX = X

Z

1
HX )4 Pr[(X  )*>t]dt
ZO
1
= PrijX  j >t dt
ZOl 2=k
< e 27 "dt; using CH bounds
0 Z
k1 _
— (n:2)k‘2— e yyk—2 1dy
2

= (n:2)"=2;(k:2 1)
= (n=2)2(k=2)!
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Now using Stirling's approximation forn! gives the estimate:

nk k=2

A ) et W

) ) ) eg:limmarkov . ) ) .
which in turn, plugged into (hgﬁ—rh. gives the following version of a tail estimate
valid under limited i.e. k{wise dependence:

. . K k2
PIiX j>t] Ci rt'—z ;

where C, := zp ke 1% 1:0004.

4.5 Markov Dependence

45.1 De nitions

A Markov chaiﬁ M is de ned by a state spaceU and a stochastic transition
matrix P (i.e. , P(x;y) = 1). Starting with an initial distribution gon U, it
determines a sequence of random variablés;i 1 as follows: forn 1 and
any Xi;  ;Xn;Xn+1 2 U,

PriX1 = x1] = q(X1);
. and,

PriXnsi = Xns1 j X1= X155 X0 = Xn] = PriXns1 = Xne1 ] Xn = Xn] = P(Xn+1: Xn):

A distribution  on S is calledstationary for M if P = P. Under a technical
condition called aperiodicity, a Markov chain whose state space is connected
has a unique stationary distribution. The aperiodicity coulition can usually be
made to hold in all the applications we consider here. For merdetails athgzse
conditions and a careful but friendly introduction to Markov chains, se :

The general theory of Markov chain%qu\%ggﬁows that under these conditions, the
Markov chain, started at any point in the state space, eventily converges to
the stationary distribution in the limit. The rate of convergence is determined
by the so-calledeigenvaluegap of the transition matrix P of the Markov chain.
Since the matrix is stochastic, the largest eigenvalue i = 1 and the general
theory of non-negative matrices implies that the second &gvalue , is strictly
less than 1. The eigenvalue gap is:= 2=1 2.
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45.2 Statement of the Bound

Let X1;X,; ; X, be a sequence generated by a Markov chain with eigenvalue
gap starting from an initial distribution et Let f be a non-negative function
on the state space oM, and let F, :=  ;,,,f (Xn). By the convergence to
stationarity of the Markov chain, we know that .|| 4 F,=n = E‘%]fﬂ The
following Theorem due independently to Gillmaﬁ%‘and Kahale gives a
guantitative bound on this convergence.

[th:markov-ch | Theorem 4.23 Let X1; X5; ; Xn be a sequence generated by a Markov chain
with eigenvalue gap starting from an initial distributign g. For a For a non-
negative functionf , on the state space oM let Fn := ., (Xn). Then,

. . t?
PrijF, nHf]j>t] C. ;g exp on

wherec is an absolute constant andC. .., is a rational function. In particular,

taking f := 5, the characteristic function of a subsef of the state space, and
letting T, := i2[n] s(X;) denote the number of times the chain is in stats,
t2

PriT, n (S)j>t] C.ng exp on

Note that this is very similar to the usual Cherno bound, exept for the ra-
tional term and, more importantly, the appearence of the egnvalue gap in the
exponent.

4.5.3 Application: Probability Ampli cation

Let f : f0;19" ! f 0;1g be a function that is computed by a randomized al-
gorithm A that takes as input the argumentx 2 f 0;1g at which f has to be
evaluated and also a sequenaeof n random bits. Suppose the algorithmA is
guaranteed to computef correctly with a constant probability bounded away
from 1=2, say,

Pr.[A(Xr) = f(x)] 3=

We would like to amplify the success probability i.e. provide an algorithrd that
computesf correctly with probability arbitrarily close to 1.

The standard way to do this is by repetition: makek runs k of algorithm A
and take the majority outcome. Each run of the algorithm is idependent of
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the previous one and uses fresh independent random bits. What is the success
probability of the resulting algorithm? Recall the standad application of the

Cherno bound in the previous chapter: letXy; : X, be indicator random
variables WithF;(i =11 algorithm A computesf correctly on theith invocation,
and setX := ; X;. The Cherno bound yields

PriX < 1=2k] e &
Thus to achive an error probability of at most , we can takek = O(log 1).

We shall now describe an algorithm that achieves similar arigation of proba-
bility, but with the advantage that the algorithm will be sig ni cantly more e cient
in its use of randomness as a resource. The algorithm aboveesis total of nk
random bits. The algorithm we describe next will use onl{(n + k) random bits
to achieve very similar error probability.

To do this we start with an expander graph G on the vertex setfOQ;1g, the
underlying probability space of the original algorithmA. Expander graphs are
very useful in many di erent areas of algorithms and complety. This example is
tyoical and can be viewed as an introduction to their uses. e we will only state
the properties we need. The expander grapB is regular of constant degreel.
The expansion property is that any subsef of the vertices has a neighbourhood
of size at least jAj for some positive constant .

There is an equivalent algebraic characterization which imore directly of use to
us here. Consider the simple random walk on the grapB: start at any vertex
and choose the next vertex uniformly at random from all the righbours. This
de nes a Markov chainM (G) with state space the vertices ofG whose unique
stationary distribution is the uniform distribution. The expansion property ofG
translates equivalently into the property that the the Markov chain M (G) has
an eigenvalue gap > 0 i.e. the rst eigenvalue is 1 and the second is bounded
from above by 1

We are now in a position to state our algorithm and analyse it sing the CH
bound for Markov chains. The algorithmA is as follows:
1. Pick a point r; :=2 f0;1g at random. Then starting at r;, execute a
random walk onG: rq;rs; T
2. Run the algorithm k times, using these bits as the random source:
AGTa)AGT2)  SAKT);

and take the majority outcome.
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To analyse the success probability of the algorithn&, we introduce as before,
the indicators X %i 2 [k] with X ?= 1 if the algorithm is correct on trial i and 0
otherwise. Now, since; is picked according to the stationary distribution, the
merginal distribution of eachr;;i 2 k separately is also the stationary distribution
hich is uniform. HencePr[X°= 1]  3=4 for eachi 2 [k] and so, if X% :=
i21q X0 then EX 9 3=4k. So far the analysis is identical to what we saw
before.

The hitch is in the fact that whereas the indicatorsX ¢; : Xk were independent

before due to the fresh choice of random bits every time thegalrithm A is

rerun, this time, the indicators X2, ;X2 are not independent because the

sequencey;  ;rg is chosen by a random walk - thus eaila:nqaeggvr]% heavily

on its predecessor; ;. This is the place where Theorenw. Icks in. Let

S:=1r2f0,19" j A(x;r) = f(x)g. Note that since the stationary distribution
is uniform, (S) 3=4. Applying Theoremth:markov-ch, we get:

PriX %< 1=2k] e °¥;

for some constantc > 0. This is essentially the same error probability as we
had for algorithm A with the independent repetitions except for constant facts
in the exponent. However, in this case, the number of randomite used by
algorithm A is O(n + k) compared tonk bits needed by algorithmA.

Exercise 4.24 Work out the number of bits used by algorithrA. Note the fact
that G is a constant degree graph is needed here.

Exercise 4.25 Work out th hc%raﬁgg\p_%n the exponent of the error bound in ters
of the constants in Theorerﬁh.'za -

4.6 Bibliographic Notes

Negative Dependence is tretated at greater Iengt%%%fA plethora of versions of
CH bounds for limited independence are given with applications to rjﬁ!ch-de
ing randomrb%ﬁ84requirements of algorithms. Stropger vaves of Theorem&.

are given nlZg] wit ) 9§ppllcat|ons. Qlllmanmglves more applications of
Theorem mtﬁle gives almost tight versions of the bound for Markov
chians and compares to the bounds of Gillman.
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4.7 Problems

:const-sum-ex ‘ Problem 4.26 Let X;;i 2 [n] be random variables such that fqgr, any subset

| [n], and anyt > O, the distribution of X;;i 2 | conditioned on ,, X; =t
is

conditionally independent of any other variables.

stochastically increasing int.

Eurther suppose the distribution of X;;i 2 [n] is concentrated on the event
i2pny Xi = € for some constantc. Then X;;i 2 [n] are negatively associated.
lEX Wer-

Deduce that the arc variabled_;;i 2 [n] in Example M.Qq%?g_ﬁegatively asociated.
5
Problem 4.27 [Negative Regression] A set of random variables,; ; X, sat-

isfy the negative regression condition ( R), if, for any two disjoint index ests
I;J  [n], and any non-decresing functiorf ,

B (Xii12 )X, = 8] 23] (4.8) [edinegreq |

is non-incresing in eacty;j 2 J.

1. Show that if ( R) holds, then E[Qi fi(Xi)] Qi Hf i (X;)] for any non-

decresing functions;;i 2 [n].

2. Deduce that the CH bound applies to variables satisfying (R).

Problem 4.28 [Permutations] Recall the following problem on permutatios en-
countered int he analysis of Treaps: a positiom in a permutation of [n] is
\checked" if (j)< (i)forallj<i. Let be a permutation chosen uniformly
at random, and let X;;i 2 [n] be indicator variables for whether a position is
checked. Shwo that these variables satisfy R). 5

th:ch-lim
prob:ch-lim | Problem 4.29 Prove Theoremh‘Zl_AF. . Also derive a bound on the lower tail. 5
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subgraph-counts ‘ Problem 4.30 [Subgraph Counts] Consider the random grapls(n; p) and let
us consider the number of occurenceés(H) of the number of occurences dfl in
G. Dene

h= n(np =minfEXuy]jH® H;eyo> 0g:

Note that 4 MiNKo we,-0N'" P . wherevy is the number of vertices and
ey the number of edges of a graphl . Show that for any xed graph H (with at
least one edge)Pr[Xy =0] exp( ( Rn)). 5

SS95
Problem 4.31 [Sampling with reduced randomnes&zﬁ]gl?ecall the problem of
estimating the fractionf := jWj=Uj of elements of a special subs®&¥ of a large
universal setU. The approach is to take a random sampl8 from U and estimate

f byf":: JW A szjS. questigqte the posspg!:i%%f reducin hgpn%r %Q_q: mness
requirements of this algorithm using Theoren&‘Zl—T. or heoren%l‘ZBi. . 5

Problem 4.32 [Fractional Chromatic Number of Kneser Graphs] Consider #n
Kneser graphs K (n;d) whose vertex set is] and whose edge set i(A;B) j

A\ B = ;g. Compute bounds on (K (n;d)), (K(n;d))and (K(n;d)). 5



Chapter 5

Martingales and Azuma's
Inequality

[Martingales and Azuma's Inequality]

The Cherno -Hoe ding bounds provide very sharp concentrabn estimates when
the random variable X under consideration can be expressed as the sn=
X1+ i+ X, of independent (and bounded) random variables. However in
many applications, to do this might be very dicult or impossible. It would
therefore be useful to obtain sharp concentration resultoif the case whenX
is some complicated function of not necessarily independerariables. Such a
generalization would be useful in many diverse contexts buspecially in the
analysis of randomized algorithms where the parameters thaharacterize the
behaviour of the algorithm are the result of a complicated teraction among a
base set of (often non{independent) random variables. Oumwogl then is to study
the case when

wheref is a function that may not even be explicitly speci ed in a \cbsed form".
We seek a set of conditions o so that one can assert that the probability
of a large deviation off from its expected value is exceedingly small{ ideally,
exponentially small in the amount of the deviation. In geneal, we would like to
be able to do this even without assuming that theX;'s are independent.

We will present a number of such inequalities, all of which st upon a well-studied

concept of Probability Theory known asmartingales We shall see that once the
appropriate concept to replace independence is properlyriiaulated, the proofs

of these inequalities are quite similar to the basic structe of the proofs of the
Cherno {Hoe ding bounds we have already seen.

73
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5.1 Review of Conditional Probabilities and Ex-
pectations

The concept of a martingale requires a good understanding tife notions of
conditional probability and expectation, so we rst provide a quick review from
an elementary standpoint.

Given two eventsE and F in a probability space with measurdPr, the conditional
probability of E with respect to F is de ned by

PIE AF],

PrlE jF]:= PIF]

provided that Pr[F] 6 0. If Pr[F] = 0, then, by convention we shall setPr[E j
F]=0.

Often we will be interested in events of the fornX = a, that a random variable

respectively. For economy of notation, we shall use the vectboldface notation to
stand for a nite or in nite sequence of the appropriate type Thus a sequence of
variablesX 1; X,; ::: will be denoted byX and a sequence of real values; ay;: ::
by a. When given such a sequence, we shall use the subscnipto denote the

be abbreviated byX , = a,. We can always assume that such an event occurs
with non{zero probability by discarding from the domain, the values for which it
is zero.

The conditional expectationof a random variableY with respect to an eventE is
de ned by X

HY jE] = b Pr[Y = bj E]: (5.1) |eq:condexpdef

b
In particular, if the event E is X = a, this equation de nes a functionf , namely

f(a):= HY | X = a]:

Thus HY j X]is T;eraraggemx \c/]%pable, namely the variablé (X). In the same way,

if the event E in (5.1 ISX = a, we have a multivariate function
f(a):= HY X = a],

and EY j X ] can be regarded as the random variable(X ).
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RegardingHY | X] as a random variable, we can ask what is its expectation?
The answer involves some fundamental properties of conditial expectation that
are listed in the next proposition and whose veri cation wedave as an exercise.

Proposition 5.1 Let X;Y and Z be random variables de ned on a probability
space. Then, for arbitrary functionsf and g,

BEf (X)g(X;Y) j X1 = Hf (X)Hg(X Y)]j XT:

Also,
HX] = HEX]jY]];
and,
BX jZ]=HEX jY;Z]jZ]

The formal veri cation of these is left as an exercise to theeader. Nevertheless
it is perhaps appropriate to give an intuitive justi cation of these formulae which
at rst might appear somewhat obscure. The rst equality is kased on the simple
fact that

Hf (X)9(X;Y) X =a]l=f(@Hg(X;Y)]X = a

which simply says that once the value oK is givenf (X) becomes a constant
and can be taken out of the expectation. The second equalitar be intuitively
explained as follows. Suppose thaX is a random variable representing, say, the
height of individuals of a given population, and thatY is the age of an individual.
In order to compute X |{ the average height{ we can either do it directly or
proceed as follows. Partition the population according toge, recording for each
age group the fraction of the total population. To make thing concrete, the 15
year olds could be 7% of the total population, the 32 year oldkl%, etc. Then,
compute the average height in each age group{ the averagedtdiof 15 year olds,
of 32 year old, and so on. Finally, compute the weighted avega of these averages
by weighing each age group according to its share of the totabpulation. This
will give the average height of the whole population. The tihd equality is the
same as the second one, except that we focus on a particulabset of the whole
population. For instanceZ could represent the sex of an individual. Sticking to
our example, the formula asserts that in order to compute thaverage height of,
say, the male population we can proceed as just described.

.. rop:basic . . .
Proposition %Ip— generalises smoothly to the multivariate case. Once agave

leave the veri cation as an exercise.

Proposition 5.2 (Fundamental Facts about Conditional Expe ctation) Let
X, Y and Z be random variables de ned on a probability space. For artaty



76 CHAPTER 5. MARTINGALES AND AZUMA'S INEQUALITY

functions f and g,

ELEF (X )g(X ;Y ) j X JT= Ef (X )Eg(X : Y ) X II: (5.2)

EX]= HEX | Y] (5.3)
EX jZ]= HEX | Y:Z]i Z] (5.4)

These facts will be heavily used in this chapter.

Also,

and

5.2 Martingales and Azuma's Inequality.

Martingales are a well-studied concept in classical prob#ity. Here we will de-
velop them in a discrete setting in the simplest form, whichsisu cient for our
purposes.

De nition 5.3 A martingale is a sequence of random variable§y; X 1; : 1 : such
that
BXijXo; X315 X 1]=Xi ¢ 1 L
With the vector notation, the martingale condition is succitly expressed as
BXijXi]=Xi 1 i 1

The next examples and exercises should help clarify the détion.

example:mart ‘ Example 5.4 A fair coin is ipped n times. Let X; 2 f 1;1g denote the out-

come of thei F;h trial (with 1 standing for \tails" and +1 for \heads"). Let Sy :=
0andS, := , ,X;. The variablesS;;i 0 de ne a martingale. First, observe
which intuitively says that the future outcome depends onlyn the current state.
Hence,

|
»
&
v
I

HShiSn 4]

= HS, 1+ X,jSh 4]

= S 1+ BXhnjSh 4]

= S, 1+ HX,]; by independence of the coin tosses
= S, 1; sinceHX,]=0:
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Think of a gambler who starts with an initial fortune of Sy := 0 and repeatedly
bets an amount of 1 unit on a coin toss. Thus his fortune can ggwr down by
one unit equiprobably on each toss. His fortune aftar tosses isS,. Think of the
sequenceSy; Sy;::: as a sequence of dependent random variables. Beforerttis
wager, the gambler knows onIy the numerical values &8f;:::;S, 1 but can only

guess at the futureS;; S,+1;:::. If the game is fair, then condltlonal on the past
information, he will expect no change in his present capitaln average. This is
exactly the martingale condition. 5

Example 5.5 Suppose now thatX; 2 f 0; 1g equiprobably for eachi 2 [n]. Now
it is no Iongerptrue that E[X ] = 0. Nevertheless, a martingale can be de ned by

letting Sc ==, (Xi % with S := 0. The straightforward veri cation is left
as an exercise. 5
Exercise 5.6 Let X; 2 f0;1g (1 i n) bgm Set an variables such that

Pr[X; = 1] = p;. Can you generalize examp
The following de nition is central.
De nition 5.7 (Bounded Di erences) . Let Xo; X1;::: be a martingale. The
Xi's satisfy the Bounded Di erence Condition (bdc) with parametersg; if
iXi Xid ¢
for some non-negative constants;i 1.
The following concentration result for martingales is knowas Azuma's Inequality

although it appears also in an earlier paper by Hoe ding. It W provide us with
a basic tool for our generalization.

Theorem 5.8 (Azuma's Inequality) . Let Xo; X1;::: be a martingale satisfy-
ing the Bounded Di erence Condition with parameters;;i 1. Then,
t2
Pr(X,>X+t —
and
t2
Pr(X, <X t ex —
( n 0 ) p 2C

P
wherec:= [, ¢
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Before proving the theorem some comments are in order. Firstotice that there
is no assumption of independence. Second, if we think of a riagale sequence
as keeping track of a process evolving through time{ whebkg is the measurement
at time i{ the Bounded Di erence Condition roughly states that the process does
not makes big jumps. Azuma's inequality roughly says that ithis is so, then it
is unlikely that the process wanders very far from its startig point. Clearly this
crucially depends on the martingale property. Notice alsahtit ¢ appears in the
denominator, which means that the smaller the;'s the sharper the concentration.

In the proof of Azuma's inequality we shall use several ideasready encountered
in the derivation of various forms of the CH-bounds. The assoption of indepen-
dence will be replaced by the martingale property, while thassumption that the
summands are bounded is replaced by the Bounded Di erence @htion (bdc).

Now to the proof. We shall prove the statement for the upper t§ the proof for

the lower tail is symmetrical with the martingale X replaced by X . To start

with, we can assume without loss of generality thaK, := 0. Otherwise we can
de ne the translated sequenc& °:= X; X, which satis es the conditions equally
well. We then apply the Cherno Method starting with Markov's Inequality:

Pr(X,>t) = Pr(e*">e') (5.5)
HeX "]

et

for all > 0. Now we focus on the numeratoHe* "]: we want to nd a good
upper bound in terms of and then nd the value of that minimizes the ratio
He* n]=e'.

We de ne the martingale di erence sequence

Yi=Xi Xjq 101

which allows us to express the martingale as the sum of incrents:

Note that the martingale condition can be rephrased as folis:

HYij X =0:
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Applying the basic equality E%%%et
X
He*"] = Hexp( Y]
| 51( -
EHexp( YD)iX n 4ll

I n

E[E[exp(X n 1)eYan n 1]]
Eexp(X n 1)He""jX n ]I

: 2
The last equality follows from ggZ%EP_L . =

Now the proof continues by looking for a good upper bound fdge" "jX , 4].
Denoting such a good upperbound by, ( ) we obtain by induction,
E[exn] = E[exp(x n l)E[eYnjxn 1]]
Eexp(X » 1] Un( ) (5.6)

Y
U( )= U():

i=1

As it happens there are two di erent ways to nd good upperbouads U;( ). The
rst, to be used in the next lemma, is based on the convexity dhe € function{
a fact already exploited to derl_ve the_Hoe dm_g general|zam_qsggzclhi\?aﬁr%ngéno
bounds. The second uses a di erent idea, which we usedxnt.7.” This second
approach leads to another useful generalization of the CHdbnds which we shall
call the the Method of Bounded Variancesand to which we return in a later
chapter.

Lemma 5.9 Let Z be a random variable such the{Z] =0 andjZj c. Then,
HeZ] e’“=2

Even if this is

repeated some
Proof. Letf(x):=eX,P :=( c¢;f( ), P, :=(c;f(c),and lety:= mx + g ﬁzﬁdﬁms
be the straight line going throughP and P, . Sincef is convex we have that chapters

self-contained

might be good?
f(x) mx+q gmhes

for all x in the interval ( c;¢. By setting x := Z, we have that

z

e mZ + 5.7) | eg:majorization
q

where
e‘+e °
5 :
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leq:majorization
Taking expectations on both sides of Equations.7) we have

He?] mHZ]+H= &8 o=

2
The last inequality follows from the fact that, for all x,
e+ e 2_
ex =2
2
which can be easily veri ed by taking the Taylor series expasion of both sides.
|
We apply the lemma to the random variable

Z satis es the hypotheses of the lemma since
HZ]= HYnjX n 1] = HXn Xy 2jXn 1] =0
by the martingale property, and
JZj= j(MajXn 1)j ] Xa Xna) G
by the Bounded Di erence Condition. Therefore
E[eY”jX n a1l ezcﬁzz
which, after substituting into Equation (}%%‘):%%% by induction

He*"]  Hexp(X  1)] e &3

where

i=1

. . . 2 c=2_
Ap elementary application of Calculus shqws thgt the ratl@ een Srflttglns the
minumum when = t=c. Therefore, substituting into Equation QSQE)i

. He* ]
Pr(X, >t) min of
t2
= exp %

thm:
which ends the proof of Theoren{b“.%]wfjl
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Exercise 5.10 Derive a similar inequality for the case when the martingalen-
dition is replaced by the following:

JBYi X i m;
for some non{negative real numbem.
Exercise 5.11 Suppose the bounded di erences condition is satis ed withrgip-
ability at least 1 for some > Oi.e.

Prl jXi X 1j>ci]

i2[n]
Show that 2
Pr(X,>Xo+1t) exp % +
and 2
Pr(Xp,<Xo t) exp 5 +

P
wherec:= [, &

5.3 Generalizing Martingales and Azuma's In-
equality.

It is useful to generalize the de nition of martingale to thecase when the random
variables under study might depend on another set of randonakiables.

De nition 5.12 A sequence of random variableg := Yy; Yy;:::is a martingale
with respect to another sequenc&X := Xg; Xq;::: if for eachi 0,

Yi = g(Xi);
for some functiong; and

HYijXi =Y 1+ i L

Example 5.13 Let us consider again examplg).(_fll,m\%lﬁemrigrta gambler starts with
an initial fortune of 0 and wagers a unit amount at repeated tirows of a fair
die. In the notation of that example, the sequenc&y; Sl;F;: . is a martingale with

respect to the sequence 0 =Xo; X1; X5;:::, whereS, = . Xi foreachn 0.

5
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A very important example of this general de nition of a martngale is provided
by the following de nition and lemma.

De nition 5.14  The Doob sequence of a functionf with respect to a sequence
of random variablesX (;:::; X, is de ned by

Yy :=HfjXi]; 0 i n:

Proposition 5.15 The Doob sequence of a function de nes a martingale. That
is,
HYijXid=Y1 0 i n

. . . eq; rop3
The proof is an immediate consequence

Exana 16 [Edge exposure martingale] An important special case of da-
}'S‘Wcurs in the context of theandom graphG,. This is the graph with
vertex set h] and each edgéi;j g;i 6 j present with probability p independently
of all other edges. Lef : [2] I R be afunction on the edge set of the complete
graphK . For instancef could be the chromatic number or the size of the largest
cligue. Number the edges from 1 to; in some arbitrary order and letX; := 1 if
the j th edge is present and O otherwise. The Doob sequencd ofith respect to
the variablesX;;j 2 [ | ]is called theEdge exposure martingale . Intuitively,
we are exposing the edges one by one and observing the averadee off under
this partial information. 5

Azuma's inequality can be generalized to a sequende which is a martingale
w.r.t. another sequenceX of r.v.'s.

|thm:azumaGen Theorem 5.17 (Azuma's Inequality{ general version) Let Yo;Yy;::: be a
martingale w.r.t. the sequenceXy; X1;:::. Suppose also that th& satis es the
Bounded Di erence Condition with parametersc;;i 1. Then,
t2
Pr(Yn>Yo+ t ex —
and
t2
Pr(Yo <Y, t ex —

P
wherec:= ., ¢&
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. . . thm:azuma .
Proof. The proof is almost identical to that of Theoremlb“B_A*. . Assume without

loss of generality thatY, := 0 and de ne the martingale di erence sequence
Di:=Y;, Yi i 1. ThenY,=Y, 1+ D,. As before,

E[eY“]:

et

Pr(Y,>t) min
>0

Focus on the numeratorEeY ].

Eq:’éﬁ],lcteatﬁq; (Yn 1+ Dn)]
= HHe ™ Xy 4]
= HeYn 1E:eD nJX . 1]]

) thm:azuma
The last line ethe only place where the proof di ers from thatof Theorem% 8,
follows form (qu%%ée ausey, O 1(X ) The proof now proceeds identical

fng — N i
to that of Theorem }'3“87pr%wded Lemmajb“gi IS Invoked for the varlableim canvex
(DnjX n 1). The verication that Z satis es the hypotheses of Lemm IS
straightforward and is left as an exercise. |

5.4 The Method of Bounded Di erences

We shall now see how to apply Azuma's Inequality to obtain a vg powerful
and useful generalization of the CH-bounds. The link is praded by the Doob
martingale from which the following theorem emerges natulig.

Theorem 5.18 [The Method of Averaged Bounded Di erences]
Let X4;:::; X, be an arbitrary set of random variables and Idt be a function
satisfying the property that for each 2 [n], there is a non{negativec such that

EFiX ) EFX G ai G (5.8) [eqmartdifr |

Then,
t2
> + —
Prif > BE +1t] exp %

and
t2
< _
Pr[f B t] exp >

P
wherec:= ;| &
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. . thm:azumaGen .
This theorem is just a restatement of Theorenib“I?‘Zf—ﬂT. or the special case of the
Doob sequencey; ;= Hf jX ;];0 i n. Notice that the X;'s are not assumed to
be independent

Some weaker but often more convenient versions of this boumdll now be de-
duced.

De nition 5.19 (Averaged Lipschitz Condition) A function f satis es the
Averaged Lipschitz Condition (henceforth alc ) with parametersc;i 2 [n] with
respect to the random variableX;:::; X, if for any a;a’,

JHf X Xi=a]l HfjXi sXi=ali g (5.9)
forl i n.

In words, the conditionalc in (E%ﬁ%ys: x the rst i 1 variables to some values,
let the ith variable take two di erent values and set the remaining vaables at
random (according to the given distribution conditioned orthe previous settings).
Then the di erence between the two corresponding partial arages of must be
bounded uniformly by c;.

Corollary 5.20 (The Method of Averaged Bounded Di erences: Alternate Take)
Let f satisfy thealc condition with respect to the variableX;:::; X, with pa-
rametersc ;i 2 [n]. Then
t2
Prif > B +t —
rf ] exp %
and
t2
Prif < B t —
r ] exp >

P
wherec:= ;| &
.. leq:abdc eq:martdiff )
Proof. We shall show that if d'sgg%‘h* olds then so doeslagB)_T;. : 0I See this, expand

using total conditional probability:

X
Hf X 4] = Hf j X o Xi=alPr[X;=ajX; i];

and write X
Hf jXil= Hf j X IPriXi = aj X 4]:

a
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Hence,
jE[fj&i il Hf jXi]i=
o = jXy pXi=a Hf jXiDPriXi=ajX; i]j
Xa
JHE j X ;X =a] Hf jX]jPriXi=ajX; 4]

X
¢ PriXi=ajXj 4]

= G:

Exercise 5.21 Show that if for eachi 2 [n],
JHE X1 Hfj X1l c;
. then for any a;; &,
JHFX G 5Xi=a] HfjX; ;X =&l 2a:
That is, the two alternate takes of the Method of Averaged Builed Di erences

are virtually the same but for a factor oP.

A further signi cant simpli cation obtains from the follow ing de nition.

def:lipshitz ‘ De nition 5.22 A function f (xq;:::;X,) satis es the Lipshitz property or
the Bounded Di erences Condition (bdc) with constantsd;;i 2 [n] if

if(a) f@% di (5.10) [eq:lipschitz

whenevera and a° di er in just the i-th coordinate,i 2 [n].

In words, the condition bdc says: the di erence between the values df on two
inputs that di er in only the ith co{ordinate is bounded uniformly by d;. This
is exactly like the usual Lipschitz condition in the settingwhere the underlying
metric is the Hamming distance.

or:simpleMobd ‘ Corollary 5.23 (Method of Bounded Di erences) If f satis es the Lipshitz
property with constantsd;;i 2 [n] and X4;:::; X, are independent random vari-
ables, then,
t2

Prif > B +t] exp 2
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and ,
t
Prif< B t] exp >d

whered := d?.

in

Proof. For typographical convenience letX '** be shorthand notation for the

for the two sequences. We sha that if satis es the Lipschitz condition with
parametersc ;i 2 [n], then (5.9) holds. To see this, expand using total conditional
probability to get

gf jxixl;xi = al=

Hf jXi uXi=aX™ =a™Prx ™ =a™ jX; ;X = 4
ai+$<':::;an
= Hf j X ;X = a;X "™ = a"*Pr[X '** = a'*']; by independence
aQj+] ,--nan
X . .
= FOXi najaan;iian)PrX ™ =a*]:
aj+1 ;::han

Put a:= a;a’ successively and take the di erence. Then,

jgf jxixlixi =a] Hf jX; uX;i=a=

j f(Xi pasa™) f(X; pa%a*™)Prx " = a'*]
ai>+€ ;:::;an. : | » »
IFX pasassiian) F(XG ganaeasiisan)PriX ™ = a™]
ai+$<':::;an
¢ Pr[X " = a"*']: by the Lipschitz property;
Qi+1 ;:han
= G

Some comments are in order about the three di erent versionsf the \Method
of Bounded Di erences".

|cor:simpleMobd . .
Corollary 523715 usually referred to in the literature agshe Method of Bounded

Di erences. This is because it is the most convenient one tqply. The bdc
condition is very attractive and easy to check. It also makethe result intuitive:
if f does not depend on any one argument, then it is not likely to biar from
its expectation when the inputs are set at random. However,here are two
drawbacks: rst the variables Xq;:::; X, must be independent. Second, the
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parametersd; in the bdc condition might be too large and consequently the
bound might turn out too weak to be useful.

It might be the case that thebdc condition holds forf with small parametersd;
except for a small set of exceptional instances. In that casiis unfair to \pe-
nalise" f with the \worst{case" larger parameters strictly demandedby the bdc
condition. Rather, one should take an average, and this isehpurpose of thealc
condition. The parametersc required for thealc condition are always bounded
by the parametersd; required for the bdc conditCigrr_[,mgao?c(ljI oftenc di. In the

latter case, the bound obtained from Corollary5.20, e Method Of Avlgcr)ggi%pleMobd

Bounded Di erences will be signi cantly better than that from Corollary 523,
the Method of Bounded Di erences.

thm:mobgﬁ . .
Theoremb.181S the most powerful version of the method: the paramegerequired
for the martingale di erences condition are always boundeby the parameters re-
quired by the alc condition, and hence the probability bound is always strorey.

The price to be paid however, is that both the martingale di @ences condition
and thealc condition can be quite di cult to check for an arbitrary f compared
with the simple bdc condition. If f can be decomposed as a sum, linearity of
expectation can be used to simplify the computation as we dhdemonstrate on
some examples in the next chapter.

. ) thm:mobd . cor:amobd .
Note crucially, that in both Theorem 5.18 and in Corollay}b“zo_t%*. , the variables
are not required to be independent This greatly increases the scope of their
applicability as we shall demonstrate in several examples the next chapter.

We now develop familiarity with these tools by applying thento several di erent
situations in the next chapter.

5.5 Bibliographic Notes

Martingales ae a classic subjec 1 ted in many standardxes on Probability

such as Grimmett and Stirzake Ch.7,12]. The Method of Bounded Di er-
ences and its applications to problems of combinatorics amliscrete m PB: atics
is covered in a well{known survey of the same name by C. McDrard . Both

these are couched in measure{th sgc terminology. A moetementary account
can be found in Alon and Spenceft].
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5.6 Problems

Problem 5.24 Let Xo; X4;::: be random variables such that the partial sums
S, = X1+ .+ X, determine a martingale with respect toX . Show that
HXiXj]=0if i 6 j. 5

Problem 5.25 (Sampling without replacement). Consider an urn contain-
ing N balls out of whichM are red. Balls are drawn without replacement. Show
that the sequence of random variables denoting the fractiaf red balls remaining
in the urn de nes a martingale. Derive a concentration restl 5

Problem 5.26 Let Xo; X1;::: be a sequence of random variables with nite
means satisfying

BXne j XoriiXp]=aXy+bX, 13 no 1

where O<a;b< 1 anda+ b=1. Find a value of forwhichS, = X ,+ X, 1
determines a martingale with respect toX . 5

We shall generalise the de nition of a martingale even furtér to be able to de ne
the so{called vertex exposure martingale in a random graph.

De nition 5.27 A sequenceY := Yp; Yy;::: is a martingale with respect to a
sequenceX = Xg; Xgq;:::if there is an increasing sequenc® ko Kk; :::
such thatY; = gi(X ¢, );i 0 for some functiong and HY; j X\, ,]1=Yi 1.

. ... |def:martgen2
Problem 5.28 [Vertex Exposure Martingale] Use De nition lb“Z?‘t_g_cF* 0 dene a
martingale in the random graphG,, corresponding to revealing the edges in
stages where at thdth stage we reveal all edges incident on the rst vertices.
5

Problem 5.29 [Azuma generalised furtgleq_rl]nglz%\r/]vzthat Azuma's inequality an
be generalised to apply to the De nition5.27 of a martingale. 5

_ McD97
Problem 5.30 [Azuma and Centering SequencéBr9TrA sequence of random
variables X;;i 0 is called acentering sequencef X1 Xj ] Xj = t]is a
non-increasing function oft.
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(a) Show that Azuma's inequality applies to a centering segnce with bounded
di erences.

(b) Let Xi;i O be the number of red balls in a random sample of sizgicked
without replacement from n objects r of which are red. Show that the
Xi;i 0 form a centering sequence and derive a concentration resoih
Xg forany k n.

R
Problem 5.31 [Negative Regression and Mosdﬁe%f

(&) Show that the MOBD applie'sé \_I\rlllg n the underlying variablesatisfy the
negative regression condition}’./(g.')._g_q

(b) Consider a random sample of sizk drawn from n objectsr of which are
red, and let X;;i  k be the indicator for whether theith draw was red.
Show that X;; Xy satisfy ( R) and deduce a sharp concentration on the
number of red balls int he sample.
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Chapter 6

The Method of Bounded
DI erences

ch:mobd-appl ‘ [The Method of Bounded Di erences]

In this chapter we shall see the \Method of Bounded Di erenc&' in action by
applying it to various examples. We shall see that in some a5 it su ces to
apply the method in the simplest form whereas in others, the one powerful
version is required to get meaningful bounds.

6.1 Cherno {Hoe ding Reuvisited

ec:chrevisted |

Let Xq;::0; X, independent variables taking values in [Q], and consider
f(Xe; i Iioschitz Xi- Then of coursef has the Lipshitz property with each
d :1in(}gIH' and we get forX ;= X;+ + X, the bound:

PriX EX]>t] 2%

which is only o by a factor of 4 in the exponent from the CherndHoe ding
bound.

Exercise 6.1 Remove the factor o# by applying the method of bounded martin-
gale di erences.

91
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6.2 Stochastic Optimization: Bin Packing

The bin packing problem is a well{studied combinatorial ogtnization problem:
we are givenn items of sizes in the interval [@1] and are required to pack them
into the fewest number of unit{capacity bins as possible. Ithe stochastic version,
the item sizes are independent random variables in the int&l [0; 1]. Let B, =

that su ce. Then clearly the Lipshitz condition holds with constant 1 and we
get the concentration result:

PriB, HB.Jj>t] 2%

Isthis hard to [t can be shown thatHB,] = n for some constant > 0, hence we deduce

show? Ciaion that Pr[jB, EB,]j > E[Bn]] decreases exponentially in. This straighforward
application of the martingale technique vastly improved pevious results on this
problem.

Exercise 6.2 Let B[F denote the number of bins that would be needed if one
applied the rst{t heuristic. Give a sharp concentration result orB-F. (The
rst- t heuristic places the items one by one, with the currat item being placed

in the rst available bin.)

6.3 Game Theory and Blackwell's Approacha-
bility Theorem

Consider anon-collaborative two-player game given by a ntat M with n rows
and m columns. There are two players, the row player and the columplayer.
The row player chooses a row and simultaneously, the column player chooses a
columnj. The selected entryM (i;] ) is theloss su ered by the row player. We
asuume for simpliciry that the entries inM are bounded in the range [(L].

By standard game theoretic terminology, the choice of a sgecrow or column

is called apure strategy and a distribution over the rows or columns is caltta
mixed strategy. We will useP to denote the strategy of the row player andQ
to denote the strategy of thecolumn player. P (i) denotes the probability with
which rowi is selected and similarlyQ(j ) the probability with which column j is
selected. We writeM (P;Q):= PTMQ to denote the expected loss of the row
player when the two players use the strategieB and Q respectively.

Consider now arepeated play of the game. That is, the two players play a
series ofrounds of interactions. At roundt 0, the row player picks a rowl
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using strategy P independently of the earlier rounds, and simultaneously,he

column player picks a columnl, using startggy Q independently. The total loss
su ered by the row player afterT rounds is , , + M(l;Ji).whose expectation
is TM (P ;Q). Since each netry oM is bounded in [Q1], changing any one of
the underlying choice changes the total loss by at most 1. Hes applying the

MOBD, X

Pri M(@:3) TM(PiQ)>T] 227,
0Ot T

forany > 0.

A powerf | E&eralizgggg g(/géis setting is that in Blackw#'s Approachability

Theorem|[5], see als@18, I7]. In this case, the payoM (i;j ) is a vector in some
compact space. In this space, there is a convex iétcalledF;hetarget set. The
goal of the row player is to force the average payoAr =, , t M(l;3)=T
to approach G arbitrarily closely.

Let d(At;G) denote the distance from the average playo to the closestgmnt
in the set G. If d(Ar;G) ! 0 almost surely asT ! 1 , then the setG is
said to be approachable Blackwell gave a necessary and su cient condition
for a convex set to be approchablea convex setG is approachable i every
tangent hyperplane toG is approachableAssuming that any tangent hyperplane
is approcahble, it can be shown thagd(A7;G)] ! 0. To get the conclusion
of Blackwell's Theorem, we then use the MOBD to show that at eh time T,
d(At; G) is sharply concentrated around its expectation. This fotlws e ortlessly
from the MOBD: at each stageT, changing any one choice of the strategies so far
can change the value oAt by at most D=T whereD is the maximum distance
between any two points in the payo space ( nite because of eopactness). Thus,
Prid(Ar;G) Hd(Ar;G)lj>t] 2e TP,

6.4 Balls and Bins

sec:ballsbins | RSA paper

improve
In the classical balls and bins experimentn balls are thrown independently at Wrﬁeup?
random into n bins (usuallym n) and we are interested in various statistics of
the experiment, for instance, the number of empty bins. LeZ;;i 2 [n] denote
the indicator variables

1, if bin i is empty;

Zi = .
0; otherwise

P
Zj.

Then, the variable we are interested in is the surd :=
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m

Exercise 6.3 Show that = HZ]=n 1 3 ne ™",
Exercise 6.4 Show that theZ;'s are not independent.

. . lexizi
In view of Exermseh‘i‘f we cannot apply the Cherno bounds. In order to get
a sharp concentration result, we can use the method of bourt€i erences in

a random variable taking values in the setr] and indicating the bin that ball k
lands in.

Let's check that the function Z satis es the Lipschitz condition with constant 1.
Denoting by b, the bin in which the k-th balls falls into, the condition

jiZ(by;inh phibes i b)  Zegsh sBiba )i 1

simply says that if the i-th ball is moved from one bin to another, keeping all
other balls where they are, the number of empty bins can at mosither go up
by one or down by one. Hence, we have the bound:

2

PrjZz HZ]j>t] 2exp v : (6.1)‘eq:emptybinsl

2m

6.5 Distributed Edge Colouring

In this section, we consider algorithms for the problem of g&{colouring a graph.
Apart from its intrinsic interest as a classical combinataal problem, edge colour-
ing is often useful because of its connection to schedulinglere we will discuss
a distributed edge colouring algorithm that allows a disttuted network to com-
pute an edge colouring of its own (unknown) topology. In disibbuted networks
or architectures this might be useful, for a matching oftenarresponds to a set of
data transfers that can be executed simultaneously. So, antiéon of the edges

into a small number of matchings{ i.e. a \good" edge co % iyes an e cient
schedule to perform data transfers (for more details, s¢e8, .

Vizing's Theorem shOws that every graplG can be edge coloured in polynomial
time with or + 1 colgurs, where is the maximum degree of the input
graph (see, for instance]7]). It is a challenging open problem whether colourings
as good as these can be computed fast in parallel. In absenéesuch a result
one might aim at the more modest goal of computing reasonaldyod colourings,
instead of optimal ones. By a trivial modi cation of a well-known vertexcolo%ij?t}?
algorithm of Luby it is possible to edge colour a graph using 2 2 colours[40].
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In this section we shall present and analyze two classes afmpie distributed
algorithms that compute near-optimal edge colourings.Batalgorithms proceed
in a sequence of rounds. In each round, a simple randomizedifigtic is invoked
to colour a signi cant fraction of the edges successfully. hiis continues until the
number of edges is small enough to employ a brute-force methat the nal step.

One class of algorithms involves a reduction to bipartite gphs: the graph is
split into two parts, T (\top”) and B (\bottom") . The induced bipartite graph
G[T; B] is coloured using the algorithmP below. then the algorithm is recursively
applied to the induced graphsG[T] and G[B] using a fresh set of colours (the
same for both). Thus it su ces to describe this algorithm forbipartite graphs.

We describe the action carried out by both algorithms in a sgle round. For
the second class of algorithms, we describe its action onlp bipartite graphs
(additionally we assume each vertex \knows" if it is \bottoni' or \top").

At the start of each round, there is a palette of available colre [] where is
the maximum degree of the graph at that stage. For simplicityve will assume
the graph is -regular.

Algorithm | (Independent): Each edgendependentlypicks atentative colour.
This tentative colour becomes permanent if there are no coitcting edges that
pick the same tentative colour at either endpoint.

Algorithm P (Permutation): This is a two-step protocol:

1. Each bottom vertex. in parallel independently of the othes, makes apro-
posal by assigning apermutation of the colours to its incident edges chosen
uniformly at random.

2. Each top vertex, in parallel, then picks avinner out of each set of incident
edges that have the same colour. The tentative colour of themner becomes
nal. The losersi,e, the edges which are not winners are decoloured and
passed on to the next round.

For the purposes of the high probbaility analysis, the exaatule used to select
winners is not relevant - any rule (deterministic or randonzed) that picks one
winner out of the degs of a particular colour may be used. ThiBustrates agian,
the power of the martingale method.

It is apparent that both classes of algorithms arélistributed. That is to say, each
vertex need only exchange information with the neighbourotexecute the algo-
rithm. This and its simplicity make the algorithm amenable br implementations
in a distributed environment.



96 CHAPTER 6. THE METHOD OF BOUNDED DIFFERENCES

We focus our attention on one round of both algorithms. Let denote the
maximum degree of the graph at the start of a round and ° the maximum

degree of the remaining graph pased on to the next round.. I$ ieasy to show
that for both algorithms, § ©j ] for some constant < 1. For algorithm

I, =1 1=¢& whereas for algorithm P, = 1=e The goal is to show that in
fact Cis sharply concentrated around this value.

For completeness, we sketch a calculation of the total numbef coloursbc()
used by algorithm P on a graph with maximum degree : is, with Hgh proba-

bility,

(1+) ,@+)?°®

e e
1

1 (1+ )e

bc() = + + o

1:59; for small enough:

To this, one should addO(logn) colours at the end of the recursion. As it can
be seen by analizing the simple recursion describing the nber of colours used
by the outer Ievel}%%g}he recursion, the overall numbers of tmurs is the same
1:59 + O(logn), )

We now switch to the high probability analysis. The analysisvhich is published
in the literature is extremely co g gted and uses a certaiad hoc extension
of the Cherno {Hoe ding bounds . The ease with which the algorithm can
be analyses with the method of bounded average di erencess ahown below,
testi es to its power.

6.5.1 Top vertices

The analysis is particularly easy wherv is a top vertex in algorithm P. For, in
this case, the incident edges all receive colours indepenti of each other. This
is exactly the situation of the balls and bins experiment: th incident edges are the
\balls" that are falling at random independently into the cdours that represent
the \bins". One can apply the method of bounded di erences irthe simplest
form. Let Te;e2 E, be the random variables taking values in [] that represent
the tentative colours of the edges. Then the number of edgascsessfully coloured
around v is a function f (Te;e 2 N1(v)), where N1(v) denotes the set of edges
incident on v.

Exercise 6.5 Show that this function has the Lipschitz property with cotant 2.
(Note that this is true regardless of the rule used to selectrwers.)
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Moreover, the variablesT,; e 2 N(v) are independent wherv is a \top" vertex.
Hence, by the method of bounded di erences,

2

Pr(jft Hf]j>t] exp 2_t :

which fort := (0 < < 1) gives an exponentially decreasing probability for
deviations around the mean. |If logn then the probability that the new
degree of any vertex deviates far from its expected value isverse polynomial,
i.e. the new max degree is sharply concentrated around its are

6.5.2 The Di culty with the Other Vertices

The analysis for the \bottom" vertices in algorithm P is more complicated in
several respects. It is useful to see why so that one can appate the need
for using a more sophisticated tool such as the MOBD in averagform. To
start with, one could introduce an indicator random variabé X for each edge
e incident upon a bottom vertexv. These random variable are not independent
however. Consider a four cycle with vertices; a; w; b wherev and w are bottom
vertices anda and b are top vertices. Let's refer to th eprocess of selecting the
winner (step 2 of the bipartite colouring algorithm) as \the lottery". Suppose
that we are given the information that edgeva got tentative colour red and lost
the lottery| i.,e. X,a = 0| and that edge vb got tentative colour green. We'll
argue intuitively that given this, it is more likely that X,, = 0. Since edgeva
lost the lottery, the probability that edge wa gets tentative colour red increases.
In turn, this increases the probability that edgewb gets tentative colour green,
which implies that edgevbis more likely to lose the lottery. So, not only are the
Xe's not independent, but the dependency among them is maliais.

One could hope to bound this e ect by using the MOBD in it simpést form.
This is also ruled out however, for two reasons. The rst is tat the tentative
colour choices of the edges around a vertex are not indepentdeThis follows
from the fact that edges are assigned a permutation of the cairs. Or, put in
another way, each edge is given a colour at random, but coleuare drawn without
replacement. The second reason, which applies also to alton |, is that the
new degree of a bottom vertex is a functionf which might depend on as many
as ( 1)= (2 edges. Even iff is Lipshitz witiﬂ,constants d =1, thisis
not enough to get a strong enough bound becaude= | di2|c:or'glmpI2gMo OIpIying
the method of bounded di erence in simple form (Corollary.Z23) would give the
bound

2

(2

Priif Hf]j>t] 2exp
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This bound however is useless fdr= Hf ] sinceHf ] =e

In the next chapter, we shall see how the Method of Averaged Boded Dif-
ferences can be applied to get a good concentration bound fiwe \bottom"
vertices.

6.6 Problems

. . sec:mobd-ec-1 .
Problem 6.6 Consider Algorithm | of x %TSTtmgion d-regular graphs with
girth at least 4 (the girth of a graph is the length of its smakst cycles). Use the
MOBD in simplest form to show that the new vertex degree afteone round is
sharply concentrated around its expected value (the new \tex degree is given
by the edges that do not colour themsleves). 5

92
Problem 6.7 (From Fﬁ,‘p.QZ) Let be the Hamming metric onH := f0; 1g".
For A H, let B(A;s) denote the set ofy 2 H so that (x;y) s for some
x2 A. (A B(A;s) as we may takex = y.) Show thatif ; > 0 satisfye °=2
then,
p_
n

Al 22 ) B(A2 ) (1 )2

with jvij 1 for eacl]:'; 2 [n]. Let 4;:::; , be independent and uniform in
f 1,+1g. Setf = j , ivj. Show thatf is Lipschitz and deduce a sharp
concentration result. Can you improve this by using the metbd of bounded
martingale di erences? 5

Problem 6.9 [Concentration around the Mean and the Median]
Show that the following forms of the concentration of measarphenomenon for
a function f de ned on a space are all equivalent:

There exists aa such that for all t > 0O,

Prif aj>t] ke

For all t > 0,
Prif Eflj>t] ke 2%
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Forallt> 0
Prif Mflj>t] kse °:

(Here Mf ] is a median off .)

Moreover, show that allk;s are linearly related to each other and so are thes.
5

Problem 6.10 [Geometric Probability] Let Q be a given point in the unit square

(a) Observe that if Z > x, then 310 P; lies within the circle C(Q; x) centered at
Q with radius x. Note that x 2. p_

(b) Argue that there is a constantc such that for all x 2 (0; 2], the intersection
of C(Q; x) with the unit square has area at leastx?. Hence deduce that

Priz>x] (1 o®'; x2 (O;pi]:

(c) Integrate to deduce thatHZ] d:p | for some constantd > 0. 5

Problem 6.11 [Isoperimetry in the Cube] A Hamming ball of radiug centered
at a point c in the cube f0;1g" is the set of all points at distance at most
r 1 and some points at distance from c. A beautiful result of Harper states
that for any two subsets X and Y in the cube, one can nd Hamming balls
B, centered at 0 andB; centered at 1 such thatjBoj = jX]j, jB4j = jYj, and

dy (Bo;B1)  dy(X;Y). Use this result and the Cherno bound to show that if
A is a subset in the cube of size at least' 2!, then jA;j (1 e ™=2M)2". 5

Problem 6.12 [Sampling without replacement] Show that the sequencbéiki;i
0 is a martingale. Apply Azuma's inequality to deduce a shargoncentration
result on the number of red balls drawn in a sample of size 5
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Chapter 7

The Method of Averaged
Bounded Di erences

h:mobd-appl-2 ‘

Sometimes, the functiorf for which we are trying to show a concentration result
does not satisfy the conditions needed to apply the simple MED: the Lipschitz
coe cients are simply too large in theworst case The function is not \smooth"
in this ense in the worst case. We saw this for example in the awgsis of the \top"
vertices in the distributed edge colouring example. In sucbases, the Method of
Average Bounded Di erences can be deployed needing only amergedsmooth-
ness condiiton. That is, we need a bound on the follwing aveyed smoothness
coe ciients:

JHf i X uXi=al Hf jXi uXi=al; (7.1) [eq:azuma-diff

or, the similar

JHf ] X0 1 X

al Hf jXi Xi=al; (7.2) [eq:azuma-diff-2

At rst glance, getting a handle on this appears formidableand indeed it is often
non-trivial. We illustrate three main approaches to this:

1. Direct computation is sometimes possible (using line&yiof expectation for
example).

2. Coupling which is a veréqvaezr g_:l [ﬁt 00l IJ%rffc?mparlng two closely relad
distributions such as in {7.I) or (7.2)

3. Bounding the di erence by conditioning on the non-occurece of some rare
\bad" events.

101
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7.1 Hypergeometric Distribution

The hypergeometric distribution describes the number of deballs drawn in an
experiment wheren balls are sampled without replacement from a bin containing

inthe set N i+ 1] for i 2 [n] giving the number of the ball drawn on theith
trial. To estimate jHf j X ;] Hf j X 1]i, let N; 1 be the total number of balls
and M; ; the number red balls at the stage when theh ball is drawn, fori 2 [n].
Thus Ng= N;Mg= M andN; = N i. Observe that

HEjX=(M M)+ “,j—i‘(n :

and furthermore that M; ; M; 1. From this, we conclude that

Mil.l Mi1 N n
Ni 1’ Ni 1 N i

jHf j X1 Hf j X 4]] max

N n
N i
Furthermore
X 2 X
N n = (N n)? ! -
| N i i (N 1)
X
= (N ) e
N nj N 1J
ZZ N 1 1
(N n) —dx
N n X2
n 1
= (N n)N 1
Thus we get the bound:
: . (N 1)t
Pr(jf fli>t
U B> e g s
commentary>  Thus with t ;= Hf ] and Hf | = §-n, we get
M M M M
Pr(jf an> Wn] exp NN nn
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7.2 Occupancy in Balls and Bins

recall the bound: ,

Prjz HZ]j>t] 2exp % -

on the concentration of the number of empty bins when we throm balls inde-
pendently and uniformly at random inton bins. A better bound can be obtained
by applying the method of bounded average di erences. Now weed to compute

G = JHZ X uXe=h] HZjXy 1;X¢= ]

for k 2 [m]. By linearity of expectation, this reduces to computing fo each
i 2[n], Gk ;= JHZi j X« Xk =h] HZij X« ;X = K]

(b & 1),

Gk = JHZ jXk 1= b ;Xk=h] HZjXk 1= b 1;Xk = B

If i 2 S, then of course,
HZi j X« 1= b ;Xe=0]=0=HZ j X 1= b ;X¢= K]
and sock = 0.
If i 625 andi 6 b, then
HZi jXk 1= sXe=H=@ 1=n)" ;
Hence, fori 625 [f b; g, we havecy = 0.

Finally, if i = b, 62S, , then of courseHZ; j X « 1 = bk 1; Xk = b] =0 but
if of 625
HZi j X 1=h ;Xc=H]=@1 1=nm k

Hencecyx = (1 1=n)™ X in this case.

P
Overall, we see thatey = . Gx (1 1=n)™ ¥ and

X @ 1 1 1=n)™ _n® 2
1 1 1=n2  2n 1°

k
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This gives the bound:

. : t?’(n  1=2
Prjz HZ]j>t] 2exp %
n
Asymptotically in terms of r := m=n, this is How does it
compare to the
t2 previous
2 ex bound?
P nl e ?)

7.3 Stochastic Optimization: TSP

A travelling salesman is required to visitn towns and must choose the shortest
route to do so. This is a notoriously di cult combinatorial optomization problem.
A stochastic version in two dimensions asks for the shortesiute when the points
P; == (Xj;Yi);i 2 [n] are chosen uniformly and independently in the unit square,
[0; 1F? (i.e. eachX; andY; is distributed uniformly and independently in [Q 1]).

By whom is Let T, = To(P;;i 2 [n]) delglote the length of the optimal tour. A celebrated
fr‘f d'e;ﬁ';?is result shows thatgT,] = ~ n for some > 0. What about a sharp concentra-

celebrating? tion result? A straightforward aBp_roach is to observe thafl,, has the Lipschitz
property with constant at most 2 2 (imagine that all except one point are in one

Is the corner and the last is in the opposite corner). Hence, we hatle bound

computation

correct? t2

Shouldn't be . . . -

the PriT, HT.Jj>t] exp P35 (7.3) [eqitspl
denominator

Note that sinceHT,] = n, this bound is no good for small deviations around
the mean i.e. fort = HT,].

For a better bound, we shall turn to the method of bounded mamgale di er-
ences. LetT,(i) denote the length of the shortest tour through all points egept
the ith for i 2 [n].

Now we observe the crucial inequality that

Ta(i) Tn Ta(i)+2Zi; i<n; (7.4)

whereZ; is the shortest distance from point?; to one of the pointsP;.; through
P,. The rst inequality follows because, denoting the neighbars of P; in T, by
P and Q, the tour obtained by joining P and Q directly excludesP; and, by the
triangle inequality, has length less thanT,,. For the second inequality, suppose
Pj;j >1 is the closest point toP;. Now take an optimal tour of all points except
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Pi and convert it into a tour including P; by visiting P; after reachingP; and
returning to P;. This is not a tour but can be converted into one by taking a
short{cut to the next point after P;. The length of the resulting tour is no more
than T,(i) + 2Z; by the triangle inequality.

:sandwich
Taking conditional expectations in 69257 ?r{/v\éwg:;et:
HT.()jPi ] HTajPi ol HTW()jPi JJ+2HZijPi 4];

HT.()jPil HT.jPil HTW()jPil+2HZ jPil:
Note that T, (i) j Pi] = HT,(i) j P; 1]. Hence, we conclude,

JHTajPi] HTajPiali 2max@ZijPi ;HZijPi]); 1 n

Computing HZ; j Pi] is the following question: given a poinQ in [0; 1], what is its
shortest distance to one of a randomly chosen setrof i points? ComputingHZ; |
P 1] is the same, e gg&tetgr% c%inQ is also picked at random. This e>1§rciﬁ is
relegated to Problen@IOQTrT&. . The answer isthafZ; j Pi;HZ;jPi 1] c¢c= n i
for some C‘Fpgstantc > 0. Finally, taking the trivial bound jHT, j P,] HT, j
Pn i 2 2weget

: . t?

2

at . .
logn ' (7.5)

'sp2  Jeq:ts
for somea > 0. Compare E%QF 0 (h%L. ; Jin particular, note that the former
together with ET,] =  n yields

2exp

b 2n

Pr[jT, IOﬁj> pﬁ] 2exp logn

for someb >0 and all > 0.

We shall see later that this bound can be further improved byamoving the logn
factor. But that will need a new method!

7.4 Coupling

An elegant and e ective device to do this is aoupling: suppose we can nd a
joint distribution  (Z;Z 9 such that
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1. The marginal distribution (Z) is identical to the distribution of (X ]
Xi 1;Xi = a&], and

2. The marginal distribution (Z9 is identical the distribution of (X j X ; 1;X; =
al
Such a joint distribution is called acoupling of the two distributiongX j X ; 1;X; =
aland (X jX; ;X; = a).
Then,
jHf X0 uXi=a] Hf jX; ;Xi=alj=

JEF(2)] ETf(Z9)
JEf(Z) f(Z9] (7.6) [eq:coup-bound

Suppose further that the coupling is chosen wzell sgutmgﬁ(]gg) f (29j is usually

very small. Then we can get a good bound o . For example, suppose that

1. For any sample point ¢;z°% which has positive probability in the joint
space,jf (z) f(z9j d, and

2. Prif (2) 8 f(Z9] p,

: -bound
with both d and p \small". Then, from (Wﬁ

JHf X0 uXi=a] Hf jX; uX;=a% pd:

We will construct such good couplings below. However, rst &give some simple
examples to get used to the concept of a coupling.

Example 7.1 Suppose we perform two independent trials of tossing a com
times, the rst with a coin of bias p of turning up heads and the second with bias
p® p. Intuitively it is clear that we expect to get more heads in tke second case.
To make this rigorous, letX; ; X, be the indicator variables corresponding
to getting a heads with the rst coin and X9, ;X2 the corresponding ones for
the second coin. We would like to assert that for any 0,

PriX;+ + X,>t] Prix%+ +X2>t]

To do this, we will introduce a coupling of the two distributions i.e. we will de ne
a joint distribution  (Z;;  ;Z,;Z%  ;Z?) such that (Z;; ;Z,) has the
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same distribution as K1; ;X)) and (Z2 ;Z9 has the same distribution
as (X2  ;X?), and moreover, at each point of the sample spacg, Z2%i 2 [n].
Then,

PriX,:+  + X, >t]

[Z,+ +Z,>t]
27+  +Zy>t]
PriX2+  + X?2>t]

Now for the construction of the coupling. Recall thatPr[X; = 1] = p p°=
Pr[X 2= 1] for eachi 2 [n]. We de ne the joint distribution (Z;; ;Z.;Z%  ;Z9)
be specifying the distribution of each pairZ;; Z? independently for eachi 2 [n].
The distribution is the product of these marginal distributions. For each2 [n],

rst toss a coin with bias p of turning up heads. If it shows heads, se&t; =1 = Z?°.
Otherwise, toss seZ; = 0 and toss another coin with biasp® p of showing up
heads. If this turns up heads, seZ?= 1, otherwise setZ?= 0.

It is easy to see that in the distribution , Z;  Z?for eachi 2 [n]. Also, the
marginal distributions are as claimed above. 5

Exercise 7.2 Generalize the example above in two steps:

(a) Suppose the probabilitiesr[Xi] = p p° = Pr[XJ are not necessarily
all equal. Give the required modi cation in the above couplj to prove the
same result.

(b) SupposeX;; ;X, and X9 ;X0 are distributed in [0; 1] and not nec-
essarily identically. HowevelgX;] EXJ for eachi 2 [n]. What further
modi cations are needed now?

Example 7.3 [Load Balancing] Suppose we thrown balls into n bins in the rst
experiment andm® m balls in the second. In both cases, a ball is thrown uni-
formly at random into the n bins and independently of the other balls. Obviously
we expect the maximum load to be larger in the second experinie

To make this rigorous, we construct a coupling of the two distributions. We may
visualize the experiment underlying the coupling as consisg of n bins coloured
blue and n bins coloured green both sets labelled 1 n and m balls coloured
blue labelled 1 m and m°balls coloured green labelled 1 m° The blue balls
will be thrown into the blue bins and the green balls into the geen bins. The
marginal distribution of the con guration in the blue bins will correspond to our
rst experiment and the marginal distribution in the green hns to the second
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experiment. The joint distribution will ensure that a greenbin will have at least
as many balls as the corresponding blue bin with the same nueb Then, if L,
and L% ., are the maximum loads in the original two experiments respteely
and L and Ly are the maximum blue and green loads,

PrlL, >t]

[Lp>t]
[Lg>t]
PrlLmo>1t]:

The coupling itself is easy to describe. First we throw then blue balls uniformly

at random into the n blue bins. Next we place the rstm green balls in the green
bins as follows: a green ball goes into the green bin with tharae number as the
blue bin in which the corresponding blue ball went. The remaing m® m green

balls are thrown uniformly at random into the n green bins.

Ver fy that the coupling has the two properties claimed. 5

Exercise 7.4 Suppose the balls are not identical; ball numblerhas a probability
pxi of falling into bin numberi. Extend the argument to this situation.

7.5 Distributed Edge Colouring

Recall the distributed edge colouring problem and algoritihs from the previous
chapter. We applied the simple MOBD successfully to get a s1g concentration
result for the \top" vertices, but reached animpassewith the \bottom" vertices.

We will use the method of bounded average di erences to get &#@g concen-
tration bound for the \top" vertices as well. We shall invokethe two crucial
features of this more general method. Namely that it does n@resume that the
underlying variables are independent, and that, as we shalke, it allows us to
bound the e ect of individual random choices with constantsnuch smaller than
those given by the MOBD in simple form.

7.5.1 Preliminary Analysis

Let's now move on to the analysis. In what follows, we shall éois on a generic
bottom vertex v in algorithm P or an arbitrary vertex in algorithm 1. Let N(v)
denote the set of \direct" edges{ i.e. the edges incident ow{ and let N?2(v)
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denote the set of \indi§ct edges” that is, the edges incidemn a neighbour of
v. Let N(v) := NY(v) N?2(v). The number of edges successfully coloured at
vertex v is a function f (Te; € 2 N(v)). Let us number the variables so that the
direct edges are numberedfter the indirect edges (this will be important for the
calculations to follow). We need to compute

=0 T uTe=al Hf jTe 1Tk = qlis (7.7) [eq:lambda-bound

We decomposé as a sum to ease the computations later. Introduce the indita
variables X ;e 2 E:

1; if edgee is successfully coloured

Xe = .
0; otherwise.

P
Thenf = Xe.

v2e

Hence we are reduced, by linearity of expectation, to compgag for eache 2
N*(v),
JPriXe=1jT ;Te=al PriXe=1jTy 1;Tc = Qli:

For the computations that follows we should keep in mind thabottom vertices
assign colours independently of each other. This impliesahthe colour choices
of the edges incident upon a neighbour of are independent of each other. In
algorithm I, all edges have their tentative colours assigdeindependently.

7.5.2 General Vertex in algorithm |

:lambda-bound ) .
To get a good bound on H , We snall construct a suitable couplingY( ;Y 9 of
the two conditional distributions.

TiTk Tk=6) (T Tk ;T =)

The coupling (Y ;Y 9 is almost trivial: Y is distributed as T conditioned on
(Tk 1; Tk = «) i.e. these settings are xed as given and the other edges are
coloured independently.Y Cis distributed identically as Y except thatY % = c?.

It is easy to see that the marginal distributions ofY and Y © are exactly the
same as the two conditioned distributions Ty 1; Tk = &) and (T 1; Tk = &)
respectively.

Now, let us computejHf (Y ) Pf (Y 9]j under this joint distribution. Recall that
f was decomposed as a sum , f. and hence by linearity of expectation, we
only need to bound eachHf.(Y) fe(Y 9]j separately.
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indirect edges have been exposed. Let = (w;z) wherew is a neighbour of
v. Then, for a direct edgee 8 vw, fe(y) = fo(y9 because under the cou-
pling, y and y° agree on all edges incident oe. So, we only need to com-
pute jHf ww(Y) fuw(Y 9]j. To bound this simply, note that f,,,(y) fuw(y) 2

f 1;0;+1g and that f,(y) = fuw(y9 unlessy,, = ¢ or y,w = ¢. Thus, we

conclude that

Hw(Y) fun(YOl  PrYe= 6 Ye= ¢ 2

. . rob:tighter-I
In fact, one can show by a tighter analysis (see Proble a

jE[fvw(Y) fvw(Y O)]J i:

Now, let us consider the case whes, 2 N'(v) i.e. the choices of all indi-
rect edges have been exposed and possibly some direct edgewedl. In this
case, we merely observe thdt is Lipschitz with constant 2, and hence, trivially,

jHE(Y) (YO 2

Thus,
L. if g2 N2(v)
“ 0; otherwise
and so, X X L X
2 = —+ 4 4 +1 :
k e2N 2(v) e2N1(v)

Plugging into the MOABD, we get the following sharp concentation result for
the new deged of an arbitrary vertex in algorithm I:
2

Pr[if Hf]j>t] 2exp 571 =

Exercise 7.5 By regardingf as a function of2 (vector-valued) variablesr (w)
(which records the colours of all edges incident am, obtain a similar (but slighly
weaker) result using the simple MOBD.

7.5.3 Bottom Vertex in Algorithm P

. eqg:lambda-bou ) /
Again, to get a good bound on }'(97)—%'}? , We shall construct a suitable coupling
(Y ;Y 9 of the two conditional distributions.

(TiTk Tk=6) (T Tk ;T =)
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This time, the coupling is somewhat more involved.

Supposeg, is an edgezy wherez is a \bottom" vertex. The coupling (Y ;Y 9 is
the following: Y is distributed as (T j T 1; Tk = &) i.e. it is the product of the
permutation distribution resulting from the (possible) canditionings around every
bottom vertex. The varaible Y © is identical to Y except on the edges inciodent
on z where the coloursc, and ¢ are switched

We can think of the joint distribution as divided into two classes: on the degs
incident on a vertex other thanz, the two variablesY and Y © are identical. So
if v 8 z, the incident edges have indentical colours undef and Y © uniformly
distributed over all permutations. However, on edges inoght on z, the two
variablesY and Y °dier on exactly two edges where the two colours, and c?
are switched.

Exercise 7.6 Verify that the marginal distributions ofY andY %are (T j Ty 1; Tk =
o) and (T j Tk 1; Tk = ) respectively.

Now, let us computejHf (Y) f (Y 9] |ynder this joint distribution. Recall as
before thatf was decomposed as a sum,,.f. and hence by linearity of expec-
tation, we only need to bound eachHf.(Y) fo(Y 9]j separately.

indirect edges have been exposed. Let = (w;z) for a neighbourw of v. Note
that since

Hf(Y) f(YO=HE(Y) f(V)jYe;Yiz2€]

it sucestobound Hf(Y) f(Y9]jYe;YZz2 €. Recall thatY,, = ¢ and

Y %, = . Fix some distribution of the other colours arouncz. Suppose that
Y ..o = ¢ for some other neighbouw® of z. Then, by our coupling construction,
Y %0 = ¢, and on the remaining edgesy andY °agree.. Morover, by indepen-
dence of the bottom vertices, the distribution on the remaimg edges conditioned
on the distribution around z is una ected. Let us denote the joint distribution

conditioned on the settings aroundz by [(Y ;Y 9 j z]. Thus, we need to bound

jHE(Y) f(Y9jzi

For a direct edgee 8 vw;vwP, fo(y) = fe(y?% becuase in the joint distribution
space (even conditioned)y and y° agree on all edges incident oe. So we can
concentrate only onjHf (Y ) fo(Y 9 j z]j for e = vw; vwl. To bound this simply,
observe that for eithere = vw or e = vw° rst, fo(y) feo(y9) 2f 1;0;1gand
second, thatfe(y) = fe(y?9 unlessy. = ¢ or ye = . Thus, we can conclude
that

Ho(Y) fo(Y9jz] PrYe= 6_Ye= @z 2
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Taking the two contributions for e = vw and e = vw°together, we nally conclude
that 4

jHE(Y) f(YOl —

. . rob:tighter-P
In fact, one can show by a tighter analysis (see Proble a

Hw(Y) fo(YOl 2

Let us now consider the case whes 2 N1(v) i.e. the choices of all indirect edges
and possibly some direct edgeshas been exposed. In this casebserve merely
that jf (y) f(y9j 2 sincey andy? diere on exactly two edges. Hence also,

jHE(Y) (YO 2

Thus, overall
2. if g 2 N2(v)
“ 0; otherwise
and, X X 4 X
K= — + 4 4(+1) :
k e2N 2(v) e2N1(v)

Plugging into the MOABD, we get the following sharp concentition result for
the new deged of an bottom vertex in algorithm P:

2

Pr[if Hf]j>t] 2exp 20+

We observe that the failure probabilities in algorithm | andalgorithm P are nearly
identical. In particular, for t := , both decresae exponentially in .

7.6 Handling Rare Bad Events

In some situations, one can apply the MOABD successfully byolinding the
\maximum e ect" coe cients but for certain pathological ci rcumstances. Such
rare \bad events" can be handled using the following versioof the MOABD:

m f(Xq:iX,) M
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Let B any event, and letc; be the maximum e ect off assumingB®:
JEfjX i ;X =a;B HfjX; 1;X;=a& B g

Then,

Priff > f ]+ t+(M m)Pr(B)] exp PZ% + Pr[ B]
and X

Prif< Hf] t (M m)Pr(B)] exp F’t—CI2 + Pr[ B]:

Proof. We prove the statement for the upper tail. The proof for thedwer tail is
analogous. For any valud > 0,

Pr(f> Hf]+t) Pr(f> Hf]+tjB®+Pr[B]: (7.8)
hm: b
To bound Pr(f > Hf ]+ t j B€) we apply Theoremb‘Tt—"&%t. .mg ?BC) and get
2
Pr(f> Hf]+tjB°% exp F’Zt—CI2 ; (7.9)
G
Note that all ¢s are computed in the subspace obtained by conditioning df.
To conclude the proof we show thaff ] and Hf j B€] are very close. Now, since

Ef ] = Hf jB] Pr{EB] + Hf jB] Pr[B°]
andm f M, we have that
Hf jBY] (Hf jB] m)Pr[B] Hf] Hf jB]+(M Hf jB])Pr[B]
so that
j'f] Hf jBT (M m)Pr[B]:
The claim follows. |

The error term (M m) Pr[B€] in practice is going to be small and easy to esti-
mate, as the next examp A 'I8make clear. However, using sertricky technical

arguments, one can prov heorem 3.7] the following cleaner statement. For
anyt O,
Theorem 7.8 Let f be a function ofn random variablesX;:::; X,, each X,

taking values in a sefd;, such thatEf is bounded. LetB any event, and letc, be
the maximum e ect off assumingB®:

JHf X ;X =a;B7 Hf jX; ;X;=a%B ¢

Then,
2

Pr(f > Hf]+1t) exp F’Zt—Ciz + Pr[ B] (7.10)

where again, the maximum e ects; are those obtained conditioned oB°.
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7.7 Quicksort

We shall sketch the application of the MOABD to Quicksort. Ths application

is interesting because it is a very natural application of th method and yields a
provably optimal tail bound. While conceptually simple, tre details required to
obtain the tighest bound are messy, so we shall con ne ourge$ to indicating

the basic method.

Recall that Quicksort can be modeled as a binary tre€, corresponding to the
partition around the pivot element performed at each stageWith each nodev
of the binary tree, we associate the list, that needs to be sorted there. At the
outset, the rootr is associated withL, = L, the input list,and if the the pivot
element chosen at node is X, the lists associated with the left and right children
of v are the sublists ofL, consisting of, respectively, all elements less thax,
and all elements greater thanX, (for simplicity, we assume that the input list
contains all distinct elements). Now, the number of compasons performed by
Quicksort on the input list L, Q_ is a random variable given by some functioh
of the random choices made for the pivot elementX,;v 2 T:

QL=FfXy;v2T):

We shall now expose the variableX,;v 2 T in the natural top{down fashion:
level{by{level and left to right within a level, starting wi th the root. Let us denote
this (inorder) ordering of the nodes oflT by <. Thus, to apply the Method of
Martingale Di erences, we merely need to estimate for eactodev 2 T,

JEHQL j Xw;w<v] HQLjXw;w V]

A moment's re ection shows that this di erence is simply

JHQL,1 HQu, j Xuli;

where L, is the list associated withv as a result of the previous choices of the
partitions given by X,,;w < v. That is, the problem reduces to estimating the
di erence between the expected number of comparisons perfeed on a given
list when the rst partition is speci ed and when it is not. Such an estimate is
readily available for Quicksort via the recurrence satis @ by the expected value
O, := HQy], the expected number of comparisons performed on a inpustliof
length n. If the rst partition (which by itself requires n 1 comparisons) splits
the list into a left part of sizek;0 k <n and a right part of sizen 1 Kk, the
expected number of comparisonsis 1+ ¢ + ¢, 1 x and the estimate is:

jo (0 1+a+t gkl n L
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We shall plug this estimate into the Method of Bounded Di eraces: thus, if
Ty = "-_L\,j is the length of the list associated with nodes, then we need to esti-
mate 2. This is potentially problematical, since these lengths arthemselves
random variables! Suppose, that we restrict attention to Melsk k; for which

we can show that

1.’y n for some parameter to be chosen later, and

2. ky is small enough that the di erence between the real procesacthe one
obtained by xing the values upto levelk; arbitrarily is negligibly small.

Then summing over all levels kj, level by level,
X - X X

v v
v k kih(v)=k
X%
n v

kX k1 h(v)=§(

n v
kxkl h(v)= k
2.

n
k ki

Next we are faced with yet another problem: the number of leig which itself is
again a random variable! Suppose we can show for sokie> k 1, that the tree
has height no more thark, with high probability. Then the previously computed
sum reduces tok, ki) n 2.

_ th:moabd-err-2 i
Finally we can apply Theorem(7.8. Here the \bad events" we want to exclude

are the event that afterk; levels, the list sizes exceed, and that the height of
the tree exceeds,. all that remains is to choose the parameters careSupposeth
maximum size of the list associated with a node at height atdst k; exceedsn
with probability at most p; and that the overall height of the tree exceedk, with
probability at most p,. (One can estimate these probabilities in an elementary
way by usira? the fact that the size of the list at a node at depttk 0 is explicitly
given byn ~, ; , Zi, where e%ﬁhr%éaigdyermgrmly distributed in [0;1].) Then the
nal result, applying Theorem [7.8 will be:

2t2

PriQn >0dn + tJ<pi+ p2 +exp (ks k)n?

. th:moabd-err . .
(If we applied Theorem}77—. , we would have an additional error term: if we use
pessimistic estimates of the maximum and minimum values ohé number of
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comparsions as1? and 0 respectively, then the error term is%(p, + p,) which is

o(1).)

We choose the pararergg%g to optimize this sum of three term$he result whose
details are messy (s IS:

Theorem 7.9 Let = (n) satisfy 1=Inn < 1. Thenasn!l ,

Pr[i% 1> J<n 200 in@=)o@inin ).

This bound is slightly %%%than an inverse polynomial bond and can be shown
to be essentially tight[~].

7.8 Problems

Problem 7.10 [FKG/Chebyshev Correlation Inequality] Show that for any ron-
decreasing functiond and g and for any random variableX ,

Hf (X)a(X)]  Hf (X)IHg(X)I:

(Hint : Let Y be distributed identical to X but independent of it. Consider
H(f (X) f(Y))(g(X) a(Y))]. Argue this is non-negative and simplify it using
linearity of expectation.) 5

Problem 7.11 Use coupling to give a simple proof that if a function satis &
the Lipschitz condition with coe cients ¢;i 2 [n] then the same bounds can be
used with the MOABD i.e. the latter are stronger. Show that tke two versions
of the latter method di er at most by a factor of 2. 5

Problem 7.12 [Empty Bins revisited] Rework the concentration of the numbr
of empty bins using a coupling in the method of average boundieli erences. 5

Problem 7.13 Show by a tighter analysis of an arbitrary vertex in algoritm |

that
1

jE[fvw(Y) fVW(Y O)]J —
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Problem 7.14 [Kryptographs] The followin m@%gpg&[ arises in the cosekt
of cryptographically secure sensor networkfe0, 57]. We are given gool of
cryptographic keys that can be identi ed with the nite set P :=[m], and a set
of n vertices. Each vertexi is given akey ring S; generated by sampling® with
replacementk times. Two verticesi and | are joined by an edge if and only if
S\ § 6 ;. In the following we assume thak = (log n) and m = ( nlogn).

(a) Show that the graph is connected with probability at leas1 niz (Hint:
show that, given a setS of vertices, the size of the union of the key rings
of vertices inS is not far from its expectation. Using this, show that it is
unlikley that G has a cut.)

(b) Using coupling show that the graph is connected with at kst the same
probability when the key rings are generated without replaament.

end new

Problem 7.15 Show by a tighter analysis of a bottom vertex in algorithm P
that
2

JHfVW(Y) fVW(Y O)]J —

Problem 7.16 [Concentration for Permutations] Letf (X; ;1 Xn) be a Lips-
chitz function with constant c i.e. changing any coordinate changes the value
of f by at most c. Let be a be permutation of i] chosen uniformly at ran-
dom. Show a strong concentration fof ( (1); ; (n)). (Hint : Use a natural
coupling to bound

JHf X sXi=al Hf jXi Xi=al):



118 CHAPTER 7. AVERAGED BOUNDED DIFFERENCES



Chapter 8

The Method of Bounded
Variances

In this chapter we describe a tail bound similar in avour to he Method of
Bounded Di erences (MOBD). The new bound too rests on a mantigale inequal-
ity similar to Azuma's. In the previous chapters we saw how,igen a function

the rst i 1 variable. That is, we would look for a bound; as small as possible
such that,

( X )
PrjX HX]j>t] 2exp t?=2 &

We will see in this chapter that basically the same result olins if we consider
the sum of variances of the increments, conditioned on the nables exposed so
far:

The resulting bound will be,
( v )
PrjX EX]j>t] 2exp t*=4 V2

119
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assuming some mild conditions ot Since the variance factors in the probability
Wllth which jumps occur, thls estimate is often qun.e sharp CM@L%‘@%A’M‘” see in
this chapter resembles quite closely what we saw in ChapﬂWw ere we derived
the variance bound

PrjiX HX]j>t] 2exp t>=4 2 :

This bound can be much stronger than the original Cherno bond and in fact
it essentially subsumes it. In practice we will see that goodstimates of the
variance are not hard to compute. In a sense, the method can bewed as a
quick-and-dirty version of the MOBD. We begin by proving thebasic underlying
martingale inequality.

8.1 A Variance Bound for Martingale Sequences

. ch:mo . .
in Chapter ecall that given a vectorX the notation X ; denotes to the

truncated vector consisting of the rsti coordinates.

We make uiqyoft basic de nitions of martingales and theirpperties developed

Theorem 8.1 LetZy;Zy;:::;Z, be a martingale w.r.t. the sequencéo; X1;:::; X,
satisfying the bounded di erence condition,

1Zi Zi 14 ¢
Di :=(Z for some set of non-negative values. Let
Zi 1jXi 1)? X
V = Vi

in
where
v; =supvar(DijX ; 1)

where thesup is taken over all possible assignments ¥; ;. Then,

t2
Pr(Z,>Zq+ t e —
and
t2
Pr(Z, <Z t —

provided that

t 2V:miaxci: (8.1)
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Proof. The initial part of the proof is identical to that of Theorem @%n
reproduce it here for ease of exposition. It su ces to provehe statement for the
upper tail. The proof for the lower tail is symmetrical with the martingale Z
replaced by Z.

Assume without loss of generality thatZ, := 0 and de ne the martingale di er-
ence sequencB; .= Z; Z; ;i 1. ThenZ,= Z, 1+ D,. Note that HD;] =0,
for all i. By Markov's inequality,

_He*"], ,
Pr(z, >t) min ——— (8.2)

With foresight we set,
t

= 7 ©:3)
As usual we focus on the numeratoEe? "] and seek a good upper bound for it.

FetpBoandfe * +*°0]

= HHe (Zn 1+Dn) i X 4l
= He’" *He®"jX, 4]l

We now show that, for alli,

2

EePijXi 1] e™: (8.4) ‘eq:inductiveStep

Assuming this, it follows by induction that,

[Haenjicleatep” " *He® "jX n 4]
E[eZ " 1le 2vp
ZV:

e

The claim then follows by induction. The base case is the trial caseZ, = 0.
Using our choice for and the bound on the numerator it follows that,

He” "]

et

Pr(Z, >t) min
>0

;inductiveSt
The crux then is to establish W ; : . Iivs ollows from the well-known inequalities
1+x €, valid forall x, ande* 1+ x+ x?, valid for jxj 1. SinceZ is a
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martingale with respect toX , HD;jX ; 1] =0. Now, if jD;j 1 then,

HeP ijX; 4] H1+ Di+( D)X 4]
1+ 2HDFX i 4]

1+ 2Vi

e Vi

The copdlggn jDij 1 follows, for alli, from the hypothesis}g%and Equa-

tion 85 The claim follows. |

A couple of observations are in order. First, the ternV is related to the variance
of Z, in the following way: E[V] = var(Z,) (see Problem section). Second, the
condition ont roughly says that this inequality is a bqund for deviationshat are
\not too large”. By using Bernstein's estlmate%_lﬁpossmle to obtain the
following slightly sharper bound without making any assumiions ont.

t2
Pr(Z, >Zo+1) exp 2V (1+ biV) ; (8.5)

The term b is de ned as the max dev, wheredew := supf(Zx Zx 1jX1 =

""" Xk 1= Xk 10. In some situations the error termbt= |s negligible, and
doer Nk 17 Xko1 \4 gg
(8.5) vyields a slightly sharper @»g than that of Theore e interested

reader can refer for example t

The next step is to package this inequality in a form suitabléor the applications.
Note that the ground variablesX ;s need not be independent for the next theorem
to hold.

= HfjXi] HfjXi 4]

oi o )

And let

where
v; :=supvar(DijX i 1)
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with the sup taken over all possible assignment % ; ;. Then,

t2
> + —
Prif > B +1t] exp v,
and
t2
Prff< B t —
| ] exp N

provided thatt 2V=max; G.

th:martMob
Proof. APJ%'}/ Theorem b‘l_[_tﬁL maE) eV Doob martingale sequenc&; := Hf jX |].

Problem %8* [ |

Intuitively, when applying this inequality we will expose,or query, the values of

we shall see, the power of this inequality derives from thedthat it is possible,
and sometimes easy, to give good estimates of thgs. Note that one has the
freedom to decide the sequence according to which the vailied are exposed.
This will be put to good e ect in the applications to follow.

Notation 8.3 In the sequel we shall refer t&/ as thevarianceof f and toc as
the maximum e ect of the ith query.

8.2 Applications

As usual, the best approach to understand the method is by mes of examples
of increasing sophistication. For the method to be useful emeeds simple ways
to bound the variance. A simple but useful bound is the folloiwg. Assume that

a random variableX is such thatX]=0 and jXj r. Then,

2

var(X) rz: (8.7) | mobv:sbov
p5
(See Problen']‘c"s*?%—&m.o V

With this we can essentially recover the basic version of th®1OBD (Theo-
R FaOBd
rem }b“ISr'BI_W.m .0 e are given a functiorf (X 4;:::; X,) satisfying the conditions

ifx)y fxX% g
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bv:sb
for eachi, wheneverX and X °dier only in the ith coordinate. We apply}‘E’s*?—m.o —

mean. Thus

var(D;) ﬁ
P thm:mob
ThereforeV 1 ¢ and by Theorem%Zi.m,mo Y
t2 t?
— P
Prif > B +1t] exp iV, exp z

provided thatt 2V=max; G.

Exercise 8.4 Establish the basic Cherno -Hoe ding bounds by using the Med
of Bounded Variances.

The next example is to derive the variance bound of the basid€rno -Hoe ding
bounds that we developed ix 1.7. We are givem independent random variables
Xi 2 [0;1] and we want to prove that,
t2
42

P P
whereX = Xy ?:= ; fand ?:= var(X;). We apply the method to

f(XyiinXn) == Xi. Now, if we set

Pr{X > EX +t] exp

we have that
iZi Zi 4 L
Furthermore, by independence we get
Di:=2Z Z 1=X; HX|]
and
P var(D;) = var(X;) thm:mobv
and thusV = var(X;)= 2. Therefore, by invoking TheoreW
2 2
Priff > B +1t] exp N = exp %
if t 2V. In the case when PiK; = 1] = p, for all i, we have by independence
that 2= np(l p) and the bound becomes,
Pr[f > B +1t] e =0 p,

The variance is maximized wherp = % so that 2 which gives

n
Prff > B +t] exp " ™":

This b eur_léjlloses a factor of two irlethgb%ggnraent. By applyingie slightly sharper

bound 8.5 one essentially recovers.b.
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s 8.2.1 Bounding the Variance
__mo V:btv

mobv:sbov . .
We saw that (}?7%7. gives a simple but useful bound for the variance that abys

is when eachX; takes on two values, a \good" value with probabilityp;, and a
\bad" value with probability 1  p;. In this case, assuming thaiX; takes values
in a nite set A;, we get the following useful bound:

Vi pd p)ct (8.8) [eq:betterBound
so that b
Prff > B +1] exp = P ) (8.9)
and p
Prif < B t] exp = Pl P, (8.10)

Does it hold

ed.hetteyBound also for nite
Bound (8.8) Tollows from elementary, but non-trivial computatiors (see Prob- 'g;ifrvcél‘f;
lem B:16). '

Let us apply this bounding technique to the following proble. We are giVch:‘%obd-ec
d-regular, undirected graphG = (V; E). Consider again Algorithm | from x [7.5.

Each edge is given a list of colors and the following simple, distributed algorithm

is executed. Each edge picks a tentative color at random, doimly from its list.

If there is a conict{ two neighbouring edges make the same t¢ative choice{

the color is dropped, and the edge will try to color itself lagr. Otherwise, the

color becomes the nal color of the edge. At the end of the rodn the lists are
updated in the natural way, by removing colors succesfullysed by neighbouring
edges. Edges that succesfully color themselves are remofredh the graph. The
process is repeated with the left-over graph and left-oveolor lists until all edges

color or the algorithm gets stuck because some list runs out colors.

It is possible to show that, for any > O, if d logn and c = (1 + )d this
simple algorithm will, 39’(',19 @Eb'} probability, color all edges of the graph within
O(log n) many rounds[13,22]. Since clearlyl colors are needed to edge color the
graph, this shows that one can obtain nearly-optimal edgestorings by means
of this very simple and inexpensive distributed procedureHere we analize the
rst round of the algorithm to show that the degree of each vedex is sharply
concentrated around its expectation. The discussion exemnps some of the
important points of the full analysis. For simplicity we assme c = d.

Fix a vertex u. For this vertex we want to show that its new degree is sharply
concentrated around its expected degree. The probabilithat an edgeeis colored
is the probability that no neighbouring edge picks the sameentative color,

1 2d 1 1

Pr[ecolors]= 1 — —:
[ ] c 2
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Therefore, if we denote byZ the number of edges that succesfully color,

7] 5= ( o

We are interested in the variabled Z and if we show thatZ is concentrated, so
isd Z. The variableZ is a function of the random choices made not only by the
edges incident oru, but also those of the edges incident on the neighbours wf
Let E(u) denote this set, and letX denote the random color chosen by an edge
e. Before applying the new method it is worth asking why we camt use the
inequalities that we know already. Let us introduce an ind&tor random variable

Z, for each edge incident oru denoting whethere successfully color. Thus,
X
X = Xe:

e3u

These indicator variables are clearly not independent, sme cannot apply the
Cherno -Hoe ding bounds. Can we apply the MOBD in its simplest form? With
our notation, we have

Z=1(Xe: €2 E(U)):

Clearly, for eache 2 E(u) the best we can say is,
iF (X Xe 5 Xes Xern; 1155 Xp) J F(Xgiiii Xe XS Xer ;105 Xp)j 1
whereD := JE(u)j = d(d 1). This gives a very weak bound,
Priz HZ]j>t) 2expt?=2d?): (8.11) [eq:weakBound

An alternative is to use the MOBD in expected form. As we saw ix B%-,Lnﬂ%iﬁg-%
works but it requires somewhat lengthy calculations. An egsway out is given
by the Method of Bounded Variances. We query the edges in thesder. First,
we expose the choices of every edge incident wnEach such edge can a ect the
nal degree by at most 1. Then we expose the random choices bktremaining
edges. They key observation is the following. Lex = wv be the edge we are
considering and letf = vu denote an edge incident o that touches e. Note
that when we exposee's tentative choice,f has already been queried. The choice
of ecan aect f, but only if e picks the same color chosen by and this happens
with probability 1 =c = 1=d Therefore, the variance of this choice is at most
1=c= 1=d (e can touch two edges incident om, but its e ect can be at most 1.
Why?). Therefore, we can bound the total variance as follows

d 1+d{d 1)% 2d
which gives, fort 2V,

Prjz HZ]j>t] 2expt>=8d) (8.12) |eq:strongBoun:
X kBound
a much stronger bound than EquatiorJBgrlie. We.a oun
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8.2.2 Dealing with Unlikely Circumstances

In dealing with such situations the following result comesdndy. In the state-
ment of the next theorem the evenB is to be understood as a set of exceptional
outcomes of very low probability.

m f(Xq 0 Xs) M

Let B any event, and letv and ¢ be, respectively, the variance and the maximumhat  is

e ects of f assumingB°®. Then, G doing
) here??
t .
Priz,>Zo+t+(M m)Pr(B)] exp -— +Pr[B] What is Z,
Vv wrt f 2?2
and
t2

PriZz,<Zo t (M m)Pr(B)] exp + Pr[ BJ:

&

Proof. We prove the statement for the upper tail. The proof for thedwer tail is
analogous. For any valueT,

Pr(f> Hf ]+ T) Pr(Z,>Zo+ TjB) +Pr[B]: (8.13)
hm:
To bound Pr(f > Hf ]+ TjB€) we apply Theorem%ﬁn‘ntz)_o%lch) and get t and T??
t2

Pr(f > Hf B+ TjB®) exp (8.14)

4

foreveryt 2V=maxg, provided that V and all ¢;s are computed in the subspace
obtained by conditioning onB¢. To conclude the proof we show thaff ] and
Hf jB€] are very close. Now, since

Hf 1= Hf jB] Pr[EB] + Hf jB°] Pr[B]
andm f M, we have that
HfjB] (HfjB] m)Pr[B] Hf] HfjB]+(M HfB])Pr[B]

so that
jgf] HfjB° (M m)Pr[B]:
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The claim follows. |

The error term (M m)Pr[B°] in practice is going to be ao(1) and easy to
estimate, as the next example will make clear. It is possibl® prove the iower tail also?
following cleaner statement. For anyt  2V=maxg,

2
Pr(f > Hf]+1t) exp :—V + Pr[B] (8.15)

V\{herev is the variance and the qumum e egtsci are those obtained CoN-. L vec
ditioned on B¢. The proof however is not as simple as that of Theoreriﬁs—. )
while this formulation in practice is not any stronger, at last for the kind of
applications that one normally encounters in the analysisfalgorithms.

Let us see a non trivial application of Theoren&%t?_v%vei%ave ad-regular graph
G in which each vertex is given a list ot colors. We consider the same simple
distributed algorithm of the previous section, this time aplied to the vertices
instead. It is possible to prove that this algorithm compute a vertex coloring
with high probability in O(lo [nany rounds, provided thatG has no triangles,
d lognandc= ( d=Ind) . Note that c can be much smaller thard. More
generally, it is known that such good colorings exist for tangle-free graphs,
and that this is the best that one can hope for, since th ﬁnggesgi% families of
triangle-free graphs whose chromatic number is d=Ind) ETQ]_V* . Imwhat follows
we assume for simplicity thatc = d=log, d.

Here we analize what happens to the degree of a vertex aftereoround and show
that it is sharply concentrated around its expectation. As wuth the previous
example this will exemplify some of the di culties of the ful analysis. Let us x
a vertex u and let Z be the number of neighbours ofi which color themselves
succesfully. We rst computeHZ]. The probability that a vertex colors itself is,

d=c

1 e

1
C
so that

Hz] de %¢

We are interested in a bound on the probability that the new dgreed®:= d Z
is far from its expectation. We will show that this happens oly with inverse
polynomial probability in d. As with the edge coloring example the value ot
depends not only on the tentative color choices of the neigbbrs ofu but also on
those of the neighbours of the neighbours{ ¢?) choices in total. To compund
the problem, vertices at distance two can now have very largeects. Assume
for instance that all neighbours ofu pick color a tentatively. If a vertex w at
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distance 2 fromu also picksa the e ect can be as large agN, \ Nj which, in
general, can be as large abk We can get around this problem using the fact that
it is unlikely that \many" neighbours of u will pick the same color.

Let N;(u) denote the set of vertices at distancefrom u. Z depends on the choices
of vertices infug[ Ny(u) [ N2(u). We expose the color choices in this order.
First u, then the vertices inN{(u) (in any order) and nally those in N5(u) (in
any order). The rst query does not a ect the variance. The n&t d queries can
each a ect the nal outcome of Z by one, but note that this is only if the vertex
selects the same tentative color afi, an event that occurs with probability 1=c
The total variance after these queries is then at most,
X
0+ Vy g:
x2N1(u)

So far so good, but we now need to estimate the total variancéwertices inN,(u)
and we know that this can be extremely large in the worst caseWe exploit
the fact that the tentative color choices of the neighboursfou are binomially
distributed. Fix w 2 N,(u) and let

X = JNu\ Nyj:

Moreover let x, denote the number of vertices ilN, \ N, that choose colora

tentatively. For each color a, the expected number ofu-neighbours that pick

a is d=c The set of \bad" events B that we are going to consider is when
there exists a color that is chosen more than := (1 + )d=ctimes. By the

Cherno and the union bounds, for any > 2e 1, the probability of B is

at most 2 " = ¢2 &+ )4 Note that this gives an \error term" of at most

dPr[B] = de2 @+ )d=¢ = g(1).

We now want to estimate the variance assuming the \good" everE B®. Let
da := JHZjX ;i Xw = @] HZjXq;:005Xw 1]l Xa

and thus X 1X
Vi = Pr[X, = a]d? s x2:
a a

This sum of squares is subject to

X = Xa

and, by the previous assumption,

0 Xxg r;
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The maximum is therefore attained at the extreme point, wherhere are x=r
terms, each equal ta'? (see problem section). Therefore,

1x ,_ (1+ )xd

v,
Y oer 2

P
The total variance of vertices inN(u) is 5y, ) Vw- If we assign a weight of
V=X on each edge betweew and N;(u), we then have
X X Viy
Vi = e d(d 1)

w2N2(u) wv:w2N2(u);v2N1(u)

(1+ )d

for a total variance of

(1+ )d - 1+ )d®,

d
Vo0 —+dd 1) =

Therefore, if 2e 1,
Pr[Zz HZ]>t +0o(1)] e =4V 4 oo (1+ )d=c

provided thatt 2V. If c = ( d=Ind) andpt = ( VInd), this says that Z
deviates from its expectation by more than ( dIn®d) with inverse polynomial
probability. An analogous derivation establishes the rediufor the lower tail.

8.3 Bibliographic Notes

A good source fqr gplorlng problems of the type discussed @es the book of

Molloy and Reed McDiarmid's survey presents a treatment of some ,of
inequalities that we dlscussed wit veral useful variahs on the them
The basic result was established i3] for o=l ﬁandom variables and was Iater

extended to the of multi-way choices J[’EI The edge coloring application
can be found in}é%}e

8.4 Problems

th:martMobv
Problem 8.6 W.ith reference to the statement of Thereor'r%ﬁl_th—t. . show that

E[V] = var(Z,):
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Solution. Page 224 of McDiarmid's survey 4

Problem 8.7 Prove thatif arandom variableX satisesEX =0anda X b
then
var(X) (b a)’=4:

Solution. If a random variableX satisesEX =0anda X b then

var(X)= EX?=EX(X a) HE(X a=jaj (b a)’=4

thm:mob .
Problem 8.8 Prove Theoremb?‘?}:ﬁ. int: De ne the Doob martingale s]t(;quaert &y

Z; .= gf jXo;:::;X;] and observe that DijX ; 1) = D;. Apply TheoremB.1).

leg:betterBound

Problem 8.9 Prove Equation8.8, i.e.

X
vi:i=  Pr[X;=a(DijXi=a) pl pc
a2A;

uner the hypothesis thatA; can be partitioned into two regionsA; = G[ B, such
that Pr[X; 2 G] = p. 5

Solution. Refer to E[%T 4

:st Bound
Problem 8.10 Establish the bound in Equation E‘.“fi"&‘? uosulrrllg the MOBD in

expected form. 5

Problem 8.11 Let G = (V;E) be ad-regular graph with n vertices. Consider
the following algorithm for computing independent sets. ltep: V ! [n] be a
random permutation of the vertices. A vertexi enters the independent set if
and only if pj < p; for everyj neighbour ofi (the set so computed is clearly
independent). LetX denote the size of the resulting independent set. Compute
EX and show that X is concentrated around its expectation. 5

.. . leq;strongBgund /
Problem 8.12  Show a hound similar to Equatlonltflz for the edge coloring

problem discussed irx %2‘1_0. :. . 5
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by:bt
Problem 8.13 Repeat the analysis of Sectiol 2.1 tinder the hypothesisc =
1+ )d 5

Problem 8.14 Show that X

. P . .
subjectto ;x;=nand0 Xx; cis attained whenb?c terms are set equal to
c and the remaining terms are set to O. 5

Problem 8.15 Let Xy;:::;X, be independept, withax ~ Xi I for eachk

where a, and b are constants, and letX := , X;. Prove that then, for any
o ( )
X
PrjX EXj t] 2exp 2t>= (b &)
i
5
. leq:betterBound
Problem 8.16 Prove Equationi8.8: 5

bv:bt
Problem 8.17 Consider the edge coloring algorithm described B 2L

Compute the expected number of colors that remain availabler an edge.
Show that this number is sharply concentrated around its exgrtation.

Do the same for the intersection of the color lists of two edgéncident upon
the same vertex.

Problem 8.18 Let G be ad-regular graph and consider the following random-
ized algorithm to compute a matching in the graph. Every edgenters a setS
with probability % If an edge inS does not have any neighbouring edges it
enters the matchingM . Edges inM and all their neighbours are removed from
G.

Compute the expected degree of a vertex that is not matched.

Use the Method of Bounded Variances to prove that the degreé @ vertex
that is not matched is concentrated around its expectation.Can you use
the MOBD in its simplest form?
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Show that the same is true if the above algorithm is repeateddow large a
value ofd (as a function ofn) is needed for concentration to hold?

The point here is to show that the graph stays essentially redar during the
execution of the algorithm, as long as the average degree igthenough. 5

Problem 8.19 FZ%%O We are given a d-regular grapls of girth at least 5 where
each vertex has a list ot := d=log, d colours (the girth of a graph is the length of
its smallest cycle). Consider the following algorithm. Edctvertex wakes upwith
probability p:= 1=log, d. Each awaken vertex picks a tentative colour at random
from its own list and checks for possible colour con icts wit the neighbours. If
none of the neighbours pick the same tentative colour, the loor becomes nal.
If a colour c becomes the nal colour of a neighbour of a vertex, c is deleted
from u's colour list.

For a given vertex, letX be the number of its uncoloured neighbours. Prove
that X is concentrated around its expectation.

For a given vertex, letY be the number of colours not chosen by its neigh-
bours. Prove thatY is concentrated around its expectation.

For given vertexu and colourc, let Z be the number of uncoloured neigh-
bours ofu that retain c in their list. Prove that Z is concentrated around
its expectation.
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Chapter 9

The Infamous Upper Tall

m-vu-jan-ruc ‘

9.1 Motivation: Non-Lipschitz Functions

Consider the random graptG(n; p) with p= p(n) = n 3%, Let X be the number
of triangles in this graph. We haveX]= 7§ p?= ( n**). The randomvariable
X is a function of the 2 independent variables corresponding to whether a
particular edge is present or not. Changing any of these vables could change
the value of X by as much asn 2 in the worst case. Applying the MOBD with
these Lipschitz coe cients is useless to obtain a non-trial concentration result

for deviations of the order of §X]= ( n®*) fora xed > 0.

Exercise 9.1 Try to apply the MOABD or the MOBV and see if you get any
meaningful results.

The essential problem here is that the function under consdation is not Lips-
chitz with su ciently small constants to apply the method of bounded di erences.
This initiated a renewed interest in methods to prove concération for functions
which are not \smooth" in the worst case Lipschitz sense of ¢ MOBD but
are nevertheless \smooth" in some \average" sense. We haveeady seen that
the MOABD and MOBYV are such methods. Here we brie y describewo new
methods that apply well to problems such as counting triangk in the random
graph.

135
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9.2 Concentration of Multivariate Polynomials

Let Xi; be the indicator random variable for whether the edgei;(| ) is included
in the random graphG(n; p). Then, the number of trianglesX, in G(n; p) can
be written as X

Xks = Xk Xii Xiij -

1 i<j<k n

Formally, this can be seen as a multivariate polynomial in té 2 variables X; ,
and motivates the setting of the Kim-Vu inequality.

Let U be a base set and leH be a family of subsets olU of size at mostk
for some O<k n. Let Xy ;u 2 U be independent 81 random variables with
HXu] = pu;u 2 U. Consider the function ofX,;u 2 U given by the following
multi-variate polynomial: X v
Z = W, Xus

I 2H uz2l
wherew, ;1 2 H are positive coe cients. In the example of the triangle abog,
the base setU is the set of all 2 edges and the familyH consists of the g
3-element subsets of edges that form a triangle (d0= 3 and all coe icients
W, = 1)

For each subsetA of size at mostk, de ne a polynomial Y5 as follows:

X Y
Za = W, Xu:
A I H u2lnA

Formally, this is the partial derivative 3. Set
Ej(Z):=maxHZal;, 0 | Kk
JA] ]
Heuristically, E; (Z) can be interpreted as the maximunaveragee ect of a group

of at leastj underlying variables. { this will play the role of \average" Lipschitz
coe cients in place of the worst case Lipschitz coe cients.

Theorem 9.2 (Kim-Vu Multivariate Polynomial Inequality) For any k
n, there are positive numbersy; b, such that for any 1

h [
Pr jZ HZ]J ak"p Eo(Z)E1(Z2) b¢expf =4+ (k 1)logng:

(For de niteness, we can takeay := 8"IO k! and b, := 2¢€?)
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To apply this to the number of triangles in the random graphG(n; p), consider
the base set !, , take H to be the family of 3-element subsets forming a triangle
and consider the multivariate polynomial:
X
Z:= X X Xig 5

1 i<j<C n

and X;; is the indicator variable for whether the edgeifj ) is included. As we
saw, with p= n 3* we haveHZ] = ( n*%)..

Now, if A = fi;j g, we have:
X
"6

and HZa] = ( np?) = o(1). If A has two elements, thenZ, is either O or t;;
for some (;j ). Finally, if A has three elements, therZ, is either O or 1. Thus,
E1(Z) = maxja; 1HZa] =1, and Eo(Z) = maxja; 0HZa] = HZ].

P
Setting := cn'® f_(?(r a constant ¢ chosen to makeaz ® HZ] = HZ], and
th:Kim-
applying Theoremb‘Zﬁ. Irgr]]i\\;gs

Prjz HZ]j Hz]] bexp( =4+2logn)=e ("

. . . : . Vu02,KV04
Stronger estimates can be obtained via re nements of this ¢hnique W )

achieveing a factor of (n %) in the exponent.

9.3 The Deletion Method

The setting here is similar to that in the Kim-Vu inequality: Let H be a family
of subsets of a base sé&t and suppose each set iH is of size at mostk for some
k n. Let(X;;l 2H) be a family of non-negative random variables. These do
not necessarily have the monomial structure as in Kim-Vu. Rber, only a local{
dependence property is postulated: eack, is independent of K; j1\ J = ;).
Note that this is true q{.,the monomials in the Kim-Vu inequalty. The object of
study is the sumZ := | X,.

Theorem 9.3 (Janson-Rucinski) Let H be a family of subsets dh] of size at
mostk for smomek n andlet(X,;l 2 H) be a family of non-negativeprandom
variables such that eaclX, is independent of(X,; jI1\ J=;). LetZ = | X,
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P P
and = HZ] = |, HX,]. Further, for | [n], let Z, := | ; X, and let
Z, = maxy Zsyg. If t> 0, then for every realr > 0,

Priz  +t 1+t=) "2+ Pr Z, > —
rl ] ( ) FZy> o

t

X
+t=) 724 >

R0O2, JRO4
The proof is surprisingly short and elementary, séég,—:{o%

To apply this to the problem of counting the number of triangés in G(n; p) with

p = n ¥4 consider again, base set“z‘] of all possible edges and the familyd
to be the family of 3-element subsets of edges forming a trigle. Forl 2 H ,the
variable X, is the indicator for whether the triangle formed by the threeedges
in | exists in G(n; p)..To apply the Deletion method of Janson-Rucinski, note
that the number of traingles containing a given edgei;( ), Zsi; g = Xij B where
B Bi(n 1;p? is the number of paths of length 2 between the endpointsand

j . Applying the CH bound to this yields

Pr[Zfi;j g > = 2r] e - 2r;
as long as=2r> 2n 2, Thus,

Priz>2] e ™ +n% =2

p

Choosingr = ¢” ~ gives

PrZ> 2] n2% 7;

which is stronger than the result obtained above using the ntivariate polyno-
mial inequality. To see a very revealing and exhaustive corapson of the use of
various methods for the study of the \infamous u BE tail" ofproblems 513?3?6.?5
counts of xed subgraphs in the random graph, s . We end by quotin )

Neither of these methods seems yet to be fully developed anmda
nal version, and it is likely that further versions will appear and
turn out to be important for applications. It would be most interest-
ing to nd formal relations and implications between Kim andVu's
method and our new method, possibly by nding a third approat
that encompasses both methods.
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9.4 Problems

Problem 9.4 Consider the numberX, of copies of a xed graphH in the
random graph G(n; p) for di erent ranges of the parameterp. Let = HXy]
and apply the Kim-Vu multivariate polynomial bound.

(a) For H := K3 (triangle), show that
1=341=6 H 1=2
PrXc, 2] n* expf cn_p_g if p n
expf cn™p'™2g otherwise
(b) For H := K4, show that
( et _
PrXc, 2] nio expf cn®p2g ifp n #°
! expf cn*=p'¥g otherwise
(c) For H := C4 (the cycle on 4 vertices), show that

expf cn™pg ifp n 2=

Pr[X 2 n®
Xe, ] expf cn'¥?p™g otherwise

Problem 9.5 Consider the numberX, of copies of a xed graphH in the
random graph G(n; p) for di erent ranges of the parameterp. Let = HXy]
and apply the Janson-Rucinski Deletion method.

(@) For H := K3 (triangle), show that
PriXx, 2] n?expf cn®?p*2g:
(b) For H := K4, show that
(
expf cn?p? if n %2
PriXx, 2] n? o 42 95:3 PN

expf cn*°p>~*g otherwise

(c) For H := C4 (the cycle on 4 vertices), show that

expf cn*®pg ifp n =

Pr[X 2 n2
Xe. | expf cn’p’g otherwise
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Chapter 10

Isoperimetric Inequalities and
Concentration

perimetric-1 ‘

10.1 Isoperimetric inequalities

Everyone has heard about the mother of all isoperimetric ig@alities:

Of all planar geometric gures with a given perimeter, (10.1)

the circle has the largest possible area.

An abstract form of isoperimetric inequalities is usuallydrmulated in the setting

of a space (;P;d) that is simultaneously equipped with a probability measus

P and a metricd. We will call such a space a MM-space. Since our applications
usually involve nite sets and discrete distributions on them, we will not specify
any more conditions (as would usually be done in a mathemasidook).

Given A, the t-neighbourhoodof A is the subsetA; de ned by

Ag=fx2 jd(xA) to (10.2) |eq:t-neighbour

Here, by de nition,
d(x; A) ;== min d(x;y):
y2A

An abstract isoperimetric inequality in such a MM-space (; P; d) asserts that

There is a \special" family of subset® such that for anyA V A
for all B 2 B with P(B) = P(A), P(A) P(By). (10.3)

141
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) :moth . . .
To relate this to (&%‘D_rke .mo, %r e the underlying space to be the Euclidean planetwi
Lebesgue measure and Euclidean @stanc;e, apd.the farﬁBytp be ba:lrlrl1sOt %rthe
plane. By letting t ! 0, an abstract isoperimetric inequality yields E‘%I)* :

Often an abstract isoperimetric inequality is stated in thefollowing form:

Assertion 10.1 In a space( ;P;d), for any A :
P(AP(A)  o(t) (10.4)

Such a result is often proved in two steps:
1. Prove an abstract isoperimetric inequality in the form E‘%‘:ib)_fsf:? SIoor S suitable
family B.
2. Explicitly compute P(B) for B 2 B to determine g.
Isec:martingale-iso

(In x[T0.4, there Is an exception to this rule: the functiomy there is bounded from
above directly.)

10.2 Isoperimetry and Concentration

sec:iso-to-conc |

. . . . :alsiso-2, L
An isoperimetric inequality such as E%ﬁ%—zr Implies measure concentration if the

function g decays eu_gesr.lgt(ly fast to zero ast ' 1 . Thus, if A satis es
Pr(A) 1=2, then (%7%—%‘ implies PrA;) 1 2g(t). If g goes su ciently fast to

0, then Pr(A;) ! 1. Thus

\Almost all the meausre is concentrated around any subset mieasure
at least a half"

10.2.1 Concentration of Lipschitz functions
It also yields concentration of Lipschitz functions on a spz ( ;d;P). Let f be
a Lipschitz function on with constant 1, that is,
iFO) £y dxy):
A median levy Mean of f is areal numberM [f ] such that

P(f MI[f]) 1=2 and P(f MI[]) 1=
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Exercise 10.2 Let ( ;P) be a probability space and Idt be a real-valued func-
tion on . De ne
medf ) :=supftjP[f t] 1=2g:

Show that:
P[f < medf)]; P[f> medf)] 1=2:

Set
A=1fx2 jf(x) MI[f]g

Then, by de ntiion of a median, Pr(A) 1=2. Note that sincef is Lipschitz,
fxjf(x)>MI[f]+tg A

and hence,
Prif (x) >M [f]+t] Pr(A) 2g(t)! O:

:ahsiso-2
Exercise 10.3 Show that he%%t)sgolso implies a similar bound on
Prif(xX) >M [f] t]:

Exercise 10.4 Show that it su ces to impose a one-sided condition offi:

f(x)  fy)+ dxy);
or
f(x) fly) dixy):
to obtain two-sided concentration around a Levy Mean.

) ) rob:means
Usually one has a concentration around the expectation. InrQbIemRW. you are
asked to check that if the concentration is strong enough, ooentration around
the expectation or a median are essentially equivalent.

To get a quantitative bo nd .« Qisr(qugv good the concentration isyne needs to look
at the behaviour ofg in (Eg_%_ﬁr('. . Let ( ;P;d) be a MM-space, and let

D :=maxfd(x;y)jx;y 2 g:
ForO< < 1, let
( ;)=maxfl P(Ap)jP(A) 1=2g:

So a space with small ( ; ) is one in which there is measure concentration
around sets of measure at least=2.

A family of spaces ( n;dy;Pn);n  1is called
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a levy family if
lim ( ,; )=0:

n'l

a concentrated Levy family if there are constantsC,; C, > 0 such that

pP—
(ny) Ciexp C; n:

a normal Levy family if there are constantsC;; C, > 0 such that

(n;) Ciexp Cp°%n :

10.3 Examples: Classical and Discrete

10.3.1 Euclidean Space with Lebesgue Measure

Consider Euclidean spac®" with the Eucledean metric and Lebesgue measure

Theorem 10.5 (Isoperimetry for Euclidean Space) For any compact sub-
setA R", and anyt O,
(Ar) (B1);

whereB is a ball with (B) = (A).

rob:brunn-min . . . .
In Problem IE).U.lb you are asked to prove this using the famous Brunn-Miokski

inequality.

10.3.2 The Euclidean Sphere

For the sphereS" ! with the usual Eucledean metric inherited fromR", a r-ball
is a sphereical cap i.e. an intersection & ! with a half-space.

Theorem 10.6 (Isoperimetry for Euclidean Sphere) For any measurableA
S" 1 and anyt 0,
Pr(A:) Pr(C);

whereC is a spherical cap withPr(C) = Pr( A).

A calculation for spherical caps then yields:
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Theorem 10.7 (Measure Concentration on the Sphere) let A S" !be
a meqsurable set witlPr(A)  1=2. Then,

P(A) 1 2etr2

Note that the SphereS" ! has diameter 2 so this inequality shows that the faimily
of spherefS" 1jn 1gis a normal Levy family.

10.3.3 Euclidean Space with Gaussian Measure

ConsiderR"™ with the Eucledean metric and then-dimensional Gaussian measure

z
(A):=(2 ) "2 el ™2y
A

This is a probability distribution on R" corresponding to the n-dimensional nor-

N (0;1) i.e. for any realz,
1 Z 2
Prizi z]= p? e "dt:
1

Then the vector (Z1; ;Zy) is distributed according to the measure . The
distribution is spherically symmetric: the density function depends onlon the
distance from the origin.

The isoperimetric inequality for Gaussian measure assettsgat among all subsets
A with a given (A), a half space has the smallest possible measure of the
neighbourhood. By a simple calculation, this yields,

Theorem 10.8 (Gaussian Measure Concentration) Let A R" be mea-
surable and satisfy (A) 1=2. Then (A) 1 e "=

10.3.4 The Hamming Cube

Consider theHamming cubeQ, :
ming metric:

f0; 1g" with uniform measure and theHam-

jfi2[n]jx 6 yg:

d(x;y) :
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C:martingale-iso
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A r-ball in this space isB" := fx j d(x;0) rgi.e. the set of all G1 sequences
that has at mostr 1s. Clearly

1 X n
Pr(B")= — ,
2n0 ir !

Note that the t-neighbourhood of ar-ball is ar + t-ball: Bf = B"*!,

Theorem 10.9 (Harper's Isoperimetric inequality) If A Q, satis es Pr(A)
Pr(B"), then Pr(A;) Pr(B™").

Corollary 10.10 (Measure Concentration for the Hamming Cub e) LetA
Q. be such thatPr(A) 1=2. Then Pr(A,) 1 e 2™,

Since the diameter ofQ, is n, this shows that the family of cubed Q" jn 1g
is a normal Levy family.

‘h
Exercise 10.11 Use the CH bound to deduce Corollar);ECOOr.IaOmer%?rC] Harper's
isoperimetric inequality.

Exercise 10.12 Deduce the grq]%mgongound for iid variables corresponding to

fair coin ips from Corollary 10.10.

10.4 Martingales and Isoperimetric inequalities

|sec:iso-to-conc . . .. . .
In x [10.2 we saw that an isoperimetric inequality yields the metd of bounded

di erences i.e. concentration for Lipschitz functions. Inthis section we see that
conversely, isoperimetric inequalities can be derived vitae method of bounded
di erences. So, isoperimetric inequalities and the conceation of Lipschitz func-
tions are essentially equivalent.

Consider the spacd 0; 1g" with the uniform measure (which is also the prod-
uct measure withp = 1=2 in each co{ordinate) and the Hamming metric,dy .
Let A be a subset of size at least"2! so that (A) 1=2. Consider the func-
tion f (x) := dy(x;A), the Hamming distance ofx to A. Surely f is Lipshitz.

applying the method of bounded di erences,

t2

[f> Hf]+1t]; [f< Hf] t] ex:
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In particular,

1=2 (A)
= (t=0)
(f< Hf] Hf])

g 12
e 2n |

Thus Hf | to:= P 2In2n. Finally then,

(t to)?

(Ar) 1 exp n

Consider now a weighted verison: the spacefi§; 1g" with the uniform measure,
but the metric is given by X

d (xy) = i

Xi6Yi

for xed non=negative reals ;;i 2 [n].

Exercise 10.13 Show that

(A)) 1 exp —2(‘37%2)2 :

Exercise 10.14 Check that the result of the previous exercise holds in araity
product spaces with arbitrary product distributions and a eighted Hamming met-
ric.

In the next chapter we will see a powerful extension of this @guality.

10.5 Bibliographic Notes

Ledoux H’fgﬁ%hapter 1] has a thorough discussion of isoperimetrigequalities
and concentration. The vexed issue of concentration arourtte mean or the
median is %%%qed in Prop. 1.7 and the following discussithere. See also
McDiarmid [50]. E \m 1es of isoperim%&cnequalities in di erent gaces are
discussed in Ledou .1]. Matousek hapter 14] has a nice discussion
and many examples.
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10.6 Problems

Problem 10.15 [Expectation versus Median] In this problem, we check that
concentration around the expectation or a median are essaily equivalent.

(@) Let ,;Pny;dy);n 1 be anormal levy family. let |, have diameterD,.
Show that if f is a 1-Lipschitz function on ,, then for some constant > 0,

: . D
iM[f] Hf]j Cp—%:
(b) Deduce thatif f : S" 1! R is 1-Lipschitz, then for some constant > 0,
, . 1
IMITT HF) - cp=:

(c) Deduce thatiff : Q" ! R is 1-Lipschitz, then for some constant > 0,

M[E] B

prob:brunn-min ‘ Problem 10.16 [Brunn-Minkowski] Recall the famousBrunn-Minkowski in-

equality: for any non-emty compact subset&;B  R",
vol**"(A) + vol ¥"(B)  vol*™(A + B):

Deduce the isoperimetric inequality foR" with Lebesgue measure and Euclidean
distance form this. Hint : Note that A = A + tB where B is a ball of unit
radius.) 5

Problem 10.17 [Measure Concentration in Expander Graphs] Thedge ex-
pansion or conductance ( G) of a graphG = (V;E) is de ned by:

( G) := min WJ‘;@;A VijAj | Vj=2
wheree(A; B) denotes the number of edges with one endpoint it and the other
in B. RegardG as a MM-space byG with the usual graph distance metric and
equipped with the uniform measureP on V. Suppose := ( G) > 0, and
that the maximum degree of a vertex inG is . Prove the following measure
concentration inequality: if AV satises P(A) 1=2, then P(Ay) 1

%e t = . (A constant degreeexpander graph G satises ( G) ¢ and C

for constantsc;;c, > 0.) 5
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Problem 10.18 [Concentration for Permutations] Apply the average methoaf
bounded di erences to establish an isoperimetric inequati for the space of all
permutations with the uniform measure and transposition ditance. 5

Problem 10.19 [Measure Concentration and Length] Schectmann, generatig
Maurey, introduced the notion oflength in a nite metric space ( ;@.Pﬂthat
( ;d) has length at most" if there are constantsc;;  ;c, > 0 with ="
and a sequence of partition$g P, of with Py trivial, P, discrete
and such that whenever we have sets;B 2 P, with A[ B C 2 Py 4, then
JAj = |Bj and there is a bijection :A! B with d(x; (x)) ¢ forall x2 A.

(a) Show that the Fgjiscrete Hamming CubeQ, with the Hamming metric has
length at most™ n by considering the partitions induced by the equivalence

relationsx yyi Xi=y;i kforO k n.

(b) Let :=( q; ; n) 0. Show that the digrete Hamming Cub&),, with
the weighted Hamming metricd (x;y) ==  , ¢, i has length at most
k ks.

(c) Show that the group of permutationsS, equipped with the usual trans-
porsition metric has small length.

(d) Show that Lipschitz functions on a nite metric space of mall length are
strongly concentrated around their mean. when the space iquppied with
the uniform measure:

Theorem 10.20 Let ( ;d) be a nite metric space of length at most, and
let f be a Lipschitz function i.e.jf (x) f(y)] d(x;y) for all x;y 2
Then, if P is the uniform measure on

P(f E[f]+a:P¢f E[f] a e®2":

(e) Generalize to the case wheR is not the uniform distribution by requiring
thatthe map :A! B above is measure preserving. Show that a similar
result holds for the concentration of Lipschitz functions wth this condition.

Problem 10.21 [Diameter, Laplace Functional and Concentration] Let (; P; d)
be a MM-space. ThelLaplace functional E = E .p.4 is de ned by:

E( );=supfHe']jf: ! Ris 1-Lipschitz andHf]=0g:
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(@) Showthatif E( ) €* “for somea > 0, thenPr[jf Efj>t] e =22
(Hint : recall basic Cherno bound argument!)

(b) Show that the Laplace functional is sub-additive under ppducts: let ( i;P;;d);i =
1; 2 be two spaces, and let (; P; d) be the product space with = ; 5,
P:=P; P,andd:=d;+ d,. Then

E pa E i E oipoidot

(c) If ( ;d) has diameter at most 1, show thatE( ) e °=2. (Hint : First
note that by Jensen's inequality, '] He'], hence ifHf] = 0, then
He '] 1. Now, letf be 1-Lipschitz, and letX andY be two independent
variables distributed according toP. Then,

E[ef (X)] E[ef (X)]E[e f (Y)]

H,e (f(X) f(Y))]

X X))
il

#

= E
i Q #
_ X LX) f)
i!
i 0

Argue that the terms for oddi vanish and bound the terms for even by
using the Lipschitz condition onf .

(d) Deduce the Cherno -Hoe ding bound from (b) and (c).
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Chapter 11

Talagrand's Isoperimetric
Inequality

[Talagrand Inequality]

11.1 Statement of the inequality

Recall that the setting for an isoperimetric inequality is aspace equipped with a

probabilty measureP and a metricd. An isoperimetric inequality in this scenario

states that if A Is such that P(A) 1=2thenP(A;) 1 (t) for some

rapidly decreasing function . (Recall that the neighbourhood setA; ;= fx 2
jd(x;A) tg.

Talagrand's inequality applies in the setting where = Qiz, ‘ds a product
space indexed by some nite index sdt with the product measure ~ ,, P; where
P; is an arbitrary measure on the i, fori 2 1. Below we will always assume this
setting.

Recall the normalizedweighted Hamming distanced speci ed by a given set of
non-negative reals ;i 2 [n]:

P

d (x;y) = pﬁxtl—z' (11.1) ‘eq:unif-wt-dist

i
Suppose now that each poink 2 is associated with a set of non-negative reals

151
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(x)i;i 2 [n]. Consider the asymmetric \diatance" on given by:

P
d (x;y) = p—yPLﬁ (11.2) [eq:non-unif-wt-

P ()7
. . . ) . eq:unif-wt-dist
This is the same as the normalized weighted Hamming distan¢g1.1),” except

that it involves a set of non-uniform sweights (x);;i 2 [n]. As usual, forA

d (x;A) = rglzer1 d (x;y):

Theorem 11.1 (Talalg;aa%q_su r{f?—?v 'é%“ty) Let A be a subset in a product space
with the \distance" (T1.2). Then for anyt> O,

PrIAJPI[A] e U™ (11.3)

Remarks"

1. The inequality will be stated in a seemingly stronger fornm a later chapter
where it will be proved. However, for all the applications weonsider, the
form given above su ces and is most conveninet.

2. The inequality should be compared to the statement of theoperimetric in-
equality for product spaces and weighhted Hamming distande a previous
chapter. The main di erence here is that the \distnace" heras non-uniform
and asymmetric.

To gain some intuition about the Talagrand distance, let uset (x); := 1 for

eachi 2 [n] and ecahx 2 ; then we get
P

& (x;A) = min —p&
y2A n

= d"(GA)= R (11.4)

whered" is the familiar Hamming distance. This implies that for anyt > 0,

Alp_= Al (11.5) [eq:talham2

These two simple observations give us some notable consemes.

1

Consider the simplest product spacd,0; 19" equipped with the product measure
where Pr[0] = 1=2 = Pr[1] in each co{ordinate (this is the same as the uniform
measure on the whole space). Take
X
A=1fx2f0,19" | Xi Nn=2g:
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Note that X
At =1x2f0,1g"j] x n=2 tg;

i
‘talh tali
and by (H‘He .a %rﬁ Talagrand's inequality W.al?%ve get

PriAf] = PriAlr ]
1 t2=4n
Pr[A]
2e =" sincePr[A] 1=2:
This is a disguised form of the Cherno bound (except for smhd:omstant factors)

for deviations below the mean! By considering®:= fx 2f0;1g"j %  n=2g,
we can similarly get the Cherno bound for deviations abovehe mean.

Exercise 11.2 Show that one can extend this to the heterogeneous case a$ wel
(once again upto constant factors).

Now letA f 0;1g" be an arbitrary set with Pr[A] 1=2. By the same reasoning
as above, we get:

PrAF] 2e U=,

a cleaner form of the isoperimetric inequality we derived usgy martingales and
the method of bounded di erences.

11.2 Hereditary Functions of of Index Sets

We will develop a general framework to analyse a certain ctasf functions on
product spaces which are de ned by hereditary (i.e. monot@&) properties o é i

dex sets. This framewo eralises slightl ége resultsplicit in Talagrand
and explicit in in Steele and Spencefo5]. We then illustrate the versatality

of this framework by several examples.

11.2.1 A General Framework

Forx;y 2 and J |, we use the notationx; = y; to meanx; = y;;j 2 J, For
J [n], let Jy=y := fj 2 3 jX; = y;0. Note that x;,_, = yi,.,.

Let (x;J) be a boolean property such that it is
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a property of index setsi.e. if x; = y;, then (x;J)= (y;J), and

non{increasing on the index setsi.e. ifJ  J%then (x;J9 (x;J).

. We shall say that is a hereditary property of index sets

Ket f be the function determined by a hereditary property of indexets given
by:

f (x):= rrga3<)ij: (11.6) |eqg:heredit-f
X;

A function f such thatf = f for some hereditary property of index sets will
be called ahereditary function of index sets

Theorem 11.3 Letf be a hereditary function of index sets. Then for atl> 0,

2
Prif > Mf]+t] 2exp AMET+ D) ;

and
Prff < Mf] t] 2exp

whereMf ] is a median off .

The Theorem follows from a more general result in the next dean. Here we
illustrate how to use it.

11.2.2 Increasing subsequences

Let I (x1;:::;X,) denote the length of the largest increasing subsequencerr
X1; 11X etxl;::"x be chosen independently at random from {@]. Propo-
sition &1‘3_Lcan be applied immediately to give a sharp concentratiaesult on

(X100 Xa).

Take the hereditary property (x;J) to be: forjj °2 J such thatj <j © we have
that x;  Xjoi.e. J corresponds to an increasing subsequencexinCheck that |
is de ned by , hence:

2
Pl () > MF]+ 1] 2exp Wt]”) ;

and 2
PICO < MI] 1] 20 grre

In this example, sinceH]l ] is of the order ofp n, this bound is a dramatic improve-
ment over what could be achieved by the simple method of bouad di erences.



11.3. CERTIFIABLE FUNCTIONS 155

11.2.3 Balls and Bins

Consider the probabilistic experiment wheran balls are thrown independently
at random into n bins and we are interested in a sharp concentration result on
the number of empty bins. Equivalently, we can give a sharp ncentration result
on the number of non{empty bins.

To cast this in the framework of con guration functions, comsider the product
space f]™ with the product measure wherePr[X = i] is the probability that
ball k is thown into bin i. What herediatry function of index sets can we cook
up so that f is the the number of non{empty bins? Take (x;J) to hold i
x(j) 8 x(jO for all j;j°2 J with j 6 j%i.e. the balls indexed byJ go into
distinct bins. A moment's thought shows tha is a hereditary function of index
sets and thatf is the number of non-empty bins. Applying Theoren@ig.%&v%%
get:that if Z is the number of non=empty bins, then

2

Pz > MZ1+1 2exp g

and
t2

PrlZz < MZ] t] 2exp W :

11.2.4 Discrete Isoperimetric Inequalities

Let A be a downward closed subset of the culb®; 1g" equipped with the product

measure, and let us consider the Hamming distandg (x; A) from a point x to the

set A, .This is in fact a function of hereditary index sets (why?).Aplying Theo-
h:canf

rem &TB_QT?O” I|e ds bounds comparable with t@ﬁ obtainj%ecggectt;y isoperimetric

inequalities in the theory of hereditary set see alsqbb, p. 132].

11.3 Certi able Functions

In this section, we consider a generalization of the previeusection which is
@mewhat more exible and powerful. A functionf on a product space :=
i2n 1 IS said to belower bound certi ableor just certi able if:

Lower Bound Certi cate (LBC): for eachx 2 , there is a subset J(x) [n]
such that
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(@ f(x) jJ(x)j, for some constant > 0.

(b) for any y 2 that agrees with x on J(x) (i.e. xj = yi;i 2 J(X)), we
havef (y) f(x).

Intuitively, for each x 2 , there is a an index set J(x) that acts as a \certi cate"
for a lower bound of times the cardinality of the certi cate J(x) on the value
of f at any point that agrees with x on J(x).

Exercise 11.4 Show that a hereditary function of index sets is certi able.

th:config-2 Theorem 11.5 Letf : | R be certiable and suppose it is Lipschitz with

constantc (i.e. changing any co-ordinate changes the value bfby at mostc).
Then for all t > 0,

Prif > Mf]+t] 2exp Eﬁit

and
u2
Prif < Mf] t] 2exp AEMF]

P
whereMf ] is a median off andc®:= ¢

Proof. For eachx 2 . let J(x) be the certifying interval for f. Set (x); := ¢
if i 2 J(x) and O otherwise. Note that

X ¢
2= 2(x)= GIX)j  —f(x); (11.7) ‘eq:sum-alphas

i
where in the nal inequality, we use part (a) of the (LBC) conadtion.

Let y :=argminfd (x;z) j z 2 Ag. De ne y°by setting

B (xi if i 2 J(x),

o= 11.8) |eq:def-y'
Y y; otherwise ( )

Note that f (y9 f (x) sinceJ(x) is a lower bound certi cate for x.
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Now,

a f(y) b&de nition of A

f(y9 c sincef is Lipschitz with constant c
v yi
-def-y'
= f(y9 c by (H‘S‘?ry*e 8ynonumber (11.9)
S'{gw
f (x) c sinceJ(x) is a lower bound certi cate for x:(11.10)
Xi 6 Yi

Now consider the weighted distance with the normalized weits <:

de= (X A)

0>|2: (>é; )

Xi6Yi

1(f (x) a) using (W X -
p_
f(x) a .  jegisum-alphas
— ——usin . 11.11) |eq:d-f
s P voing B 1 et

The functionu 7! (u a):pﬁ is monotone increasing fou  a, so for anya 0,
_ f(X) a _u
Prif (X) a+t] = Pr" P Pa+t#
Pr fr.(}X) a o u
f (x) a+tt

N :d-f
Pr de= (X;A) —pu: using&(i_.rr)
cC a+t
u2
P(A) P aa+t

) ) . leg:taline ) )
In the last step we applied Talagrand's inequality M‘?ﬁ I. at is, remembering
the de nition of A,

Prif (X) a]Pr[f(X) a+t] exp 2t

Putting a:= Mf]anda:= Mf] t, we get the result. |

th:confi th:config-2
Exercise 11.6 Deduce Theoreth.3 fro; m TheoremI1.5. :
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Exercise 11.7 Rework the examples of increaghn&rﬁpk_);equences and nontgmp
bins from the previous subsection using Theorebhi 5.

11.3.1 Edge Colouring

In this example, we shall give an alternative analysis of ample randomised
algorithms for edge colouring a graph that we analysed in a @vious chapter
using Martingale methods. For convenience, we recall thegislem and algorithm.

Given a graphG and a palette of colours, we would like to assign colours to
the edges in such a way that no two edges incident on a vertexveathe same
colour. We would also like the algorithm to be truly distribted, so we would
like it to have a local character. This leads naturally to radomised algorithms of
the type considered below. These algorithms run in stagest #ach stage, some
edges are successfully coloured. The others pass on to thetrstage. Typically
one analyses the algorithm stage by stage; in each stage, wauld like to show
that a signi cant number of edges are successfully colouredo that the graph
passed to the next stage is signi cantly smaller.

For simplicity, we assume that the graplG is bipartite with bipartition U;V (note
that even colouring bipartite graphs in a distributed fashon is non{trivial).

Algorithm : each edge picks a colour independently from the common péde
[]. Conicts are resolved in a two steps:

First the V vertices resolve con icts: if there are two edgesi{; v) and (u; ; v)
with the same colour withi <j , then (u;;Vv) \loses" and is decoloured.

Next the U vertices resolve any remaining con icts by choosing one \wi
ner" out of the remaining con icting edges for each colour.

We are interested in a sharp concentration result on the nunelp of edges around
a xed vertex u 2 U that are successfuly coloured (A similar analysis works for
a vertex in V). Alternatively, we can give a sharp concentration result o the
number of edges around that are not successfully coloured.

The underlying product space is [ ]F (u) where E (u) is the set of edges that are
incident to u or to a neighbour ofu. The function f we consider is the number
of edges aroundi that are not coloured succesfully. Clearly is Lipschitz with
all constants 1. Moreover,
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Lemma 11.8 The function f is a certi able function with constants = 1=2
and c=1 function.

Proof. For each edgee that is unsuccessful, there is at least another edge that
gets the same tentative colour { x one such edg/(e) arbitrarily as a witness
to this fact. For a given tentative colouring , the index setd = J( ) E(u)
consists of all unsuccessful edges together with their wisses. The condition
(LBC) is now easily veri ed. First, the function is Lipschitz since changing the
tentative colour of any edge changet by at most 1. Second, the edge set
includes each unsucessful edgeand its witness, so it has at most twice as many
edges as unsucessful ones (it is exactly twice if the witndss each unsuccessful
edge is distinct from the others). Thus the (LBC) condition $ satis ed with

=1=2andc=1. |
th:config-2
Applying Theorem ﬁlg.%%gi/wet the result:
1 2
Prif > Mf]+t] 2exp BMI]+ 1
and
u2
Prif < Mf] t] 2exp BMf]

11.4 The Method of Non{uniformly Bounded
Di erences

sec:geometry ‘

One can extract out from Talagrand's inequality another niely packaged lemma
! that generalises the method of bounded di erences.

Theorem 11.9 (The Method of Non{uniformly Bounded Di erenc es) Let
f be a real{valued function on a product space such that for eachx 2 , there
exist non{negative reals {(x);i 2 [n] with

X
f(x) f(y)+ i(x); forally2 (11.12)

Xi6Yi

Furthermore, suppose that there exists a constant> 0 such that uniformly for

allx2
f(x) ¢ (11.13)

JLCU? . . . e oy
Yn Steele’[GGTfL—emma 6.2.1], this is stated with some additional supeuous conditions.
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(even though the ;(x) may be di erent individually). Then
Priif Mf]j>t] 2e =< (11.14)

Proog;. _b% {éél\ = A(a):= fyjf(y) ag, whereais a parameter to be xed later.

By (I1.12), we have, X
f(x) fly)+ i(X);
Xi8Yi
for any y. Hence minimising overy 2 A, we have,

_ X
f(x) ryglpf (y)+ i(X)

Xi8Yi
a+ cor(x;A);
:ubound
by the de nition of the Talagrand distance and &i‘.ur??)u._nﬂence,
Prif (X) a+ ct] Pr[dr (X; A)jgeql
1 e t2=4.
Pr[A] ’

by applying Talagrand's inequality in the last step. Hence,

2

Priff (X) a+t] exp 4—::

Remembering thatA := fyjf(y) ag, write this as

2
PIf(X) a+ tPrf (X) a] exp 4—2
Settinga:= Mf] anda:= Mf] t successively gives the result. |

Note that the condition of (E?L?P%}m*}s just like the Lipschitz condition in the
method of bounded di erences except that the bounding paraeters can be non{
uniform i.e. a dierent set of parameters for eactx. This is the crucial feature
that makes this version substantially more powerful than tb usual method of
bounded di erences as we illustrate with some examples belo

11.4.1 Cherno {Hoe ding Bounds

(I1.12) is satis ed. Moreover ; 2 n. Hence,

Prif Mf]j>t] 2e U™

which is just the Cherno {Hoe ding bound upto constant factors.



11.4. THE METHOD OF NON{UNIFORMLY BOUNDED DIFFERENCES 161

11.4.2 Balls and Bins

Consider once again, the example of the number of non-emptinb whenm balls
are thrown independently and uniformly at random inton bins. For a agiven
con guration x of balls in the bins, let ;(x) := 1 if ball i is the lowest numbered
ball in its bin and 0 otherwise. Then iff is the number of non-empty bins,

X
fx)  f(y) i(X):

Xi6yi
P,
Since ; {(x) n, we get the bound:

Prif Mf]j>t] 2e =
11.4.3 Stochastic TSP

unit square and letT SP(X ) denote the length of the minimum TSP tour through
these points. In this subsection, we shall show a sharp contration result for
the TSP tour. This was a notable success of Talagrand's inegjity over the
previous approcahes using Martingales.

ro

In order to apply Proposition&lﬁ%?%nneed to nd suitable (x);;i 2 [n]. That
is, we need them to satisfy:

X

TSP(x) TSP(y)+ (X); (11.15)

Xi6Yi

, , te97.McD98 , ,
Many proofs in the literature FBB_SU]L use the existence @pace lling curvesto
do this. Actually, all one needs is the following simple butwsprising fact:

:stitch-cycle ‘ Proposition 11.10 There is a constantc > 0 such that or any pet ofn points

X1;1:1:%Xn 2 [0;1F, there is a permutation :[n]! [n] satisfying 2] X ()

X @+1j2 ¢, (where the nal indexn+1 is taken modulon). That is, there is a
tour through all points such that the sum of the squares of tlemgths of all edges
in the tour is at bounded by an absolute constaat

rob-tal:new | .
In Problem }_pfl_lﬂi we outline a completely elementary proof of this fact.

Let C(x) be this tour corresponding to the pointsxq; 1 Xn. We will use this
tour to \stitch" in the points x into the optimal tour for the points yi;  ;VYn
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and satisfy &eI(.]L'Tt%%_)C._O”T%ke (x); to be twice the Ienths_tgf_tCré% Jwo edges incident
to x; in C(x). Now, we verify that with this choice, M?I%)ﬁatis ed, First, we
note that the inequality is trivially true if x\ y = ; i.e. x andy have no points
in common. Otherwise, consider the cycl€(x) and mark the points common to
x and y on this tour. Double each edge irC(x). Starting at a point in x\ vy
follow C(x) until the last point before hitting another vertex of x \ y. At this
point, follow the cycle backwards (using the doubled edge®) the starting point.
In this way, all the points in x have been attached by small cycles to a point in
x\ y. Let U°be the union Igf these cycles. Note that the sum of the lengths
of the edges inU%is at most xey - Finally consider the graph consisting of
vertex setx [ y and edge seff SP(y)[ U° By \short circuiting", we can extract

a tour of x [ y of length at most that of the edges inTSP(y) [ U% Since the

length of a tour through x is at most that ef %tgc%rnmrough x[ y and, TSP(x)
is an optimal tour through x, this veri es (E%‘I%)fﬂ

P _ i . |prop:stitch-cycle
Since 'rch-z eom4c wherec is the constant given by Propositionl1.10, applying
Theorem[IT.9; We arrive at the truly Gaussian tail bound:

PITSP(X) MTSP(X)]j>t] e U=

11.4.4 First Birth Times in Branching Processes

Branching processes are a very attractive model of populati growth dynamics
and have also proven very useful in the study of properties afees grown by
incremental random processes. We consider here, branchipgcesses of the
Galton{Watson type: there is a single ancestor at time 0. This ancestor prades
a number m of children at a random time Z (distributed with the exponential
distribution with parameter 1) and dies. Subsequently eachhild independently
of the others reproduces in exactly the same manner.

We can represent the process by an in niten{ary tree whose vertices represent
the memebers of the population produced and are labelled adldéws: the root
is given the empty label. If a vertex has labeV, then its children are labelled

the Oth generation. The children of a memeber of thieth generation fall in the
k + 1st generation.

A very important random variable associated with a branchig process is therst
birth time in the kth generation, B: this is the time at which the rst member
of the kth generation is born. A powerful theorem of Kingman from theheory
of sub{additive stochastic processes shows th%} ! almost surely for some
constant .
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Here we would like to nd the rate of convergence by giving hig probability
estimates on the deviation ofBy from its mean. Let us label the edges of the
branching process tree as follows: The unique edge leadintpia vertex labelled
v is labelled with Z,, an independent and identical copy of the random variable
Z. Then, with P representing a path in the tree,

X
Bk = min Zy:
jPj=k
v2P
Thus By is this function of the labels attached to the edges in the bary tree on

paths of length at mostk from the root.

For a labelling x of the dedges, leP (x) denote the minimising path determining
By and set (x), := x, forv2 P and 0 otherwise. Then clearly,
X
Bi(X)  Bk(y)+ (X)v:
Xv 6 yv

roh:sumofZs
Moreover, by the result of Problenﬁ_ﬂ—q. )

X
PrlPr[  ZZ> (1+ )2k] exp 4(—)**™ +ne

\"

Thus, applying Theorem&l‘ngro. :, =em

PriBx MBg]j>t] exp

k1=3,

2

A+ )2k

1=3

+exp  4(—)%k¥® + ne X

For t := 2 k, this gives a probability that decreases exponentially ik*=3,

11.5 Bibliographic Notes

ISte97.McD98,AS00

Other expositions of Talagrand's |soper|metr quam are [66, 50, 2]. The
original paper is the monumentalto force ppllcatlons in graph
colouring problems can be found i ) Mcharmld glves an extension of

Talagrand's inequality to permutation distributions that is p W glarly useful in
graph colouring applications. A further extension is givein H

11.6 Problems

Problem 11.11 [Independent Sets in Random Graphs] LeB be a graph on the
vertex set h] and let (G) denote the size of the largest independent set i@.
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(&) Show that (G) is a hereditary property of index sets.

(b) The Erdes-Renyi random graphG(n; p) is the (undirected) graph on vertex
set [n] and edge seE de ned by picking each possible edge;{) 2 [n] [n]
independently with probability p. Deduce a sharp concentration result on

(G(n; p)).

Problem 11.12 [VC Dimension] One of the central notions in statistical leaning
theory is the Vapnik-Chervonenkis(VC) dimension. Let A be a collection of
subsets of a base seX and let x := ( xq; 'Xn) 2 X", The trace of A on X is
de ned by:

tr(x) =tr a(x) .= fA\f X1;  ;Xp0jA2AQ:

That is, it is the collection of subsets that can be obtainedybintersecting sets in
A with fx;;  ;X,g. The number of such subsetsT (x) := jtr(x)j is called the
shatter coe cient of A for x. A subsetfx;,; X, 0 Xy 1 XnQ is said to
be shatteredif T(x;,; :Xi,) = 2X. Finally, the VC dimension D(x) = Da(x)
is de ned to be the largest cardinality of a subset of x;; ;X,g shattered by
A. Show that the VC dimension is a hereditary function of indexets and hence
deduce a sharp concentration result for the VC dimension of subset of points
chosen independently at random. 5

Problem 11.13 Q[Self-Bounding Functions] A non-negative functiofi on a prod-

uct space = ", ihas theself-boundingproperty if there exist functions

g;i 2 [n] such that for all x;; x, and alli 2 [n],
0 o(X1;  Xn) G(X1s X 5Xiers  3Xa) L

and also

X
(0(x1;  Xn)  G(X1; X 1Xisr o X)) (X1 5 Xn):

i

(a) Show that a hereditary function of index sets has the selfounding property.

(b) Show that a similar concentration result extends to holdor this wider class
of functions.

b:vedi
(c) Show that the VC dimension (Problele‘IZS*ro. . iléna self-bounding function
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Problem 11.14 [An Amazing Fact] In this problem, we outline an elementary
proof due to D.J. Newman of the following amazing fact: for gnset of points in

the unit square, there is a tour going through all the pointsgch that the sum

of the squares of the lengths of the edges in the tour is boumtdby an absolute
constant!

(&) Show that for any set of points in a right-angled triangle there is a tour
that starts at one endpoint of the hypotenuse, ends at the o#r endpoint
and goes through all the points such that the sum of the lengshof the edges
is bounded by the square of the hypotenuseHint : Drop a perpendicular
to the hypotenuse from the opposite vertex and use induction

(b) Use (a) to deduce the amazing fact with the constant 4.

Problem 11.15 [Steiner Tree] Obtain a Gaussian concentration result forhe
length of a minimum Steiner tree containing a set ofn points indepndently and
uniformly distributed in the unit square. (A Steiner tree ofa set of points is a
tree containing the given subset among its vertices i.e. ibald contain additional
vertices.) (Hint : Use the fact that there is a universal constant bounding the
sum of the squares of the lengths of the edges of a minimum spany tree of any
number of points in the unit square.) 5
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Chapter 12

Isoperimetric Inequalities and
Concentration via Transportation
Cost Inequalities

perimetric-2 ‘ [Transportation Cost]

In this chapter, we give an introduction to the rst of two recent approches
to concentration via powerful information-theoretic inegalities: the so called
transportation cost inequalities. These inequalities rate two di erent notions
of "distance" between probability distributions and lead asily to concentration
results.

12.1 Distance Between Probability Distributions

Perhaps the best known notion of \distance" between probaliy distributions is
the L, or total variation distance:
X

di(Q;R) := % iQ(x) R(X)j: (12.1) ‘eq:tot-var-dist

X

This is a special case of a more general way of de ning a distanbetween two
distributions Q and R on a metric space (;d). the coupling distance

di(Q;R) := i(ry‘_Z)E [d(Y;2)]; (12.2) ‘eq:coupling—dist

where the inf ranges over all couplings with (Y) Qand (Z) R i.e. joint
distributions (Y;Z) with the marginals (Y) Qand (Z) R. The intuitive

167
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idea is: pick random variablesy and Z according toQ and R respectively and
compute the expected distance between them. The added craloguali cation is
that Y and Z are not picked independently, but via the best coupling.

Exercise 12.1 (Metric Properties) Show that this de nition de nes a bona de
metric on the space of probability distributions on ".

rob:tot-var-cou ) .
In Problem'?z.ld, you arg asked to show that when the distance on the spas

the Dirac distance,d(x;y) = 1[x 6 y], then this reduces to the total variation
distance.

A transportation cost (TC) inequality in a MM-space ( ;P;d) is an inequality of
the form:

di(Q; P) cp D(QjjP); for any distribution Q on . (12.3)

12.1.1 Distance in Product Spaces with Hamming Metric

Of special interest is a product space. Given MM-spaces(P;;d);i 2 [n], the
product space ( ;P;d) is de ned by setting

P:=P, Py,

and the distanced = dy is given by the Hamming metric,
X
dy (x";y") = di(Xi;Vi):

. . eq:coupling-dist .
Recall the coupling dlstance}:(%‘z('))‘p_[%—n. IN this setting equals

X
d(QURY = min - Bd(Y;Z);

where the minimum is over all couplings of Q" andR" i.e. (Y";Z") is a joint
distribution of random variablesY" := (Yy; :Yn)and Z" = (Zy; : Z,) with
(Y™ Q"and (Z") R".

Exercise 12.2 Check this.
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Exercise 12.3 Let " :=[n]" with the discrete Dirac metric in each component
and consider the distributions

The product distribution P",

Y
P (i, ;in) =

S|k

1 0
n_n-

The permutation distribution Q" which is concentrated and uniformly dis-
tributed on permutations of [n]:

Q@ ()=

ComputejiP"  Q"jj1, di(P™;Q"), D(Q"jjP"). (Note that D(P"jjQ") is
unde ned.)

12.2 TC Inequalities Imply Isoperimetric Inequal-
ities and Concentration

sec:tc-to-iso |

A transportation cost inequality in a MM space ( ; P;d) immediately yields an
isoperimetric inequality. First, some notation: for a poibh x 2 and a subset

A , de ne
di(x;A) := nyﬁzir/l di(x;y);
and for subsetsA; B , de ne
di(A;B) = Tﬂ d(x;B)
=L, A0y

rop:tc-to-iso \ Proposition 12.4 (TC Impg 5| eonmetry) Let ( ;P;d) be a MM-space sat-
isfying the TC inequality 415'3). Then, for A; B
s s |

di(A;B) ¢ log

+ | —1
P C9P(B)

Proof. Take Q and R to be the measureP conditioned onA and B respectively:

P(x)=P(A) if x2 A;
0 otherwise

Q(x) :=
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and
R(X) = P(x)=P(B) if x2 B
0 otherwise
Note that
X
DQIP) = QWlog )
Q(x)>0
X P(x) 1
p(A) 9B (A)
X2A (
= log —— P(A) (12.4) |eq:div-comp-1
Similarly,
D(RjjP) =log ——— P(B) (12.5) |eq:div-comp-2
Then,

di(A;B) di(Q; R);
since the min is at most an average
di(Q; P) + di(R; P);
blg the triangle |61equallty
¢ D(QjjP)+ c D(RjjP);
by tshe Transportastlon cost Iqequality

= C log —— P(A) log P(B)
lea:div-compidg:div-comp-2
by (1Z.4)and {2.5)

To obtain the familiar product form of the isoperimetric inguality, take B := A;.
then,

t d(A; Ad)

pA) " pay o

c log
s

P 2c  log © concavity of P-

+log L
P(A) P(A)

1
P(A)P(A)

S

= péc log
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Hence, o
P(A)P(A) e "=

As we have seen before, such an insiperimetric inequalitypies concentrations of
Lipschitz functions. One can also deduce concentration gts for Lipschitapfr%ggé_to_conc

tions directly from the transportation cost inequality as alined in Probleml2.14.

12.3 TC Inequality in Product Spaces with Ham-
ming Distance

In this section, we state and prove a TC inequality for producmeasures with
Hamming distance (with the discrete Dirac distance in eachoordinate).

Theorem 12.5 (TC Inequality for Product Measures and Hammin g Distance)
Let ( ;P;d) be a product space i.e.for arbitrary MM-space§ i; P;; di);i 2 [n],

L 1 ns
P:=P P,, and
P
d(x";y") =[x 6 vil.

Then for any measureQ on ,
r

d&(Q:P)  SD(QIP):

Exercise 12.6 Deduce a familiar isoperi gg:i,gci_poe_%alityfor product spaes from
this TC inequality. (Hint : use PropositioJEZ.'Z above.)

The proof is by induction on the dimension. All the action takes place in the
base case i.e. dimension onelThe extension to higher dimensions is by abstract
nonsense.

12.3.1 One dimension

In one dimension, the basic result is
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Theorem 12.7 (Pinsker's inequality)
r

B(QR)  3D(QiR):

Proof. First we prove the inequality in the special case when =f0;1g. Let
g := Q(1) and r := R(1), and assume without loss of generaility thag .
Then, we need to prove that:

CI|0§J$I +(1 q)Iong 2(q )% (12.6) ‘eq:pinsk—calc

This is an exercise in elementary calculus.

For the general case, leA = fx 2 jQ(x) R(x), and de ne measuresQ
and R onfQ0;1g by:

QM:=0A) R(1)=RA):
Then,

D(QjjR) D(Q jjR); by Jensen's Inequality

2(Q (1) R (1)?
= 2d(Q;R):

. . eq:pinsk-calc
Exercise 12.8 Establish &%‘%)‘b—F y calculus.

12.3.2 Higher dimensions

The \tensorization" step to higher dimesions is by abstrachonsense. We will do
it in an abstract general setting because, besides being oedl, it is also useful
in this form for other applications (other than the one abovdor simple product
measures).

Recall that given MM-spaces (;;P;;d);i 2 [n], the product space (;P;d) is
de ned by setting
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the distanced = dy is given by the Hamming metric,

X
dy (x";y") = di(Xi; vi):

leq:coupling-dist
2.21n S

and The coupling distancelZ.Z2 In this setting equals:
X
di(Q";R") := (\i{rlf_zn) E di(Yi; Z); (12.7) |eq:d1-coup-high-c
" 7i2[n]

where the inf is over all couplings of Q" and R" i.e. (Y";Z") is a joint
distribution of random variablesY" := (Yy; :Yp)and Z" = (Zy; : Z,) with
(Y Q"and (Z") R".

Proposition 12.9 (Tensorization of Transportation Cost) Let( i;Pi;di);i 2
[n] be MM-spaces that each satisfy the transportation cost inedity:

P
d(Qi;Pi) ¢ D(QjjP;); for any distribution Q; on ;.

for some constantc > 0. Let ( ;P;d) be the product space as de ned above. Then
( ;P;d) satis es the transportation cost inequality:

P
d(Q;P) c¢ nD(QjjP); for any distribution Q on

Proof. It suces to construct a coupling (Y";X") with (Y") Q and
(X™) P such that

E [d(Y";X™)] = *E A(YiX)] ¢ nD(QGP);
Introduce the notational abbreviations:
QW)= (Y'=y) QUiiy D= (M=yjY *=y %
De ne:
(' D= DQCTY DIPCTY )= DY YiP);

where the second equality is becau$e is a product measure. By thechain rule

for divergence
) X X _ .
D(QjjP) = iy Howy' H):

i=lyi 12 i1
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We construct the coupling inductively. Assume the joint distribution on (Y' 1; X' 1)
has already been de ned. To extend the distribution, we de & the joint distri-
bution of (Y;;X;) conditioned on (Y’ 1=y L X' 1= x" Y foranyy I;x 1.
First de ne the marginals by:
(Yi= ZJ'Yi 1_ yi l;xi 1_ Xi l):: Qi(iji 1)'
Xi=zjY' t=y X" 1=x 1= Pi(2):
That is, noth Y; and X; are conditionally independent ofiX' * givenY' 1=y' 1,

Now, we use the transportation cost inequality satis ed by he component space
i to construct a coupling of {¥;; X;) with these marginals so that for ally' ?

E dGX)IY T=y t & D)

Finally we verify that this inductively constructed coupling satis es the desired

inequality:
X X X o . .
| E [d(Yi; X)] = o E d(YaX)jiY' =y " Qy' Y
| X ¥I(l p
c iy Hoy' h
iyl
X X [
- en P o) g
i1
cnt i(y! 1)Q(y ), by concavity of P

iyl

P
¢ nD(QjjP); by the chain rule for divergence

We can now complete the proof of the Transportation Cost Ineglity in product
spaces with the Hamming distance:

th:tc-prod
Proof. (of Theorem % Ooerpsl(r)lre Pinsker's inequality with the abstract ten-
sorization of Proposition |

12.4 An Extension to Non-Product Measures

In this section, we state a theorem due to K. Marton which extads the TC in-
equality from independent distributions to certain dependnt distributions where
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one has some handle to control the dgg)gedence This extensi® quite useful as

shown by the application in Problen@Z‘ﬂ_L

th:marton-dep ‘ Theorem 12.10 (TC Inequality with controlled dependence) Let ( ;Q;d)

be MM-space with

P
d(x";y") = di(Xi;yi), for arbitrary metrics d; on ; for eachi 2 [n],
and

Q a measure on such that for eachk 0 and eachx*; ¥ di ering only
in the last co-ordinate (i.e. X; = Xj;i <k andXx; 6 X;), there is a coupling
(Y,"; ZD) of the distributions Q( j x¥) and Q( j ®¥) such that

" #
X
E di(Yi;Zi) j xR
i>k

Then for any other measurer,

r

dRiQ) (u+1) ZD(RijQ):

. . . th:marton-de
Exercise 12.11 Deduce the TC inequality for product measures from Theor&Z.IO
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12.5 Problems

prob:l1-dist ‘ Problem 12.12 Prove the following alternative characterizations of the dtal
variation distance:

R(Y)

d(Q;R) = %% o) (12.8)
_ R(Y)
= B 1 ) . (12.9)
_ R(y)
- taoy W
_ X Q(y)
= , 1 W +R(Y)
_ Q(Y)
= R 1 ROY) . (12.10)
= maxjQ(A) R(A)] (12.11)
5

rob:tot-var-coup ‘ Problem 12.13 Show that the total variation distance is also given by:

di(Q;R) = n(unz) E[Y 6 Z]; (12.12) ‘eq:dl—coupling

where the minimum ranges over all couplings(Y;Z) of QandR: (Y) Q and
(Zz) R.

rob:11-dist
Proof. We start with the characterization (see Probler)ﬁTZ'I%)i.

di(Q;R) = max jQ(A)  R(A)j:

Let A achieve the maximum on the right hand side. Then,

di((Q;R) = JQ(A) R(A)]
i (Y2A) (Z2A)

E[Y62Z]:

Equality is attained by the following coupling ofQ andR. Let (x) := min( Q(x); R(x)).
and let
(Y=xZ=x):= (X);
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and for x 6 x° let

QM) ORI~ (x9),
N ) '

(Note that if the denominator vanishes thenQ = R.) |

(Y=x;Z=xY:=

ob:tc-to-conc ‘ Problem 12.14 Use the Transportation Cost inequality to directly deduce a
measure concentration result for Lipschitz functions. Le{ ;P;d) be a MM-
space satis ying a TC inequality:

4(Q:P) ¢ D(QjP);

and let f be a Lipschitz function on . Let

A=1fx2 jf(x)> BI[f]+tg

Let Q be the measurd? conditioned onA.

(a) Argue that
di(Q:P) Klf] BI[f] t

(b) Deduce that
PIf> B[f]+1t] e 2=

(c) Similarly deduce the other tail inequality.

Problem 12.15 [A Weighted Transportation Cost Inequality in Product Spaes]

Let =( 1; ; n) Oandlet( ;P;;d) be arbitrary MM-spaces. Consider
the product space (;P;d ) with and P as usual, but with the weighted Ham-
ming metric: X
d (x";y") = d(xi;yi) (12.13) |eq:weighted-hamr
i
Prove:

Theorem 12.16 (TC Inequality in Rroduct Spaces with Weighte Jeq:weghlt—égmgmﬂ%&)istance)
Let ( ;P;d ) be a product space with a weighted Hamming metrit. 13). Sup-
pose the component spaces satisfy a transportation costquoality:

dQ:P) ¢ D(QjP) foriz2 [n]




prob:TC-perm ‘
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Then, for any measureQ on ,
o P
d(Q;P) dj jix D(QjjP):

In particular, if j jj, =1 i.e. is a (non-negative) vector with unitL; norm,
then, D
d(Q;P) ¢ D(QjjP):

Verify that the unweighted case is a special case of this. 5

Problem 12.17 [Transportation Cost and Concentration for PermutationsjConsider
the group of permutationsS, as a MM-space by endowing it with the uniform
distribution P and the transposition distanced between permutations. Show
that this space satis es the transportation cost inequali

dQ:P)  2nD(QjjP):

Deduce an isoperimetric inequality and a measure concericn rﬁtwrl%afr?rnl__égs-

chitz functions on permutations. {int : Apply Marton's Theore 10,

th:marton-dep . .
Problem 12.18 Prove TheorerﬁZTO—dL. and give a weighted analogue. 5

12.6 Bibliographic Notes

The ap aarlgg to measure concentration via transportationost was | 5%%uced by
||y|e%;nn%The extension to dependent measures is from Mart . Ledoux

[39][Chapter 6] covers the Transportation cost approach imore detail.




Chapter 13

Quadratic Transportation Cost
and Talagrand's Inequality

rtation-cost ‘ [Transportation Cost and Talagrand's Inequality]

13.1 Introduction

In this chapter, we will prove Talagrand's convex distanceanualitym/ai;]’;éhe
transportation cost method, an grggch pioneered by Kati Mrton and
further developed by Amir Demb . This approach is particularly interesting
because:

It places both the theorem and its proof in its natural place whin the
context of isoperimetric inequalities.

It places a standard structure on the proof as opposed to thermewhatad
hoc and mysterious nature of the original inductive proof of Talgrand..

It isolates very clearly the essential content of the proohione dimension,
and shows that the extension to higher dimensions is routine

It also allows a stronger version of the method of bounded dérences that
leads to concrete improvements in applications.

It allows generalization to dependent measures.

179
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13.2 Review and Roadmap

Recall the setup for the isoperimetric inequality fobprodot measugss and a
weighted Hamming distance: (;P;d) where := ~,,, i, P = ;P for

arbitrary spaces ( i;P;);i 2 [n] and the weighted Hamming distance is de ned
by

X
d (x;y) = ilxi 6 yil; (13.1) ‘eq:weighted-ha
i2[n]
. . P
fora xed :=( 1;:::; n) Owithnorm1lie. 2=1.

To prove this via the Transportation cost methB&'-ngq tien fr?éjm@n%ﬁlq-% distance

between probability measures on that re ected (I3.1): namely, ITQ and R are
distributions on , de ne

X

dy (QR):= inf ©[Yi6 2] (132)

i2[n]

We then proved the Transportation cost inequality for this distance in product
spaces: for any other distributionQ on

r—
D(QjiP).
"

di. (Q;P) (13.3) |eq:trans-cost-d

From this information-theoretic inequality, the isoperinetric inequality for prod-
uct spaces and weighted Hamming distance followed readilfgr any two subsets
A;B ,

P(X 2A) P(d (X;A)>t) e (13.4) [eqiiso-hammin,

In the non-uniform setting, we have, for every pointx 2 , a non-negative
unit norm vector (X) := ( 1(X);:::; n(x)) i.e. afunction :x! (X) with
j (X)ji2 =1, and one de nes an asymmetric notion of \distance" by:

X
d; (X;y) = i(X)[xi & yil; (13.5) [eq:asymm-harr
i2[n]

(The reason for the subscript \2" will emerge shortly.)

As usual, forA
da. (G A):=min dy. (X;Y):
y2A

TeheI gqalrg]%ltﬁ) prove the following isoperimetric inequalitywhich is analogous to
whic

(13- was used in the applications in the previous chigp:
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Theorem 13.1 For any A :

P(X 2 A)P(dx (X;A)>t) e U

Some thought shows that proving such an inequality is tantaount to proving
the inequality for all possible simultaneously in the following sense. De ne, for
x2 and A

do(X; A) := sup dx (X;A): (13.6)

i =1

This is just the Talagrand convex distance between a point @ha subset. Then
we will prove,

Theorem 13.2 (Talagrand's Convex Distance Inequality) For any A

P(X 2 AP(d(X;A)>t) e

To prove this via the transportation cost metho 1, we need t iy uce a distance
between probability measures in that re ects (I3.5) an .6). For probability

measuresQ; R on , de ne:

X
GQiR)= inf sup E[ (Y)Y 6Z] (13.7) [eqid2-def |

Y;Z)EQ[” JJZ] 1 i2[n]

(Th(? Sup isdove.r Il functions : ! R" such that Eq[jj (X)jj] 1.) In Prob-
proptguad-traingle-ineq . . A . .

lemI3.17 you are asked to show that this notion of \distance" s&t es a traiangle
inequality. We will show that this \distance" satis es a transportation cost in-

equality and as a consequence Yyields Talagrand's convextaige inequality.
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13.3 A L, (Pseudo)Metric on Distributions

13.3.1 One Dimension

A L, notion of \distance" between two distributions Q and R on a space is given

by the following de nition:
|

s 1=2
R(Y) *
d2(Q;R) = 1 —=
I
X RY) o
= 1 —— Q 13.8
y o) (¥) (13.8)
I -
X RAy)
13.9
L Qw (139)
Note that this de nition is asymmetrid
Compare this with the variational distanced;(Q; R):
: _ 1 R(Y)
_ R(Y)
SRt om .
X R(y)
= 1 7
oy W
An alternate characterization ofd, is via couplings:
Proposition 13.3
d2(Q;R) = inf  sup E [ (Y)Y 6 Z]]: (13.10) ‘eq:IZ-dist-prob-
(Y;Z)ES[ 11
= inf o ((Z8yiY=y)'QY=y) (131}
Ty

Here,

The inf is over all joint distributions  with marginals Q and R, and

thesupisoverall : ! R.
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Proof. We will show that for anyjo)i(nt distribution

ksLuolE[ IY8Zl= ((Z86YyjY=y)qY=y):
y
To show that the left hand side is at most the right hand side, e use the Cauchy-
Schwartz inequality:

ELMIYBZI = () (Z8Y)Y=ylY=Y)
. BN !
(%Y =) ((Z8YjY=y)Y=y)

y y

X
((Z6YyjY=y)%aY =Yy)
y

1=2

! 1=2

Exercise 13.4 Choose suitably to prove the other direction.

13.3.2 Tensorization to Higher Dimensions
- . eq:d2-def
For probability measuresQ; R on ", de n|t|02n &%”7—0“ reduces to?:’

X
B(QR)= inf sup E4 (Y)Y 6Z]
(YMZM) Bk ko] 1 i2[n]

(The Suﬁp}gb%\ﬁ%ﬁ-ﬁgiJ&Q-‘?ﬁ'&q@ i ! R su_ch th_at Eolk _(X)kz] ) _1.) In
Problem I3.17 you are asked to show that this notion of \distance" s&tes a

triangle inequality.

An alternate characterizatio)Q is):(
d(Q;R) = inf ((Z;6yjY"= yn))zQ(Yn =y"

Yn-zn
vrzn o

13.4 Quadratic Transportation Cost

1ad-cost-prod

Theorem 13.5 (Quadratic Transportagj)n Cost Inequalitbin Product Spaces)
Let ( ;P) be a product space with:= i2pny i @ndP = ", Piwhere( i;P)
are arbitrary spaces. Then, for any other measur® on

4,(Q;P)  2D(QKP)
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184CHAPTER 13. QUADRATIC TRANSPORTATION COST AND TALAGRAND'S INEQUAL

The proof is by induction on dimension where all the action ae again is in
dimension one!

13.4.1 Base case: One Dimension

In one-dimension, for theL, distance d,, the standard inequality is Pinsker's

inequality r

G(QR)  5D(QKR) (13.12)

We need an analogous inequality fod,. Notice that because the distancel,
is not symmetric (unlike d;), we actually need two in(%ggmlilg)ties. However there
is an elegant symmetric version due to P-M Sams rom which the two
asymmetric inequalities we need follow:

Theorem 13.6 For any two distributions Q and R,

d3(Q;R) + d3(R; Q) 2D (RkQ) (13.13) ‘eq:dz-pin-symr

Hence,

d2(Q; R); d2(R; Q) P 2D (RjjQ): (13.14) ‘eq:dZ—pin—asyrr

Exercise 13.7 Consider two distributionsQ and R on the two point space :=
f0;1g. Computed;(Q; R) d»(Q; R) and D(QKR). Verify that

D1(Q;R); d(Q;R)  D(QKR).
di(Q;R)  dx(Q;R).

Exercise 13.8 Write down the inequality in the case of a two point space and
compare with Pinsker's inequality.

th:pinsker-analog .
Proof. (Of Theorem13.6): Consider the function

(u:=ulogu u+1;

and

(w:=( w=u
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p:quad-tensor ‘
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By elementary calculus, it is easy to check thator 0 u 1,
1
u =1 u?
(u) 3@
whereas foru 1,

(v S0 %

Since
ulogu u+1=( uu 1]+u( uu> 1}
we have,
1 u 1°
ulogu u+1 (1 upi+ = 1 =
u +
Putting u := QE ) and taking expectations with respect to the measur&(X)
gives the lemm B gt add
few lines
beacause this is
a bit tricky ...

13.4.2 Tensorization to Higher Dimensions

Once we have the inequality in one dimension, it is routine (i tedious) to
extend the inequality to higher dimensions. We phrase the nsorization lemma
in a general abstract fashion to emphasise its generality fieh is useful in other
applications).

Proposition 13.9 (Tensorization of Quadratic Cost) Let( i;P;;di);i=1;2
be spaces that separately satisfy a quadratic transportaticost inequality: for any
measuresQ; on ,

d2(Qi; Pi) pZD(QikPi); i=1;2:

Let = > be the product space with product measuke .= P; P, and
distance d(x;y) := d(xi;y1) + d(X»;¥2). Then, the measureP also satises a
guadratic transportation cost inequality: for any measur€ on

4,(Q;P)  ZD(QKP):

Proof. Co-ordinate by cq-ordinate extension of the coupling, as ithe previous
chapter. See also Ledou heorem 6.9]. pages 130-131. |

Now we can complete the proof of the Quadratic Transportatio Cost inequality
in product spaces:

th:quad-cqst-prod lprop:quad-tensor th:pinsker-analog
Proof. (of Theorem(13.5) Induction using Proposition13.9 With Theorem(13.6 as

the base case. [ |
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13.5 Talagrand's Inequality via Quadratic Trans-
portation Cost

Exercise 13.10 Verify that if d>(A;B) := min 4,4 do(X; B) whered,(x; B) is the

Talagrand convex distance andl,(Q;R) is the distance de ned above for any
probability distributions Q and R concentrated onA and B respectively, then
d2(A;B)  dx(Q;R),

Corollary 13.11 (Talagrand's Convex Distance Inequality i n Product Spaces)
s s
d2(A;B) 2lo i+ 2lo .
a PA) PE)

Proof. Take Q(C) := P(CjA);R(C) := P(CjB). Then,

d>(A;B) d>(Q;R); since the min at at most an average
d>(Q; P) + dx(R;P) triangle inequality
S 2D (QjjP) + S2D(Rij) TC inequality

1 1
= 2Iogm+ 2|09P(B)'

To obtain the familiar product form of Talagrand's inequalty, take B := A;.

then,
t g(A; Ay) S
1 1
2log——+ 2log———:
0 P A
S
. p_
2 lo +lo —: concavity of
A T Py v
S
1
= log————
P(A)P(A)
Hence,

P(AP(A) e U
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13.6 Method of Bounded Di erences Revisited

obd-revisited |

. . . ) th:quad-cost-prod . .
The Quadratic Transportation Cost inequality, Theoren@3.5 can be used to give a

direct proof of a somewhat stronger version of the method obbnded di erences.

Theorem 13.12 (Method of Average Nongyniform Bounded Di er ences)
Let Q be a measure in a product space= 2] 1 Satisfying a quadratic trans-
portation cost inequality: there is a constant; > 0 such that for any other
measureR, D

d2(Q;R) ¢ D(RkQ):

Let f be a function such that there is a function : ! R" with

X
Bl X)) <
i

and such that X

f(x™)  fy™)+ i(X)di (Xi; i)

i2[n]

for any x(M;y(M 2 Then

t2

G G

Pr[f < Ef t] exp

Proof. Set
A=fxM2 jfxM)<Ef tg

Consider the measurdrk on concentrated on A and de ned by R(x) := Q(x j

A) = Q(x)=Q(A) for x 2 A and 0 otherwise. Consider
X
d2(Q;R) = inf sup EJ (Xi)d(Xi; Yi)l
XUYD Bl fi2l 1 o

where (X") Qand (Y") R. Let be the coupling attaining the in mum.

Then
X

d2(Q:R) = sup E[  (X)d(Xi;Yi)]
Eolii ji2] 1 i2[n]
X _
el ~2ax; vl
i2[n]

ZEMX™) 1Y)
C

= CRIX™)] (V")

1
—t
C
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But, by hypothesis,

s_
P
B(Q:R) o D(RIQ): = o logﬁ:
Hence, ,
Pr[f < Ef t] = Q(A) exp Z 3

Exercise 13.13 Show that if we assume

X
Fx™) ™) () (Xi5 ¥1);

i2[n]

then one obtains a similar concentration orPr[f > Ef + t].

Example 13.14 [Subgraph Counts] Consider the random grapi&(n;p) with

vertex set h] and where ecah possible edde;j g is present with probbaility p

independently. LetH be a xed graph and letY, denote the number of copies

of H in G(n;p). The study of Yy is a clasical topic in the theory of random

graphs with a vast literature. We are interested concentradn results obtained

by estimating the probbaility P[Yy > (1 + )HYy]] for a xed small constant
> 0.

n

Consider for illustration the caseH := Kj. Clearly HYk,] = 5 p* = ( p°nd).
Vu obtained the rst exponential bound:

P[Yc, > (1+ )HYi.]l exp( ( p™*n*?):

Subsequently, Kim nad Vu by using a \Divide and Conquer" marihgale argument
improved this to the near optimal

P[Ye, > (1+ )EYi,]l exp( ( p'n?):

We show how to obtain this easily from the average version oheé method of
bounded di erences above. The underlying product space isvgn by the indi-
cator random variablesX := Xee2 E := ! corresponding to the presence
of edgee in G(n; p) and the function f (X¢; e 2 E) is the number of triangles in

INEQUAL
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the graph formed by the edgeX. = 1. Take (x) to be the number of triangles
containing the edgee in the graph fromed)?y the edgesg. = 1.. Clearly,

f(x) f(y) e(X):
Xe6 Ye
The random variable ¢(X) has distribution Bin(n  2;p?) and hence
H 20O)I=(n 2)p*(1 p)+(n 2)%" = ( n*p);
and so X
H 2(X)1= ( n*p%):
° h:ay-tal
Substituting inot he bound of Theoremt a.w tagives
P[Yk,> (1+ )HYc.]l exp( ( p’n?):

13.7 Extension to Dependent Processes

dep-extension ‘

In this section, we state an exetnsion of the Quadratic Trap®rtation Cost in-
equality for certain classes of dependent measures. Theuléss due indepen-
dently t K 'OMarton and P-M. Samson . In the formulation bebw, we follow
Samsor%B‘ﬁT

Let Q be a a measure on and letX;::: X, be distributed according toQ. To
guantify the amount of dependence between these variabl@éstroduce an upper
triangular matrix = ( Q) with ones on the diagonal.

Forl <] n, denote the vector K;;:::;X;) by X,J Foreveryl i n,
everyxs;:iiX 1 with xx 2 and x;xP 2, set:

g (xy xx)) = di QX t=x B Xi=x)Q( Xy =g LXi=x)
That is, take the total variation distance between the two caditional distribu-
tions of Q where the two conditionings di er only at one point. Set

Lo=sup sup g (xh hx;xd):

Xi XOX15Xi 1

Theorem 13.15 (Transportation Cost Inequality for Depende nt Measures)
For any probability measureR on
p
d2(R;Q); d2(Q;R)  k (Qk  2D(RkQ): (13.15)

Exercise 13.16 Recover the inequality for independent measures from thige
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13.8 Bibliographic Notes

The transportation cost gr%a}ch to proving Talagrand's iequality was pioneered

by Kati Marton. Dembo contains systematic generalizations to several other
geometric inequalities. The proof of the inequali 'Bbonei[h nsion and the ex-
tension to dependent measures are from Sam . Ledoux 6.3] contains

a complete exposition.

13.9 Problems

Proglem l%Jh? rT§how that the asymmetric and non-uniform notion of distance
. egrasymm-ham mg_ . .
in (I3.5) satsi es a triangle inequality. 5

INEQUAL



Chapter 14

Log-Sobolev Inequalities and
Concentration

h:log-sobolev ‘ [Log-Sobolev Inequalities]

14.1 Introduction

In this chapter, we give an introduction to Log-Sobolev inagplities and their use
in deriving concentration of measure results. This is a thirimportnat method-
ology for concentration of measure (the other two being margales and trans-
portation cost) and it appears to be the most powerful of thehree.

Given a probability space (; ), and a functionf : ! R, de ne the entropy

of f by
Ent (f):= E[f logf] E[f]logE [f]: (14.1)

By Jensen's inequality applied to the convex function (x) := xlogx, Ent (f)
0 for anyf .

A logarithmic Sobolev inequalityor just log-Sobolev inequality boundsEnt |[f ],
for a\smooth" function f , by an expression involving its gradient. IrR" which is
the original context in which log-Sobolev inequalities werintroduced, a measure

satis es a log-Sobolev inequality if, for som& > 0 and all smooth enough
functions f ,

Entm, (f)  2CE [ir fj2: (14.2) ‘eq:log-s-reals

191
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14.2 A Discrete Log-Sobolev Inequality on the
Hamming Cube

We are interested here in discrete settings: what, i a Y galgrm;jue ofr f is a
discrete setting in order to formulate a version oﬁm 2)?

Consider the familiar Hamming cubef 0; 1g". Here a natural analogue of f
would be:

where, for each 2 [n],
Dif(x):=f(x) f(ix);

and ;(x) is the result of ipping the bit in the ith position in X.

Theorem 14.1 (Log-Sobolev Inequality in the Hamming Cube) For any
function f : f0;1g" ! R,

X
Ent (f?) % E [jDif j’]: (14.3) |eq:log-s-hcube

1in

14.3 Concentration: The Herbst Argument

s-hcube th:log-s-hcube
The log-Sobolev inequality E4 d) |n Theorem(14. 1 erIGS the familiar me%é;@

concentration results for Lipschitz functions on the Hamnmg cube. Ledou
attributes the basic argument to Herbst.

Hee(} |§beh1 %eoschltz (with respect to the Hamming metric in the cul) and apply

(14, d) to the functionf 2 := €% for somes 2 R to be chosen later.

| hcub
To bound the right hand side in (L(éll gg)] SWé:uuge the Lipschitz property of and

elementary calculus to get:

iDi(e2)j = et gF 0=
j SjesF(x)=2:

log-s-hcube
Putting this into (u% dg

Ent (&%) n_;?E [e5F]: (14.4)
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Now, we introduce someaeneratingfunctionology let

G(s) = E[e]:

193

be the (exponential moment) generating function oF . Then, the left hand side

is (with E= E),

sHFe’"] EeFllogge™ ] = sGYs) G(s)logG(s);

and the right hand side is

ns?
—G(9s):
>-G()

Hence we arrive at the following di erential inequality for G(s):

ns?
sGYs) G(s)logG(s) 76(5):

eq:diff-eg-hcube
Let ( s):= @; then from dl%.bt)f, v?/e ger.

1s)

>

S

N

sinces 1:

NI S

Thus ns

(s S ta

for some constanta. The constant is determined by noting that

_ . GY0)
lim (s) Ils[nm gf ]
Hence, ns
(9 Hf]+ 3
i.e.

HeF]=: G(s) exp SE[F]+ %

(14.5) |eq:diff-eq-hcube

(14.6) |eq:laplace-bound

Thus we have arrived at a bound on the moment generating furion of F and
this yields as usual, via Markov's inequality applied toe’F , the concentration

bound: ,
t
(F>HF]+t) exp o
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14.4 Tensorization

The following theorem enables one to reduce the proof of a {8gbolev inequality
in product spaces to a single dimension:

Theorem 14.2 (Tensorization of Entropy) Let X4;:::; X, be independent ran-
dom variablg with K; taking valueain( i i)l 2 [n]()g Let f be a non-negative
functionon ~; . Then, with := ", jand := "4 j,
X
Ent (f) E [Ent [f]X;;] 6] (14.7)
i2[n]

. . th:tensor-entropy th:log-s-hcube
As a rst application of Theorem 14.Z2, we prove TheoreniZ.T:

th:log-s-hcube th:tensor-entropy . .
Proof. (of Theorem h?tfq)_B_Th* T By Theorem[I4.2, 1T Suces to prove the inequality
in one dimension, where it amounts to:

u? + v2
(u v?% (14.8) |eq:log-sob-1dir

u?logu? + v2logv?  (u?+ v?)log

for any real u;v. This is easily checked by elementary calculus. Thus,

X
Ent (f2) E [E,[f?jX;;j 6ill

i2[n]
X 1
i2[n]
3 "
1 i n

. ) leg:log-sob-1dim
Exercise 14.3 Verify (/14.8).

th:tensor-entropy : . . S .
Theorem [14.2 1tself follows faily easily from an basic inequality innformation

theory.

Theorem 14.4 (Han's Inequality for Entropy) Let Xq;:::; X, be any set
of (discrete) random variables, withX; taking v%ues in ; for i 2 [n] and let
Q be their distribution on the product space:= ~;,.,, . Then,
1 X
Ho(X1; 115 Xn)  ——=  Ho(Xaiii Xi 45 Xiwa 51015 X0n)
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Given a distributions Q on a product scgace = Qi i, let Q ; denote the
distribution on the product space = ";4; ; and given by:
X
Q=i(x i) = Q(x);
Xi2
wherex ;= (Xq;: i Xp) and X = (Xg; X 1 Xi+150003Xn)
Theorem 14.5 (Han's Inequality for Relative Entropy) Let P be the prod-
uct measure on and letQ be any other measure on. Then,
i} 1 X iy
DIP) ——5  DQiP )
i2[n]
or,

X
D(QjiP) (D(QiiP) D(Q ijiP i) :
i2[n]
th:t -ent
Proof. (Of Theorem |14.ezn)s:0[—?rnstror%te that if the inequality is true for a random
variable f, it is also true for cf for any constantc > 0, so we may rescale to
assumeE|[f ] = 1. De ne

Q(x) = f(x) (x);

so that
D(Qk )= Ent [f]
Thus,
Ent [f] = D(Qk)
(D(Qk ) D(Q ik )
i2[n]
X
= E [Ent [f|X;;] 6]
i2[n]
|
14.5 Modi ed Log-Sobolev Inequalities in Prod-
uct Spaces
Let X4;:::; X, be independent random variables and 1eX%:::;X? be an inde-
pendent identical copy of the variables<q;:::;X,,. Let Z ;= f (Xq;:::; X, be a
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Theorem 14.6 (Symmetric Log-Sobolev Inequality in Product Spaces)
Let X;;X%i 2 [n]and Z;Z%i 2 [n] be as above. Then,
X
Ent[e’*] He** ( sz ZD); (14.9) [eq:log-s-symm:
i2[n]

where (x):= e x 1. Moreover,

X
Ent[e’*] Ee? (s(z z)z>z]: (14.10) [eq:log-s-symm:
i2[n]
and X
Ent[e®] Ee?’ (s(z? z)z<z] : (14.11) [eq:log-s-symm:
i2[n]

where (x) := x(e¢ 1).

th:tensor-entro B
Proof. We use Theorem H%VZ%—?_@H_[ applied to Egrﬁg{ggr;lonesz and bound each term

in the sum on the right hand side. Lemmal4.7 below implies that ifY%is any
E[Y logY] Ei[Y]logEi[Y] E[Y(logY logY9) (Y YOI
Applying this to Y := e and Y°%:= &', we get:
E[Y logY] Ei[Y]logEi[Y] E €* ( s(Z Z))

eq:log-s-symm-1

This yields (4.9

To prove the other two inequalities, write
e ((s(Z ZY=e? (S(Z ZYZ>Z+e7 (s(Z° Z)[Z<Z]:

By symmetry, the conditional expectation of the second ternmay be written
h [

E e (s(2° z)[z<zQ = B &% (s(Z2 Z)[z>Z]

h

|
= E e%e? ) (s(z zM[z>z] :

Thus,
h i
Ee? (s(Z Z)) =F €% (s(Z z)+e* 2 (sz z)[z>2] :

log-s- -2
Now dﬁ%?%’)s—r%%by noting that (x)+ € ( x)= x(& 1)=; (X).

eg:l0g-s-symm-3 . :log-s-symm-2
The proof of (ﬁ%.igi‘) |sysymmetr|c to that of {[4.10). |
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Lemma 14.7 LetY be a positive random variable. Then, for any > 0,
HY logY] (HY]log(HY]) HYlogY Ylogu (Y u)]:

Proof. Forany x> 0, logx x 1, hence

|OgL L
HY] HY]
and so, J
Y]log— u Y],
AYlloggy; U Y]
which is equivalent to the statement in the lemma. |

14.6 The Method of Bounded Dierences Re-
visited

sec;bdd-revis \

Theorem 14.8 (Method of Bounded Di erences) If
X
(z zH* c;
i2[n]

for some constantC > 0, then

Pr[z > HZ]+ t[;Pr[Z < HZ] t] exp( t>=4C):

'?J&?Jg-s%%%{‘ée that forx < 0, ( x) x? and hence for anys > 0, we have by
(14.710),
2 3
X
Ent[e®*] Ede’” sz z)z>z 95
5 i2[n] 3
X
Ede’* (2 z)*
i2[n]
s?CHe™];

where in the last step, we used the hypothesis.

Now we complete the Herbst argument via generatingfunctiahogy. Introduce
the generating functionG(s) : He*?] and observe that the left hand side is

Ent[e’?] = sGYs) G(s)logG(s):
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S0,
Ent[e’’] = sGYs) G(s)logG(s) s°CG(s):

Divide both sides bys?F (s) and observe that the LHS is then the derivative of

10gG(s).
o),

(s):=

Hence, we have
1) C;

which integrates to
(s) sC+a

for some constanta. The constant is determined by noting that

. L GO(S) _ GO(O) _ .
im (9= 5e = G0 - 4k

SO
(s) HZ]+Cs;

which gives a bound on the moment generating function
G(s) exp HZ]s+ s°C :

This bound yields the desired concentration via the usual gument of applying
Markov's inequality to . |

Exercise 14.9 Check that it is su cient to assume

z z¥%z>z3 C;
i2[n]

for the proof above.

14.7 Talagrand's Inequality Revisited

In this section we show how Talagrand's inequality followsasily via log-Sobolev
inequalities.

Recall the setting of Talagrand's inequality: we have a pragtt distribution in
a product space, and the Talagrand convex distance:betweenpoint x and a
subsetA in the space:

dr(x;A) ;= sup d (x;A);
k jk=1
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where
d (x;A): = mind (x;y)
y2A
- X
= mn i[xi 6 yi
i2[n]

Eqvivalently, we may write:

X
dr(x;A) = érlljf(A) kstjzr; iE[x 6 Yi]; (14.12)

whereD (A) is the set of probability distributions concentrated onA.
‘tal-dist
Exercise 14.10 Check that E%rz%’f.a IS|s equivalent to the usual de nition.

Now we apply Sion's MiniMax Theorem: if : X Y is convex, lower-semicontinuous
with respect to the rst argument, concave and upper semi-ctinuous with re-
spect to the second argument, anX is convex and compact, then

inf supf (x;y) = sup inf f (X;y) = min supf (X;y):
X y y X X y

‘tal-dist
Applying this to the characterization (h%rzg)jie .a I,Swe have,
dr(x;A)

X
inf  su E[Xi 8Y;
nfay Sup o [xi & Yi]

sup inf iE [Xi 6 Y]
i

k k=1 2D(A)

and the saddle point is achieved by some pair;( ).

denote the saddle point corresponding tX . Then,
X h [
Z? = inf sup L xVey,
X ' h i
inf - ~NE X6,
i

wherexj(i) = Xjifj6iand Xi(i) = X2 Let ~ denote the distribution achieving
the in mum in the last line. Then
X
Z = inf AjE[XjSYj]
X J
ME-[X) 8 Y]
i
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Hence,
X .
z z° NE X8 Y] X6 Y]
j
= ME(Xi8 Y] [XP8 Vi)
N,
|
Hence, X X
(z zd)z>z) N =1
i i

) . th:bdd-sob i . lex:bdd-extn
Now form the observation of the proof in Theoren&ZI.S needed in Exermshzt.g,
we get the result.

14.8 Problems

Problem 14.11 Consider the Hamming Cube with non-homogeneous product
measure.

. . . leq:log-s-hcube
(a) Derive a log-Sobolev inequality analogous tal#.3).

(b) Use the log-Sobolev inequality to derive a concentratioresult for Lipschitz
functions on the cube.

Problem 14.12 Consider the convex cube [@]" non-homogeneous product mea-
sure where the expected value on co-ordinate [n] is p;.

. . . eq:log-s-hcube .
(a) Derive a log-Sobolev inequality analogous t&&ﬁ_(ﬁ_t*. . (HINT T use a convexity
argument to reduce this to the previous problem.)
(b) Use the log-Sobolev inequality to derive a concentratioresult for Lipschitz
functions on the convex cube.

5

" :bdd-sob
Problem 14.13 Relax the codition of Theorem Eﬂrsr?—r as follows to get a average
version of the method of bounded di erences. Show g&lat if

X
E (Z Z)Z2>ZqjXyinXe G
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then for all t> O,
Priz > HZ]+t] e U™C;

while if " #

then for all t> O,
Priz< Hz] t] e "™

14.9 Bibliographic Notes

Our exposition iEJbgged on a combination of Ledo&eg% 5.1, 5.4] and the notes
of Gabor Lugosi 45 o nice survey of the Entropy method in the context of otar

techniques is in[62].” The original article %%\@Ioping the modi ed %(%q\g)-sodev

inequalities with many other variations is[61]. Bobkov and Gotze}_ compare
the relative strengths of the transportaion cost and log-Smwlev inequalities.
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