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Preface

The aim of this monograph is to make a body of tools for establishing concen-
tration of measure accessible to researchers working in the design and analysis of
randomized algorithms.

Concentration of measure refers to the phenomenon that a function of a large
number of random variables tends to concentrate its values in a relatively narrow
range (under certain conditions of smoothness of the function and under certain
conditions on the dependence amongst the set of random variables). Such a result
is of obvious importance to the analysis of randomized algorithms: for instance,
the running time of such an algorithm can then be guaranteed to be concentrated
around a pre-computed value. More generally, various other parameters measur-
ing the performance of randomized algorithms can be provided tight guarantees
via such an analysis.

In a sense, the subject of concentration of measure lies at the core of modern
probability theory as embodied in the laws of large numbers, the Central Limit
Theorem and, in particular, the theory of Large Deviations

denH00
[15]. However, these

results are asymptotic – they refer to the limit as the number of variables n, goes
to infinity, for example. In the analysis of algorithms, we typically require quan-
titative estimates that are valid for finite (though large) values of n. The earliest
such results can be traced back to the work of Azuma, Chernoff and Hoeffding
in the 1950s. Subsequently there have been steady advances, particularly in the
classical setting of martingales. In the last couple of decades, these methods have
taken on renewed interest driven by applications in algorithms and optimization.
Also several new techniques have been developed.

Unfortunately, much of this material is scattered in the literature, and also rather
forbidding for someone entering the field from a Computer Science/Algorithms
background. Often this is because the methods are couched in the technical
language of analysis and/or measure theory. While this may be strictly necessary
to develop results in their full generality, it is not needed when the method is
used in computer science applications (where the probability spaces are often

11
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finite and discrete), and indeed may only serve as a distraction or barrier.

Our main goal here is to give an exposition of the basic methods for measure con-
centration in a manner which makes it accessible to the researcher in randomized
algorithms and enables him/her to quickly start putting them to work in his/her
application. Our approach is as follows:

1. Motivate the need for a concentration tool by picking an application in the
form of the analysis of a randomized algorithm or probabilistic combina-
torics.

2. Give only the main outline of the application, suppressing details and iso-
lating the abstraction that relates to the concentration of measure analysis.
The reader can go back to the details of the specific application following
the references or the complementary book used (see below for suggestions).

3. State and prove the results not necessarily in the most general or sharpest
form possible, but rather in the form that is clearest to understand and
convenient as well as sufficient to use for the application at hand.

4. Return to the same example or abstraction several times using different
tools to illustrate their relative strengths and weaknesses and ease of use
– a particular tool works better than another in some situations, worse in
others.

Other significant benefits of our exposition are: we collect and systematize the
results previously scattered in the literature, explain them in a manner accessible
to someone familiar with the type of discrete probability used in the analysis of
algorithms and we relate different approaches to one another

Here is an outline of the book. It falls naturally into two parts. The first part
contains the core “bread-and-butter” methods that we believe belong as an abso-
lutely essential ingredient in the toolkit of a researcher in randomized algorithms
today. Chapter

ch:CH-bound
1 starts with the basic Chernoff–Hoeffding (CH) bound on the

sum of bounded independent random variables. Many simple randomized al-
gorithms can be analysed using this bound and we give some typical examples
in Chapter

ch:CH-appls
3. Since this topic is now covered in other recent books, we give

only a few examples here and refer the reader to these books which can be read
profitably together with this one (see suggestions below). Chapter

ch:karp
2 is a small

interlude on probabilistic recurrences which can often give very quick estimates of
tail probabilities based only on expectations. In Chapter

ch:dep-ch
4, we give four versions

of the CH bound in situations where the random variables are not independent
– this often is the case in the analysis of algorithms and we show examples from
the recent literature where such extensions simplify the analysis considerably.
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The next series of chapters is devoted to a powerful extension of the CH bound
to arbitrary functions of random variables (rather than just the sum) and where
the assumption of independence can be relaxed somewhat. This is achieved
via the concept of a martingale. These methods are by now rightly perceived
as being fundamental in algorithmic applications and have begun to appear in
introductory books such as

MR95
[55], albeit very scantily, and, more thoroughly, in

the more recent
MU05
[?]. Our treatment here is far more comprehensive and nuanced,

while at the same time also very accessible to the beginner. We also offer a host
of relevant examples where the various methods are seen in action. As discussed
below, ours can serve as a companion book for a course based on

MP95
[?] and

MU05
[?] and

the tools developed here can be applied to give a more complete analysis of many
of the examples in these books.

Chapter
ch:mobd
5 gives an introduction to the basic definition and theory of martin-

gales leading to the Azuma inequality. The concept of martingales, as found
in probability textbooks, poses quite a barrier to the Computer Scientist who
is unfamiliar with the language of filters, partitions and measurable sets from
measure theory. The survey by McDiarmid

McD98
[50] is the authoritative reference for

martingale methods, but though directed towards discrete mathematicians inter-
ested in algorithms, is still, we feel, quite a formidable prospect for the entrant
to navigate. Here we give a self-contained introduction to a special case which
is sufficient for all the applications we treat and to those found in all analyses of
algorithms we know of. So we are able to dispense with the measure-theoretic
baggage entirely and keep to very elementary discrete probability. Chapter

ch:mobd-appl
6 is

devoted to an inequality that is especially packaged nicely for applications, the
so called Method of Bounded Differences (MOBD). This form is very easy to ap-
ply and yields surprisingly powerful results in many different settings where the
function to be analyzed is ”smooth” in the sense of satisfying a Lipschitz condi-
tion. Chapter

ch:mobd-appl-2
7 progresses to a stronger version of the inequality, which we have

dubbed the Method of Average Bounded Differences (MOABD) and applies in
situations where the function to be analysed, while not smooth in the worst case
Lipschitz sense, nevertheless satisfies some kind of ”average” smoothness prop-
erty under the given distribution. This version of the method is somewhat more
complicated to apply, but is essential to obtain meaningful results in many algo-
rithms. One of the special features of our exposition is to introduce a very useful
concept in probability called coupling and to show how it can be used to great
advantage in working with the MOABD. In Chapter

ch:mobv
8 , we give another version

of the martingale method we call the Method of Bounded Variances (MOBV)
which can often be used with great efficacy in certain situations.

Chapter
ch:kim-vu-jan-ruc
9 is a short interlude containing an introduction to aome recent spe-

cialized methods that were very successful in analyzing certain key problems in
random graphs.
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We end Part I with Chapter
ch:isoperimetric-1
10, which is an introduction to isoperimetric in-

equalities that are a common setting for results on the concentration of measure.
We show how the MOBD is essentially equivalent to an isoperimetric inequality
and this forms a natural bridge to a more powerful isoperimetric inequality in
the following chapter. It is also an introduction to a method that is to come in
Part II.

Part II of the book contains some more advanced techniques and recent devel-
opments. Here we systematize and make accessible some very useful tools that
appear scattered in the literature and are couched in terms quite unfamiliar to
computer scientists. From this (for a computer scientist) arcane body of work we
distill out what is relevant and useful for algorithmic applications, using many
non-trivial examples showing how these methods can be put to good use.

Chapter
ch:talagrand
11 is an introduction to Talagrand’s isoperimetric theory, a theory de-

veloped in his 1995 epic that proved a major landmark in the subject and led to
the resolution of some outstanding open problems. We give a statement of the
inequality that is simpler, at least conceptually, than the ones usually found in
the literature. Once again, the simpler statement is sufficient for all the known
applications. We defer the proof of the inequality to after the methods in Part
II have been developed. Instead, we focus once again on applications. We high-
light two nicely packaged forms of the inequality that can be put to immediate
use. Two problems whose concentration status was resolved by the Talagrand
inequality are the Traveling Salesman Problem (TSP) and the Increasing subse-
quences problem. We give an exposition of both. We also go back to some of the
algorithms analysed earlier with martingale techniques and reanalyse them with
the new techniques, comparing the results for ease of applicability and strength
of the conclusion.

In Chapter
ch:isoperimetric-2
12, we give an introduction to an approach from information the-

ory via the so-called Transportation Cost inequalities. This approach yields very
elegant proofs of isoperimetric inequalities in Chapter

ch:isoperimetric-1
10. This approach is par-

ticularly useful since it can handle certain controlled dependence between the
variables. Also Kati Marton has shown how it can be adapted to prove inequal-
ities that imply the Talagrand isoperimetric inequality, and we give an account
of this in Chapter

ch:quad-transportation-cost
13. In Chapter

ch:log-sobolev
14, we give an introduction to another ap-

proach from information theory that leads to concentration inequalities – the
so-called Entropy method or Log-Sobolev inequalities. This approach also yields
short proofs of Talagrand’s inequality, and we also revisit the method of bounded
differences in a different light.
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How to use the book

The book is, we hope, a self-contained, comprehensive and quite accessible re-
source for any person with a typical computer science or mathematics background
who is interested in applying concentration of measure methods in the design and
analysis of randomized algorithms.

This book can also be used as a textbook in an advanced course in randomized
algorithms (or related courses) as a supplement and complement with some well
established textbooks. For instance, we recommend using it for a course in

Randomized Algorithms together with the books

• R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge
University Press 1995.

• M. Mitzenmacher and E. Upfal, Probability and Computing , Cam-
bridge University Press, 2005.

Probabilistic Combinatorics together with the classic

• N. Alon and J. Spencer, The Probabilistic Method , Second edition,
John Wiley 2000.

Graph Coloring together with the book

• M. Molloy and B. Reed, Graph Coloring and the Probabilistic Method ,
Springer 2002.

Random Graphs together with the book:

• S. Janson, T. Luczak and A. Rucinski, Random Graphs, Wiley 2000.

Large Deviation Theory together with the book

• F. den Hollander, Large Deviations , Fields Institute Monograph, Amer-
ican Mathematical Society 2000.

Acknowledgements
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Chapter 1

Chernoff–Hoeffding Bounds

[Chernoff–Hoeffding Bounds]ch:CH-bound

1.1 What is “Concentration of Measure”?

The basic idea of concentration of measure is well illustrated by the simplest of
random experiments, and one lying at the fountain–head of probability theory:
coin tossing. If we toss a fair coin once, the result is completely unpredictable
– it can be “heads” or “tails” with equal probability. Now suppose we toss the
same coin a large number of times, say, a thousand times. The outcome is now
sharply predictable! Namely, the number of heads will be “very likely to be around
500”. This apparent paradox, which is nevertheless familiar to everybody, is an
instance of the phenomenon of the concentration of measure – although there are
potentially a large number of possibilities, the ones that are likely to be observed
are concentrated in a very narrow range, hence sharply predictable.

In more sophisticated forms, the phenomenon of the concentration of measure
underlies much of our pysical world. As we know now, the world is made up of
microscopic particles that are governed by probabilistic laws – those of quantum
and statistical physics. The reason that the macroscopic properties determined by
these large ensembles of particles nevertheless appear determinstic when viewed
on our larger scales is precisely the concentration of measure: the observed pos-
sibilities are concentrated into a very narrow range.

Given the obvious importance of the phenomenon, it is no surprise that large
parts of treatises on probability theory are devoted to its study. The various
“Laws of Large Numbers” and the “Central Limit Theorem” are some of the

17
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most central results of modern probability theory.

We would like to use the phenomenon of concentration of measure in the analy-
sis of probabilistic algorithms. In analogy with the physical situation described
above, we would like to use it to argue that the observable behaviour of ran-
domised algorithms is “almost deterministic”. In this way, we can obtain the
satisfaction of deterministic results, while at the same time retaining the benefits
of randomised algorithms, namely their simplicity and efficiency.

In slightly more technical terms, the basic problem we want to study in this
monograph is this: given a random variable X with mean E[X], what is the
probability that X deviates far from its expectation? Furthermore, we would
like to understand under what conditions the random variable X stays almost
constant or, put in a different way, large deviation from the the mean are highly
unlikely. This is the case for the familiar example of repeated coin tosses, but, as
we shall see, it is a more general phenomenon.

There are several reasons that the results from probability theory are somewhat
inadequate or inappropriate for studying these questions.

• First and foremost, the results in probability theory are asymptotic limit
laws applying in the infinite limit. We are interested in laws that apply in
finitary cases.

• The probability theory results are often qualitative: they ensure conver-
gence in the limit, but do not consider the rate of convergence. We are
interested in quantitative laws that determine the rate of convergence, or
at least good bounds on it.

• The laws of probability theory are classically stated under the assumption
of independence. This is a very natural and reasonable assumption in prob-
ability theory, and it greatly simplifies the statement and proofs of the
results. However, in the analysis of randomised algorithms, whose outcome
is the result of a complicated interaction of various processes, independence
is the exception rather than the rule. Hence, we are interested in laws
that are valid even without independence, or when certain known types of
dependence obtain.

We shall now embark on a development of various tools and techniques that meet
these criteria.
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1.2 The Binomial Distribution

Let us start with an analysis of the simple motivating example of coin tossing. The
number of “heads” or successes in repeated tosses of a fair coin is a very important
distribution because it models a very basic paradigm of the probabilistic method,
namely to repeat experiments to boost the confidence.

Let us analyse the slightly more general case of the number of “heads” in n trials
with a coin of bias p, with 0 ≤ p ≤ 1 i.e. Pr[Heads] = p and Pr[Tails] =
1−p. This is a random variable B(n, p) whose distribution is called the Binomial
distribution with parameters n and p:

Pr[B(n, p) = i] =

(

n

i

)

piqn−i, 0 ≤ i ≤ n. (1.1) eq:binomial

The general problem defined in the previous section here becomes the following:
In the binomial case the expectation is E[B(n, p)] = np, we would like to get a
bound on the probability that the variable does not deviate too far from this
expected value. Are such large deviations unlikely for B(n, p)? A direct compu-
tation of the probabilites Pr[B(n, p) ≥ k] =

∑

i≥k

(

n
i

)

piqn−i is far too unwieldy.
However, see Problem

prob:chvatalbin
1.8 for a neat trick that yields a good bound. We shall now

introduce a general method that successfully solves our problem and is versatile
enough to apply to many other problems that we shall encounter.

1.3 The Chernoff Bound
sec:chernoff

The random variable B(n, p) can be written as a sum X :=
∑

i∈[n]Xi, by intro-

ducing the indicator random variables Xi, i ∈ [n] define by

Xi :=

{

1 if the ith trial is a success,

0 otherwise.

The basic Chernoff technique we are going to develop now applies in many situ-
ations where such a decomposition as a sum is possible.

The trick is to consider the so–called moment–generating function of X, defined
as E[eλX ] where λ > 0 is a parameter. By formal expansion of the Taylor series,
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we see that

E[eλX ] = E[
∑

i≥0

λi

i!
X i]

=
∑

i≥0

λi

i!
E[X i].

This explains the name as the function E[eλX ] is the exponential generating func-
tion of all the moments of X – it “packs” all the information about the moments
of X into one function.

Now, for any λ > 0, we have

Pr[X > m] = Pr[eλX > eλm]

≤ E[eλX ]

eλm
. (1.2) eq:chernofftechnique

The last step follows by Markov’s inequality : for any non–negative random vari-
able X, Pr[X > a] ≤ E[X]/a.

Let us compute the moment generating function for our example:

E[eλX ] = E[eλ
P

i Xi ]

= E[
∏

i

eλXi ]

=
∏

i

E[eλXi ], by independence

= (peλ + q)n (1.3) eq:mgf

Substituting this back into (
eq:chernofftechnique
1.2), and using the parametrisation m := (p + t)n

which will lead to a convenient statement of the bound, we get:

Pr[X > m] ≤
(

peλ + q

eλ(p+t)

)n

.

We can now pick λ > 0 to minimise the value between the paranthesis and by a
simple application of Calculus, we arrive at the basic Chernoff bound:

Pr[X > (p+ t)n] ≤
(

(

p

p+ t

)p+t(
q

q − t

)q−t
)n

= exp

(

−(p+ t) ln
p+ t

p
− (q − t) ln

q − t

q

)n

. (1.4) eq:chernoffent
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What shall we make of this mess? Certainly, this is not the most convenient form
of the bound for use in applications! In § sec:usefulforms

1.6 we shall derive much simpler and
more intellegible formulae that can be used in applications. For now we shall
pause a while and take a short detour to make some remarks on (

eq:chernoffent
1.4). This is

for several reasons: First, it is the strongest form of the bound. Second, and
more importantly, this same bound appears in many other situations. This is no
accident for it is a very natural and insightful bound – when properly viewed!
For this, we need a certain concept from Information Theory.

Given two (discrete) probability distributions p := (p1, . . . , pn) and q := (q1, . . . , qn)
on a space of cardinality n, the relative entropy distance between them, H(p, q)
is defined by 1:

H(p, q) :=
∑

i

−pi log
pi

qi
.

The expression multiplying n in the exponent in (
eq:chernoffent
1.4) is exactly the relative

entropy distance of the distribution p+t, q−t from the distribution p, q on the two
point space {1, 0}. So (

eq:chernoffent
1.4) seen from the statistician’s eye says: the probability

of getting the “observed” distribution {p+t, q−t} when the a priori or hypothesis
distribution is {p, q} falls exponentially in n times the relative entropy distance
between the two distributions.

By considering −X, we get the same bound symmetrically for Pr[X < (p− t)n].

1.4 Heterogeneous Variables

As a first example of the versatility of the Chernoff technique, let us consider the
situation where the trials are heterogeneous: probabilities of success at different
trials need not be the same. In this case, Chvatal’s proof in Problem

prob:chvatalbin
1.8 is

inapplicable, but the Chernoff method works with a simple modification. Let pi

be the probability of success at the ith trial. Then we can repeat the calculation
of the moment–generating function E[eλX ] exactly as in (

eq:mgf
1.3) except for the last

line to get:

E[eλX ] =
∏

i

(pie
λ + qi). (1.5) eq:heter

Recall that the arithmetic–geometric mean inequality states that

1

n

n
∑

i=1

ai ≤
(

n
∏

i=1

ai

)1/n

1Note that when q is the uniform distribution, this is just the usual entropy of the distri-
bution p up to an additive term of log n.
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for all ai ≤ 0. Now employing the arithmetic–geometric mean inequality, we get:

E[eλX ] =
∏

i

(pie
λ + qi)

≤
(∑

i(pie
λ + qi)

n

)n

= (peλ + q)n,

where p :=
P

i pi

n
, and q := 1 − p. This is the same as (

eq:mgf
1.3) with p taken as the

arithmetic mean of the pis. The rest of the proof is as before and we conclude
that the basic Chernoff bound (

eq:chernoffent
1.4) holds.

1.5 The Hoeffding Extension

A further extension by the same basic technique is possible to heterogeneous
variables that need not even be discrete. Let X :=

∑

iXi where each Xi, i ∈ [n]
takes values in [0, 1] and has mean pi. To calculate the moment generating
function eλX , we need, as before, to compute each individual eλXi . This is no
longer as simple as it was with the case where Xi took only two values.

However, the following convexity argument gives a simple upper bound. The
graph of the function eλx is convex and hence, in the interval [0, 1], lies always
below the straight line joining the endpoints (0, 1) and (1, eλ). This line has the
equation y = αx+ β where β = 1 and α = eλ − 1. Thus

E[eλXi ] ≤ E[αXi + β]

= pie
λ + qi.

Thus we have

E[eλX ] ≤
∏

i

E[eλXi ] =≤
∏

i

(pie
λ + qi),

which is the same bound as in (
eq:heter
1.5) and the rest of the proof is concluded asIt would be

useful to write
the final bound

before.

1.6 Useful Forms of the Bound
sec:usefulforms

The following forms of the Chernoff–Hoeffding bound are most useful in applica-
tions (see also Problem

prob:mrch
1.12).
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th:useful-forms Theorem 1.1 Let X :=
∑

i∈[n]Xi where Xi, i ∈ [n] are independently distributed

in [0, 1]. Then

• For all t > 0,

Pr[X > E[X] + t], Pr[X < E[X] − t] ≤ e−2t2/n. (1.6) eq:absbound

• For 0 < ǫ < 1,

Pr[X > (1+ǫ)E[X]] ≤ exp

(

−ǫ
2

3
E[X]

)

, Pr[X < (1−ǫ)E[X]] ≤ exp

(

−ǫ
2

2
E[X]

)

.

(1.7) eq:relbound

• If t > 2eE[X], then
Pr[X > t] ≤ 2−t. (1.8) eq:2ebound

Proof. We shall manipulate the bound in (
eq:chernoffent
1.4). Set

f(t) := (p+ t) ln
p+ t

p
+ (q − t) ln

q − t

q
.

We successively compute

f ′(t) = ln
p+ t

p
− ln

q − t

q
,

and

f ′′(t) =
1

(p+ t)(q − t)
.

Now, f(0) = 0 = f ′(0) and furthermore f ′′(t) ≥ 4 for all 0 ≤ t ≤ q because xy ≤ 1
4

for any two non–negative reals summing to 1. Hence by Taylor’s Theorem with
remainder,

f(t) = f(0) + f ′(0)t+ f ′′(ξ)
t2

2!
, 0 < ξ < t

≥ 2t2.

This gives, after simple manipulations, the bound (
eq:absbound
1.6).

Now consider g(x) := f(px). Then g′(x) = pf ′(px) and g′′(x) = p2f ′′(px). Thus,

g(0) = 0 = g′(0) and g′′(x) = p2

(p+px)(q−px)
≥ p

1+x
≥ 2p

3x
. Now by Taylor’s theorem,

g(x) ≥ px2/3. This gives the upper tail in (
eq:relbound
1.7).

For the lower tail in (
eq:relbound
1.7), set h(x) := g(−x). Then h′(x) = −g′(−x) and

h′′(x) = g′′(−x). Thus h(0) = 0 = h′(0) and h′′(x) = p2

(p−px)(q+px)
≥ p. Thus by

Taylor’s theorem, h(x) ≥ px2/2 and this gives the result.
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For the (
eq:2ebound
1.8), see Problem

prob:mrch
1.12

Often we would like to apply the bopunds above to a sum
∑

iXi where we do not
know the exact values of the expectations E[Xi] but only upper or lower bounds
on it. In such situations, one can neverthelesss apply the CH bounds with the
known bounds instead as you should verify in the following exercise.

ex:ch-withBounds Exercise 1.2 Suppose X :=
∑n

i=1Xi as in Theorem
th:useful-forms
1.1 above, and suppose

µL ≤ µ ≤ µH . Show that

(a) For any t > 0,

Pr[X > µH + t], Pr[X < µL − t] ≤ e−2t2/n.

(b) For 0 < ǫ < 1,

Pr[X > (1+ǫ)µH ] ≤ exp

(

−ǫ
2

3
µH

)

, Pr[X < (1−ǫ)µL] ≤ exp

(

−ǫ
2

2
µL

)

.

You may need to use the following useful and intuitively obvious fact that wesay which
chapter will prove in a later chapter. Let X1, · · · , Xn be independent random variables

distributed in [0, 1] with E[Xi] = pi for each i ∈ [n]. Let Y1, · · · , Yn and Z1, · · · , Zn

be independent random variables with E[Yi] = qi and E[Zi] = ri for each i ∈ [n].
Now suppose qi ≤ pi ≤ ri for each i ∈ [n]. Then, if X :=

∑

iXi, Y :=
∑

i Yi and
Z :=

∑

i Zi, for any t,

Pr[X > t] ≤ Pr[Z > t], and Pr[X < t] ≤ Pr[Y < t].

1.7 A Variance Bound
sec:chVariance

Finally, we shall give an application of the basic Chernoff technique to develop a
form of the bound in terms of the varainces of the individual summands, a form
that can be considerably sharper than those derived above, and one which will
be especially useful for applications we will encounter in later chapters.

Let us return to the basic Chernoff technique with X := X1 + · · · + Xn and
Xi ∈ [0, 1] for each i ∈ [n]. Set µi := E[Xi] and µ := E[X] =

∑

i µi. Then

Pr[X > µ+ t] = Pr[
∑

i

(Xi − µi) > t]

= Pr[eλ
P

i(Xi−µi) > eλt]

≤ E[eλ
P

i(Xi−µi)]/eλt,
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for each λ > 0. The last line follows again from Markov’s inequality.

We shall now use the simple inequalities that ex ≤ 1 + x + x2 for 0 < |x| < 1,
and ex ≥ 1 + x. Now, if λmax(µi, 1 − µi) < 1 for each i ∈ [n], we have,

E[eλ
P

i(Xi−µi)] =
∏

i

E[eλ(Xi−µi)]

≤
∏

i

E[1 + λ(Xi − µi) + λ2(Xi − µi)
2]

=
∏

i

(1 + λ2σ2
i )

≤
∏

i

eλ2σ2
i

= eλ2σ2

,

where σ2
i is the variance of Xi for each i ∈ [n] and σ2 is the variance of X. Thus,

Pr[X > µ+ t] ≤ eλ2σ2

/eλt,

for λ satisfying λmax(µi, 1 − µi) < 1 for each i ∈ [n]. By calculus, take λ := t
2σ2

and we get the bound:

Pr[X > µ+ t] ≤ exp

(−t2
4σ2

)

,

for t < 2σ2/maxi max(µi, 1 − µi).

Exercise 1.3 Check that for random variables distributed in [0, 1], this is of the
same form as the CH bound derived in the previous section upto constant fac-
tors in the exponent. You may need to use the fact that for a random variable
distributed in the interval [a, b], the variance is bounded by (b− a)2/4.

The following bound is often referred to as Bernstein’s inequality:

bernstein Theorem 1.4 (Bernstein’s inequality) Let the random variables X1, · · · , Xn

be independent with Xi − E[Xi] ≤ b for ach i ∈ [n]. Let X :=
∑

iXi and let
σ2 :=

∑

i σ
2
i be the variance of X. Then, for any t > 0,

Pr[X > E[X] + t] ≤ exp

(

− t2

2σ2(1 + bt/3σ2)

)

.

Exercise 1.5 Check that for random variables in [0, 1] and t < 2σ2/b, this is
roughly the same order bound as we derived above.
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In typical applications, the ”error” term bt/3σ2 will be negligible. Suppose the
random variables X1, · · · , Xn have the same bounded distribution with positive

variance c2, so σ2 = nc2. Then for t = o(n), this bound is exp
(

−(1 + o(1)) t2

2σ2

)

which is consistent with the Central Limit Theorem assertion that in the asymp-
totic limit, X − E[X] is normal with mean 0 and variance σ2.

Exercise 1.6 Let X :=
∑

iXi where the Xi, i ∈ [n] are i.i.d with Pr[Xi = 1] = p
for each i ∈ [n] for some p ∈ [0, 1]. Compute the variance of X and apply and
compare the two bounds above as well as the basic CH bound. Check that when
p = 1/2, all these bounds are roughly the same.
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prob:swr
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Chva79
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1.9 Problems

prob:sr Problem 1.7 A set of n balls is drawn by sampling with replacement from an
urn containing N balls, M of which are red. Give a sharp concentration result
for the number of red balls in the sample drawn. ▽

prob:chvatalbin Problem 1.8 In this problem, we outline a simple proof of the Chernoff bound
due to V. Chvátal.
(a) Argue that for all x ≥ 1, we have

Pr[B(n, p) ≥ k] ≤
∑

i≥0

(

n

i

)

piqn−ixi−k.

(b) Now use the Binomial Theorem and thereafter Calculus to optimise the value
of x. ▽

Problem 1.9 [Hypergeometric Distribution] A set of n balls is drawn by sam-prob:swr
pling without replacement from an urn containing N balls, M of which are red.
The random variable H(N,M, n) of the number of red balls drawn is said to have
the hypergeometric distribution.
(a) What is E[H(N,M, n)]?
(b) Can you apply CH bounds to give a sharp concentration result forH(N,M, n)?
Now we outline a direct proof due to V. Chvátal for the tail of the hypergeometric
distribution along the lines of the previous problem.
(c) Show that

Pr[H(N,M, n) = k] =

(

M

k

)(

N −M

n− k

)(

N

n

)−1

.

(d) Show that
(

N

n

)−1
∑

i≥j

(

M

i

)(

N −M

n− i

)(

i

j

)

≤
(

n

j

)(

M

N

)j

.

(e) Use the previous part to show that for every x ≥ 1,

∑

i≥0

(

M

i

)(

N −M

n− i

)(

N

n

)−1

xi ≤ (1 + (x− 1)M/N)n .

(f) Combine parts (c) through (e) and optimise the value of x to derive the same
relative entropy bound (

eq:chernoffent
1.4):

Pr[H(N,M, n) ≥ (p+ t)n] ≤
(

(

p

p + t

)p+t(
q

q − t

)q−t
)n

,

where p := M/N and q := 1 − p. ▽
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Problem 1.10 Show that for 0 < α ≤ 1/2,

∑

0≤k≤αn

(

n

k

)

≤ 2H(α)n,

where H(α) := −α logα− (1 − α) log(1 − α) is the binary entropy function. ▽

Problem 1.11 [Weierstrass Approximation Theorem] Prove: For every con-
tinuous function f : [0, 1] → R and every ǫ > 0, there is a polynomial p
such that |f(x) − p(x)| < ǫ for every x ∈ [0, 1]. (Hint: Consider pn(x) :=
∑

0≤i≤n

(

n
i

)

xi(1 − x)n−if(i/n).) ▽

prob:mrch Problem 1.12 Repeat the basic proof structure of the CH bounds to derive the
following bound: if X1, . . . , Xn are independent 0/1 variables (not necessarily
identical), and X :=

∑

iXi, then for any ǫ > 0,

Pr [X ≥ (1 + ǫ)E[X]] ≤
(

eǫ

(1 + ǫ)(1+ǫ)

)

E[X]

.

(a) Compare this bound to the one obtained by setting t := ǫE[X]/n in the
relative entropy bound derived in (

eq:chernoffent
1.4).

(b) Argue further that the right side is bounded by ( e
1+ǫ

)(1+ǫ)E[X] and hence infer
that if ǫ > 2e− 1, then

Pr [X ≥ (1 + ǫ)E[X]] ≤ 2−(1+ǫ)E[X].

▽

prob:ch-cond Problem 1.13 Let X1, · · · , Xn be random variables bounded in [0, 1] such that
for each i ∈ [n],

E[Xi | X1, · · · , Xi−1] ≤ pi.

Show that in this case, the upper tail for
∑

iXi can be upper bounded by
the upper-tail CH-estiamte for an independent set of variables X ′

1, · · · , X ′
n with

E[X ′
i] = pi. Formulate and prove a symmetric condition for the lower tail. ▽

begin new

ch:lc Problem 1.14 Let X1, . . . , Xn be a set of binary random variables satisfying
the condition

Pr

[

∧

i∈S

Xi = 1

]

≤
∏

i∈S

Pr [Xi = 1]

for all subsets S. Prove that under this condition the Chernoff bound holds for
X =

∑

iXi. ▽
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prob:genrange Problem 1.15 In this problem, we explore a further extension of the CH bounds,
namely to variables that are bounded in some arbitrary intervals, not necessarily
[0, 1]. Let X1, . . . , Xn be independent variables such that for each i ∈ [n], Xi ∈
[ai, bi] for some reals ai, bi.
(a) Suppose ai = a and bi = b for each i ∈ [n]. Derive a bound by rescaling the
Hoeffding bound for [0, 1].
(b) Does the rescaling work for non–identical intervals?
(c) Derive the following general bound for non–identical intervals by repeating
the basic proof technique:

Pr[|X − E[X]| ≥ t] ≤ 2 exp

( −2t2
∑

i(bi − ai)2

)

.

▽

Problem 1.16 [Sums of Exponential Variables] Let Z := Z1 + · · · + Zn where
Zi, i ∈ [n] are independent and identically distributed with the exponential
distribution with parameter α ∈ (0, 1). The probability density function for
this distribution is

f(x) = αe−αx,

and the corresponding cumulative distribution function is

F (x) =

∫ x

0

f(t)dt = 1 − e−αx.

Give a sharp concentration result for the upper tail of Z. ▽

Solution. Note that for each i ∈ [n],

E[Zi] =

∫ ∞

0

xf(x)dx = α

∫ ∞

0

xe−αxdx =
1

α
.

Hence
E[Z] =

∑

i

E[Zi] =
n

α
.

We cannot apply the Chernoff–Hoeffding bounds directly to Z since the sum-
mands are not bounded. One solution is to use the method of truncation. Let
Z ′

i, i ∈ [n] be defined by

Z ′
i := min(Zi, n

β), i ∈ [n],

for some 0 < β < 1 to be chosen later. Let Z ′ :=
∑

i Z
′
i. Observe first that

E[Z ′] ≤ E[Z]. Second, that since for each i ∈ [n], Pr[Zi > nβ] ≤ 1−F (nβ) = e−nβ
,

Pr[
∧

i

Zi = Z ′
i] ≥ 1 − ne−nβ

.
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Finally, since the summands Z ′
i are bounded (0 ≤ Z ′

i ≤ nβ , for each i ∈ [n]), one
can apply the Chernoff–Hoeffding bounds from Problem

prob:genrange
1.15. Hence,

Pr[Z > E[Z] + t] ≤ Pr[Z ′ > E[Z] + t] + ne−nβ

≤ Pr[Z ′ > E[Z ′] + t] + ne−nβ

≤ exp

( −t2
n1+2β

)

+ ne−nβ

.

For t := ǫE[Z] = ǫn
α
, this gives

Pr[Z > (1 + ǫ)E[Z]] ≤ exp

(−ǫ2n1−2β

α2

)

+ ne−nβ

.

To (approximately) optimise this, choose β = 1
3
. Then,

Pr[Z > (1 + ǫ)E[Z]] ≤ exp

(−ǫ2n1/3

α2

)

+ ne−n1/3

.

Another approach is to apply the Chernoff technique directly. Compute the
moment generating function

E[eλZi ] = α

∫ ∞

0

eλxe−αxdx =
α

α− λ
,

for ) < λ < α. Thus

E[eλZ ] =

(

α

α− λ

)n

=

(

1

1 − λ
α

)n

Hence,

Pr[Z > t] ≤ E[eλZ ]

eλt

=
1

eλt
(

1 − λ
α

)n .

Using Calculus,we find the optimal value of λ to be λ∗ := α− n
t

and substituting
this gives the bound:

Pr[Z > t] ≤
(

αt

n

)n

e−αt+n.

With t := (1 + ǫ)E[Z], this gives

Pr[Z > (1 + ǫ)E[Z]] ≤
(

eǫ

1 + ǫ

)−n

.

This is a much better bound than that achieved by truncation. △
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prob:sumofZsq Problem 1.17 Give a sharp concentration bound on the upper tail of Z2
1 + . . .+

Z2
n where Zi, i ∈ [n] are i.i.d. variables with the exponential distribution as in

the previous problem. ▽

Solution. For each i ∈ [n], note that

E[Z2
i ] = α

∫ ∞

0

x2e−αxdx =
2

α2
,

and hence

E[Z2
1 + · · ·+ Z2

n] =
2n

α2
.

Denote this by µ.

Apply the method of truncation as in the previous problem. With the same
notation as in the previous problem,

Pr[Z2
1 + · · ·+ Z2

n > µ+ t] ≤ Pr[Z2
1 + · · ·+ Z2

n > µ+ t] ≤ exp

( −t2
n1+2β

)

+ ne−nβ

.

With t := ǫµ, this gives,

Pr[Z2
1 + · · ·+ Z2

n > (1 + ǫ)µ] ≤ exp
(

−4(
ǫ

α
)2n1−2β

)

+ ne−nβ

.

Pick β := 1
3

to approximately optimise this. △

prob:dice Problem 1.18 Suppose a fair die is tossed n times and let X be the total sum
of all the throws.
(a) Compute E[X].
(b) Give a sharp concentration estimate on X by applying the result of the
previous problem.
(c) Can you improve this by deriving the bound from scratch using the basic
technique? ▽

prob:maj Problem 1.19 In this problem, we shall explore the following question: How
does the concentration bound on non–identically distributed variables depend on
the individual probabilities p1, . . . , pn? Abbreviate (p1, . . . , pn) by p. Let B(n,p)
denote the sumber of successes in n independent trials where the probability of
success at the ith trial is pi. Let

L(c,p) := Pr[B(n,p) ≤ c], U(c,p) := Pr[B(n,p) ≥ c].
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Fix some λ > 0. We shall explore how L and U are related for different p in the
region

D(λ) := {p | 0 ≤ p ≤ 1,
∑

i

pi = λ}.

Let
p∗(λ) := n−1(λ, . . . , λ), p̂(λ) := (1, . . . , 1, λ− [λ], 0, . . . , 0).

The first corresponds to the identical uniform case and the second (with [λ] ones
and n− [λ]− 1 zeroes) to the other extreme. Note that both p∗(λ), p̂(λ) ∈ D(λ).
(a) Show that for any p ∈ D(λ),

L(c, p̂) ≤ L(c,p) ≤ L(c,p∗) if 0 ≤ c ≤ ⌊λ− 2⌋,

and
U(c,p) ≤ U(c,p∗) ≤ U(c, p̂) if ⌊λ + 2⌋ ≤ c ≤ n.

(b) More generally, let p,p′ ∈ Dλ be such that there is a doubly stochastic matrix
Π with p′ = pΠ. Equivalently, if

pσ(1) ≥ pσ(2) ≥ . . . ≥ pσ(n), p′σ′(1) ≥ p′σ′(2) ≥ . . . ≥ p′σ′(n),

then for each 1 ≤ k ≤ n,
∑

i≤k

pσ(i) ≥
∑

i≤k

p′σ′(i).

The vector p is said to majorise the vector p′. Show that

L(c,p) ≤ L(c,p′) if 0 ≤ c ≤ ⌊λ− 2⌋,

and
U(c,p) ≤ U(c,p′) if ⌊λ+ 2⌋ ≤ c ≤ n.

Verify that this generalises part (a). ▽
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Chapter 2

Interlude: Probabilistic
Recurrences

ch:karp

Karp
Karp94
[33] developed an attractive framework for the analysis of randomized al-

gorithms. Suppose we have a randomized algorithm that on input x, performs
“work” a(x) and then produces a subproblem of size H(x) which is then solved
by recursion. One can analyze the performance of the algorithm by writing down
a “recurrence”:

T (x) = a(x) + T (H(x)). (2.1) eq:rec1

Superficially this looks just the same as the usual analysis of algorithms via
recurrence relations. However, the crucial difference is that in contrast with
deterministic algorithms, the size of the subproblem produced here, H(x) is a
random variable, and so (

eq:rec1
2.1) is a probabilistic recurrence equation.

What does one mean by the solution of such a probabilistic recurrence? The
solution T (x) is itself a random variable and we would like as much information
about its distribution as possible. While a complete description of the exact
distribution is usually neither possible nor really necessary, the “correct” useful
analogue to the deterministic solution is a concentration of measure result for
T (x). Of course, to do this, one needs some information on the distribution of the
subproblem H(x) generated by the algorithm. Karp gives a very easy–to–apply
framework that requires only the bare minimum of information on the distribution
of H(x), namely (a bound on) the expectation, and yields a concentration result
for T (x). Suppose that in (

eq:rec1
2.1), we have E[H(x)] ≤ m(x) for some function 0 ≤

m(x) ≤ x. Consider the “deterministic” version of (
eq:rec1
2.1) obtained by replacing

the random variable H(x) by the deterministic bound m(x):

u(x) = a(x) + u(m(x)). (2.2)

33
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The solution to this equation is u(x) =
∑

i≥0 a(m
i(x)), where m0(x) := 0 and

mi+1(x) = m(mi(x)). Karp gives a concentration result around this value u(x):

Theorem 2.1 (Karp’s First Theorem) Suppose that in (
eq:rec1
2.1), we have E[H(x)] ≤

m(x) for some function 0 ≤ m(x) ≤ x and such that a(x), m(x), m(x)
x

are all non–
decreasing. Then

Pr[T (x) > u(x) + ta(x)] ≤
(

m(x)

x

)t

.

Krpthm1

We have stated the result in the simplest memorable form that captures the
essence and is essentially correct. However, technically the statement of the
theorem above is actually not quite accurate and we have omitted some continuity
conditions on the functions involved. These conditions usually hold in all cases
where we’d like to apply the theorem. Moreover, as shown in

DuSh97
[10], some of these

conditions can be discarded at the cost of only slightly weakening the bound. For
instance, we can discard the condition that m(x)

x
is non–decreasing; in that case,

the bound on the right hand side can be essentially replaced by
(

max0≤y≤x
m(y)

y

)t

Also, in the formulation above, we assumed that the distribution of H(x), the
size of the derived subproblem depends only on the input size x. Karp

Karp94
[33] gives

a more general formulation where the subproblem is allowed to depend on the
actual input instance. Suppose we have a “size” function s on inputs, and on
processing an input z, we expend work a(s(z)) and get a subproblem H(z) such
that E[s(H(z))] ≤ m(s(z)). The probabilistic recurrence is now

T (z) = a(s(z)) + T (H(z)).

By considering T ′(x) := maxs(z)=x T (z), one can bound this by a recurrence of
the earlier form and apply the Theorem to give exactly the same solution. Thus
we can apply the Theorem per se even in this more general situation.

We illustrate the ease of applicability of this cook–book style recipe by some
examples (taken from Karp’s paper).

Example 2.2 [Selection] Hoare’s classic algorithm for finding the kth smallest
element in a n–element set S, proceeds as follows: pick a random element r ∈ S
and by comparing each element in S \ r with r, partition S \ r into two subsets
L := {y ∈ S | y < r} and U := {y ∈ S | y > r}. Then,
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• If |L| ≥ k, recursively find the kth smallest element in L.

• If |L| = k − 1, then return r.

• If |L| < k−1, then recursively find the k−1−|L|th smallest element in U .

The partitioning step requires n − 1 comparisons. It can be shown that the
expected size of the subproblem, namely the size of L or U is at most 3n/4, for
all k. Thus Karp’s Theorem can be applied with m(x) = 3x/4. We compute
u(x) ≤ 4x. Thus, if T (n, k) denotes the number of comparisons performed by the
algorithm, we have the following concentration result: for all t ≥ 0,

Pr[T (n, k) > 4n+ t(n− 1)] ≤
(

3

4

)t

.

This bound is nearly tight as showed by the following simple argument. Define a
bad splitter to be one where n

|U | ≥ log logn or n
|L| ≥ log logn. The probability of

this is greater than 2
log log n

. The probability of picking log log n consecutive bad

splitters is Ω( 1

(log n)log log log n ). The work done for log log n consecutive bad splitters

is

n + n

(

1 − 1

log log n

)

+ n

(

1 − 1

log log n

)2

+ . . . n

(

1 − 1

log logn

)log log n

which is Ω(n log logn). Compare this with the previous bound using t = log log n.
▽

Example 2.3 [Luby’s Maximal Independent Set Algorithm] Luby
Luby86
[41] gives a

randomized parallel algorithm for constructing a maximal independent set in a
graph. The algorithm works in stages: at each stage, the current independent
set is augmented and some edges are deleted form the graph. The algorithm
terminates when we arrive at the empty graph. The work performed at each
iteration is equal to the number of edges in the current graph. Luby showed
that at each stage, the expected number of edges deleted is at least one–eighth
of the number of edges in the complete graph. If T (G) is the number of stages
the algorithm runs and T ′(G) is the total amount of work done, then we get the
concentration results:

Pr[T (G) > log8/7 n + t] ≤
(

7

8

)t

,

Pr[T ′(G) > (8 + t)n] ≤
(

7

8

)t

.

▽



DRAFT

36 CHAPTER 2. INTERLUDE: PROBABILISTIC RECURRENCES

Example 2.4 [Tree Contraction] Miller and Reif
MR85
[52] give a randomized tree con-

traction algorithm that starts with a n node tree representing an arithmetic ex-
pression and repeatedly applies a randomized contraction operation that provides
a new tree representing a modified arithmetic expression.The process eventually
reaches a one node tree and terminates. The work performed in the contraction
step can be taken to be proportional to the number of nodes in the tree. Miller
and Reif show that when applied to a tree with n nodes, the contraction step
results in a tree of size at most 4n/5. However the distribution of the size may
depend on the original tree, not just the original size. Define the size function
here to be the number of nodes in the tree in order to apply the more general
framework. Let T (z), T ′(z) denote the number of iterations and the total work
respectively when the contraction algorithm is applied to tree z. Then, Karp’s
Theorem gives the measure concentration results:

Pr[T (z) > log5/4 n+ t] ≤ (4/5)t,

and
Pr[T ′(z) > (5 + t)n] ≤ (4/5)t.

▽

Under the weak assumptions on the distribution of the input, Karp’s First The-
orem is essentially tight. However, if one has additional information on the dis-
tribution of the subproblem, say some higher moments, then one can get sharper
results which will be explored below in § sec:martingales

??.

Karp also gives an extension of the framework for the very useful case when
the algorithm might generate more than one subproblem. Suppose we have an
algorithm that on input x performs work a(x) and then generates a fixed number
k ≥ 1 sub–problems H1(x), . . . , Hk(x) each a random variable. This corresponds
to the probabilistic recurrence:

T (x) = a(x) + T (H1(x)) + · · ·+ T (Hk(x)). (2.3) eq:rec2

To obtain a concentration result in this case, Karp uses a different method which
requires a certain condition:

Theorem 2.5 (Karp’s Second Theorem) Suppose that in (
eq:rec2
2.3), we have that

for all possible values (x1, . . . , xk) of the tuple (H1(x), . . . , Hk(x)), we have

E[T (x)] ≥
∑

i

E[T (xi)]. (2.4) eq:karpcondition

Then, we have the concentration result: for all x and all t > 0,

Pr[T (x) > (t+ 1)E[T (x)]] < e−t.
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The condition (
eq:karpcondition
2.4) says that the expected work in processing any sub–problems

that can result from the original one can never exceed the expected cost of the
processing the original instance. This is a very strong assumption and unfor-
tunately, in many cases of interest, for example in computational geometry, it
does not hold. Consequently the theorem is somewhat severely limited in its
applicability. A rare case in which the condition is satisfied is for

Example 2.6 [Quicksort] Hoare’s Quicksort algorithm is a true classic in Com-
puter Science: to sort a set S of n items, we proceed as in the selection algorithm
from above: select a random element r ∈ S and by comparing it to every other
element, partition S as into the sets L of elements less than x and U , the set of
elements at least as big as r. Then, recursively, sort L and U . Let Q(n) denote
the number of comparisons performed by Quicksort on a set of n elements. Then
Q(n) satisfies the probabilistic recurrence:

T (n) = n− 1 +Q(H1(n)) +Q(H2(n)),

where H1(n) = |L| and H2(n) = |U |. For Quicksort we have “closed-form”
solutions for qn := E[Q(n)]which imply that qn ≥ qi + qn−i−1 + n − 1 for any
0 ≤ i < n, which is just the condition needed to apply Karp’s Second Theorem.
Thus we get the concentration result:

Pr[Q(n) > (t+ 1)qn] ≤ e−t.

Actually one can get a much stronger bound by applying Karp’s First Theorem
suitably! Charge each comparison made in Quicksort to the non–pivot element,
and let T (ℓ) denote the number of comparisons charged to a fixed element when
Quicksort is applied to a list ℓ. Use the natural size function s(ℓ) := |ℓ|, which
gives the number of elements in the list. Then we have the recurrence, T (ℓ) =
1 + T (H(ℓ)), where s(H(ℓ) = |ℓ|/2 since the sublist containing the fixed element
(when it’s not the pivot) has size uniformly distributed in [0, |ℓ|]. So applying
Karp’s First Theorem, we have that for t ≥ 1,

Pr[T (ℓ) > (t+ 1) log |ℓ|] ≤ (1/2)t log |ℓ| = |ℓ|−t.

Thus any fixed element in a list of n elements is charged at most (t + 1) logn
comparisons with probability at least 1− n−t. The total number of comparisons
is therefore at most (t+ 1)n logn with probability at least 1 − nt−1.

This is an inverse polynomial concentration bound. In a later section we shall
get a somewhat stronger and provably optimal bound on the concentration. ▽

It would naturally be of great interest to extend the range of Karp’s Second
Theorem by eliminating the restrictive hypothesis. For instance, it would be of
interest to extend the Theorem under the kind of assumptions in Karp’s First
Theorem.
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Chapter 3

Applications of the
Chernoff-Hoeffding Bounds

ch:CH-appls

In this chapter we present some non-trivial applications of the Chernoff-Hoeffding
bounds arising in the design and analysis of randomised algorithms. The exam-
ples are quite different, a fact that illustrates the usefulness of these bounds.

3.1 Probabilistic Amplification

The following situation is quite common. We have a probabilistic algorithm that,
on input x, computes the correct answer f(x) with probability strictly greater
than 1

2
. For concreteness, let us assume that the success probability is p ≥ 3

4
and

that the algorithm has two possible outcomes, 0 and 1. To boost our confidence
we run the algorithm n times and select the majority answer. What is the
probability that this procedure is correct?

LetX be the number of occurrences of the majority value. Then, E[X] = pn > 3
4
n.

The majority answer is wrong if and only if X < n
2
. Note that here we do not

know the exact value of E[X], but only an upper bound. In our case we have n
independent trials Xi, each of which succeeds with probability p ≥ 3

4
. Using the

fact noted in Exercise
ex:ch-withBounds
1.2, one can apply the CH bound directly. Recalling (

eq:absbound
1.6),

if we set t := n
4
, we have that

Pr
[

X <
n

2

]

≤ e−n/8.

The reader can check that (
eq:relbound
1.7) yields worse estimates. Problem

p1
3.4 asks to

generalize this to the case when the algorithm takes values in an infinite set.

39
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3.2 Load Balancing

Suppose we have a system in which m jobs arrive in a stream and need to be
processed immediately on one of a collection of n identical processors. We would
like to assign the jobs to the processors in a manner that balances the workload
evenly. Furthermore, we are in a typical distributed setting where centralized
coordination and control is impossible. A natural “light-weight” solution in such
a situation is to assign each incoming job to a processor chosen uniformly at
random, indepndently of other jobs. We analyse how well this scheme performs.

Focus on a particular processor. let Xi, i ∈ [m] be th eindicator variable for
whether job number i is assigned to this processor. The total load of the processor
is then X :=

∑

iXi. Note that Pr[Xi = 1] = 1/n bacuse each job is assigned to
a processor chosen uniformly at random. Also, X1, · · ·Xm are independent.

First let us consider the case when the m = 6n lnn. Then E[X] =
∑

i E[Xi] =
m/n = 6 lnn. Applying (

eq:relbound
1.7), we see that the probability of the processor’s load

exceeding 12 lnn is at most

Pr[X > 12 lnn] ≤ e−2 ln n ≤ 1/n2.

Applying the union bound, we see that the load of no processor exceeds 6 lnn
with probability at least 1 − 1/n.

Next, let us consider the case when m = n. In this case, E[X] = 1. Applying
(
eq:2ebound
1.8), we see that

Pr[X > 2 logn] ≤ 2−2 log n ≤ 1/n2.

Applying the union bound, we see that the load of no processor exceeds 2 logn
with probability at least 1 − 1/n.

However, in this case, we can tighten the analysis using the bound in (
prob:mrch
1.12):

Pr [X ≥ (1 + ǫ)E[X]] ≤
(

eǫ

(1 + ǫ)(1+ǫ)

)

E[X]

.

Set (1 + ǫ) := c, then

Pr[X > c] <
ec−1

cc
(3.1) eq:c-inter

To pick the appropriate c to use here, we focus on the function xx. What is
the solution to xx = n? Let γ(n) denote this number. There is no closed form
expression for γ(n) but one can approximate it well. If xx = n, taking logs gives
x log x = log n, and taking logs once more gives log x+log log x = log log n. Thus,

2 log x > log x+ log log x = log logn >> 766 logx.
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Using this to divide throughout the equation xlogx = logn gives

1

2
x ≤ logn

log log n
≤ x = γ(n).

Thus γ(n) = Θ( log n
log log n

).

Setting c := eγ(n) in (
eq:c-inter
3.1), we have:

Pr[X > c] <
ec−1

cc
<
(e

c

)c

=

(

1

γ(n)

)eγ(n)

<

(

1

γ(n)

)2γ(n)

= 1/n2.

Thus the load of any one processor does not exceed eγ(n) = Θ(logn/ log log n)
with probability at least 1− 1/n2. Applying the Union bound, we conclude that
with probability at least 1 − 1/n, the load of no processor exceeds this value. It
can be shown that this analysis is tight – with high probability some processor
does receive Θ(logn/ log log n) jobs.

3.3 Data Structures: Skip Lists

The second example concerns the design and analysis of data structures. We
shall discuss a useful data structure known as Skip List.

3.3.1 Skip Lists: The Data Structure

We want to devise a data structure that efficiently supports the operations of
inserting, deleting and searching for an element. Elements are drawn from a
totally ordered universe X of size n, which can be assumed to be a finite set of
natural numbers. The basic idea is as follows. Order the elements and arrange
them in a linked list. We call this the 0th level and denote it by L0. It is convenient
to assume that the list starts with the element −∞. With this convention

L0 = −∞ → x1 → x2 → . . .→ xn.

We now form a new linked list L1 by selecting every second element from L0 and
putting −∞ in front.

L1 = −∞ → x2 → x4 → . . .→ xm.

Identical elements in the two lists are joined by double pointers, including −∞’s.
Continuing in this fashion we obtain a structure with O(logn) levels like the
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Figure 0.1: A skip list for 16 elements. Boxes store −∞’s, circles store the data. fig:example

one in Figure
fig:example
0.1. This structure resembles a binary tree and likewise allows for

efficient searches. To search for an element y we start from the top list Lt and
determine the largest element of Lt which is smaller than or equal to y. Denote
such element by et. Then we go down one level, position ourselves on the copy
of et and look for the largest element of Lt−1 smaller than or equal to y. To do
so we only need to scan Lt−1 to the right of et. Continuing in this fashion we
generate a sequence et, et−1, . . . , e0 where e0 is the largest element in X smaller
than or equal to y. Clearly, y is present in the data structure if and only if e0 = y.
Although an element could be encountered before reaching L0, we assume that
the search continues all the way down. This makes sense in applications for
which the elements are keys pointing to records. In such cases one might not
want to copy a whole record at higher levels. This convention also simplifies the
probabilistic analysis to follow.

When performing a search we traverse the data structure in a zig-zag fashion,
making only downturns and left turns (see Figure

fig:zigZag
0.2). The cost of the traversal

is proportional to the sum of the height and the width of this path, both of which
are O(logn). The width is O(logn) because each time we go down one level
we roughly halve the search space. Searches are inexpensive as long as the data
structure stays balanced. The problem is that insertions and removals can destroy
the symmetry, making maintenance both cumbersome and expensive. By using
randomization we can retain the advantages of the data structure while keeping
the cost of reorganizations low.

3.3.2 Skip Lists: Randomization makes it easy

As before, L0 is an ordered list of all the elements. Subsequent levels are built
according to the following probabilistic rule: Given that an element x appears in
level i, it is chosen to appear in level i + 1 with probability p, independently of
the other elements. Thus, the highest level that an element appears in obeys a
geometric distribution with parameter p. If we denote by Hi the highest level to
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Figure 0.2: A zig-zag path through the data structure generated by a search. fig:zigZag

which xi belongs, then
Pr[Hi = k] = pk(1 − p). (3.2) eq:geom

Hi is called the height of xi. The data structure is organized as before, with each
level being an ordered list of elements starting with −∞, and with copies of the
same element at different levels arranged in a doubly linked list. Such a data
structure is called a skip list.

A search is implemented as before. To insert an element x we do as follows. First,
we search for x. This generates the sequence et, et−1, . . . , e0. Second, we insert x
in L0 between e0 and its successor. Then we flip a coin; if the outcome is Tail we
stop, otherwise we insert x in L1 between et−1 and its successor. And so on, until
the first Tail occurs. Although we could stop when the last level is reached, we
do not do so because this would slightly complicated the probabilistic analysis.

To remove an element x, we first locate it by means of a search and then remove
all occurrences of x from all levels, modifying the pointers of the various lists in
the obvious way.

How expensive are these operations? When inserting or deleting an element xi

the cost is proportional to that of a search for xi plus Hi. As we shall see, the
cost of each search is upper-bounded by the height of the data structure, defined
as

H := max
i
Hi. (3.3) def:height

The cost of a search for xi is proportional to the length of a zig-zag path of
height Hi ≤ H and width Wi. We will prove that with high probability the
orders of magnitude of Wi and H are the same. Intuitively, this is because the



DRAFT

44 CHAPTER 3. APPLYING THE CH-BOUNDS

data structure stays roughly balanced. For we expect one in every 1/p elements
of Lk to belong to Lk+1 When Lk is sizable large deviations are unlikely.

We now study the random variable H . First, we prove that H = O(logn) with
high probability.

prop:shallowHeight Proposition 3.1 Pr[H > a logn] ≤ n−a+1, for any a > 0.

Proof. The height Hi of any element i ∈ [n] in the list is a geometrically
distributed random variable with the parameter p:

Pr[Hi = k] = pkq, k ≥ 0. (3.4) eq:hi

Hence for ℓ ≥ 1,

Pr[Hi > ℓ] =
∑

k>ℓ

Pr[Hi = k]

=
∑

k>ℓ

pkq

= pℓ+1. (3.5) eq:higeq

The height of the skip list, H is given by

H = max
i
Hi. (3.6) eq:H

Hence,

Pr[H > ℓ] = Pr[
∨

i

Hi > ℓ]

≤
∑

i

Pr[Hi > ℓ]

= npℓ+1. (3.7) eq:Hgeq

In particular, for ℓ := a logp n− 1, (a > 0),

Pr[H > a logp n] ≤ n−a+1. (3.8) eq:Hgeqclogn

Refer now to Figure
fig:zigZag
0.2. The cost of a traversal is equal to the number of ↓’s plus

the number of →’s. If an ↓-edge is traversed then the element x must be stored
in the two consecutive levels Lk and Lk+1 of the data structure. This means that
when x flipped its coin to determine whether to percolate up from Lk to Lk+1 the
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outcome was Head. Similarly, if an element x is entered from the left with a →
it means that when x flipped its coin at level Lk the outcome was Tail. We label
each ↓ with p– denoting success– and each → with q— denoting failure. Then,
the number of arrows in the path is equal to the number of times needed to toss a
coin with bias p in order to obtain H successes. The distribution of the random
variable defined as the number of tosses of a coin with bias p needed to obtain
k successes, is called negative binomial and the random variable is denoted by
W (k, p). W (k, p) is closely related to the binomial distribution B(n, p).

In order to show that W (k, p) = O(logn) with high probability we can proceed
in several different ways, some of which are is explored in the problem section.
Perhaps the simplest approach is to start by establishing a connection with the
binomial distribution.

prop:equivalence Proposition 3.2 Pr(W (k, p) ≤ m) = Pr(B(m, p) ≥ k).

Proof. See Exercise
prob:equivalence
3.6.

Let a and b be two parameters to be fixed later. Define

k := a log n

m := b log n.

The first of these two values will upperbound H while the second will upperbound
the time of a search, i.e. the total number of ↓’s and →’s of a traversal. By
Proposition

prop:equivalence
3.2

Pr(W (k, p) > m) = Pr(B(m, p) < k)

which translates the problem into that of estimating deviations of the binomial
distribution below the mean. Recalling Theorem

th:useful-forms
1.1, i.e. the CH-bounds in

usable forms,

Pr(B(m, p) < E[B(m, p)] − t) = Pr(B(m, p) < pm− t) ≤ e−2t2/m.

By setting

k = pm− t

and solving for t, we get

t = (pb− a) log n,

which gives

Pr(B(m, p) < k) ≤ 1

n(pb−a)2/b
.
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Recalling Proposition
prop:shallowHeight
3.1, and setting a = 2, b = 8, and p = 1/2

Pr(cost of search > m) =

Pr(cost of search > m | H ≤ k) Pr(H ≤ k) +

Pr(cost of search > m | H > k) Pr(H > k)

≤ Pr(cost of search > m | H ≤ k) + Pr(H > k)

≤ Pr(W (k, p) > m) + Pr(H > k)

≤ 1

n(pb−a)2/b
+

1

na−1

=
2

n
.

Therefore with probability at least
(

1 − 2
n

)

no search ever takes more than 8 logn
steps. Furthermore, with at least the same probability, no insert or delete ever
takes more than W (H, p) +H ≤ (a+ b) log n = 10 logn steps.

3.3.3 Quicksort
ch-appl:qsort

The randomized version of well-known algorithm quicksort is one of, if not “the”
most effective sorting algorithm. The input of the algorithm is an array

X := [x1, . . . , xn]

of n numbers. The algorithm selects an element at random, the so-called pivot,
denoted here as p, and partitions the array as follows,

[y1, . . . , yi, p, z1, . . . , zj]

where the ys are less than or equal to p and the zs are strictly greater (one of
these two regions could be empty). The algorithm continues with two recursive
calls, one on the y-region and the other on the z-region. The end of the recursion
is when the input array has less than two elements.

We want to show that the running time of the algorithm is O(n logn) with prob-
ability at least 1 − 1

n
. The overall running time is given by the tree of recursive

calls. The tree is binary, with each node having at most two children corre-
sponding to the y- and the z-region obtained by partitioning. Since partitioning
requires linear time, if we start with an array of n elements, the total work done
at every level of the tree is O(n). Therefore to bound the running time it suffices
to compute the height of the tree. We will show that, for any leaf, the length of
the path from the root to the leaf is at most 4 log2 n, with probability at least
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1 − 1
n2 . The claim will then follow from the union bound, since in the tree there

are at most n nodes. Denoting with P a generic path from the root to a leaf,

Pr[∃P, |P | > 4 log2 n] ≤ n Pr[|P | > 4 log2 n] ≤ 1

n
.

We now bound the probability that a path has more than 4 log2 n nodes. Call a
node good if the corresponding pivot partitions the array into two regions, each
of size at least 1

3
of the array. The node is bad otherwise. If a path contains t

good nodes the size of the array decreases as

st ≤
2

3
st−1 ≤

(

2

3

)t

n.

It follows that there can be at most

t =
log2 n

log2
3
2

< 2 log2 n

good nodes in any path. We now use the Chernoff-Hoeffding bounds to show
that

Pr[|P | > 2 log2 n] <
1

n2
.

Let ℓ := |P | and let Xi be a binary random variable taking the value 1 if node i is
bad, and 0 if it is good. The Xis are independent and such that Pr[Xi = 1] = 1

3
.

Thus X :=
∑

i∈P Xi is the number of bad nodes in the path P and E[X] = ℓ/3.
Recalling (

eq:2ebound
1.8), for t > 2eℓ/3,

Pr[X > t] ≤ 2−t ≤ 1

n2

provided that

ℓ ≥ 3

e
log2 n.

Therefore the total number of good and bad nodes along any path does not
exceed 4 log2 n with probability at least 1 − 1

n
. By fiddling with the constant it

is possible to show that the running time of randomized quicksort is O(n logn)
with probability at least 1 − 1

nk , for any fixed k. In Chapter
ch:mobd-appl-2
7 we will derive a

stronger bound by using martingale methods.

3.4 Packet Routing

Packet routing is a fundamental problem in the context of parallel and distributed
computation. The following set up, following

KT
[36], captures many of its combina-

torial intricacies. The underlying communication network is modelled as a simple
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graph G = (V,E) with |V | = n and |E| = m. In the network there are N packets
p1, . . . , pN . Each packet p is to follow its route rp from its source to its destina-
tion. The goal is that of finding a routing algorithm, or schedule, that minimizes
the time to deliver all packets. The key constraint is that if two or more packets
are to traverse an edge e at time t, only one packet can traverse it (packets queue
up at edge endpoints if necessary, and the algorithm must decide which goes on
next).

It is instructive to look for a lower bound for completion time. Since for every
time unit each packet can traverse at most one edge, the following quantity, called
the dilation, is a lower bound:

d := max
p

|rp|.

A second trivial lower bound is the so-called congestion. Given an edge e, let Pe

denote the set of packets that must traverse e to reach their destination. Then,

c := max
e

|Pe|

is a lower bound for completion time in the worst case. A trivial upper bound
is then then c · d time units. Unless care is exercised in the routing policy the
schedule can be as bad. A remarkable result states that, for every input, there is
always a schedule that takes only O(c+ d) steps

LMR
??. In what follows we exhibitschedule is

computable? a very simple schedule and show, using the Chernoff bounds, that it delivers all
packets in O(c + d log(mN)) steps with high probability. The basic idea is for
each packet to pick a random delay ρ ∈ [r] and then start moving. The maximum
congestion possible at an edge e is bounded by |Pe| ≤ c. If r were large enough,
a random delay would ensure that, with high probability, for every edge e and
any given time t, the queue for e at time t would consist of at most one packet.
The resulting schedule would then deliver all packets within O(r + d) steps. For
this to work however, r must be too large.

Exercise 3.3 How large must r be so that all packets are delivered within r + d
steps with probability at least 1 − 1

n
?

A way out is to accept to have more than one packet per edge at any given time,
but to keep this number always below a certain maximum b. If congestion for
any edge at any time is at most b, we can route all packets within b(r + d) steps
using the following simple algorithm,

• Pick a random delay ρ ∈ [r] uniformly at random, independently of other
packets.
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• Traverse each edge of the path from source to destination using b time units
for every edge.

Note that time is grouped in macro-steps of b time units each, and that every
packet uses a full macro-step to traverse an edge. I.e. a packet p traverses teh kth
edge of its route rp at a time t in the interval [(k−1)b+1, kb]. Since queues never
have more than b packets every packet will have a chance to traverse an edge
within a macro-step. The time bound follows. We will show that the parameters
r and b can be chosen so that b(r + d) = O(c+ d log(mN)).

For the analysis, fix an edge e and a macro-step s, and let Xes denote the number
of packets that queue up at e at macro step s when following the above algorithm.
We can decompose Xes as the sum of indicator random variables Xpes for every
packet p ∈ Pe, where Xpes indicates if p queues up at e at macro step s or not.
Thus,

Xes =
∑

p∈Pe

Xpes

and
E[Xes] =

∑

p∈Pe

E[Xpes] ≤
c

r
.

The bound on the expectation follows, since each packet picks a random delay
ρ ∈ [r] uniformly at random and |Pe| ≤ c. Note that, for the same e and s, the
Xpes’s are independent and we can therefore apply the Chernoff bounds. Since
we do not know the expectation, but only an upper bound, we make use of the
bound developed in Exercise (

ex:ch-withBounds
1.2) with µH = c

r
and get,

Pr(X > (1 + ǫ)c/r) ≤ exp
{

−ǫ2c/3r
}

.

For definiteness, let ǫ = 1
2
. We define

b :=
3

4

c

r

and
r :=

c

12α log(mN)

so that

Pr(Xes > b) ≤ 1

(mN)α
.

Let E be the event that some edge has more than b queuing packets at some
macro-step. Since there are m edges and r ≤ c ≤ N macro-steps, we can bound
Pr[E] using the union bound,

Pr[E] ≤
∑

e,s

Pr(Xes > b) ≤ mN
1

(mN)α
≤ 1

(mN)α−1
.
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By choosing α = 2 the probability that no edge ever has more than b queuing
packets is at least 1 − 1

mN
. Assuming this, the total time needed to deliver all

packets is at most
b(r + d) = O(c+ d log(mN))

as claimed.

3.5 Randomized Rounding

Work in progress...

3.6 Bibliographic Notes

Skiplists are an invention of W. Pugh
Pugh90
[59]

3.7 Problems

p1 Problem 3.4 A randomized algorithm A, on input x, gives an answer A(x) that
is correct with probability p > 3

4
. A(x) takes values in the set of natural numbers.

Compute the probability that the majority outcome is correct when the algorithm
is run n times. How large n must be to have a 0.99 confidence that the answer is
correct? ▽

p2 Problem 3.5 The following type of set systems is a crucial ingredient in the
construction of pseudo-random generators

NW94
[56]. Given a universe U of size |U| =

cn a family F of subsets of U is a good family if (a) all sets in F have n elements;
(b) given any two sets A and B in F their intersection has size at most n

2
; and,

(c) |F| = 2Θ(n).

Show that there is a value of c for which good families exists for every n (Hint:
partition the universe into n blocks of size c and generate sets of n elements
independently at random by choosing elements randomly in each block. Then
compute the probability that the family generated in this fashion has the desired
properties.) ▽

In the next three problems, we shall derive bounds on the sums of independent
geometrically distributed variables. Let W (1, p) denote the number of tossesI’d like to

insert a two
lines comment
here
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required to obtain a “heads” with a coin of bias p (i.e. Pr(heads) = p, Pr(tails) =
1 − p =: q). Note that Pr[W (1, p) = ℓ] = qℓ−1p, for ℓ ≥ 1. Let W (n, p) denote
the number of tosses needed to get n heads. Note that W (n, p) =

∑

i∈[n]Wi(1, p),

where the Wi, i ∈ [n] are independent geometrically distributed variables with
parameter p. The variableW (n, p) is said to have a negative binomial distribution.

prob:equivalence Problem 3.6 Prove that Pr(W (k, p) ≤ m) = Pr(B(m, p) ≥ k). ▽ This is actually
an exercise...

prob:negbin2 Problem 3.7 A second approach to derive concentration results on W (n, p) is
to apply the basic Chernoff technique. Consider for simplicity the case p = 1

2
= q.

(a) Show that for any integer r ≥ 1, and for any 0 < λ < ln 2, Does this work
if we replace 2
with 1/p?

Pr[W (n, p) ≥ (2 + r)n] ≤
(

e−λ(r+1)

2 − eλ

)n

.

(b) Use Calculus to find the optimal λ and simplify to derive the bound that for
r ≥ 3,

Pr[W (n, p) ≥ (2 + r)n] ≤ e−rn/4.

You may find it useful to note that 1−x ≤ e−x and that 1+ r/2 ≤ er/4 for r ≥ 3.
Compare this bound with the one from the previous problem. ▽

Solution. Work in progress... △

prob:negbin3 Problem 3.8 Here is a third approach to the negative binomial distribution.
(a) By explicit computation, show that

Pr[W (n, p) ≥ ℓ] =

(

p

q

)n
∑

t≥ℓ

qt

(

t− 1

n

)

.

(b) Let Sn :=
∑

t≥ℓ q
t
(

t−1
n

)

. Show that

Sn =
q

p

(

qℓ−1

(

ℓ− 1

n

)

+ Sn−1

)

.

Hence deduce that

Pr[W (n, p) ≥ ℓ] = qℓ−1
∑

0≤i≤n

(

q

p

)n+1−i(
ℓ− 1

i

)

.

(c) Consider the case p = 1/2 = q and find a bound for Pr[W (n, p) ≥ (2 + r)n]
and compare with the previous problem. ▽
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Solution. Work in progress... △

prob:space Problem 3.9 Prove a sharp concentration result for the space used by a skip
list. ▽

Solution. The space used by the data structure is

Sn =
∑

i∈[n]

Hi (3.9) eq:space

In view of (
eq:geom
3.2), this is therefore a sum of geometric random variables i.e. Sn =

W (n, p). Thus E[Sn] = n/p. Recalling Proposition
prop:equivalence
3.2 (or, equivalently, Prob-

lem
prob:equivalence
3.6), for r > 0,

Pr[Sn ≥ (r + 1/p)n] = Pr[B((r + 1/p)n, p) ≤ n]

= Pr[B((r + 1/p)n, p) ≤ (rpn+ n) − rpn]

= Pr[B((r + 1/p)n, p) ≤ E[B((r + 1/p)n, p)] − rpn]

≤ exp
(

−2r2p2n
)

where the last line follows by the Chernoff bound on the binomial distribution.
△

Problem 3.10 What is the best value of p in order to minimize the expected
time of a search operation in a skip list? ▽

begin new

ch-appl:treaps Problem 3.11 In this exercise we deal with a very elegant data structure called
treaps (see for instance

DK,MR95
[38, 55]). A treap is a binary tree whose nodes contain

two values, a key x and a priority px. The keys are drawn from a totally ordered
set and the priorities are given by a random permutation of the keys. The tree
is a heap according to the priorities and it is a search tree according to the keys
(i.e. keys are ordered in in-order).

(a) Show that given a totally ordered set X of elements and a function p assign-
ing unique priorities to elements in X, there always exists a unique treap
with keys X and priorities p.

Treaps allow for fast insertion, deletion and search of an element. The cost
of these operations is proportional to height of the treap. In what follows we
will show that this quantity is O(logn) with high probability. Analyzing treaps
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boils down to the following problems on random permutations
DK
[38]. Given a

permutation p : [n] → [n] of the n elements, an element is checked if it is larger
than all elements appearing to its left in p. For instance, if

p = 3 1 5 4 8 6 2 7

the elements that are checked are in bold. It is convenient to generate the per-
mutation by ranking n reals ri ∈ [0, 1] chosen independently and uniformly at
random for each element (the element i with the smallest ri is the first element
of the permutation, and so on. Ties occur with probability zero).

(b) Denoting with Xn the elements that are checked when p is random, prove
that

E[Xn] = 1 +
1

2
+ . . .+

1

n
.

(It is known that the quantity Hn :=
∑n

i=1
1
i
, the nth harmonic number, is

Θ(logn).

(c) Let Yi be a binary random variable denoting whether element i is checked.
Prove that

Pr[Yi = 1 | Yn = yk, . . . , Yi+1 = yi+1] =
1

k − i+ 1

for any choice of the ys.

(d) Is the following true?

Pr[Yi = 1 | Y1 = yk, . . . , Yi+1 = yi−1] =
1

i

(e) Using the generalization of Problem
ch:lc
1.14 prove that Xn is O(logn) with

high probability.

(f) Show that the number of nodes (x, px) such that x < k that lie along the
path from the root to (k, pk) is given by Xk.

(g) Prove an analogous statement for the elements x > k and conclude that
the height of a treap is O(logn) with high probability.

▽

ch:p-kNN Problem 3.12 The following type of geometric random graphs arises in the
study of power control for wireless networks. We are given n points distributed add refs?

uniformly at random within the unit square. Each point connects to the k closest
points. Let us denote the resulting (random) graph as Gn

k .
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• Show that there exists a constant α such that, if k ≥ α log n, then Gn
k is

connected with probability at least 1 − 1
n
.

• Show that there exists a constant β such that, if k ≤ β log n, then Gn
k is

not connected with positive probability.

▽
end new
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Chapter 4

Chernoff-Hoeffding Bounds in
Dependent Settings

[CH-bounds with Dependencies]ch:dep-ch

In this chapter, we consider the sum

X :=
∑

α∈A
Xα, (4.1) eq:dep-sum

where A is a index set and the variables Xα, α,∈ A may not be independent. In
some dependent situations, the Chernoff-Hoeffing bound can be salvaged to be
applicable (as is, or with slight modifications) to X.

4.1 Negative Dependence

The results in this section are from D. Dubhashi and D. Ranjan, “Balls and
Bins: A Study in Negative Dependence”, Random Structures and Algorithms, 13
(1998), no. 2, 99–124.

We consider the sum (
eq:dep-sum
4.1) where A := [n]. Random variables X1, · · · , Xn are

said to be negatively dependent if, intuitively, the conditioned on a subset Xi, i ∈
I ⊆ [n] taking “high” values, a disjoint subset Xj , j ∈ I ⊆ [n] with I ∩ J = ∅
take “low” values. One way to formalize this intuitive notion is

Definition 4.1 (Negative Association) The random variable Xi, i ∈ [n] are
negatively associated if for all disjoint subsets I, J ⊆ [n] and all non-decreasing

55
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functions f and g,

E[f(Xi, i ∈ I)g(Xj, j ∈ J)] ≤ E[f(Xi, i ∈ I]E[g(Xj, j ∈ J). (4.2) eq:negass

Exercise 4.2 Show that if X1, · · ·Xn are negatively associated, then

E[XiXj] ≤ E[Xi]E[Xj ], i 6= j.

More generally, show that if fi, i ∈ [n] are non-decreasing functions, then

E[
∏

i

fi(Xi)] ≤
∏

i

E[fi(Xi)].

In particular,

E[et(X1+···+Xn)] ≤
∏

i∈[n]

etXi . (4.3) eq:exp-prod

Theorem 4.3 (CH Bounds with Negative Dependence) The Chernoff-Hoeffding
bounds can be applied as is to X :=

∑

i∈[n]Xi if the random variables Xi, · · · , Xn

are negatively associated.

Proof. Use (
eq:exp-prod
4.3) at the relevant step in the proof of the CH bound.

Thus one needs techniques to establish the negative association condition. Al-
though the defintion looks formidable, it is often easy to establish the condition
without any calculations using only montonicity, symmetry and independence.
The following two properties of negative association are very useful in these ar-
guments.

Closure under Products If X1, · · · , Xn and Y1. · · · , Ym are two independent
families of random variables that are separetely negatively associated then,
the family X1, · · · , Xn, Y1, · · · , Ym is also negatively associated.

Disjoint Monotone Aggregation If Xi, i ∈ [n] are genatively associated, and
A is a family of disjoint subsets of [n], then the random variables

fA(Xi, i ∈ A), A ∈ A,

is also negatively associated, where fA, A ∈ A are arbitrary non-decreasing
(or non-increasing) functions.

Exercise 4.4 Show that these two properties follow directly from the definition
of negative association.
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Example 4.5 [Balls and Bins] Consider the paradigm example of negative de-
pendence: m balls are thrown independently into n bins. We do not assume
the balls or bins are identical: ball k has probbaility pi,k of landing in bin i, for
i ∈ [n], k ∈ m (with

∑

i pi,k = 1 for each k ∈ [m]). The occupancy numbers are
Bi :=

∑

k Bi,k. Intuitively it is clear that B1, · · · , Bn are negatively dependent.
To prove this, we first show that a simpler set of variables satisfies negative asso-
ciation, and then use the properties of disjoint monotone aggregation and closure
under product.

Consider the indicator random variables:

Bi,k :=

{

1, ball k falls in bin i

0, otherwise
(4.4) eq:bik-indicators

We have

Proposition 4.6 For each k, the random variables Bi,k, i ∈ [n] are negatively
associated.

Proof. Let I, J be disjoint subsest of [n] and let f, g be non-decreasing func-
tions. Translating by a constant, we may assume f and g are non-negative and
f(0, · · · , 0) = 0 = g(0, · · · , 0). Then,

E[f(Xi, i ∈ I)g(Xj, j ∈ J)] = 0 ≤ E[f(Xi, i ∈ I)]E[g(Xj, j ∈ J)].

Now by closure under products, the full set Bi,k, i ∈ [n], k ∈ [m] is negatively asso-
ciated. Finally, by disjoint monotone aggregation, the variables Bi =

∑

k Bi,ki ∈
[n] are negatively associated. ▽

Example 4.7 [Distributed Edge Colouring of Graphs] The application in this
example is from A. Panconesi and A. Srinivasan, “Randomized Distributed Edge
Colouring via an Extension of the Chernoff-Hoeffding Bounds”, SIAM J. Com-
puting , 26:2, pp. 350–368, 1997.

Consider the following simple distributed algorithm for edge colouring a bipartite
graph G = (B, T,E). (The bipartition is made up of the “bottom” vertices B
and the “top” vertices T ). For simplicity, assume |B| = n = |T | and that the
graph is ∆ regular. At any stage of the algorithm,

1. In the first step, each “bottom” vertex makes a proposal by a tentative
assigment of a random permutation of [∆] to its incident edges.
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2. In the second step, a “top” vertex chooses from among all incident edges
that have the same tentative colour, a winner by using an arbitrary rule
(lexicographically first or random for instance). The winner gets success-
fully coloured and the losers are decoloured and go to the next stage of the
algorithm.

The basic question to analyse is: how many edges are successfully coloured in one
stage of the colouring algorithm. The situation at a “top” vertex is exactly a balls
and bins experiment: the incident edges are the balls falling into the bins which
are the colours. Call a edge that receives a final colour successfully a “winner”,
and otherwise a “loser”. Recalling that there are ∆ edges and ∆ colours, the
number of losing edges is bounded as follows:

# losers = # balls − # winners

≤ # bins − # non-empty bins

= # empty bins.

Thus we need to analyse Z :=
∑

i Zi where Zi is the indicator random variable
for whether bin i is empty i ∈ [∆]. These random variables are manifestly not
independent. However, they are negatively associated because

Zi = [Bi ≤ 0], i ∈ [n].

are non-increasing functions of disjoint sets of the occupancy variables B1, · · ·B∆

whcih are negatively associated by the previous example.

The analysis of the “bottom” vertices is significantly more complicated and will
require the use of more sophisticated techniques. ▽

Example 4.8 [Glauber Dynamics and Graph Colouring] The application in this
example is from Thomas P. Hayes

Hay03
[26]

Glauber dynamics is a stochastic process generating a sequence f0, f1, · · · , ft, · · ·
of random [k]-colourings of the vertices of a graph G := (V,E). The colouring
f0 is arbitrary. Given ft−1, the colouring ft is determined as follows: select a
vertex v = σ(t) uniformly at random and a colour c ∈ [k] \ ft−1(Γ(v)) unifromly
at random. The colouring ft is identcal to ft−1 except that ft(v) = c.

In the analysis of the convergence of the process to stationarity, one needs con-
centration of the following random variable X. Fix a time t0, and a vertex v ∈ V .
Then, X :=

∑

w∈Γ(v)Xw where the indicator random variable Xw is 1 if w was

selected by the colouring schedule σ in the time window [t0 − Cn, t0 + Cn] for
some constant C > 0. The random variables Xw, w ∈ Γ(v) are not independent.
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However, they are negatively associated. To see this, consider the indicator ran-
dom variables [σ(t) = v], v ∈ V, t ≥ 1. These are exactly like the Balls and
Bins indicator variables: the “balls” are the time instants and the “bins” are the
vertices. Hence ([σ(t) = v], v ∈ V, t ≥ 1) are negatively associated. Now note
that Xw :=

∑

t0−Cn≤t≤t0+Cn[σ(t) = w] are non-decreasing functions of disjoint in-
dex sets, and hence by the disjoint monotone aggregation property, the variables
Xw, w ∈ Γ(v) are also negatively associated. ▽

Example 4.9 [Geometric Load Balancing] This application in this example isex:geom-power-2
from

BCM04
[31].

Let n points be thrown uniformly at random on the unit circle. This splits the unit
circle into n arcs which we can number 1 · · ·n in counterclockwise order starting
from an arbitrary point.. Let Zi = 1 if the i arc has length at least c/n and 0
otherwise. The variables Zi, i ∈ [n] are manifestly not independent. However
they are negatively associated. To see this, let Li, i ∈ [n] denote the lengths
of the arcs. Intuitively it is clear that (Li, i ∈ [n]) are negatively dependent
and indeed by Problem

prob:const-sum-ex
4.26, (Li, i ∈ [n]) are negatively associated. Then Zi =

[Li ≥ c/n], i ∈ [n] are non-decreasing functions of disjoint sets of negatively
associated variables, and hence, by the disjoint monotone aggregation property,
are themselves negatively associated. ▽

4.2 Local Dependence

The following results are from S. Janson
Jan04
[28].

Consider the sum (
eq:dep-sum
4.1) where there may be only local dependence in the following

well known sense. Call a graph Γ on vertex set A a dependency graph for (Xα, α ∈
A) if when there is no edge between α ∈ A and A′ ⊆ A, then Xα is independent
of (Xα′ , α

′ ∈ A′

). Let χ∗(Γ) denote the fractional chromatic number of Γ.

The chromatic and fractional chromatic number χ∗(G) of a graph G = (V,E) are
defined as follows. Let B be the |V |×m matrix whose columns are characteristic
vectors of independent sets in G. The chromatic number of G is the minimum
number of colours needed in a proper colouring of G. Equivalently,

χ(G) := min
(

1Tx | Bx ≥ 1, x ∈ {0, 1}m
)

.

The fractional chromatic number χ∗(G) is the relaxation of this to non-negative
vectors x:

χ∗(G) := min
(

1Tx | Bx ≥ 1, x ≥ 0
)

.

Clearly χ∗(G) ≤ χ(G).
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Exercise 4.10 Compute χ(Cn) and χ∗(Cn) where Cn is the circle with n points.

th:loc-dep Theorem 4.11 Suppose X is as in (
eq:dep-sum
4.1) with aα ≤ Xα ≤ bα for real numbers

aα ≤ bα, α ∈ A. Then, for t > 0,

P [X ≥ E[X] + t] P [X ≤ E[X] − t] ≤ exp

( −2t2

χ∗(Γ)
∑

α∈A(bα − aα)2

)

.

Exercise 4.12 Check that χ∗(Γ) = 1 iff the variables Xα are independent, so
Theorem

th:loc-dep
4.11 is a proper generalization of the Hoeffding inequality.

Example 4.13 [U-Statistics] Let ξ1, · · · , ξn be independent random variables,
and let

X :=
∑

1≤i1<···<id

fi1,··· ,id(ξi1, · · · , ξid).

This is a special case of (
eq:dep-sum
4.1) with A := [n]d< and includes the so-called U-

Statistics . The dependency graph Γ has vertex set [n]d< and (α, β) ∈ E(Γ) iff α∩β 6
∅, when the tuples α, β are regarded as sets. One can check (see Problem

prob:kneser
4.32

that

χ∗(Γ) ≤
(

n
d

)

⌊n/d⌋ .

Hence, if a ≤ fi1,··· ,id(ξi1, · · · , ξid) ≤ b for every i1, · · · , id for some reals a ≤ b, we
have the estimate of Hoeffding:

P

[

X ≥ E[X] + t

(

n

d

)]

≤ exp

(−2⌊n/d⌋t2
(b− a)2

)

Since d⌊n/d⌋ ≥ n−d+1, we have χ∗(Γ) ≤
(

n
d−1

)

and we have a bound that looks
somewhat simpler:

P
[

X ≥ E[X] + tnd−1/2
]

≤ exp

(−2d!(d− 1)!t2

(b− a)2

)

▽

Example 4.14 [Subgraph Counts] Let G(n, p) be the random graph on vertex
set [n] with each possible edge (i, j) present independently with probability p.
Let X denote the number of triangles in G(n, p). This can be written in the
form (

eq:dep-sum
4.1) with A :=

(

[n]
3

)

and Xα is the indicator that the edges between the
three vertices in α are all present. Note that Xα and Xβ are independent even
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if α ∩ β = 1 (but not 2). The dependency graph Γ has vertex set
(

[n]
3

)

and
(α, β) ∈ E(Γ) iff α ∩ β = 2. Note that ∆(Γ) = 3(n− 3) and hence

χ∗(Γ) ≤ χ(Γ) ≤ ∆(Γ) + 1 ≤ 3n.

We compute E[X] =
(

n
3

)

p3 and hence

P [X ≥ (1 + ǫ)E[X]] ≤ exp

(

−2ǫ2
(

n
3

)2
p6

3n
(

n
2

)

)

= exp
(

−Θ(ǫ2n3p6)
)

.

This estimate can be improved taking into account the variance of the summands.
▽

4.3 Janson’s Inequality

Let R = Rp1,··· ,pn be a random subset of [n] formed by including each i ∈ [n] in
R with probability pi, independently. Let S be a family of subset of [n], and for
each A ∈ S, introduce the indicators

XA := [A ⊆ R] =
∧

i∈A

[i ∈ R].

Let X :=
∑

A∈∫ XA. Clearly the summands are not independent. In the terminil-
ogy of the last section, a natural dependency graph G for (XA, A ∈ S) has vertex
set S and an edge (A,B) ∈ G iff A ∩B 6= ∅: in this case, we write A ∼ B.

Theorem 4.15 Let X :=
∑

AXA as above, and let µ := E[X] =
∑

A Pr[XA = 1].
Define

∆ :=
∑

A∼B

E[XAXB] =
∑

A∼B

Pr[XA = 1 = XB], (4.5) eq:janson-delta

where the sum is over ordered pairs. Then, for any 0 ≤ t ≤ E[X],

Pr[X ≤ E[X] − t] ≤ exp

(

− t2

2µ+ ∆

)

.

Exercise 4.16 Check that when the sets A ∈ S are disjoint, then this reduces to
the CH-bound.

In particular, taking t := E[X] gives a avrey useful estimate on the probability
that no set in S occurs which is important enough to deserve a separate statement
of its own:
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th:janson-ineq Theorem 4.17 (Janson’s Inequality)

Pr[X = 0] ≤ e−
µ2

µ+∆ .

As verified in the exercise above, when the sets are disjoint, we are in the inde-
pendent case, More importantly, when the dependence is “small” i.e. ∆ = o(µ),
then, we get neraly the same bound as well.

Example 4.18 [Subgraph Counts] Consider again the random graph G(n, p)
with vertex set [n] and each (undirected) edge (i, j) present with probability p
independently and focus again on the number of triangles in the random graph.
An interesting regime of the parameter p is p := c/n. The base set Γ here is

(

[n]
2

)

,
the set of all possible edges and the random set of edges in G picked as above
is object of study. Let S be a set of three edges forming a traingle, and let XS

be the indicator that this triangle is present in G(n, p). Then Pr[XS = 1] = p3.
The property that G is triangle-free is expressed as X :=

∑

S XS = 0 where the
sum is over all such

(

n
3

)

subsets of edges S. If the XS were independent then, we
would have

Pr[X = 0] = Pr

[

∧

S

XS = 0

]

=
∏

S

Pr[XS = 0] = (1 − p3)(
n
3) ∼ e−(n

3)p3 → e−c3/6.

Of course the XS are not independent. But if A and B are collectiosn of subsets
such that each S ∈ A is disjoint from each T ∈ B, then (XS, S ∈ A) is mutually
independent of (XT , T ∈ B).

We can thus apply Janson’s inequality, Theorem
th:janson-ineq
4.17. here µ = E[X] =

(

n
3

)

p3 ∼
c3/6. To estimate ∆, we note that there are nchoose3(n − 3) = O(n4) ordered
pairs (S, T ) with S ∩ T 6= ∅, and for each such pair, Pr[XS = 1 = XT ] = p5.
Thus, ∆ = O(n4)p5 = n−1+o(1) = o(1). Thus, we get the bound

Pr[X = 0] ≤ exp

(

− c6

36c3 + o(1)

)

∼ ec3/36,

which is (asymptotically) almost the same (upto constants) as the estimate above
assuming the variables were independent. In problem

prob:subgraph-counts
4.30, you are asked to

generalize this from traingles to arbitrary fixed graphs. ▽

Example 4.19 [Randomized Rounding] The following example is taken from an
analysis of approximation algorithms for the so-called group and covering Steiner
problems

KRS02,GKR98
[37, 19]. We are given a full binary tree T rooted at a special vertex r.

In the group Steiner problem, we are also given groups A1, · · · , An of subsets of
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the leaves of T . The objective is to select a subtree of minimum size rooted at r
whoses leaves intersect each of the n groups.

The first step in the problem is to formulate a linear program which provides a
lower bound on the size of any such tree. Solving this linear program gives a set
of values xe ∈ [0, 1], e ∈ T . These values have the property that

∑

e∈E xe ≥ 1 for
any set of edges that forma cut between r and a group gi. Thus these values xe

can be used as a guide to constructing the required subtree.

This is done via the following variant of the randomized rounding methodology:
for each edge e ∈ T , include e independently with probability xe/xf where f is
the unique parent edge connecting e to the next vertex up the tree. If e is incident
on the root, we include it with probability xe (alternatively imagine a fictitious
parent edge e−1 with xe−1 = 1). Then pick the unique connected component
rooted at r.

The rounding procedure has the property that any edge e ∈ T is included with
probability xe. To see this, note that an edge is included iff all the edges e =
e1, e2, · · · , ep on the path up to the root from e are included, and this happens
with probability

xe1

xe2

xe2

xe3

· · · xep−1

xep

xep

1
= xe.

Let us focus attention on a particular group A and estimate the probability that
this group is not “hit”. We can identify the gropu A with the corresponding
pendant edges. Let Xe, e ∈ A be the indicator for whether the element e ∈ A is
selecetd, and let X :=

∑

e∈AXe. Then

E[X] =
∑

e∈A

E[Xe] =
∑

e∈A

xe ≥ 1,

where the last inequality is because of the cut-property of the xe values.

Note however that the Xe, e ∈ A are not independent : the dependencies arise
because of shared edges on the path up the tree. Let us estimate ∆ in this
situation. To this end, first we note that the event Xe = 1 = Xf for distinct
e, f ∈ A occurs iff (a) all edges up to and inclusing the common ancestor g of e
aand f are picked, and (b) the remaining edges from g to e and f are all picked.
Thus, Pr[Xe = 1 = Xf ] = xexf/xg.

Exercise 4.20 Check this!

Thus,

∆ =
∑

e

∑

f

xexf/xg.
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To continue with the estimation, we make some simplifying assumptions (which
are justified in the paper

GKR98
[19]: we assume that the group A is contained in a

single subtree of height d := ⌈|A|⌉, that
∑

e∈A xe = 1 finally, that for any vertex
v in the tree whose parent edge is e, we have

∑

f∈T ′

xf ≤ xe, (4.6) eq:sub-tree-flow

where T ′ is either the left or the right subtree rooted at v.

Now, to return to ∆, consider an edge e is the first summation. Number the path
up from e to the root r = v0, v1, · · · vi−1, vi where e = vi−1vi. Let Tj , 0 ≤ j ≤ i
denote the subtree rooted at vj which does not include ei. Then,

∆ =
∑

e

∑

f

xexf/xg

=
∑

e

∑

0≤j≤i

∑

f∈Tj

fxexf/xg

=
∑

e

xe

∑

0≤j≤i

(

∑

f∈Tj
xf

)

xej−1

≤
∑

e

xe

∑

0≤j≤i

1, by (
eq:sub-tree-flow
4.6)

=
∑

e

(i+ 1)xe

≤ (d+ 2)
∑

e

xe

= (d+ 2).

Thus applying Janson’s inequality, we get that the probability that the group A
fails to be “hit” is at most e−1/(3+log |A|) ≈ 1 − 1

3 log |A| . ▽

4.4 Limited Independence

One key objective in modern complexity theory has been to seek ways to re-
duce the amount of randomness used by probabilistic algorithms. The ultimate
objective of course would be to remove the randomenss altogether leading to a
deterministic algorithm via a complete derandomization of a randomized algo-
rithm. In this quest, a reduction in randomization leads to some progress in the
form of a partial derandomization.
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One approach to reducing randomness comes from the observation that some
algorithms do not need full independence of their source of random bits. We
say that a set of random variables X1, · · ·Xn is k-wise independent if for every
I ⊆ [n] with |I| ≤ k,

Pr

[

∏

i∈I

Xi = xi

]

=
∏

i∈I

Pr[Xi = xi].

Fully independent varaiables correspond to n-wise independence.

In this section, we outline the approach of
SSS95
[64] to obtaining CH-like bounds for

the case of random variables with limited dependence i.e. when they are only
k-wise independent for some k < n.

Consider the elementary symmetric functions:

Sk(x1, · · · , xn) :=
∑

I⊆[n],|I|=k

∏

i∈I

xi.

Observe that for 0/1 variables x1, · · · , xn, and an integer m ≥ 0,

∑

i

xi = m ↔ Sk(x1, · · · , xn) =

(

m

k

)

.

Also, if X1, · · · , Xn are k-wise independent, then:

E [Sk(X1, · · · , Xn)] = E





∑

|I|=k

∏

i∈I

Xi





=
∑

|I|=k

E

[

∏

i∈I

Xi

]

=
∑

|I|=k

∏

i∈I

E[Xi]

In the last line, we use the k-wise independence of the variables.

Hence, if X := X1 + · · ·+Xn for binary random variables X1, · · · , Xn which are
k-wise independent and E[Xi] = Pr[Xi = 1] = p for each i ∈ [n], then

Pr[X > t] = Pr

[

Sk(X1, · · · , Xn) >

(

t

k

)]

≤ E [Sk(X1, · · · , Xn)] /

(

t

k

)

=

(

n
k

)

pk

(

t
k

)
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In Problem
prob:ch-lim
4.29, you are asked to check that this bound holds also when the

variable are not identically distributed and when they take values in the interval
[0, 1]. This yields the following version of the CH-bound for variables with limited
independence:

th:ch-lim Theorem 4.21 Let X1, · · · , Xn be random variables with 0 ≤ Xi ≤ 1 and
E[Xi] = pi for each i ∈ [n]. Let X :=

∑

iXi and set µ := E[X] and p := µ/n.
Then, for any δ > 0, if X1, · · · , Xn are k-wise independent for k ≥ k∗ :=
⌈µδ/(1 − p)⌉,

Pr [X ≥ µ(1 + δ)] ≤
(

n

k∗

)

pk∗/

(

µ(1 + δ)

k∗

)

Exercise 4.22 Check that this bound is better than the CH-bound e−
δ2

3
µ derived

in the previous chapter.

Another approach due to Bellare and Rompel
BR94
[4] goes via the k–th moment

inequality :

Pr[|X − µ| > t] = Pr[(X − µ)k > tk], since k is even

<
E[(X − µ)k]

tk
, by Markov’s inequality. (4.7) eq:limmarkov

To estimate E[(X − µ)k], we observe that by expanding and using linearity of
expectation, we only need to compute E[

∏

i∈S(Xi−µi)] for multi–sets S of size k.

By the k–wise independence property, this is the same as E[
∏

i∈S(X̂i−µi)], where

X̂i, i ∈ [n] are fully independent random variables with the same marginals as
Xi, i ∈ [n]. Turning the manipulation on its head, we now use Chernoff–Hoeffding
bounds on X̂ :=

∑

i X̂i:

E[(X̂ − µ)k] =

∫ ∞

0

Pr[(X̂ − µ)k > t]dt

=

∫ ∞

0

Pr[|X̂ − µ| > t1/k]dt

<

∫ ∞

0

e−2t2/k/ndt, using CH bounds

= (n/2)k/2k

2

∫ ∞

0

e−yyk/2−1dy

= (n/2)k/2k

2
Γ(k/2 − 1)

= (n/2)k/2(k/2)!
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Now using Stirling’s approximation for n! gives the estimate:

E[(X̂ − µ)k] ≤ 2e1/6k
√
πt

(

nk

e

)k/2

,

which in turn, plugged into (
eq:limmarkov
4.7) gives the following version of a tail estimate

valid under limited i.e. k–wise dependence:

Pr[|X − µ| > t] ≤ Ck

(

nk

t2

)k/2

,

where Ck := 2
√
πke1/6k ≤ 1.0004.

4.5 Markov Dependence

4.5.1 Definitions

A Markov chain M is defined by a state space U and a stochastic transition
matrix P (i.e.

∑

x P (x, y) = 1). Starting with an initial distribution q on U , it
determines a sequence of random variables Xi, i ≥ 1 as follows: for n ≥ 1 and
any x1, · · · , xn, xn+1 ∈ U ,

Pr[X1 = x1] = q(x1),

. and,

Pr[Xn+1 = xn+1 | X1 = x1, · · · , Xn = xn] = Pr[Xn+1 = xn+1 | Xn = xn] = P (xn+1, xn).

A distribution π on S is called stationary for M if πP = P . Under a technical
condition called aperiodicity , a Markov chain whose state space is connected
has a unique stationary distribution. The aperiodicity condition can usually be
made to hold in all the applications we consider here. For more details on these
conditions and a careful but friendly introduction to Markov chains, see

Hagg02
[25].

The general theory of Markov chains
Hagg02
[25] shows that under these conditions, the

Markov chain, started at any point in the state space, eventually converges to
the stationary distribution in the limit. The rate of convergence is determined
by the so-called eigenvalue gap of the transition matrix P of the Markov chain.
Since the matrix is stochastic, the largest eigenvalue is λ1 = 1 and the general
theory of non-negative matrices implies that the second eigenvalue λ2 is strictly
less than 1. The eigenvalue gap is ǫ := λ1 − λ2 = 1 − λ2.
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4.5.2 Statement of the Bound

Let X1, X2, · · · , Xn be a sequence generated by a Markov chain with eigenvalue
gap ǫ starting from an initial distribution q. Let f be a non-negative function
on the state space of M , and let Fn :=

∑

i∈[n] f(Xn). By the convergence to

stationarity of the Markov chain, we know that limn→∞ Fn/n = E[f ] . The
following Theorem due independently to Gillman

Gil98
[20] and Kahale

Kah97
[32] gives a

quantitative bound on this convergence.

th:markov-ch Theorem 4.23 Let X1, X2, · · · , Xn be a sequence generated by a Markov chain
with eigenvalue gap ǫ starting from an initial distribution q. For a For a non-
negative function f , on the state space of M let Fn :=

∑

i∈[n] f(Xn). Then,

Pr[|Fn − nE[f ]| > t] ≤ Cγ,ǫ,n,q exp

(

−ǫ t
2

cn

)

.

where c is an absolute constant and Cγ,ǫ,n,q is a rational function. In particular,
taking f := χS, the characteristic function of a subset S of the state space, and
letting Tn :=

∑

i∈[n] χS(Xi) denote the number of times the chain is in state S,

Pr[|Tn − nπ(S)| > t] ≤ Cγ,ǫ,n,q exp

(

−ǫ t
2

cn

)

.

Note that this is very similar to the usual Chernoff bound, except for the ra-
tional term and, more importantly, the appearence of the eigenvalue gap in the
exponent.

4.5.3 Application: Probability Amplification

Let f : {0, 1}n → {0, 1} be a function that is computed by a randomized al-
gorithm A that takes as input the argument x ∈ {0, 1} at which f has to be
evaluated and also a sequence r of n random bits. Suppose the algorithm A is
guaranteed to compute f correctly with a constant probability bounded away
from 1/2, say,

Prr[A(x, r) = f(x)] ≥ 3/4.

We would like to amplify the success probability i.e. provide an algorithm Â that
computes f correctly with probability arbitrarily close to 1.

The standard way to do this is by repetition: make k runs k of algorithm A
and take the majority outcome. Each run of the algorithm is independent of
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the previous one and uses n fresh independent random bits. What is the success
probability of the resulting algorithm? Recall the standard application of the
Chernoff bound in the previous chapter: let X1, · · · , Xn be indicator random
variables with Xi = 1 iff algorithm A computes f correctly on the ith invocation,
and set X :=

∑

iXi. The Chernoff bound yields

Pr[X < 1/2k] ≤ e−k/8.

Thus to achive an error probability of at most δ, we can take k = O(log 1
δ
).

We shall now describe an algorithm that achieves similar amplification of proba-
bility, but with the advantage that the algorithm will be significantly more effcient
in its use of randomness as a resource. The algorithm above uses a total of nk
random bits. The algorithm we describe next will use only O(n+k) random bits
to achieve very similar error probability.

To do this we start with an expander graph G on the vertex set {0, 1}, the
underlying probability space of the original algorithm A. Expander graphs are
very useful in many different areas of algorithms and complexity. This example is
tyoical and can be viewed as an introduction to their uses. Here, we will only state
the properties we need. The expander graph G is regular of constant degree d.
The expansion property is that any subset A of the vertices has a neighbourhood
of size at least γ|A| for some positive constant γ.

There is an equivalent algebraic characterization which is more directly of use to
us here. Consider the simple random walk on the graph G: start at any vertex
and choose the next vertex uniformly at random from all the neighbours. This
defines a Markov chain M(G) with state space the vertices of G whose unique
stationary distribution is the uniform distribution. The expansion property of G
translates equivalently into the property that the the Markov chain M(G) has
an eigenvalue gap ǫ > 0 i.e. the first eigenvalue is 1 and the second is bounded
from above by 1 − ǫ.

We are now in a position to state our algorithm and analyse it using the CH
bound for Markov chains. The algorithm Ã is as follows:

1. Pick a point r1 :=∈ {0, 1} at random. Then starting at r1, execute a
random walk on G: r1, r2, · · · , rk.

2. Run the algorithm k times, using these bits as the random source:

A(x, r1), A(x, r2) · · · , A(x, rk),

and take the majority outcome.
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To analyse the success probability of the algorithm Ã, we introduce as before,
the indicators X ′

i, i ∈ [k] with X ′
i = 1 if the algorithm is correct on trial i and 0

otherwise. Now, since r1 is picked according to the stationary distribution, the
merginal distribution of each ri, i ∈ k separately is also the stationary distribution
which is uniform. Hence Pr[X ′

i = 1] ≥ 3/4 for each i ∈ [k] and so, if X ′ :=
∑

i∈[k]X
′
i, then E[X ′] ≥ 3/4k. So far the analysis is identical to what we saw

before.

The hitch is in the fact that whereas the indicators X1, · · · , Xk were independent
before due to the fresh choice of random bits every time the algorithm A is
rerun, this time, the indicators X ′

1, · · · , X ′
k are not independent because the

sequence r1, · · · , rk is chosen by a random walk - thus each ri depends heavily
on its predecessor ri−1. This is the place where Theorem

th:markov-ch
4.23 kicks in. Let

S := {r ∈ {0, 1}n | A(x, r) = f(x)}. Note that since the stationary distribution
π is uniform, π(S) ≥ 3/4. Applying Theoremth:markov-ch, we get:

Pr[X ′ < 1/2k] ≤ e−cǫk,

for some constant c > 0. This is essentially the same error probability as we
had for algorithm Â with the independent repetitions except for constant factors
in the exponent. However, in this case, the number of random bits used by
algorithm Ã is O(n+ k) compared to nk bits needed by algorithm Â.

Exercise 4.24 Work out the number of bits used by algorithm Ã. Note the fact
that G is a constant degree graph is needed here.

Exercise 4.25 Work out the constant in the exponent of the error bound in terms
of the constants in Theorem

th:markov-ch
4.23.

4.6 Bibliographic Notes

Negative Dependence is tretated at greater length in
DR98
[16]. A plethora of versions of

CH bounds for limited independence are given in
SSS95
[64] with applications to reduc-

ing randomness requirements of algorithms. Stronger versions of Theorem
th:loc-dep
4.11

are given in
Jan04
[28] with more applications. Gillman

Gil98
[20] gives more applications of

Theorem
th:markov-ch
4.23. Kahale

Kah97
[32] gives almost tight versions of the bound for Markov

chians and compares to the bounds of Gillman.
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4.7 Problems

prob:const-sum-ex Problem 4.26 Let Xi, i ∈ [n] be random variables such that for any subset
I ⊆ [n], and any t > 0, the distribution of Xi, i ∈ I conditioned on

∑

i∈I Xi = t
is

• conditionally independent of any other variables.

• stochastically increasing in t.

Further suppose the distribution of Xi, i ∈ [n] is concentrated on the event
∑

i∈[n]Xi = c for some constant c. Then Xi, i ∈ [n] are negatively associated.

Deduce that the arc variables Li, i ∈ [n] in Example
ex:geom-power-2
4.9 are negatively asociated.

▽

Problem 4.27 [Negative Regression] A set of random variables X1, · · · , Xn sat-
isfy the negative regression condition (−R), if, for any two disjoint index ests
I, J ⊆ [n], and any non-decresing function f ,

E[f(Xi, i ∈ I) | Xj = aj , j ∈ J ] (4.8) eq:neg-reg

is non-incresing in each aj , j ∈ J .

1. Show that if (−R) holds, then E [
∏

i fi(Xi)] ≤ ∏

i E[fi(Xi)] for any non-
decresing functions fi, i ∈ [n].

2. Deduce that the CH bound applies to variables satisfying (−R).

▽

Problem 4.28 [Permutations] Recall the following problem on permutations en-
countered int he analysis of Treaps: a position i in a permutation σ of [n] is
“checked” if σ(j) < σ(i) for all j < i. Let σ be a permutation chosen uniformly
at random, and let Xi, i ∈ [n] be indicator variables for whether a position is
checked. Shwo that these variables satisfy (−R). ▽

prob:ch-lim Problem 4.29 Prove Theorem
th:ch-lim
4.21. Also derive a bound on the lower tail. ▽
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Problem 4.30 [Subgraph Counts] Consider the random graph G(n, p) and letprob:subgraph-counts
us consider the number of occurences X(H) of the number of occurences of H in
G. Define

φH = φH(n, p) := min{E[XH′ ] | H ′ ⊆ H, eH′ > 0}.
Note that φH ≈ minH′⊆H,eH′>0 n

v′Hpe′H . where vH is the number of vertices and
eH the number of edges of a graph H . Show that for any fixed graph H (with at
least one edge), Pr[XH = 0] ≤ exp (−Θ(φH)). ▽

Problem 4.31 [Sampling with reduced randomness
SSS95
[64]] Recall the problem of

estimating the fraction f ∗ := |W |/|U | of elements of a special subset W of a large
universal set U . The approach is to take a random sample S from U and estimate
f ∗ by f̂ := |W ∩ S|/|S. Investigate the possibility of reducing the randomness
requirements of this algorithm using Theorem

th:ch-lim
4.21 or Theorem

th:markov-ch
4.23. ▽

Problem 4.32 [Fractional Chromatic Number of Kneser Graphs] Consider theprob:kneser
Kneser graphs K(n, d) whose vertex set is

(

[n]
d

)

and whose edge set is {(A,B) |
A ∩ B = ∅}. Compute bounds on ∆(K(n, d)), χ(K(n, d)) and χ∗(K(n, d)). ▽
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Chapter 5

Martingales and Azuma’s
Inequality

[Martingales and Azuma’s Inequality]ch:mobd

The Chernoff-Hoeffding bounds provide very sharp concentration estimates when
the random variable X under consideration can be expressed as the sum X =
X1 + . . . + Xn of independent (and bounded) random variables. However in
many applications, to do this might be very difficult or impossible. It would
therefore be useful to obtain sharp concentration results for the case when X
is some complicated function of not necessarily independent variables. Such a
generalization would be useful in many diverse contexts but especially in the
analysis of randomized algorithms where the parameters that characterize the
behaviour of the algorithm are the result of a complicated interaction among a
base set of (often non–independent) random variables. Our goal then is to study
the case when

X := f(X1, X2, . . . , Xn),

where f is a function that may not even be explicitly specified in a “closed form”.
We seek a set of conditions on f so that one can assert that the probability
of a large deviation of f from its expected value is exceedingly small– ideally,
exponentially small in the amount of the deviation. In general, we would like to
be able to do this even without assuming that the Xi’s are independent.

We will present a number of such inequalities, all of which rest upon a well-studied
concept of Probability Theory known as martingales. We shall see that once the
appropriate concept to replace independence is properly formulated, the proofs
of these inequalities are quite similar to the basic structure of the proofs of the
Chernoff–Hoeffding bounds we have already seen.

73
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5.1 Review of Conditional Probabilities and Ex-

pectations

The concept of a martingale requires a good understanding of the notions of
conditional probability and expectation, so we first provide a quick review from
an elementary standpoint.

Given two events E and F in a probability space with measure Pr, the conditional
probability of E with respect to F is defined by

Pr[E | F ] :=
Pr[E ∧ F ]

Pr[F ]
,

provided that Pr[F ] 6= 0. If Pr[F ] = 0, then, by convention we shall set Pr[E |
F ] = 0.

Often we will be interested in events of the form X = a, that a random variable
X takes the value a, or that a sequence X1, . . . , Xn takes the values a1, . . . an

respectively. For economy of notation, we shall use the vector boldface notation to
stand for a finite or infinite sequence of the appropriate type. Thus a sequence of
variables X1, X2, . . . will be denoted by X and a sequence of real values a1, a2, . . .
by a. When given such a sequence, we shall use the subscript n to denote the
prefix of length n; thus Xn will denote X1, . . . , Xn and an will denote a1, . . . , an.
If n is less than the starting index of the sequence under consideration, the prefix
sequence is empty. With these conventions the event X1 = a1, . . . , Xn = an can
be abbreviated by Xn = an. We can always assume that such an event occurs
with non–zero probability by discarding from the domain, the values for which it
is zero.

The conditional expectation of a random variable Y with respect to an event E is
defined by

E[Y | E ] :=
∑

b

b · Pr[Y = b | E ]. (5.1) eq:condexpdef

In particular, if the event E is X = a, this equation defines a function f , namely

f(a) := E[Y | X = a].

Thus E[Y | X] is a random variable, namely the variable f(X). In the same way,
if the event E in (

eq:condexpdef
5.1) is X = a, we have a multivariate function

f(a) := E[Y | X = a],

and E[Y | X] can be regarded as the random variable f(X).
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Regarding E[Y | X] as a random variable, we can ask what is its expectation?
The answer involves some fundamental properties of conditional expectation that
are listed in the next proposition and whose verification we leave as an exercise.

prop:basic Proposition 5.1 Let X, Y and Z be random variables defined on a probability
space. Then, for arbitrary functions f and g,

E[E[f(X)g(X, Y ) | X]] = E[f(X)E[g(X, Y )] | X].

Also,
E[X] = E[E[X|Y ]],

and,
E[X | Z] = E[E[X | Y, Z] | Z].

The formal verification of these is left as an exercise to the reader. Nevertheless
it is perhaps appropriate to give an intuitive justification of these formulae which
at first might appear somewhat obscure. The first equality is based on the simple
fact that

E[f(X)g(X, Y ) | X = a] = f(a)E[g(X, Y ) | X = a]

which simply says that once the value of X is given f(X) becomes a constant
and can be taken out of the expectation. The second equality can be intuitively
explained as follows. Suppose that X is a random variable representing, say, the
height of individuals of a given population, and that Y is the age of an individual.
In order to compute E[X]– the average height– we can either do it directly or
proceed as follows. Partition the population according to age, recording for each
age group the fraction of the total population. To make things concrete, the 15
year olds could be 7% of the total population, the 32 year olds 11%, etc. Then,
compute the average height in each age group– the average height of 15 year olds,
of 32 year old, and so on. Finally, compute the weighted average of these averages
by weighing each age group according to its share of the total population. This
will give the average height of the whole population. The third equality is the
same as the second one, except that we focus on a particular subset of the whole
population. For instance Z could represent the sex of an individual. Sticking to
our example, the formula asserts that in order to compute the average height of,
say, the male population we can proceed as just described.

Proposition
prop:basic
5.1 generalises smoothly to the multivariate case. Once again we

leave the verification as an exercise.

Proposition 5.2 (Fundamental Facts about Conditional Expectation) Let
X, Y and Z be random variables defined on a probability space. For arbitrary
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functions f and g,

E[E[f(X)g(X,Y ) | X]] = E[f(X)E[g(X,Y ) | X]]. (5.2) eq:cpprop2

Also,
E[X] = E[E[X | Y ]], (5.3) eq:cpprop1

and
E[X | Z] = E[E[X | Y ,Z] | Z]. (5.4) eq:cpprop3

These facts will be heavily used in this chapter.

5.2 Martingales and Azuma’s Inequality.

Martingales are a well-studied concept in classical probability. Here we will de-
velop them in a discrete setting in the simplest form, which is sufficient for our
purposes.

def:mart Definition 5.3 A martingale is a sequence of random variables X0, X1, . . . such
that

E[Xi|X0, X1, . . . , Xi−1] = Xi−1 i ≥ 1.

With the vector notation, the martingale condition is succintly expressed as

E[Xi|X i−1] = Xi−1, i ≥ 1

The next examples and exercises should help clarify the definition.

example:mart Example 5.4 A fair coin is flipped n times. Let Xi ∈ {−1, 1} denote the out-
come of the i-th trial (with −1 standing for “tails” and +1 for “heads”). Let S0 :=
0 and Sn :=

∑

i≤nXi. The variables Si, i ≥ 0 define a martingale. First, observe
that they satisfy the so-called Markov property, E[Sn|S0, . . . , Sn−1] = E[Sn|Sn−1],
which intuitively says that the future outcome depends only on the current state.
Hence,

E[Sn|S0, . . . , Sn−1] = E[Sn|Sn−1]

= E[Sn−1 +Xn|Sn−1]

= Sn−1 + E[Xn|Sn−1]

= Sn−1 + E[Xn], by independence of the coin tosses

= Sn−1, since E[Xn] = 0.
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Think of a gambler who starts with an initial fortune of S0 := 0 and repeatedly
bets an amount of 1 unit on a coin toss. Thus his fortune can go up or down by
one unit equiprobably on each toss. His fortune after n tosses is Sn. Think of the
sequence S0, S1, . . . as a sequence of dependent random variables. Before his nth
wager, the gambler knows only the numerical values of S0, . . . , Sn−1 but can only
guess at the future Sn, Sn+1, . . .. If the game is fair, then conditional on the past
information, he will expect no change in his present capital on average. This is
exactly the martingale condition. ▽

Example 5.5 Suppose now that Xi ∈ {0, 1} equiprobably for each i ∈ [n]. Now
it is no longer true that E[Xi] = 0. Nevertheless, a martingale can be defined by
letting Sk :=

∑

i≤k Xi − k
2

with S0 := 0. The straightforward verification is left
as an exercise. ▽

Exercise 5.6 Let Xi ∈ {0, 1} (1 ≤ i ≤ n) be a set of n variables such that
Pr[Xi = 1] = pi. Can you generalize example

example:mart
5.4?

The following definition is central.

def:bdCond Definition 5.7 (Bounded Differences). Let X0, X1, . . . be a martingale. The
Xi’s satisfy the Bounded Difference Condition (bdc) with parameters ci if

|Xi −Xi−1| ≤ ci

for some non-negative constants ci, i ≥ 1.

The following concentration result for martingales is known as Azuma’s Inequality
although it appears also in an earlier paper by Hoeffding. It will provide us with
a basic tool for our generalization.

thm:azuma Theorem 5.8 (Azuma’s Inequality). Let X0, X1, . . . be a martingale satisfy-
ing the Bounded Difference Condition with parameters ci, i ≥ 1. Then,

Pr(Xn > X0 + t) ≤ exp

(

− t2

2c

)

and

Pr(Xn < X0 − t) ≤ exp

(

− t2

2c

)

where c :=
∑n

i=1 c
2
i .
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Before proving the theorem some comments are in order. First, notice that there
is no assumption of independence. Second, if we think of a martingale sequence
as keeping track of a process evolving through time– where Xi is the measurement
at time i– the Bounded Difference Condition roughly states that the process does
not makes big jumps. Azuma’s inequality roughly says that if this is so, then it
is unlikely that the process wanders very far from its starting point. Clearly this
crucially depends on the martingale property. Notice also that c appears in the
denominator, which means that the smaller the ci’s the sharper the concentration.

In the proof of Azuma’s inequality we shall use several ideas already encountered
in the derivation of various forms of the CH-bounds. The assumption of indepen-
dence will be replaced by the martingale property, while the assumption that the
summands are bounded is replaced by the Bounded Difference Condition (bdc).

Now to the proof. We shall prove the statement for the upper tail, the proof for
the lower tail is symmetrical with the martingale X replaced by −X. To start
with, we can assume without loss of generality that X0 := 0. Otherwise we can
define the translated sequence X ′

i := Xi−X0 which satisfies the conditions equally
well. We then apply the Chernoff Method starting with Markov’s Inequality:

Pr(Xn > t) = Pr(eλXn > eλt) (5.5) eqn:start

≤ E[eλXn ]

eλt

for all λ > 0. Now we focus on the numerator E[eλXn ]: we want to find a good
upper bound in terms of λ and then find the value of λ that minimizes the ratio
E[eλXn ]/eλt.

We define the martingale difference sequence:

Yi := Xi −Xi−1, i ≥ 1

which allows us to express the martingale as the sum of increments:

Xk =
∑

i≤k

Yi.

Note that the martingale condition can be rephrased as follows:

E[Yi | X i−1] = 0.
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Applying the basic equality (
eq:cpprop1
5.3), we get

E[eλXn ] = E[exp(λ
∑

i≤n

Yi)]

= E[E[exp(λ
∑

i≤n

Yi)|Xn−1]]

= E[E[exp(λXn−1)e
λYn|Xn−1]]

= E[exp(λXn−1)E[e
λYn |Xn−1]].

The last equality follows from (
eq:cpprop2
5.2).

Now the proof continues by looking for a good upper bound for E[eλYn |Xn−1].
Denoting such a good upperbound by Un(λ) we obtain by induction,

E[eλXn ] = E[exp(λXn−1)E[e
λYn |Xn−1]]

≤ E[exp(λXn−1)] · Un(λ) (5.6) eqn:indStep

≤
n
∏

i=1

Ui(λ) =: U(λ).

As it happens there are two different ways to find good upperbounds Ui(λ). The
first, to be used in the next lemma, is based on the convexity of the ex function–
a fact already exploited to derive the Hoeffding generalization of the Chernoff
bounds. The second uses a different idea, which we used in § sec:chVariance

1.7. This second
approach leads to another useful generalization of the CH-bounds which we shall
call the the Method of Bounded Variances, and to which we return in a later
chapter.

lm:convex Lemma 5.9 Let Z be a random variable such that E[Z] = 0 and |Z| ≤ c. Then,
E[eλZ ] ≤ eλ2c2/2.

Even if this is
repeated some
redundancy
which makes
chapters
self-contained
might be good?

Proof. Let f(x) := eλx, P− := (−c, f(−c)), P+ := (c, f(c)), and let y := mx + q
be the straight line going through P− and P+. Since f is convex we have that

f(x) ≤ mx+ q

for all x in the interval (−c, c). By setting x := Z, we have that

eλZ ≤ mZ + q (5.7) eq:majorization

where

q =
eλc + e−λc

2
.
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Taking expectations on both sides of Equation (
eq:majorization
5.7) we have

E[eλZ ] ≤ m E[Z] + E[q] =
eλc + e−λc

2
≤ e(λc)2/2

The last inequality follows from the fact that, for all x,

ex + e−x

2
≤ ex2/2

which can be easily verified by taking the Taylor series expansion of both sides.

We apply the lemma to the random variable

Z := (Yn|Xn−1).

Z satisfies the hypotheses of the lemma since

E[Z] = E[Yn|Xn−1] = E[Xn −Xn−1|Xn−1] = 0

by the martingale property, and

|Z| = |(Yn|Xn−1)| ≤ |Xn −Xn−1| ≤ cn

by the Bounded Difference Condition. Therefore

E[eλYn |Xn−1] ≤ eλ2c2n/2

which, after substituting into Equation (
eqn:indStep
5.6), yields by induction

E[eλXn ] ≤ E[exp(λXn−1)] · eλ2c2n/2

≤
n
∏

i=1

eλ2c2i /2 =: eλ2c/2

where

c :=

n
∑

i=1

c2i .

An elementary application of Calculus shows that the ratio eλ2c/2/eλt attains the
minumum when λ = t/c. Therefore, substituting into Equation (

eqn:start
5.5),

Pr(Xn > t) ≤ min
λ>0

E[eλXn ]

eλt

= exp

(

− t2

2c

)

which ends the proof of Theorem
thm:azuma
5.8.
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Exercise 5.10 Derive a similar inequality for the case when the martingale con-
dition is replaced by the following:

|E[Yi | X i−1]| ≤ m,

for some non–negative real number m.

Exercise 5.11 Suppose the bounded differences condition is satisfied with prob-
ability at least 1 − ǫ for some ǫ > 0 i.e.

Pr[
∨

i∈[n]

|Xi −Xi−1| > ci] ≤ ǫ.

Show that

Pr(Xn > X0 + t) ≤ exp

(

− t2

2c

)

+ ǫ

and

Pr(Xn < X0 − t) ≤ exp

(

− t2

2c

)

+ ǫ

where c :=
∑n

i=1 c
2
i .

5.3 Generalizing Martingales and Azuma’s In-

equality.

It is useful to generalize the definition of martingale to the case when the random
variables under study might depend on another set of random variables.

def:martGen Definition 5.12 A sequence of random variables Y := Y0, Y1, . . . is a martingale
with respect to another sequence X := X0, X1, . . . if for each i ≥ 0,

Yi = gi(X i),

for some function gi and

E[Yi|X i−1] = Yi−1 i ≥ 1.

Example 5.13 Let us consider again example
example:mart
5.4, where a gambler starts with

an initial fortune of 0 and wagers a unit amount at repeated throws of a fair
die. In the notation of that example, the sequence S0, S1, . . . is a martingale with
respect to the sequence 0 =: X0, X1, X2, . . ., where Sn =

∑

i≤nXi for each n ≥ 0.
▽
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A very important example of this general definition of a martingale is provided
by the following definition and lemma.

def:doob Definition 5.14 The Doob sequence of a function f with respect to a sequence
of random variables X1, . . . , Xn is defined by

Yi := E[f |X i], 0 ≤ i ≤ n.

In particular, Y0 := E[f ] and Yn = f(X1, . . . , Xn).

prop:doob Proposition 5.15 The Doob sequence of a function defines a martingale. That
is,

E[Yi|Xi−1] = Yi−1 0 ≤ i ≤ n.

The proof is an immediate consequence of (
eq:cpprop3
5.4).

Example 5.16 [Edge exposure martingale] An important special case of defini-example:edgeExp
tion

def:doob
5.14 occurs in the context of the random graph Gn,p. This is the graph with

vertex set [n] and each edge {i, j}, i 6= j present with probability p independently
of all other edges. Let f :

(

[n]
2

)

→ R be a function on the edge set of the complete
graph Kn. For instance f could be the chromatic number or the size of the largest
clique. Number the edges from 1 to

(

n
2

)

in some arbitrary order and let Xj := 1 if
the jth edge is present and 0 otherwise. The Doob sequence of f with respect to
the variables Xj , j ∈ [

(

n
2

)

] is called the Edge exposure martingale. Intuitively,
we are exposing the edges one by one and observing the average value of f under
this partial information. ▽

Azuma’s inequality can be generalized to a sequence Y which is a martingale
w.r.t. another sequence X of r.v.’s.

thm:azumaGen Theorem 5.17 (Azuma’s Inequality– general version) Let Y0, Y1, . . . be a
martingale w.r.t. the sequence X0, X1, . . .. Suppose also that the Y satisfies the
Bounded Difference Condition with parameters ci, i ≥ 1. Then,

Pr(Yn > Y0 + t) ≤ exp

(

− t2

2c

)

and

Pr(Yn < Y0 − t) ≤ exp

(

− t2

2c

)

where c :=
∑n

i=1 c
2
i .
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Proof. The proof is almost identical to that of Theorem
thm:azuma
5.8. Assume without

loss of generality that Y0 := 0 and define the martingale difference sequence
Di := Yi − Yi−1, i ≥ 1. Then Yn = Yn−1 +Dn. As before,

Pr(Yn > t) ≤ min
λ>0

E[eλYn ]

eλt
.

Focus on the numerator E[eλYn ].

eq:enucleateE[eλYn ] = E[eλ(Yn−1+Dn)]

= E[E[eλ(Yn−1+Dn) | Xn−1]]

= E[eλYn−1
E[eλDn |Xn−1]].

The last line, the only place where the proof differs from that of Theorem
thm:azuma
5.8,

follows form (
eq:cpprop2
5.2) because Yn−1 = gn−1(Xn−1). The proof now proceeds identical

to that of Theorem
thm:azuma
5.8 provided Lemma

lm:convex
5.9 is invoked for the variables Z :=

(Dn|Xn−1). The verification that Z satisfies the hypotheses of Lemma
lm:convex
5.9 is

straightforward and is left as an exercise.

5.4 The Method of Bounded Differences

We shall now see how to apply Azuma’s Inequality to obtain a very powerful
and useful generalization of the CH-bounds. The link is provided by the Doob
martingale from which the following theorem emerges naturally.

thm:mobd Theorem 5.18 [The Method of Averaged Bounded Differences]
Let X1, . . . , Xn be an arbitrary set of random variables and let f be a function
satisfying the property that for each i ∈ [n], there is a non–negative ci such that

|E[f |X i] − E[f |X i−1]| ≤ ci. (5.8) eq:martdiff

Then,

Pr[f > Ef + t] ≤ exp

(

− t2

2c

)

and

Pr[f < Ef − t] ≤ exp

(

− t2

2c

)

where c :=
∑

i≤n c
2
i .
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This theorem is just a restatement of Theorem
thm:azumaGen
5.17 for the special case of the

Doob sequence Yi := E[f |X i], 0 ≤ i ≤ n. Notice that the Xi’s are not assumed to
be independent.

Some weaker but often more convenient versions of this bound will now be de-
duced.

def:abdc Definition 5.19 (Averaged Lipschitz Condition) A function f satisfies the
Averaged Lipschitz Condition (henceforth alc) with parameters ci, i ∈ [n] with
respect to the random variables X1, . . . , Xn if for any ai, a

′
i,

|E[f |X i−1, Xi = ai] − E[f |X i−1, Xi = a′i]| ≤ ci (5.9) eq:abdc

for 1 ≤ i ≤ n.

In words, the condition alc in (
eq:abdc
5.9) says: fix the first i−1 variables to some values,

let the ith variable take two different values and set the remaining variables at
random (according to the given distribution conditioned on the previous settings).
Then the difference between the two corresponding partial averages of f must be
bounded uniformly by ci.

cor:amobd Corollary 5.20 (The Method of Averaged Bounded Differences: Alternate Take)
Let f satisfy the alc condition with respect to the variables X1, . . . , Xn with pa-
rameters ci, i ∈ [n]. Then

Pr[f > Ef + t] ≤ exp

(

− t2

2c

)

and

Pr[f < Ef − t] ≤ exp

(

− t2

2c

)

where c :=
∑

i≤n c
2
i .

Proof. We shall show that if (
eq:abdc
5.9) holds then so does (

eq:martdiff
8.6). To see this, expand

using total conditional probability:

E[f | X i−1] =
∑

a

E[f | X i−1, Xi = a]Pr[Xi = a | X i−1],

and write
E[f | X i] =

∑

a

E[f | X i]Pr[Xi = a | X i−1].
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Hence,

|E[f | X i−1] − E[f | X i]| =

|
∑

a

(E[f | X i−1, Xi = a] − E[f | X i])Pr[Xi = a | X i−1]|

≤
∑

a

|E[f | X i−1, Xi = a] − E[f | X i]|Pr[Xi = a | X i−1]

≤
∑

a

ci · Pr[Xi = a | X i−1]

= ci.

Exercise 5.21 Show that if for each i ∈ [n],

|E[f |X i] − E[f |X i−1]| ≤ ci,

. then for any ai, a
′
i,

|E[f |X i−1, Xi = ai] − E[f |X i−1, Xi = a′i]| ≤ 2ci.

That is, the two alternate takes of the Method of Averaged Bounded Differences
are virtually the same but for a factor of 2.

A further significant simplification obtains from the following definition.

def:lipshitz Definition 5.22 A function f(x1, . . . , xn) satisfies the Lipshitz property or
the Bounded Differences Condition (bdc) with constants di, i ∈ [n] if

|f(a) − f(a′)| ≤ di, (5.10) eq:lipschitz

whenever a and a′ differ in just the i-th coordinate, i ∈ [n].

In words, the condition bdc says: the difference between the values of f on two
inputs that differ in only the ith co–ordinate is bounded uniformly by di. This
is exactly like the usual Lipschitz condition in the setting where the underlying
metric is the Hamming distance.

cor:simpleMobd Corollary 5.23 (Method of Bounded Differences) If f satisfies the Lipshitz
property with constants di, i ∈ [n] and X1, . . . , Xn are independent random vari-
ables, then,

Pr[f > Ef + t] ≤ exp

(

− t2

2d

)
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and

Pr[f < Ef − t] ≤ exp

(

− t2

2d

)

where d :=
∑

i≤n d
2
i .

Proof. For typographical convenience let X i+1 be shorthand notation for the
sequence Xi+1, . . . , Xn. And let X i+1 = ai+1 denote the componentwise equality
for the two sequences. We show that if f satisfies the Lipschitz condition with
parameters ci, i ∈ [n], then (

eq:abdc
5.9) holds. To see this, expand using total conditional

probability to get

E[f | X i−1, Xi = a] =
∑

ai+1,...,an

E[f | X i−1, Xi = a,X i+1 = ai+1]Pr[X i+1 = ai+1 | X i−1, Xi = a]

=
∑

ai+1,...,an

E[f | X i−1, Xi = a,X i+1 = ai+1]Pr[X i+1 = ai+1], by independence,

=
∑

ai+1,...,an

f(X i−1, a, ai+1, . . . , an)Pr[X i+1 = ai+1].

Put a := ai, a
′
i successively and take the difference. Then,

|E[f | X i−1, Xi = ai] − E[f | X i−1, Xi = a′i]| =

|
∑

ai+1,...,an

f(X i−1, ai,a
i+1) − f(X i−1, a

′
i,a

i+1)Pr[X i+1 = ai+1]|

≤
∑

ai+1,...,an

|f(Xi−1, ai, ai+1, . . . , an) − f(Xi−1, a
′
i, ai+1, . . . , an)|Pr[X i+1 = ai+1]

≤
∑

ai+1,...,an

ci · Pr[X i+1 = ai+1], by the Lipschitz property,

= ci.

Some comments are in order about the three different versions of the “Method
of Bounded Differences”.

Corollary
cor:simpleMobd
5.23 is usually referred to in the literature as the Method of Bounded

Differences. This is because it is the most convenient one to apply. The bdc
condition is very attractive and easy to check. It also makes the result intuitive:
if f does not depend on any one argument, then it is not likely to be far from
its expectation when the inputs are set at random. However, there are two
drawbacks: first the variables X1, . . . , Xn must be independent. Second, the
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parameters di in the bdc condition might be too large and consequently the
bound might turn out too weak to be useful.

It might be the case that the bdc condition holds for f with small parameters di

except for a small set of exceptional instances. In that case, it is unfair to “pe-
nalise” f with the “worst–case” larger parameters strictly demanded by the bdc
condition. Rather, one should take an average, and this is the purpose of the alc
condition. The parameters ci required for the alc condition are always bounded
by the parameters di required for the bdc condition, and often ci ≪ di. In the
latter case, the bound obtained from Corollary

cor:amobd
5.20, The Method Of Average

Bounded Differences will be significantly better than that from Corollary
cor:simpleMobd
5.23,

the Method of Bounded Differences.

Theorem
thm:mobd
5.18 is the most powerful version of the method: the parameters required

for the martingale differences condition are always bounded by the parameters re-
quired by the alc condition, and hence the probability bound is always stronger.

The price to be paid however, is that both the martingale differences condition
and the alc condition can be quite difficult to check for an arbitrary f compared
with the simple bdc condition. If f can be decomposed as a sum, linearity of
expectation can be used to simplify the computation as we shall demonstrate on
some examples in the next chapter.

Note crucially, that in both Theorem
thm:mobd
5.18 and in Corollay

cor:amobd
5.20, the variables

are not required to be independent. This greatly increases the scope of their
applicability as we shall demonstrate in several examples in the next chapter.

We now develop familiarity with these tools by applying them to several different
situations in the next chapter.

5.5 Bibliographic Notes

Martingales ae a classic subject treated in many standard texts on Probability
such as Grimmett and Stirzaker

GS93
[24][Ch.7,12]. The Method of Bounded Differ-

ences and its applications to problems of combinatorics and discrete mathematics
is covered in a well–known survey of the same name by C. McDiarmid

McD89
[48]. Both

these are couched in measure–theoretic terminology. A more elementary account
can be found in Alon and Spencer

AS92
[1].
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5.6 Problems

Problem 5.24 Let X0, X1, . . . be random variables such that the partial sums
Sn := X1 + . . . + Xn determine a martingale with respect to X. Show that
E[XiXj ] = 0 if i 6= j. ▽

Problem 5.25 (Sampling without replacement). Consider an urn contain-
ing N balls out of which M are red. Balls are drawn without replacement. Show
that the sequence of random variables denoting the fraction of red balls remaining
in the urn defines a martingale. Derive a concentration result. ▽

Problem 5.26 Let X0, X1, . . . be a sequence of random variables with finite
means satisfying

E[Xn+1 | X0, . . . , Xn] = aXn + bXn−1, n ≥ 1

where 0 < a, b < 1 and a+ b = 1. Find a value of α for which Sn := αXn +Xn−1

determines a martingale with respect to X. ▽

We shall generalise the definition of a martingale even further to be able to define
the so–called vertex exposure martingale in a random graph.

def:martgen2 Definition 5.27 A sequence Y := Y0, Y1, . . . is a martingale with respect to a
sequence X := X0, X1, . . . if there is an increasing sequence 0 ≤ k0 ≤ k1 ≤ . . .
such that Yi = gi(Xki

), i ≥ 0 for some function gi and E[Yi | Xki−1
] = Yi−1.

Problem 5.28 [Vertex Exposure Martingale] Use Definition
def:martgen2
5.27 to define a

martingale in the random graph Gn,p corresponding to revealing the edges in n
stages where at the ith stage we reveal all edges incident on the first i vertices.
▽

Problem 5.29 [Azuma generalised further] Show that Azuma’s inequality can
be generalised to apply to the Definition

def:martgen2
5.27 of a martingale. ▽

Problem 5.30 [Azuma and Centering Sequences
McD97
[49]] A sequence of random

variables Xi, i ≥ 0 is called a centering sequence if E[Xi+1 − Xi | Xi = t] is a
non-increasing function of t.
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(a) Show that Azuma’s inequality applies to a centering sequence with bounded
differences.

(b) Let Xi, i ≥ 0 be the number of red balls in a random sample of size i picked
without replacement from n objects r of which are red. Show that the
Xi, i ≥ 0 form a centering sequence and derive a concentration result on
Xk for any k ≤ n.

▽

Problem 5.31 [Negative Regression and MOBD
DR98
[16]]

(a) Show that the MOBD applies when the underlying variables satisfy the
negative regression condition (

eq:negreg
??).

(b) Consider a random sample of size k drawn from n objects r of which are
red, and let Xi, i ≤ k be the indicator for whether the ith draw was red.
Show that X1, · · ·Xk satisfy (−R) and deduce a sharp concentration on the
number of red balls int he sample.

▽
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Chapter 6

The Method of Bounded
Differences

[The Method of Bounded Differences]ch:mobd-appl

In this chapter we shall see the “Method of Bounded Differences” in action by
applying it to various examples. We shall see that in some cases, it suffices to
apply the method in the simplest form whereas in others, the more powerful
version is required to get meaningful bounds.

6.1 Chernoff–Hoeffding Revisited
sec:chrevisted

Let X1, . . . , Xn be independent variables taking values in [0, 1], and consider
f(x1, . . . , xn) :=

∑

i xi. Then of course f has the Lipshitz property with each
di = 1 in (

eq:lipschitz
5.10) and we get for X := X1 + · · ·+Xn, the bound:

Pr[|X − E[X]| > t] ≤ 2e
−t2

2n ,

which is only off by a factor of 4 in the exponent from the Chernoff–Hoeffding
bound.

Exercise 6.1 Remove the factor of 4 by applying the method of bounded martin-
gale differences.

91
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6.2 Stochastic Optimization: Bin Packing
eq:binpack

The bin packing problem is a well–studied combinatorial optimization problem:
we are given n items of sizes in the interval [0, 1] and are required to pack them
into the fewest number of unit–capacity bins as possible. In the stochastic version,
the item sizes are independent random variables in the interval [0, 1]. Let Bn =
Bn(x1, . . . , xn) denote the optimum value, namely the minimum number of bins
that suffice. Then clearly the Lipshitz condition holds with constant 1 and we
get the concentration result:

Pr[|Bn − E[Bn]| > t] ≤ 2e
−t2

2n .

It can be shown that E[Bn] = βn for some constant β > 0, hence we deduceIs this hard to
show? Citation
needed

that Pr[|Bn − E[Bn]| > ǫE[Bn]] decreases exponentially in n. This straighforward
application of the martingale technique vastly improved previous results on this
problem.

Exercise 6.2 Let BFF
n denote the number of bins that would be needed if one

applied the first–fit heuristic. Give a sharp concentration result on BFF
n . (The

first-fit heuristic places the items one by one, with the current item being placed
in the first available bin.)

6.3 Game Theory and Blackwell’s Approacha-

bility Theorem

Consider anon-collaborative two-player game given by a matrix M with n rows
and m columns. There are two players, the row player and the column player.
The row player chooses a row i and simultaneously, the column player chooses a
column j. The selected entry M(i, j) is theloss suffered by the row player. We
asuume for simpliciry that the entries in M are bounded in the range [0, 1].

By standard game theoretic terminology, the choice of a specific row or column
is called a pure strategy and a distribution over the rows or columns is called a
mixed strategy. We will use P to denote the strategy of the row player and Q

to denote the strategy of the column player. P (i) denotes the probability with
which row i is selected and similarly Q(j) the probability with which column j is
selected. We write M(P ,Q) := P T MQ to denote the expected loss of the row
player when the two players use the strategies P and Q respectively.

Consider now a repeated play of the game. That is, the two players play a
series of rounds of interactions. At round t ≥ 0, the row player picks a row It
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using strategy P independently of the earlier rounds, and simultaneously, the
column player picks a column Jt using startegy Q independently. The total loss
suffered by the row player after T rounds is

∑

0≤t≤T M(It, Jt).whose expectation
is TM(P ,Q). Since each netry of M is bounded in [0, 1], changing any one of
the underlying choice changes the total loss by at most 1. Hence, applying the
MOBD,

Pr[|
∑

0≤t≤T

M(It, Jt) − TM(P ,Q)| > ǫT ] ≤ 2e−2ǫ2T ,

for any ǫ > 0.

A powerful generalization of this setting is that in Blackwell’s Approachability
Theorem

Black56
[5], see also

FS99, FV99
[18, 17]. In this case, the payoff M(i, j) is a vector in some

compact space. In this space, there is a convex set G called the target set. The
goal of the row player is to force the average payoff AT :=

∑

0≤t≤T M(It, Jt)/T
to approach G arbitrarily closely.

Let d(AT , G) denote the distance from the average playoff to the closest point
in the set G. If d(AT , G) → 0 almost surely as T → ∞, then the set G is
said to be approachable. Blackwell gave a necessary and sufficient condition
for a convex set to be approchable: a convex set G is approachable iff every
tangent hyperplane to G is approachable Assuming that any tangent hyperplane
is approcahble, it can be shown that E[d(AT , G)] → 0. To get the conclusion
of Blackwell’s Theorem, we then use the MOBD to show that at each time T ,
d(AT , G) is sharply concentrated around its expectation. This follows effortlessly
from the MOBD: at each stage T , changing any one choice of the strategies so far
can change the value of AT by at most D/T where D is the maximum distance
between any two points in the payoff space (finite because of compactness). Thus,
Pr[|d(AT , G) − E[d(AT , G)]| > t] ≤ 2e−t2T/D.

6.4 Balls and Bins
sec:ballsbins RSA paper

improve
writeup?In the classical balls and bins experiment, m balls are thrown independently at

random into n bins (usually m ≥ n) and we are interested in various statistics of
the experiment, for instance, the number of empty bins. Let Zi, i ∈ [n] denote
the indicator variables

Zi :=

{

1, if bin i is empty,

0, otherwise.

Then, the variable we are interested in is the sum Z :=
∑

i Zi.
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Exercise 6.3 Show that µ := E[Z] = n
(

1 − 1
n

)m ≈ ne−m/n.

ex:zi Exercise 6.4 Show that the Zi’s are not independent.

In view of Exercise
ex:zi
6.4 we cannot apply the Chernoff bounds. In order to get

a sharp concentration result, we can use the method of bounded differences in
simple form. Consider Z as a function Z(X1, . . . , Xm) where, for k ∈ [m], Xk is
a random variable taking values in the set [n] and indicating the bin that ball k
lands in.

Let’s check that the function Z satisfies the Lipschitz condition with constant 1.
Denoting by bk the bin in which the k-th balls falls into, the condition

|Z(b1, . . . , bi−1, bi, bi+1, . . . , bm) − Z(b1, . . . , bi−1, b̂i, bi+1, . . . , bm)| ≤ 1

simply says that if the i-th ball is moved from one bin to another, keeping all
other balls where they are, the number of empty bins can at most either go up
by one or down by one. Hence, we have the bound:

Pr[|Z − E[Z]| > t] ≤ 2 exp

(−t2
2m

)

. (6.1) eq:emptybins1

6.5 Distributed Edge Colouring
sec:mobd-ec-1

In this section, we consider algorithms for the problem of edge–colouring a graph.
Apart from its intrinsic interest as a classical combinatorial problem, edge colour-
ing is often useful because of its connection to scheduling. Here we will discuss
a distributed edge colouring algorithm that allows a distributed network to com-
pute an edge colouring of its own (unknown) topology. In distributed networks
or architectures this might be useful, for a matching often corresponds to a set of
data transfers that can be executed simultaneously. So, a partition of the edges
into a small number of matchings– i.e. a “good” edge colouring– gives an efficient
schedule to perform data transfers (for more details, see

PS97,DGP
[58, 13]).

Vizing’s Theorem shOws that every graph G can be edge coloured in polynomial
time with ∆ or ∆ + 1 colours, where ∆ is the maximum degree of the input
graph (see, for instance,

Bol
[7]). It is a challenging open problem whether colourings

as good as these can be computed fast in parallel. In absence of such a result
one might aim at the more modest goal of computing reasonably good colourings,
instead of optimal ones. By a trivial modification of a well-known vertex colouring
algorithm of Luby it is possible to edge colour a graph using 2∆− 2 colours

Luby
[40].
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In this section we shall present and analyze two classes of simple distributed
algorithms that compute near-optimal edge colourings.Both algorithms proceed
in a sequence of rounds. In each round, a simple randomized heuristic is invoked
to colour a significant fraction of the edges successfully. This continues until the
number of edges is small enough to employ a brute-force method at the final step.

One class of algorithms involves a reduction to bipartite graphs: the graph is
split into two parts, T (“top”) and B (“bottom”) . The induced bipartite graph
G[T,B] is coloured using the algorithm P below. then the algorithm is recursively
applied to the induced graphs G[T ] and G[B] using a fresh set of colours (the
same for both). Thus it suffices to describe this algorithm for bipartite graphs.

We describe the action carried out by both algorithms in a single round. For
the second class of algorithms, we describe its action only on bipartite graphs
(additionally we assume each vertex “knows” if it is “bottom” or “top”).

At the start of each round, there is a palette of available coloure [∆] where ∆ is
the maximum degree of the graph at that stage. For simplicity we will assume
the graph is ∆-regular.

Algorithm I (Independent): Each edge independently picks a tentative colour.
This tentative colour becomes permanent if there are no conflicting edges that
pick the same tentative colour at either endpoint.

Algorithm P(Permutation): This is a two-step protocol:

1. Each bottom vertex. in parallel independently of the others, makes a pro-
posal by assigning a permutation of the colours to its incident edges chosen
uniformly at random.

2. Each top vertex, in parallel, then picks a winner out of each set of incident
edges that have the same colour. The tentative colour of the winner becomes
final. The losers i,e, the edges which are not winners are decoloured and
passed on to the next round.

For the purposes of the high probbaility analysis, the exact rule used to select
winners is not relevant - any rule (deterministic or randomized) that picks one
winner out of the degs of a particular colour may be used. This illustrates agian,
the power of the martingale method.

It is apparent that both classes of algorithms are distributed. That is to say, each
vertex need only exchange information with the neighbours to execute the algo-
rithm. This and its simplicity make the algorithm amenable for implementations
in a distributed environment.
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We focus our attention on one round of both algorithms. Let ∆ denote the
maximum degree of the graph at the start of a round and ∆′ the maximum
degree of the remaining graph pased on to the next round.. It is easy to show
that for both algorithms, E[∆′ | ∆] ≤ β∆ for some constant β < 1. For algorithm
I, β = 1 − 1/e2 whereas for algorithm P, β = 1/e. The goal is to show that in
fact ∆′ is sharply concentrated around this value.

For completeness, we sketch a calculation of the total number of colours bc(∆)
used by algorithm P on a graph with maximum degree ∆: is, with high proba-
bility,

bc(∆) = ∆ +
(1 + ǫ)∆

e
+

(1 + ǫ)2∆

e

2

+ . . .

≤ 1

1 − (1 + ǫ)e
≈ 1.59, for small enough ǫ.

To this, one should add O(logn) colours at the end of the recursion. As it can
be seen by analizing the simple recursion describing the number of colours used
by the outer level of the recursion, the overall numbers of colours is the same
1.59∆ +O(logn),

PS97
[58].

We now switch to the high probability analysis. The analysis which is published
in the literature is extremely complicated and uses a certain ad hoc extension
of the Chernoff–Hoeffding bounds

PS97
[58]. The ease with which the algorithm can

be analyses with the method of bounded average differences, as shown below,
testifies to its power.

6.5.1 Top vertices

The analysis is particularly easy when v is a top vertex in algorithm P . For, in
this case, the incident edges all receive colours independently of each other. This
is exactly the situation of the balls and bins experiment: the incident edges are the
“balls” that are falling at random independently into the colours that represent
the “bins”. One can apply the method of bounded differences in the simplest
form. Let Te, e ∈ E, be the random variables taking values in [∆] that represent
the tentative colours of the edges. Then the number of edges successfully coloured
around v is a function f(Te, e ∈ N1(v)), where N1(v) denotes the set of edges
incident on v.

Exercise 6.5 Show that this function has the Lipschitz property with constant 2.
(Note that this is true regardless of the rule used to select winners.)
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Moreover, the variables Te, e ∈ N1(v) are independent when v is a “top” vertex.
Hence, by the method of bounded differences,

Pr[|f − E[f ]| > t] ≤ exp

(−t2
2∆

)

,

which for t := ǫ∆ (0 < ǫ < 1) gives an exponentially decreasing probability for
deviations around the mean. If ∆ ≫ log n then the probability that the new
degree of any vertex deviates far from its expected value is inverse polynomial,
i.e. the new max degree is sharply concentrated around its mean.

6.5.2 The Difficulty with the Other Vertices

The analysis for the “bottom” vertices in algorithm P is more complicated in
several respects. It is useful to see why so that one can appreciate the need
for using a more sophisticated tool such as the MOBD in average form. To
start with, one could introduce an indicator random variable Xe for each edge
e incident upon a bottom vertex v. These random variable are not independent
however. Consider a four cycle with vertices v, a, w, b, where v and w are bottom
vertices and a and b are top vertices. Let’s refer to th eprocess of selecting the
winner (step 2 of the bipartite colouring algorithm) as “the lottery”. Suppose
that we are given the information that edge va got tentative colour red and lost
the lottery— i.e. Xva = 0— and that edge vb got tentative colour green. We’ll
argue intuitively that given this, it is more likely that Xvb = 0. Since edge va
lost the lottery, the probability that edge wa gets tentative colour red increases.
In turn, this increases the probability that edge wb gets tentative colour green,
which implies that edge vb is more likely to lose the lottery. So, not only are the
Xe’s not independent, but the dependency among them is malicious.

One could hope to bound this effect by using the MOBD in it simplest form.
This is also ruled out however, for two reasons. The first is that the tentative
colour choices of the edges around a vertex are not independent. This follows
from the fact that edges are assigned a permutation of the colours. Or, put in
another way, each edge is given a colour at random, but colours are drawn without
replacement. The second reason, which applies also to algorithm I, is that the
new degree of a bottom vertex v is a function f which might depend on as many
as ∆(∆ − 1) = Θ(∆2) edges. Even if f is Lipshitz with constants di = 1, this is
not enough to get a strong enough bound because d =

∑

i d
2
i = Θ(∆2). Applying

the method of bounded difference in simple form (Corollary
cor:simpleMobd
5.23) would give the

bound

Pr[|f − E[f ]| > t] ≤ 2 exp

(

− t2

Θ(∆2)

)

.
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This bound however is useless for t = ǫE[f ] since E[f ] ≈ ∆/e.

In the next chapter, we shall see how the Method of Averaged Bounded Dif-
ferences can be applied to get a good concentration bound for the “bottom”
vertices.

6.6 Problems
begin new

mobd-appl:ec Problem 6.6 Consider Algorithm I of § sec:mobd-ec-1
6.5 acting on d-regular graphs with

girth at least 4 (the girth of a graph is the length of its smallest cycles). Use the
MOBD in simplest form to show that the new vertex degree after one round is
sharply concentrated around its expected value (the new vertex degree is given
by the edges that do not colour themsleves). ▽

end new

Problem 6.7 (From
AS92
[1], p.92) Let ρ be the Hamming metric on H := {0, 1}n.

For A ⊆ H , let B(A, s) denote the set of y ∈ H so that ρ(x, y) ≤ s for some
x ∈ A. (A ⊆ B(A, s) as we may take x = y.) Show that if ǫ, λ > 0 satisfy e−λ2/2

then,
|A| ≥ ǫ2n ⇒ |B(A, 2λ

√
n)| ≥ (1 − ǫ)2n.

▽

Problem 6.8 (From
AS92
[1], p.91) Let B be a normed space and let v1, . . . , vn ∈ B

with |vi| ≤ 1 for each i ∈ [n]. Let ǫ1, . . . , ǫn be independent and uniform in
{−1,+1}. Set f := |∑i ǫivi|. Show that f is Lipschitz and deduce a sharp
concentration result. Can you improve this by using the method of bounded
martingale differences? ▽

prob:meanmedian Problem 6.9 [Concentration around the Mean and the Median]
Show that the following forms of the concentration of measure phenomenon for
a function f defined on a space are all equivalent:

• There exists a a such that for all t > 0,

Pr[|f − a| > t] ≤ k1e
−δ1t2 .

• For all t > 0,
Pr[|f − E[f ]| > t] ≤ k2e

−δ2t2 .
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• For all t > 0
Pr[|f − M[f ]| > t] ≤ k3e

−δ3t2 .

(Here M[f ] is a median of f .)

Moreover, show that all kis are linearly related to each other and so are the δs.
▽

Problem 6.10 [Geometric Probability] Let Q be a given point in the unit squareprob:geomprob
[0, 1]2 and let P1, . . . , Pl be l points chosen uniformly and independently at ran-
dom in the unit square. Let Z denote the shortest distance from Q to one of the
points P1, . . . , Pl.
(a) Observe that if Z > x, then no Pi lies within the circle C(Q, x) centered at
Q with radius x. Note that x ≤

√
2.

(b) Argue that there is a constant c such that for all x ∈ (0,
√

2], the intersection
of C(Q, x) with the unit square has area at least cx2. Hence deduce that

Pr[Z > x] ≤ (1 − cx2)l, x ∈ (0,
√

2].

(c) Integrate to deduce that E[Z] ≤ d/
√
l for some constant d > 0. ▽

Problem 6.11 [Isoperimetry in the Cube] A Hamming ball of radius r centeredprob:isocube
at a point c in the cube {0, 1}n is the set of all points at distance at most
r − 1 and some points at distance r from c. A beautiful result of Harper states
that for any two subsets X and Y in the cube, one can find Hamming balls
B0 centered at 0 and B1 centered at 1 such that |B0| = |X|, |B1| = |Y |, and
dH(B0, B1) ≥ dH(X, Y ). Use this result and the Chernoff bound to show that if
A is a subset in the cube of size at least 2n−1, then |At| ≥ (1 − e−t2/2n)2n. ▽

Problem 6.12 [Sampling without replacement] Show that the sequence Mi

Ni
, i ≥

0 is a martingale. Apply Azuma’s inequality to deduce a sharp concentration
result on the number of red balls drawn in a sample of size n. ▽
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Chapter 7

The Method of Averaged
Bounded Differences

ch:mobd-appl-2

Sometimes, the function f for which we are trying to show a concentration result
does not satisfy the conditions needed to apply the simple MOBD: the Lipschitz
coefficients are simply too large in the worst case. The function is not “smooth”
in this ense in the worst case. We saw this for example in the analysis of the “top”
vertices in the distributed edge colouring example. In such cases, the Method of
Average Bounded Differences can be deployed needing only an averged smooth-
ness condiiton. That is, we need a bound on the follwing averaged smoothness
coeffciients:

|E[f | X i−1, Xi = ai] − E[f | X i−1, Xi = a′i]| , (7.1) eq:azuma-diff

or, the similar

|E[f | X i−1, Xi = ai] − E[f | X i−1, Xi = a′i]| , (7.2) eq:azuma-diff-2

At first glance, getting a handle on this appears formidable, and indeed it is often
non-trivial. We illustrate three main approaches to this:

1. Direct computation is sometimes possible (using linearity of expectation for
example).

2. Coupling which is a very versatile tool for comparing two closely related
distributions such as in (

eq:azuma-diff
7.1) or (

eq:azuma-diff-2
7.2)

3. Bounding the difference by conditioning on the non-occurence of some rare
“bad” events.

101
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7.1 Hypergeometric Distribution

The hypergeometric distribution describes the number of red balls drawn in an
experiment where n balls are sampled without replacement from a bin containing
N balls, M of which are red. This can be regarded as a function f(X1, . . . , Xn)
whereX1, . . . , Xn are independent random variables, the variableXi taking values
in the set [N − i+ 1] for i ∈ [n] giving the number of the ball drawn on the ith
trial. To estimate |E[f | X i] − E[f | X i−1]|, let Ni−1 be the total number of balls
and Mi−1 the number red balls at the stage when the ith ball is drawn, for i ∈ [n].
Thus N0 = N,M0 = M and Ni = N − i. Observe that

E[f | X i] = (M −Mi) +
Mi

Ni

(n− i),

and furthermore that Mi−1 −Mi ≤ 1. From this, we conclude that

|E[f | X i] − E[f | X i−1]| ≤ max

(

Mi−1

Ni−1

, 1 − Mi−1

Ni−1

)

N − n

N − i

≤ N − n

N − i
.

Furthermore

∑

i

(

N − n

N − i

)2

= (N − n)2
∑

i

1

(N − i)2

= (N − n)2
∑

N−n≤j≤N−1

1

j2

≈ (N − n)2

∫ N−1

N−n

1

x2
dx

= (N − n)
n− 1

N − 1
.

Thus we get the bound:

Pr[|f − E[f ]| > t] ≤ exp

( −(N − 1)t2

2(N − n)(n− 1)

)

.

Thus with t := ǫE[f ] and E[f ] = M
N
n, we getCommentary?

Pr[|f − M

N
n| > ǫ

M

N
n] ≤ exp

(

−ǫ2M
N

M

N − n
n

)

.
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7.2 Occupancy in Balls and Bins

recall the bound:

Pr[|Z − E[Z]| > t] ≤ 2 exp

(−t2
2m

)

.,

on the concentration of the number of empty bins when we throw m balls inde-
pendently and uniformly at random into n bins. A better bound can be obtained
by applying the method of bounded average differences. Now we need to compute

ck := |E[Z | Xk−1, Xk = bk] − E[Z | Xk−1, Xk = b′k]|

for k ∈ [m]. By linearity of expectation, this reduces to computing for each
i ∈ [n], ci,k := |E[Zi | Xk−1, Xk = bk] − E[Zi | Xk−1, Xk = b′k]|.

Let us therefore consider for each i ∈ [n],and for some fixed set of bins b1, . . . , bk, b
′
k

(bk 6= b′k),

ci,k = |E[Zi | Xk−1 = bk−1, Xk = bk] − E[Zi | Xk−1 = bk−1, Xk = b′k]|.

Let S := {b1, . . . , bk−1}.

• If i ∈ S, then of course,

E[Zi | Xk−1 = bk−1, Xk = bk] = 0 = E[Zi | Xk−1 = bk−1, Xk = b′k].

and so ci,k = 0.

• If i 6∈ S and i 6= b, then

E[Zi | Xk−1 = bk−1, Xk = b] = (1 − 1/n)m−k ,

Hence, for i 6∈ S ∪ {bk, b′k}, we have ci,k = 0.

• Finally, if i = bk 6∈ S, , then of course E[Zi | Xk−1 = bk−1, Xk = bk] = 0 but
if b′k 6∈ S

E[Zi | Xk−1 = bk−1, Xk = b′k] = (1 − 1/n)m−k.

Hence ci,k = (1 − 1/n)m−k in this case.

Overall, we see that ck =
∑

i ci,k ≤ (1 − 1/n)m−k and

∑

k

c2k ≤ 1 − (1 − 1/n)2m

1 − (1 − 1/n)2
=
n2 − µ2

2n− 1
.



DRAFT

104 CHAPTER 7. AVERAGED BOUNDED DIFFERENCES

This gives the bound:

Pr[|Z − E[Z]| > t] ≤ 2 exp

(

−t
2(n− 1/2)

n2 − µ2

)

.

Asymptotically in terms of r := m/n, this is How does it
compare to the
previous
bound?2 exp

(

− t2

n(1 − e−2r)

)

.

7.3 Stochastic Optimization: TSP
sec:tsp

A travelling salesman is required to visit n towns and must choose the shortest
route to do so. This is a notoriously difficult combinatorial optomization problem.
A stochastic version in two dimensions asks for the shortest route when the points
Pi := (Xi, Yi), i ∈ [n] are chosen uniformly and independently in the unit square,
[0, 1]2 (i.e. each Xi and Yi is distributed uniformly and independently in [0, 1]).

Let Tn = Tn(Pi, i ∈ [n]) denote the length of the optimal tour. A celebratedBy whom is
the result?
And, who is
celebrating?

result shows that E[Tn] = β
√
n for some β > 0. What about a sharp concentra-

tion result? A straightforward approach is to observe that Tn has the Lipschitz
property with constant at most 2

√
2 (imagine that all except one point are in one

corner and the last is in the opposite corner). Hence, we have the boundIs the
computation
correct?
Shouldn’t be
the
denominator
be 8 ?

Pr[|Tn − E[Tn]| > t] ≤ exp

( −t2
2
√

2n

)

. (7.3) eq:tsp1

Note that since E[Tn] = β
√
n, this bound is no good for small deviations around

the mean i.e. for t = ǫE[Tn].

For a better bound, we shall turn to the method of bounded martingale differ-
ences. Let Tn(i) denote the length of the shortest tour through all points except
the ith for i ∈ [n].

Now we observe the crucial inequality that

Tn(i) ≤ Tn ≤ Tn(i) + 2Zi, i < n, (7.4) eq:sandwich

where Zi is the shortest distance from point Pi to one of the points Pi+1 through
Pn. The first inequality follows because, denoting the neighbours of Pi in Tn by
P and Q, the tour obtained by joining P and Q directly excludes Pi and, by the
triangle inequality, has length less than Tn. For the second inequality, suppose
Pj, j > i is the closest point to Pi. Now take an optimal tour of all points except
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Pi and convert it into a tour including Pi by visiting Pi after reaching Pj and
returning to Pj. This is not a tour but can be converted into one by taking a
short–cut to the next point after Pj . The length of the resulting tour is no more
than Tn(i) + 2Zi by the triangle inequality.

Taking conditional expectations in (
eq:sandwich
7.4), we get:

E[Tn(i) | P i−1] ≤ E[Tn | P i−1] ≤ E[Tn(i) | P i−1] + 2E[Zi | P i−1],

E[Tn(i) | P i] ≤ E[Tn | P i] ≤ E[Tn(i) | P i] + 2E[Zi | P i].

Note that E[Tn(i) | P i] = E[Tn(i) | P i−1]. Hence, we conclude,

|E[Tn | P i] − E[Tn | P i−1]| ≤ 2 max(E[Zi | P i−1], E[Zi | P i]), i ≤ n.

Computing E[Zi | P i] is the following question: given a pointQ in [0, 1], what is its
shortest distance to one of a randomly chosen set of n−i points? Computing E[Zi |
P i−1] is the same, except the point Q is also picked at random. This exercise is
relegated to Problem

prob:geomprob
6.10. The answer is that E[Zi | P i], E[Zi | P i−1] ≤ c/

√
n− i

for some constant c > 0. Finally, taking the trivial bound |E[Tn | P n] − E[Tn |
P n−1]| ≤ 2

√
2 we get

Pr[|Tn − E[Tn]| > t) ≤ 2 exp

( −t2
2(8 +

∑

i<n 4c2/(n− i))

)

≤ 2 exp

(−at2
log n

)

, (7.5) eq:tsp2

for some a > 0. Compare (
eq:tsp2
7.5) to (

eq:tsp1
7.3); in particular, note that the former

together with E[Tn] = β
√
n yields

Pr[|Tn − β
√
n| > ǫ

√
n] ≤ 2 exp

(−bǫ2n
logn

)

,

for some b > 0 and all ǫ > 0.

We shall see later that this bound can be further improved by removing the log n
factor. But that will need a new method!

7.4 Coupling

An elegant and effective device to do this is a coupling : suppose we can find a
joint distribution π(Z,Z ′) such that
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1. The marginal distribution π(Z) is identical to the distribution of (X |
X i−1, Xi = ai], and

2. The marginal distribution π(Z ′) is identical the distribution of (X | X i−1, Xi =
a′i]

Such a joint distribution is called a coupling of the two distributions (X | X i−1, Xi =
ai] and (X | X i−1, Xi = a′i].

Then,

|E[f | X i−1, Xi = ai] − E[f | X i−1, Xi = a′i]| =

= |Eπ[f(Z)] − Eπ[f(Z ′)]|
= |Eπ[f(Z) − f(Z ′)]| (7.6) eq:coup-bound

Suppose further that the coupling is chosen well so that |f(Z) − f(Z ′)| is usually
very small. Then we can get a good bound on (

eq:azuma-diff
7.1). For example, suppose that

1. For any sample point (z, z′) which has positive probability in the joint
space, |f(z) − f(z′)| ≤ d, and

2. Pr[f(Z) 6= f(Z ′)] ≤ p,

with both d and p “small”. Then, from (
eq:coup-bound
7.6), we get:

|E[f | X i−1, Xi = ai] − E[f | X i−1, Xi = a′i]| ≤ pd.

We will construct such good couplings below. However, first we give some simple
examples to get used to the concept of a coupling.

Example 7.1 Suppose we perform two independent trials of tossing a coin n
times, the first with a coin of bias p of turning up heads and the second with bias
p′ ≥ p. Intuitively it is clear that we expect to get more heads in the second case.
To make this rigorous, let X1, · · · , Xn be the indicator variables corresponding
to getting a heads with the first coin and X ′

1, · · · , X ′
n the corresponding ones for

the second coin. We would like to assert that for any t ≥ 0,

Pr[X1 + · · · +Xn > t] ≤ Pr[X ′
1 + · · ·+X ′

n > t].

To do this, we will introduce a coupling of the two distributions i.e. we will define
a joint distribution π(Z1, · · · , Zn, Z

′
1, · · · , Z ′

n) such that π(Z1, · · · , Zn) has the
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same distribution as (X1, · · · , Xn) and π(Z ′
1, · · · , Z ′

n) has the same distribution
as (X ′

1, · · · , X ′
n), and moreover, at each point of the sample space, Zi ≤ Z ′

i, i ∈ [n].
Then,

Pr[X1 + · · · + xn > t] = π[Z1 + · · · + Zn > t]

≤ π[Z ′
1 + · · · + Z ′

n > t]

= Pr[X ′
1 + · · · +X ′

n > t]

Now for the construction of the coupling. Recall that Pr[Xi = 1] = p ≤ p′ =
Pr[X ′

i = 1] for each i ∈ [n]. We define the joint distribution π(Z1, · · · , Zn, Z
′
1, · · · , Z ′

n)
be specifying the distribution of each pair (Zi, Z

′
i) independently for each i ∈ [n].

The distribution π is the product of these marginal distributions. For each i ∈ [n],
first toss a coin with bias p of turning up heads. If it shows heads, set Zi = 1 = Z ′

i.
Otherwise, toss set Zi = 0 and toss another coin with bias p′ − p of showing up
heads. If this turns up heads, set Z ′

i = 1, otherwise set Z ′
i = 0.

It is easy to see that in the distribution π, Zi ≤ Z ′
i for each i ∈ [n]. Also, the

marginal distributions are as claimed above. ▽

Exercise 7.2 Generalize the example above in two steps:

(a) Suppose the probabilities Pr[Xi] = pi ≤ p′i = Pr[X ′
i] are not necessarily

all equal. Give the required modification in the above coupling to prove the
same result.

(b) Suppose X1, · · · , Xn and X ′
1, · · · , X ′

n are distributed in [0, 1] and not nec-
essarily identically. However E[Xi] ≤ E[X ′

i] for each i ∈ [n]. What further
modifications are needed now?

Example 7.3 [Load Balancing] Suppose we throw m balls into n bins in the first
experiment and m′ ≥ m balls in the second. In both cases, a ball is thrown uni-
formly at random into the n bins and independently of the other balls. Obviously
we expect the maximum load to be larger in the second experiment.

To make this rigorous, we construct a coupling π of the two distributions. We may
visualize the experiment underlying the coupling as consisting of n bins coloured
blue and n bins coloured green both sets labelled 1 · · ·n and m balls coloured
blue labelled 1 · · ·m and m′ balls coloured green labelled 1 · · ·m′. The blue balls
will be thrown into the blue bins and the green balls into the green bins. The
marginal distribution of the configuration in the blue bins will correspond to our
first experiment and the marginal distribution in the green bins to the second
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experiment. The joint distribution will ensure that a green bin will have at least
as many balls as the corresponding blue bin with the same number. Then, if Lm

and L′
m+1 are the maximum loads in the original two experiments respectively

and Lb and Lg are the maximum blue and green loads,

Pr[Lm > t] = π[Lb > t]

≤ π[Lg > t]

= Pr[Lm′ > t].

The coupling itself is easy to describe. First we throw the m blue balls uniformly
at random into the n blue bins. Next we place the first m green balls in the green
bins as follows: a green ball goes into the green bin with the same number as the
blue bin in which the corresponding blue ball went. The remaining m′−m green
balls are thrown uniformly at random into the n green bins.

Verfify that the coupling has the two properties claimed. ▽

Exercise 7.4 Suppose the balls are not identical; ball number k has a probability
pk,i of falling into bin number i. Extend the argument to this situation.

7.5 Distributed Edge Colouring
sec:mobd-ec

Recall the distributed edge colouring problem and algorithms from the previous
chapter. We applied the simple MOBD successfully to get a srong concentration
result for the “top” vertices, but reached an impasse with the “bottom” vertices.

We will use the method of bounded average differences to get a strong concen-
tration bound for the “top” vertices as well. We shall invoke the two crucial
features of this more general method. Namely that it does not presume that the
underlying variables are independent, and that, as we shall see, it allows us to
bound the effect of individual random choices with constants much smaller than
those given by the MOBD in simple form.

7.5.1 Preliminary Analysis

Let’s now move on to the analysis. In what follows, we shall focus on a generic
bottom vertex v in algorithm P or an arbitrary vertex in algorithm I. Let N1(v)
denote the set of “direct” edges– i.e. the edges incident on v– and let N2(v)
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denote the set of “indirect edges” that is, the edges incident on a neighbour of
v. Let N(v) := N1(v)

⋃

N2(v). The number of edges successfully coloured at
vertex v is a function f(Te, e ∈ N(v)). Let us number the variables so that the
direct edges are numbered after the indirect edges (this will be important for the
calculations to follow). We need to compute

λk := |E[f | T k−1, Tk = ck] − E[f | T k−1, Tk = c′k]|. (7.7) eq:lambda-bound

We decompose f as a sum to ease the computations later. Introduce the indicator
variables Xe, e ∈ E:

Xe :=

{

1; if edge e is successfully coloured,

0; otherwise.

Then f =
∑

v∈eXe.

Hence we are reduced, by linearity of expectation, to computing for each e ∈
N1(v),

|Pr[Xe = 1 | T k−1, Tk = ck] − Pr[Xe = 1 | T k−1, Tk = c′k]|.

For the computations that follows we should keep in mind that bottom vertices
assign colours independently of each other. This implies that the colour choices
of the edges incident upon a neighbour of v are independent of each other. In
algorithm I, all edges have their tentative colours assigned independently.

7.5.2 General Vertex in algorithm I

To get a good bound on (
eq:lambda-bound
7.7), we shall construct a suitable coupling (Y ,Y ′) of

the two conditional distributions.

(T | T k−1, Tk = ck), (T | T k−1, Tk = c′k)

The coupling (Y ,Y ′) is almost trivial: Y is distributed as T conditioned on
(T k−1, Tk = ck) i.e. these settings are fixed as given and the other edges are
coloured independently. Y ′ is distributed identically as Y except that Y ′

k = c′k.
It is easy to see that the marginal distributions of Y and Y ′ are exactly the
same as the two conditioned distributions (T k−1, Tk = ck) and (T k−1, Tk = c′k)
respectively.

Now, let us compute |E[f(Y ) − f(Y ′)]| under this joint distribution. Recall that
f was decomposed as a sum

∑

v∈e fe and hence by linearity of expectation, we
only need to bound each |E[fe(Y ) − fe(Y

′)]| separately.
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First, consider the case when e1, . . . , ek ∈ N2(v) i.e. only the choices of the
indirect edges have been exposed. Let ek = (w, z) where w is a neighbour of
v. Then, for a direct edge e 6= vw, fe(y) = fe(y

′) because under the cou-
pling, y and y′ agree on all edges incident on e. So, we only need to com-
pute |E[fvw(Y ) − fvw(Y ′)]|. To bound this simply, note that fvw(y) − fvw(y) ∈
{−1, 0,+1} and that fvw(y) = fvw(y′) unless yvw = ck or yvw = c′k. Thus, we
conclude that

|E[fvw(Y ) − fvw(Y ′)]| ≤ Pr[Ye = ck ∨ Ye = c′k] ≤
2

∆
.

In fact, one can show by a tighter analysis (see Problem
prob:tighter-I
7.13) that

|E[fvw(Y ) − fvw(Y ′)]| ≤ 1

∆
.

Now, let us consider the case when ek ∈ N1(v) i.e. the choices of all indi-
rect edges have been exposed and possibly some direct edges as well. In this
case, we merely observe that f is Lipschitz with constant 2, and hence, trivially,
|E[f(Y ) − f(Y ′)]| ≤ 2.

Thus,

λk ≤
{

1
∆

; if ek ∈ N2(v)

0; otherwise,

and so,
∑

k

λ2
k =

∑

e∈N2(v)

1

∆2
+

∑

e∈N1(v)

4 ≤ 4∆ + 1.

Plugging into the MOABD, we get the following sharp concentration result for
the new degee f of an arbitrary vertex in algorithm I:

Pr[|f − E[f ]| > t] ≤ 2 exp

(

− t2

2∆ + 1/2

)

.

Exercise 7.5 By regarding f as a function of 2∆ (vector-valued) variables T (w)
(which records the colours of all edges incident on w, obtain a similar (but slighly
weaker) result using the simple MOBD.

7.5.3 Bottom Vertex in Algorithm P

Again, to get a good bound on (
eq:lambda-bound
7.7), we shall construct a suitable coupling

(Y ,Y ′) of the two conditional distributions.

(T | T k−1, Tk = ck), (T | T k−1, Tk = c′k)
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This time, the coupling is somewhat more involved.

Suppose ek is an edge zy where z is a “bottom” vertex. The coupling (Y ,Y ′) is
the following: Y is distributed as (T | T k−1, Tk = ck) i.e. it is the product of the
permutation distribution resulting from the (possible) conditionings around every
bottom vertex. The varaible Y ′ is identical to Y except on the edges inciodent
on z where the colours ck and c′k are switched .

We can think of the joint distribution as divided into two classes: on the degs
incident on a vertex other than z, the two variables Y and Y ′ are identical. So
if v 6= z, the incident edges have indentical colours under Y and Y ′ uniformly
distributed over all permutations. However, on edges incident on z, the two
variables Y and Y ′ differ on exactly two edges where the two colours ck and c′k
are switched.

Exercise 7.6 Verify that the marginal distributions of Y and Y ′ are (T | T k−1, Tk =
ck) and (T | T k−1, Tk = c′k) respectively.

Now, let us compute |E[f(Y ) − f(Y ′)]| under this joint distribution. Recall as
before that f was decomposed as a sum

∑

v∈e fe and hence by linearity of expec-
tation, we only need to bound each |E[fe(Y ) − fe(Y

′)]| separately.

First, consider the case when e1, . . . , ek ∈ N2(v) i.e. only the choices of the
indirect edges have been exposed. Let ek = (w, z) for a neighbour w of v. Note
that since

E[f(Y ) − f(Y ′)] = E[E[f(Y ) − f(Y ′) | Ye,Y
′

e
, z ∈ e]],

it suffices to bound
∣

∣E[f(Y ) − f(Y ′) | Ye,Y
′

e
, z ∈ e]

∣

∣. Recall that Y wz = ck and
Y ′

wz = c′k. Fix some distribution of the other colours around z. Suppose that
Y z,w′ = c′k for some other neighbour w′ of z. Then, by our coupling construction,
Y ′

z,w′ = ck, and on the remaining edges, Y and Y ′ agree.. Morover, by indepen-
dence of the bottom vertices, the distribution on the remaining edges conditioned
on the distribution around z is unaffected. Let us denote the joint distribution
conditioned on the settings around z by [(Y ,Y ′) | z]. Thus, we need to bound
|E[f(Y ) − f(Y ′) | z]|

For a direct edge e 6= vw, vw′, fe(y) = fe(y
′) becuase in the joint distribution

space (even conditioned), y and y′ agree on all edges incident on e. So we can
concentrate only on |E[fe(Y ) − fe(Y

′) | z]| for e = vw, vw′. To bound this simply,
observe that for either e = vw or e = vw′, first, fe(y) − fe(y

′) ∈ {−1, 0, 1} and
second, that fe(y) = fe(y

′) unless ye = ck or ye = c′k. Thus, we can conclude
that

E[fe(Y ) − fe(Y
′) | z] ≤ Pr[Ye = ck ∨ Ye = c′k | z] ≤ 2

∆
.
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Taking the two contributions for e = vw and e = vw′ together, we finally conclude
that

|E[f(Y ) − f(Y ′)]| ≤ 4

∆
.

In fact, one can show by a tighter analysis (see Problem
prob:tighter-P
7.15) that

|E[fvw(Y ) − fvw(Y ′)]| ≤ 2

∆
.

Let us now consider the case when ek ∈ N1(v) i.e. the choices of all indirect edges
and possibly some direct edgeshas been exposed. In this case we observe merely
that |f(y) − f(y′)| ≤ 2 since y and y′) differe on exactly two edges. Hence also,
|E[f(Y ) − f(Y ′)]| ≤ 2.

Thus, overall

λk ≤
{

2
∆

; if ek ∈ N2(v)

0; otherwise,

and,
∑

k

λ2
k =

∑

e∈N2(v)

4

∆2
+

∑

e∈N1(v)

4 ≤ 4(∆ + 1).

Plugging into the MOABD, we get the following sharp concentration result for
the new degee f of an bottom vertex in algorithm P:

Pr[|f − E[f ]| > t] ≤ 2 exp

(

− t2

2(∆ + 1)

)

.

We observe that the failure probabilities in algorithm I and algorithm P are nearly
identical. In particular, for t := ǫ∆, both decresae exponentially in ∆.

7.6 Handling Rare Bad Events

In some situations, one can apply the MOABD successfully by bounding the
“maximum effect” coefficients but for certain pathological circumstances. Such
rare “bad events” can be handled using the following version of the MOABD:

th:moabd-err Theorem 7.7 Let f be a function of n random variables X1, . . . , Xn, each Xi

taking values in a set Ai, such that Ef is bounded. Assume that

m ≤ f(X1, . . . , Xn) ≤M.
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Let B any event, and let ci be the maximum effect of f assuming Bc:

|E[f |Xi−1, Xi = ai,Bc] − E[f |X i−1, Xi = a′i,Bc]| ≤ ci.

Then,

Pr[f > E[f ] + t+ (M −m) Pr(B)] ≤ exp

(

− 2t2
∑

i c
2
i

)

+ Pr[B]

and

Pr[f < E[f ] − t− (M −m) Pr(B)] ≤ exp

(

− t2
∑

i c
2
i

)

+ Pr[B].

Proof. We prove the statement for the upper tail. The proof for the lower tail is
analogous. For any value t > 0,

Pr(f > E[f ] + t) ≤ Pr(f > E[f ] + t | Bc) + Pr[B]. (7.8)

To bound Pr(f > E[f ] + t | Bc) we apply Theorem
thm:amobd
?? to (f | Bc) and get

Pr(f > E[f ] + t | Bc) ≤ exp

(

− 2t2
∑

i c
2
i

)

. (7.9)

Note that all cis are computed in the subspace obtained by conditioning on Bc.
To conclude the proof we show that E[f ] and E[f | Bc] are very close. Now, since

E[f ] = E[f |B] Pr[E[B] + E[f |Bc] Pr[Bc]

and m ≤ f ≤M , we have that

E[f | Bc] − (E[f | Bc] −m) Pr[B] ≤ E[f ] ≤ E[f | Bc] + (M − E[f | Bc]) Pr[B]

so that
|E[f ] − E[f | Bc]| ≤ (M −m) Pr[B].

The claim follows.

The error term (M −m) Pr[Bc] in practice is going to be small and easy to esti-
mate, as the next example will make clear. However, using some tricky technical
arguments, one can prove

McD98
[50][Theorem 3.7] the following cleaner statement. For

any t ≥ 0,

th:moabd-err-2 Theorem 7.8 Let f be a function of n random variables X1, . . . , Xn, each Xi

taking values in a set Ai, such that Ef is bounded. Let B any event, and let ci be
the maximum effect of f assuming Bc:

|E[f | X i−1, Xi = ai,Bc] − E[f | X i−1, Xi = a′i,Bc]| ≤ ci.

Then,

Pr(f > E[f ] + t) ≤ exp

(

− 2t2
∑

i c
2
i

)

+ Pr[B] (7.10) mobv:cs

where again, the maximum effects ci are those obtained conditioned on Bc.
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7.7 Quicksort

We shall sketch the application of the MOABD to Quicksort. This application
is interesting because it is a very natural application of the method and yields a
provably optimal tail bound. While conceptually simple, the details required to
obtain the tighest bound are messy, so we shall confine ourselves to indicating
the basic method.

Recall that Quicksort can be modeled as a binary tree T , corresponding to the
partition around the pivot element performed at each stage. With each node v
of the binary tree, we associate the list Lv that needs to be sorted there. At the
outset, the root r is associated with Lr = L, the input list,and if the the pivot
element chosen at node v isXv, the lists associated with the left and right children
of v are the sublists of Lv consisting of, respectively, all elements less than Xv

and all elements greater than Xv (for simplicity, we assume that the input list
contains all distinct elements). Now, the number of comparisons performed by
Quicksort on the input list L, QL is a random variable given by some function f
of the random choices made for the pivot elements, Xv, v ∈ T :

QL = f(Xv, v ∈ T ).

We shall now expose the variables Xv, v ∈ T in the natural top–down fashion:
level–by–level and left to right within a level, starting with the root. Let us denote
this (inorder) ordering of the nodes of T by <. Thus, to apply the Method of
Martingale Differences, we merely need to estimate for each node v ∈ T ,

|E[QL | Xw, w < v] − E[QL | Xw, w ≤ v]|.

A moment’s reflection shows that this difference is simply

|E[QLv ] − E[QLv | Xv]|,

where Lv is the list associated with v as a result of the previous choices of the
partitions given by Xw, w < v. That is, the problem reduces to estimating the
difference between the expected number of comparisons performed on a given
list when the first partition is specified and when it is not. Such an estimate is
readily available for Quicksort via the recurrence satisfied by the expected value
qn := E[Qn], the expected number of comparisons performed on a input list of
length n. If the first partition (which by itself requires n− 1 comparisons) splits
the list into a left part of size k, 0 ≤ k < n and a right part of size n− 1− k, the
expected number of comparisons is n− 1 + qk + qn−1−k and the estimate is:

|qn − (n− 1 + qk + qn−k−1)| ≤ n− 1.
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We shall plug this estimate into the Method of Bounded Differences: thus, if
ℓv := |Lv| is the length of the list associated with node v, then we need to esti-
mate

∑

v ℓ
2
v. This is potentially problematical, since these lengths are themselves

random variables! Suppose, that we restrict attention to levels k ≥ k1 for which
we can show that

1. ℓv ≤ αn for some parameter α to be chosen later, and

2. k1 is small enough that the difference between the real process and the one
obtained by fixing the values upto level k1 arbitrarily is negligibly small.

Then summing over all levels ≥ k1, level by level,

∑

v

ℓ2v =
∑

k≥k1

∑

h(v)=k

ℓ2v

≤
∑

k≥k1

∑

h(v)=k

αnℓv

=
∑

k≥k1

αn
∑

h(v)=k

ℓv

≤
∑

k≥k1

αn2.

Next we are faced with yet another problem: the number of levels, which itself is
again a random variable! Suppose we can show for some k2 > k1, that the tree
has height no more than k2 with high probability. Then the previously computed
sum reduces to (k2 − k1)αn

2.

Finally we can apply Theorem
th:moabd-err-2
7.8. Here the “bad events” we want to exclude

are the event that after k1 levels, the list sizes exceed α, and that the height of
the tree exceeds k2. all that remains is to choose the parameters careSuppose the
maximum size of the list associated with a node at height at least k1 exceeds αn
with probability at most p1 and that the overall height of the tree exceeds k2 with
probability at most p2. (One can estimate these probabilities in an elementary
way by using the fact that the size of the list at a node at depth k ≥ 0 is explicitly
given by n

∏

1≤i≤k Zi, where each Zi is uniformly distributed in [0, 1].) Then the
final result, applying Theorem

th:moabd-err-2
7.8 will be:

Pr[Qn > qn + t] < p1 + p2 + exp

( −2t2

(k2 − k1)αn2

)

.

(If we applied Theorem
th:moabd-err
7.7, we would have an additional error term: if we use

pessimistic estimates of the maximum and minimum values of the number of
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comparsions as n2 and 0 respectively, then the error term is n2(p1 + p2) which is
o(1).)

We choose the parameters to optimize this sum of three terms. The result whose
details are messy (see

MH96
[47]) is:

Theorem 7.9 Let ǫ = ǫ(n) satisfy 1/ lnn < ǫ ≤ 1. Then as n→ ∞,

Pr[|Qn

qn
− 1| > ǫ] < n−2ǫ(ln ln n−ln(1/ǫ)+O(ln ln ln n)).

This bound is slightly better than an inverse polynomial bound and can be shown
to be essentially tight

McD96
[?].

7.8 Problems

Problem 7.10 [FKG/Chebyshev Correlation Inequality] Show that for any non-
decreasing functions f and g and for any random variable X,

E[f(X)g(X)] ≥ E[f(X)]E[g(X)].

(Hint: Let Y be distributed identical to X but independent of it. Consider
E[(f(X) − f(Y )) (g(X) − g(Y ))]. Argue this is non-negative and simplify it using
linearity of expectation.) ▽

Problem 7.11 Use coupling to give a simple proof that if a function satisfies
the Lipschitz condition with coefficients ci, i ∈ [n] then the same bounds can be
used with the MOABD i.e. the latter are stronger. Show that the two versions
of the latter method differ at most by a factor of 2. ▽

Problem 7.12 [Empty Bins revisited] Rework the concentration of the number
of empty bins using a coupling in the method of average bounded differences. ▽

prob:tighter-I Problem 7.13 Show by a tighter analysis of an arbitrary vertex in algorithm I
that

|E[fvw(Y ) − fvw(Y ′)]| ≤ 1

∆
.

▽
begin new
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Problem 7.14 [Kryptographs] The following graph model arises in the contextmobd-appl:pk
of cryptographically secure sensor networks

DPMMPR,PR04
[60, 57]. We are given a pool of

cryptographic keys that can be identified with the finite set P := [m], and a set
of n vertices. Each vertex i is given a key ring Si generated by sampling P with
replacement k times. Two vertices i and j are joined by an edge if and only if
Si ∩ Sj 6= ∅. In the following we assume that k = Θ(logn) and m = Θ(n log n).

(a) Show that the graph is connected with probability at least 1 − 1
n2 . (Hint:

show that, given a set S of vertices, the size of the union of the key rings
of vertices in S is not far from its expectation. Using this, show that it is
unlikley that G has a cut.)

(b) Using coupling show that the graph is connected with at least the same
probability when the key rings are generated without replacement.

▽
end new

prob:tighter-P Problem 7.15 Show by a tighter analysis of a bottom vertex in algorithm P
that

|E[fvw(Y ) − fvw(Y ′)]| ≤ 2

∆
.

▽

Problem 7.16 [Concentration for Permutations] Let f(x1, · · · , xn) be a Lips-
chitz function with constant c i.e. changing any coordinate changes the value
of f by at most c. Let σ be a be permutation of [n] chosen uniformly at ran-
dom. Show a strong concentration for f(σ(1), · · · , σ(n)). (Hint: Use a natural
coupling to bound

|E[f | X i−1, Xi = ai] − E[f | X i−1, Xi = a′i]| .

) ▽
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Chapter 8

The Method of Bounded
Variances

ch:mobv

In this chapter we describe a tail bound similar in flavour to the Method of
Bounded Differences (MOBD). The new bound too rests on a martingale inequal-
ity similar to Azuma’s. In the previous chapters we saw how, given a function
f(X1, . . . , Xn), the strength of the MOBD depends on our ability to bound the
absolute increments of the Doob martingale sequence Zi := E[f |X1, . . . , Xi]. In
doing this, we would expose the variables X1, . . . , Xn one at a time and consider
the expected change of f when Xi is revealed, conditioned on the values of the
X1, . . . , Xi−1 exposed so far, taking the maximum value among all assignments to
the first i− 1 variable. That is, we would look for a bound ci as small as possible
such that,

|E[f |X1, . . . , Xi] − E[f |X1, . . . , Xi−1]| ≤ ci

for all possible assignments to X1, . . . , Xi−1. The resulting bound is

Pr[|X − E[X]| > t] ≤ 2 exp

{

−t2/2
∑

i

c2i

}

.

We will see in this chapter that basically the same result obtains if we consider
the sum of variances of the increments, conditioned on the variables exposed so
far:

vi := var(E[f |X1, . . . , Xi] − E[f |X1, . . . , Xi−1]).

The resulting bound will be,

Pr[|X − E[X]| > t] ≤ 2 exp

{

−t2/4
∑

i

v2
i

}

119
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assuming some mild conditions on t. Since the variance factors in the probability
with which jumps occur, this estimate is often quite sharp. What we will see in
this chapter resembles quite closely what we saw in Chapter

ch:CH-bound
1, where we derived

the variance bound

Pr[|X − E[X]| > t] ≤ 2 exp
{

−t2/4σ2
}

.

This bound can be much stronger than the original Chernoff bound and in fact
it essentially subsumes it. In practice we will see that good estimates of the
variance are not hard to compute. In a sense, the method can be viewed as a
quick-and-dirty version of the MOBD. We begin by proving the basic underlying
martingale inequality.

8.1 A Variance Bound for Martingale Sequences

We make use of the basic definitions of martingales and their properties developed
in Chapter

ch:mobd
5. Recall that given a vector X the notation X i denotes to the

truncated vector consisting of the first i coordinates.

th:martMobv Theorem 8.1 Let Z0, Z1, . . . , Zn be a martingale w.r.t. the sequenceX0, X1, . . . , Xn

satisfying the bounded difference condition,

|Zi − Zi−1| ≤ ci

for some set of non-negative values ci. LetDi := (Zi −
Zi−1|Xi−1)?

V :=
∑

i≤n

vi

where
vi = sup var(Di|X i−1)

where the sup is taken over all possible assignments to X i−1. Then,

Pr(Zn > Z0 + t) ≤ exp

(

− t2

4V

)

and

Pr(Zn < Z0 − t) ≤ exp

(

− t2

4V

)

provided that
t ≤ 2V/max

i
ci. (8.1) eq:t
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Proof. The initial part of the proof is identical to that of Theorem
thm:azumaGen
5.17 but we

reproduce it here for ease of exposition. It suffices to prove the statement for the
upper tail. The proof for the lower tail is symmetrical with the martingale Z

replaced by −Z.

Assume without loss of generality that Z0 := 0 and define the martingale differ-
ence sequence Di := Zi−Zi−1, i ≥ 1. Then Zn = Zn−1+Dn. Note that E[Di] = 0,
for all i. By Markov’s inequality,

Pr(Zn > t) ≤ min
λ>0

E[eλZn ]

eλt
. (8.2) eq:markov

With foresight we set,

λ :=
t

2V
. (8.3) eq:lambda

As usual we focus on the numerator E[eλZn ] and seek a good upper bound for it.

eq:upBoundE[eλZn ] = E[eλ(Zn−1+Dn)]

= E[E[eλ(Zn−1+Dn) | Xn−1]]

= E[eλZn−1
E[eλDn |Xn−1]].

We now show that, for all i,

E[eλDi |X i−1] ≤ eλ2vi . (8.4) eq:inductiveStep

Assuming this, it follows by induction that,

eq:enucleateE[eλZn ] = E[eλZn−1
E[eλDn |Xn−1]]

≤ E[eλZn−1 ]eλ2vn

≤ eλ2V .

The claim then follows by induction. The base case is the trivial case Z0 = 0.
Using our choice for λ and the bound on the numerator it follows that,

Pr(Zn > t) ≤ min
λ>0

E[eλZn ]

eλt

≤ eλ2V

eλt

= et2/2V .

The crux then is to establish (
eq:inductiveStep
8.4). This follows from the well-known inequalities

1 + x ≤ ex, valid for all x, and ex ≤ 1 + x + x2, valid for |x| ≤ 1. Since Z is a
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martingale with respect to X, E[Di|X i−1] = 0. Now, if λ|Di| ≤ 1 then,

E[eλDi |X i−1] ≤ E[1 + λDi + (λDi)
2|X i−1]

= 1 + λ2
E[D2

i |Xi−1]

= 1 + λ2vi

≤ eλ2vi .

The condition λ|Di| ≤ 1 follows, for all i, from the hypothesis
eq:t
8.1 and Equa-

tion
eq:lambda
8.3. The claim follows.

A couple of observations are in order. First, the term V is related to the varianceShould check
this of Zn in the following way: E[V ] = var(Zn) (see Problem section). Second, the

condition on t roughly says that this inequality is a bound for deviations that are
“not too large”. By using Bernstein’s estimate (

bernstein
1.4) it is possible to obtain the

following slightly sharper bound without making any assumptions on t.

Pr(Zn > Z0 + t) ≤ exp

(

− t2

2V (1 + bt/3V )

)

. (8.5) eq:e1

The term b is defined as the maxk devk, where devk := sup{(Zk − Zk−1|X1 =check dev mess

x1, . . . , Xk−1 = xk−1}. In some situations the error term bt/V is negligible, and
(
eq:e1
8.5) yields a slightly sharper bound than that of Theorem

thm:mobv
8.2. The interested

reader can refer for example to
McD98
[50].

The next step is to package this inequality in a form suitable for the applications.
Note that the ground variables Xis need not be independent for the next theorem
to hold.Correct?

thm:mobv Theorem 8.2 [The Method of Bounded Variances] Let X1, . . . , Xn be an arbi-
trary set of random variables and let f := f(X1, . . . , Xn) be such that Ef is finite.
Let

Di := E[f |Xi] − E[f |Xi−1]

and let c1, . . . , cn be such that

|Di| ≤ ci. (8.6) eq:martdiff

And let

V :=

n
∑

i=1

vi

where

vi := sup var(Di|X i−1)
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with the sup taken over all possible assignment to X i−1. Then,

Pr[f > Ef + t] ≤ exp

(

− t2

4V

)

and

Pr[f < Ef − t] ≤ exp

(

− t2

4V

)

,

provided that t ≤ 2V/maxi ci.

Proof. Apply Theorem
th:martMobv
8.1 to the Doob martingale sequence Zi := E[f |X i].

Problem
prob2
8.8.

Intuitively, when applying this inequality we will expose, or query, the values of
the variablesXi one by one, starting from E[f ] and ending with f(X1, . . . , Xn). As
we shall see, the power of this inequality derives from the fact that it is possible,
and sometimes easy, to give good estimates of the vis. Note that one has the
freedom to decide the sequence according to which the variables are exposed.
This will be put to good effect in the applications to follow.

Notation 8.3 In the sequel we shall refer to V as the variance of f and to ci as
the maximum effect of the ith query.

8.2 Applications

As usual, the best approach to understand the method is by means of examples
of increasing sophistication. For the method to be useful one needs simple ways
to bound the variance. A simple but useful bound is the following. Assume that
a random variable X is such that E[X] = 0 and |X| ≤ r. Then,

var(X) ≤ r2

4
. (8.7) mobv:sbov

(See Problem
mobv:p5
8.7).

With this we can essentially recover the basic version of the MOBD (Theo-
rem

thm:mobd
5.18). We are given a function f(X1, . . . , Xn) satisfying the conditions

|f(X) − f(X ′)| ≤ ci
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for each i, whenever X and X ′ differ only in the ith coordinate. We apply
mobv:sbov
8.7

to the random variable Di := E[f |X1, . . . , Xi]− E[f |X1, . . . , Xi−1] which has zero
mean. Thus

var(Di) ≤
c2i
4
.

Therefore V ≤ 1
4

∑

i c
2
i and by Theorem

thm:mobv
8.2,

Pr[f > Ef + t] ≤ exp

(

− t2

4V

)

≤ exp

(

− t2
∑

i c
2
i

)

provided that t ≤ 2V/maxi ci.

Exercise 8.4 Establish the basic Chernoff-Hoeffding bounds by using the Method
of Bounded Variances.

The next example is to derive the variance bound of the basic Chernoff-Hoeffding
bounds that we developed in § 1.7. We are given n independent random variables
Xi ∈ [0, 1] and we want to prove that,

Pr[X > EX + t] ≤ exp

(

− t2

4σ2

)

where X :=
∑

iXi, σ
2 :=

∑

i σ
2
i and σ2

i := var(Xi). We apply the method to
f(X1, . . . , Xn) :=

∑

iXi. Now, if we set

Zi := E[f |X1, . . . , Xi]

we have that
|Zi − Zi−1| ≤ 1.

Furthermore, by independence we get

Di := Zi − Zi−1 = Xi − E[Xi]

and
var(Di) = var(Xi)

and thus V =
∑

i var(Xi) = σ2. Therefore, by invoking Theorem
thm:mobv
8.2,

Pr[f > Ef + t] ≤ exp

(

− t2

4V

)

= exp

(

− t2

4σ2

)

if t ≤ 2V . In the case when Pr[Xi = 1] = p, for all i, we have by independence
that σ2 = np(1 − p) and the bound becomes,

Pr[f > Ef + t] ≤ e−t2/4np(1−p).

The variance is maximized when p = 1
2

so that σ2 ≤ n
4
, which gives

Pr[f > Ef + t] ≤ exp−t2/n .

This bound loses a factor of two in the exponent. By applying the slightly sharper
bound

eq:e1
8.5 one essentially recovers

eq:absbound
1.6.
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8.2.1 Bounding the Variance
mobv:btv

We saw that (
mobv:sbov
8.7) gives a simple but useful bound for the variance that always

applies. A common situation that arises when studying a function f(X1, . . . , Xn)
is when each Xi takes on two values, a “good” value with probability pi, and a
“bad” value with probability 1 − pi. In this case, assuming that Xi takes values
in a finite set Ai, we get the following useful bound:

vi ≤ pi(1 − pi)c
2
i (8.8) eq:betterBound

so that
Pr[f > Ef + t] ≤ exp−t2/

P

i pi(1−pi)c
2
i (8.9)

and
Pr[f < Ef − t] ≤ exp−t2/

P

i pi(1−pi)c2i . (8.10)
Does it hold
also for finite
intervals?
Exercise?

Bound (
eq:betterBound
8.8) follows from elementary, but non-trivial computations (see Prob-

lem
prob9
8.16).

Let us apply this bounding technique to the following problem. We are given a
d-regular, undirected graph G = (V,E). Consider again Algorithm I from § sec:mobd-ec

7.5.
Each edge is given a list of c colors and the following simple, distributed algorithm
is executed. Each edge picks a tentative color at random, uniformly from its list.
If there is a conflict– two neighbouring edges make the same tentative choice–
the color is dropped, and the edge will try to color itself later. Otherwise, the
color becomes the final color of the edge. At the end of the round, the lists are
updated in the natural way, by removing colors succesfully used by neighbouring
edges. Edges that succesfully color themselves are removed from the graph. The
process is repeated with the left-over graph and left-over color lists until all edges
color or the algorithm gets stuck because some list runs out of colors.

It is possible to show that, for any ǫ > 0, if d ≫ log n and c = (1 + ǫ)d this
simple algorithm will, with high probability, color all edges of the graph within
O(logn) many rounds

DGP,GP97
[13, 22]. Since clearly d colors are needed to edge color the

graph, this shows that one can obtain nearly-optimal edge-colorings by means
of this very simple and inexpensive distributed procedure. Here we analize the
first round of the algorithm to show that the degree of each vertex is sharply
concentrated around its expectation. The discussion exemplifies some of the
important points of the full analysis. For simplicity we assume c = d.

Fix a vertex u. For this vertex we want to show that its new degree is sharply
concentrated around its expected degree. The probability that an edge e is colored
is the probability that no neighbouring edge picks the same tentative color,

Pr[e colors] =

(

1 − 1

c

)2d−1

∼ 1

e2
.
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Therefore, if we denote by Z the number of edges that succesfully color,

E[Z] ∼ d

e2
= Θ(d).

We are interested in the variable d−Z and if we show that Z is concentrated, so
is d−Z. The variable Z is a function of the random choices made not only by the
edges incident on u, but also those of the edges incident on the neighbours of u.
Let E(u) denote this set, and let Xe denote the random color chosen by an edge
e. Before applying the new method it is worth asking why we cannot use the
inequalities that we know already. Let us introduce an indicator random variable
Ze for each edge incident on u denoting whether e successfully color. Thus,

X =
∑

e∋u

Xe.

These indicator variables are clearly not independent, so one cannot apply the
Chernoff-Hoeffding bounds. Can we apply the MOBD in its simplest form? With
our notation, we have

Z = f(Xe : e ∈ E(u)).

Clearly, for each e ∈ E(u) the best we can say is,

|f(X1, . . . , Xe−1, Xe, Xe+1, . . . , XD) − |f(X1, . . . , Xe−1, X
′
e, Xe+1, . . . , XD)| ≤ 1

where D := |E(u)| = d(d− 1). This gives a very weak bound,

Pr[|Z − E[Z]| > t) ≤ 2 exp(t2/2d2). (8.11) eq:weakBound

An alternative is to use the MOBD in expected form. As we saw in § sec:mobd-ec
7.5, this

works but it requires somewhat lengthy calculations. An easy way out is given
by the Method of Bounded Variances. We query the edges in this order. First,
we expose the choices of every edge incident on u. Each such edge can affect the
final degree by at most 1. Then we expose the random choices of the remaining
edges. They key observation is the following. Let e = wv be the edge we are
considering and let f = vu denote an edge incident on u that touches e. Note
that when we expose e’s tentative choice, f has already been queried. The choice
of e can affect f , but only if e picks the same color chosen by f and this happens
with probability 1/c = 1/d. Therefore, the variance of this choice is at most
1/c = 1/d (e can touch two edges incident on u, but its effect can be at most 1.
Why?). Therefore, we can bound the total variance as follows,

d · 1 + d(d− 1)
1

c
≤ 2d

which gives, for t ≤ 2V ,

Pr[|Z − E[Z]| > t] ≤ 2 exp(t2/8d) (8.12) eq:strongBound

a much stronger bound than Equation
eq:weakBound
8.11.
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8.2.2 Dealing with Unlikely Circumstances
mobv:dwuc

Sometimes the effect of a random variableXi on the value of a function f(X1, . . . , Xn)
can be quite large, but only with very low probability. In other words, it might
be the case that for most outcomes of X1, . . . , Xn the variance of f is very small.
In dealing with such situations the following result comes handy. In the state-
ment of the next theorem the event B is to be understood as a set of exceptional
outcomes of very low probability.

mobv:dwec Theorem 8.5 Let f be a function of n random variables X1, . . . , Xn, each Xi

taking values in a set Ai, such that Ef is bounded. Assume that

m ≤ f(X1, . . . , Xn) ≤M.

Let B any event, and let V and ci be, respectively, the variance and the maximum What is
ci doing
here??

effects of f assuming Bc. Then,

What is Zn

wrt f??
Pr[Zn > Z0 + t+ (M −m) Pr(B)] ≤ exp

(

− t2

4V

)

+ Pr[B]

and

Pr[Zn < Z0 − t− (M −m) Pr(B)] ≤ exp

(

− t2

4V

)

+ Pr[B].

Proof. We prove the statement for the upper tail. The proof for the lower tail is
analogous. For any value T ,

Pr(f > E[f ] + T ) ≤ Pr(Zn > Z0 + T |Bc) + Pr[B]. (8.13)

To bound Pr(f > E[f ] + T |Bc) we apply Theorem
thm:mobv
8.2 to (f |Bc) and get t and T ??

Pr(f > E[f |Bc] + T |Bc) ≤ exp

(

− t2

4V

)

(8.14)

for every t ≤ 2V/max ci, provided that V and all cis are computed in the subspace
obtained by conditioning on Bc. To conclude the proof we show that E[f ] and
E[f |Bc] are very close. Now, since

E[f ] = E[f |B] Pr[E[B] + E[f |Bc] Pr[Bc]

and m ≤ f ≤M , we have that

E[f |Bc] − (E[f |Bc] −m) Pr[B] ≤ E[f ] ≤ E[f |Bc] + (M − E[f |Bc]) Pr[B]

so that
|E[f ] − E[f |Bc]| ≤ (M −m) Pr[B].
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The claim follows.

The error term (M − m) Pr[Bc] in practice is going to be a o(1) and easy to
estimate, as the next example will make clear. It is possible to prove the lower tail also?

following cleaner statement. For any t ≤ 2V/max ci,

Pr(f > E[f ] + t) ≤ exp

(

− t2

4V

)

+ Pr[B] (8.15) mobv:cs

where V is the variance and the maximum effects ci are those obtained con-
ditioned on Bc. The proof however is not as simple as that of Theorem

mobv:dwec
8.5,

while this formulation in practice is not any stronger, at least for the kind of
applications that one normally encounters in the analysis of algorithms.

Let us see a non trivial application of Theorem
mobv:dwec
8.5. We have a d-regular graph

G in which each vertex is given a list of c colors. We consider the same simple
distributed algorithm of the previous section, this time applied to the vertices
instead. It is possible to prove that this algorithm computes a vertex coloring
with high probability in O(logn) many rounds, provided that G has no triangles,
d≫ logn and c = Ω(d/ ln d)

GP00
[23]. Note that c can be much smaller than d. More

generally, it is known that such good colorings exist for triangle-free graphs,
and that this is the best that one can hope for, since there are infinite families of
triangle-free graphs whose chromatic number is Ω(d/ ln d)

Kim95,Bol78
[35, 9]. In what follows

we assume for simplicity that c = d/ log2 d.

Here we analize what happens to the degree of a vertex after one round and show
that it is sharply concentrated around its expectation. As with the previous
example this will exemplify some of the difficulties of the full analysis. Let us fix
a vertex u and let Z be the number of neighbours of u which color themselves
succesfully. We first compute E[Z]. The probability that a vertex colors itself is,

(

1 − 1

c

)d

∼ e−d/c

so that

E[Z] ∼ de−d/c

We are interested in a bound on the probability that the new degree d′ := d−Z
is far from its expectation. We will show that this happens only with inverse
polynomial probability in d. As with the edge coloring example the value of Z
depends not only on the tentative color choices of the neighbours of u but also on
those of the neighbours of the neighbours– Θ(d2) choices in total. To compund
the problem, vertices at distance two can now have very large effects. Assume
for instance that all neighbours of u pick color a tentatively. If a vertex w at
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distance 2 from u also picks a the effect can be as large as |Nu ∩ Nw| which, in
general, can be as large as d. We can get around this problem using the fact that
it is unlikely that “many” neighbours of u will pick the same color.

Let Ni(u) denote the set of vertices at distance i from u. Z depends on the choices
of vertices in {u} ∪ N1(u) ∪ N2(u). We expose the color choices in this order.
First u, then the vertices in N1(u) (in any order) and finally those in N2(u) (in
any order). The first query does not affect the variance. The next d queries can
each affect the final outcome of Z by one, but note that this is only if the vertex
selects the same tentative color of u, an event that occurs with probability 1/c.
The total variance after these queries is then at most,

0 +
∑

x∈N1(u)

vx ≤ d

c
.

So far so good, but we now need to estimate the total variance of vertices in N2(u)
and we know that this can be extremely large in the worst case. We exploit
the fact that the tentative color choices of the neighbours of u are binomially
distributed. Fix w ∈ N2(u) and let

x := |Nu ∩Nw|.

Moreover let xa denote the number of vertices in Nu ∩ Nw that choose color a
tentatively. For each color a, the expected number of u-neighbours that pick
a is d/c. The set of “bad” events B that we are going to consider is when
there exists a color that is chosen more than rδ := (1 + δ)d/c times. By the
Chernoff and the union bounds, for any δ > 2e − 1, the probability of B is
at most c2−rδ = c2−(1+δ)d/c. Note that this gives an “error term” of at most
dPr[B] = dc2−(1+δ)d/c = o(1).

We now want to estimate the variance assuming the “good” event EBc. Let

da := |E[Z|X1, . . . , Xw = a] − E[Z|X1, . . . , Xw−1]| ≤ xa

and thus

vw =
∑

a

Pr[Xw = a]d2
a ≤ 1

c

∑

a

x2
a.

This sum of squares is subject to

x =
∑

a

xa

and, by the previous assumption,

0 ≤ xa ≤ rδ,
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The maximum is therefore attained at the extreme point, when there are x/rδ

terms, each equal to r2
δ (see problem section). Therefore,

vw ≤ 1

c

x

rδ

r2
δ =

(1 + δ)xd

c2
.

The total variance of vertices in N2(u) is
∑

w∈N2(u) vw. If we assign a weight of

vw/x on each edge between w and N1(u), we then have

∑

w∈N2(u)

vw =
∑

wv:w∈N2(u),v∈N1(u)

vw

x
≤ d(d− 1)

(1 + δ)d

c2

for a total variance of

V ≤ 0 +
d

c
+ d(d− 1)

(1 + δ)d

c2
≤ (1 + δ)d3

c2
.

Therefore, if δ ≥ 2e− 1,

Pr[Z − E[Z] > t+ o(1)] ≤ e−t2/4V + c2−(1+δ)d/c

provided that t ≤ 2V . If c = Θ(d/ ln d) and t = Θ(V ln d), this says that Z

deviates from its expectation by more than Θ(
√
d ln3 d) with inverse polynomial

probability. An analogous derivation establishes the result for the lower tail.

8.3 Bibliographic Notes

A good source for coloring problems of the type discussed here is the book of
Molloy and Reed

MoRe
[53]. McDiarmid’s survey presents a treatment of some of the

inequalities that we discussed, with several useful variations on the theme
McD98
[50].

The basic result was established in
AKS
[3] for 0/1-random variables and was later

extended to the case of multi-way choices in
G98
[21]. The edge coloring application

can be found in
GP97
[22].

8.4 Problems

Problem 8.6 With reference to the statement of Thereom
th:martMobv
8.1, show that

E[V ] = var(Zn).

▽
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Solution. Page 224 of McDiarmid’s survey △

mobv:p5 Problem 8.7 Prove that if a random variableX satisfies EX = 0 and a ≤ X ≤ b,
then

var(X) ≤ (b− a)2/4.

▽

Solution. If a random variable X satisfies EX = 0 and a ≤ X ≤ b, then

var(X) = EX2 = EX(X − a) ≤ Eb(X − a) = |ab| ≤ (b− a)2/4.

△

prob2 Problem 8.8 Prove Theorem
thm:mobv
8.2 (Hint: Define the Doob martingale sequence

Zi := E[f |X0, . . . , Xi] and observe that (Di|Xi−1) = Di. Apply Theorem
th:martMobv
8.1). ▽

mobv:p3 Problem 8.9 Prove Equation
eq:betterBound
8.8, i.e.

vi :=
∑

a∈Ai

Pr[Xi = a](D2
i |Xi = a) ≤ p(1 − p)c2i

uner the hypothesis that Ai can be partitioned into two regions Ai = G∪B, such
that Pr[Xi ∈ G] = p. ▽

Solution. Refer to
DGP
[13]. △

prob4 Problem 8.10 Establish the bound in Equation
eq:strongBound
8.12 by using the MOBD in

expected form. ▽

mobv:hs Problem 8.11 Let G = (V,E) be a d-regular graph with n vertices. Consider
the following algorithm for computing independent sets. Let p : V → [n] be a
random permutation of the vertices. A vertex i enters the independent set if
and only if pi < pj for every j neighbour of i (the set so computed is clearly
independent). Let X denote the size of the resulting independent set. Compute
EX and show that X is concentrated around its expectation. ▽

prob8 Problem 8.12 Show a bound similar to Equation
eq:strongBound
8.12 for the edge coloring

problem discussed in § mobv:btv
8.2.1. ▽
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prob6 Problem 8.13 Repeat the analysis of Section
mobv:btv
8.2.1 under the hypothesis c =

(1 + ǫ)d. ▽

prob7 Problem 8.14 Show that
max

∑

i

x2
i

subject to
∑

i xi = n and 0 ≤ xi ≤ c is attained when ⌊n
c
⌋ terms are set equal to

c and the remaining terms are set to 0. ▽

prob10 Problem 8.15 Let X1, . . . , Xn be independent, with ak ≤ Xk ≤ bk for each k
where ak and bk are constants, and let X :=

∑

iXi. Prove that then, for any
t ≥ 0,

Pr[|X − EX| ≥ t] ≤ 2 exp

{

−2t2/
∑

i

(bi − ai)
2

}

.

▽

prob9 Problem 8.16 Prove Equation
eq:betterBound
8.8. ▽

mobv:p10 Problem 8.17 Consider the edge coloring algorithm described in § mobv:btv
8.2.1.

• Compute the expected number of colors that remain available for an edge.

• Show that this number is sharply concentrated around its expectation.

• Do the same for the intersection of the color lists of two edges incident upon
the same vertex.

▽

mobv:pm Problem 8.18 Let G be a d-regular graph and consider the following random-
ized algorithm to compute a matching in the graph. Every edge enters a set S
with probability 1

d
. If an edge in S does not have any neighbouring edges in S it

enters the matching M . Edges in M and all their neighbours are removed from
G.

• Compute the expected degree of a vertex that is not matched.

• Use the Method of Bounded Variances to prove that the degree of a vertex
that is not matched is concentrated around its expectation. Can you use
the MOBD in its simplest form?
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• Show that the same is true if the above algorithm is repeated. How large a
value of d (as a function of n) is needed for concentration to hold?

The point here is to show that the graph stays essentially regular during the
execution of the algorithm, as long as the average degree is high enough. ▽

mobv:pvc Problem 8.19
GP00
[23]. We are given a d-regular graph G of girth at least 5 where

each vertex has a list of c := d/ log2 d colours (the girth of a graph is the length of
its smallest cycle). Consider the following algorithm. Each vertex wakes up with
probability p := 1/ log2 d. Each awaken vertex picks a tentative colour at random
from its own list and checks for possible colour conflicts with the neighbours. If
none of the neighbours pick the same tentative colour, the colour becomes final.
If a colour c becomes the final colour of a neighbour of a vertex u, c is deleted
from u’s colour list.

• For a given vertex, let X be the number of its uncoloured neighbours. Prove
that X is concentrated around its expectation.

• For a given vertex, let Y be the number of colours not chosen by its neigh-
bours. Prove that Y is concentrated around its expectation.

• For given vertex u and colour c, let Z be the number of uncoloured neigh-
bours of u that retain c in their list. Prove that Z is concentrated around
its expectation.

▽
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Chapter 9

The Infamous Upper Tail

ch:kim-vu-jan-ruc

9.1 Motivation: Non-Lipschitz Functions

Consider the random graph G(n, p) with p = p(n) = n−3/4. Let X be the number
of triangles in this graph. We have E[X] =

(

n
3

)

p3 = Θ(n3/4). The randomvariable
X is a function of the

(

n
2

)

independent variables corresponding to whether a
particular edge is present or not. Changing any of these variables could change
the value of X by as much as n− 2 in the worst case. Applying the MOBD with
these Lipschitz coefficients is useless to obtain a non-trivial concentration result
for deviations of the order of ǫE[X] = Θ(n3/4) for a fixed ǫ > 0.

Exercise 9.1 Try to apply the MOABD or the MOBV and see if you get any
meaningful results.

The essential problem here is that the function under consideration is not Lips-
chitz with sufficiently small constants to apply the method of bounded differences.
This initiated a renewed interest in methods to prove concentration for functions
which are not “smooth” in the worst case Lipschitz sense of the MOBD but
are nevertheless “smooth” in some “average” sense. We have already seen that
the MOABD and MOBV are such methods. Here we briefly describe two new
methods that apply well to problems such as counting triangles in the random
graph.

135
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9.2 Concentration of Multivariate Polynomials

Let Xi,j be the indicator random variable for whether the edge (i, j) is included
in the random graph G(n, p). Then, the number of triangles XK3 in G(n, p) can
be written as

XK3 =
∑

1≤i<j<k≤n

Xj,kXk,iXi,j.

Formally, this can be seen as a multivariate polynomial in the
(

n
2

)

variables Xi,j,
and motivates the setting of the Kim-Vu inequality.

Let U be a base set and let H be a family of subsets of U of size at most k
for some 0 < k ≤ n. Let Xu, u ∈ U be independent 0/1 random variables with
E[Xu] = pu, u ∈ U . Consider the function of Xu, u ∈ U given by the following
multi-variate polynomial:

Z :=
∑

I∈H
wI

∏

u∈I

Xu.,

where wI , I ∈ H are positive coefficients. In the example of the triangle above,
the base set U is the set of all

(

n
2

)

edges and the family H consists of the
(

n
3

)

3-element subsets of edges that form a triangle (so k = 3 and all coefiicients
wI = 1).

For each subset A of size at most k, define a polynomial YA as follows:

ZA :=
∑

A⊆I⊆H
wI

∏

u∈I\A
Xu.

Formally, this is the partial derivative ∂Z
∂XA

. Set

Ej(Z) := max
|A|≥j

E[ZA], 0 ≤ j ≤ k.

Heuristically, Ej(Z) can be interpreted as the maximum average effect of a group
of at least j underlying variables. – this will play the role of “average” Lipschitz
coefficients in place of the worst case Lipschitz coefficients.

th:kim-vu Theorem 9.2 (Kim-Vu Multivariate Polynomial Inequality) For any k ≤
n, there are positive numbers ak, bk such that for any λ ≥ 1

Pr

[

|Z − E[Z]| ≥ akλ
k
√

E0(Z)E1(Z)
]

≤ bk exp {−λ/4 + (k − 1) logn} .

(For definiteness, we can take ak := 8k
√
k! and bk := 2e2.)
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To apply this to the number of triangles in the random graph G(n, p), consider
the base set

(

n
2

)

, take H to be the family of 3-element subsets forming a triangle
and consider the multivariate polynomial:

Z :=
∑

1≤i<j<ℓ≤n

Xj,ℓXℓ,iXi,j,

and Xi,j is the indicator variable for whether the edge (i, j) is included. As we
saw, with p = n−3/4, we have E[Z] = Θ(n3/4)..

Now, if A = {i, j}, we have:

ZA =
∑

ℓ 6=i,j

Xj,ℓXi,ℓ,

and E[ZA] = Θ(np2) = o(1). If A has two elements, then ZA is either 0 or ti,j
for some (i, j). Finally, if A has three elements, then ZA is either 0 or 1. Thus,
E1(Z) = max|A|≥1 E[ZA] = 1, and E0(Z) = max|A|≥0 E[ZA] = E[Z].

Setting λ := cn1/8 for a constant c chosen to make a3λ
3
√

E[Z] = ǫE[Z], and
applying Theorem

th:kim-vu
9.2 gives

Pr [|Z − E[Z]| ≥ ǫE[Z]] ≤ b3 exp (−λ/4 + 2 logn) = e−Θ(n1/8).

Stronger estimates can be obtained via refinements of this technique
Vu02,KV04
[68, 34],

achieveing a factor of Θ(n−3/8) in the exponent.

9.3 The Deletion Method

The setting here is similar to that in the Kim-Vu inequality: Let H be a family
of subsets of a base set U and suppose each set in H is of size at most k for some
k ≤ n. Let (XI , I ∈ H) be a family of non-negative random variables. These do
not necessarily have the monomial structure as in Kim-Vu. Rather, only a local–
dependence property is postulated: each XI is independent of (XJ | I ∩ J = ∅).
Note that this is true of the monomials in the Kim-Vu inequality. The object of
study is the sum Z :=

∑

I XI .

Theorem 9.3 (Janson-Rucinski) Let H be a family of subsets of [n] of size at
most k for smome k ≤ n and let (XI , I ∈ H) be a family of non-negative random
variables such that each XI is independent of (XJ | I ∩ J = ∅). Let Z :=

∑

I XI ,
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and µ := E[Z] =
∑

I E[XI ]. Further, for I ⊆ [n], let ZI :=
∑

I⊆J XJ and let
Z∗

1 := maxu Z{u}. If t > 0, then for every real r > 0,

Pr[Z ≥ µ+ t] ≤ (1 + t/µ)−r/2 + Pr

[

Z∗
1 >

t

2kr

]

≤ (1 + t/µ)−r/2 +
∑

u

Pr

[

Z{u} >
t

2kr

]

.

The proof is surprisingly short and elementary, see
JR02, JR04
[29, 30].

To apply this to the problem of counting the number of triangles in G(n, p) with
p = n−3/4, consider again, base set

(

[n]
2

)

of all possible edges and the family H
to be the family of 3-element subsets of edges forming a triangle. For I ∈ H,the
variable XI is the indicator for whether the triangle formed by the three edges
in I exists in G(n, p)..To apply the Deletion method of Janson-Rucinski, note
that the number of traingles containing a given edge (i, j), Z{i,j} = Xi,jB where
B ∼ Bi(n−1, p2) is the number of paths of length 2 between the endpoints i and
j. Applying the CH bound to this yields

Pr[Z{i,j} > µ/2r] ≤ e−µ/2r ,

as long as µ/2r > 2n−1/2. Thus,

Pr[Z > 2µ] ≤ e−r/9 + n2e−µ/2r.

Choosing r = c
√
µ gives

Pr[Z > 2µ] ≤ n2e−cn3/8

,

which is stronger than the result obtained above using the multivariate polyno-
mial inequality. To see a very revealing and exhaustive comparison of the use of
various methods for the study of the “infamous upper tail” of problems such as
counts of fixed subgraphs in the random graph, see

JR02
[29]. We end by quoting

JR04
[30],

Neither of these methods seems yet to be fully developed and in a
final version, and it is likely that further versions will appear and
turn out to be important for applications. It would be most interest-
ing to find formal relations and implications between Kim and Vu’s
method and our new method, possibly by finding a third approach
that encompasses both methods.
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9.4 Problems

Problem 9.4 Consider the number XH of copies of a fixed graph H in the
random graph G(n, p) for different ranges of the parameter p. Let µ := E[XH ]
and apply the Kim-Vu multivariate polynomial bound.

(a) For H := K3 (triangle), show that

Pr[XK3 ≥ 2µ] ≤ n4

{

exp{−cn1/3p1/6} if p ≥ n−1/2

exp{−cn1/2p1/2} otherwise.

(b) For H := K4, show that

Pr[XK4 ≥ 2µ] ≤ n10

{

exp{−cn1/6p1/12} if p ≥ n−2/5

exp{−cn1/3p1/2} otherwise.

(c) For H := C4 (the cycle on 4 vertices), show that

Pr[XC4 ≥ 2µ] ≤ n6

{

exp{−cn1/4p1/8} if p ≥ n−2/3

exp{−cn1/2p1/2} otherwise.

▽

Problem 9.5 Consider the number XH of copies of a fixed graph H in the
random graph G(n, p) for different ranges of the parameter p. Let µ := E[XH ]
and apply the Janson-Rucinski Deletion method.

(a) For H := K3 (triangle), show that

Pr[XK3 ≥ 2µ] ≤ n2 exp{−cn3/2p3/2}.

(b) For H := K4, show that

Pr[XK4 ≥ 2µ] ≤ n2

{

exp{−cn2p3} if p ≤ n−1/2

exp{−cn4/3p5/3} otherwise.

(c) For H := C4 (the cycle on 4 vertices), show that

Pr[XC4 ≥ 2µ] ≤ n2

{

exp{−cn4/3p} if p ≥ n−2/3

exp{−cn2p2} otherwise.

▽
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Chapter 10

Isoperimetric Inequalities and
Concentration

ch:isoperimetric-1

10.1 Isoperimetric inequalities

Everyone has heard about the mother of all isoperimetric inequalities:

Of all planar geometric figures with a given perimeter,
the circle has the largest possible area.

(10.1) eq:mother

An abstract form of isoperimetric inequalities is usually formulated in the setting
of a space (Ω, P, d) that is simultaneously equipped with a probability measure
P and a metric d. We will call such a space a MM-space. Since our applications
usually involve finite sets Ω and discrete distributions on them, we will not specify
any more conditions (as would usually be done in a mathematics book).

Given A ⊆ Ω, the t-neighbourhood of A is the subset At ⊆ Ω defined by

At := {x ∈ Ω | d(x,A) ≤ t}. (10.2) eq:t-neighbour

Here, by definition,

d(x,A) := min
y∈A

d(x, y).

An abstract isoperimetric inequality in such a MM-space (Ω, P, d) asserts that

There is a “special” family of subsets B such that for any A ⊆ Ω,
for all B ∈ B with P (B) = P (A), P (At) ≤ P (Bt).

(10.3) eq:absiso

141
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To relate this to (
eq:mother
10.1), take the underlying space to be the Euclidean plane with

Lebesgue measure and Euclidean distance, and the family B to be balls in the
plane. By letting t→ 0, an abstract isoperimetric inequality yields (

eq:mother
10.1).

Often an abstract isoperimetric inequality is stated in the following form:

Assertion 10.1 In a space (Ω, P, d), for any A ⊆ Ω,

P (A)P (At) ≤ g(t) (10.4) eq:absiso-2

Such a result is often proved in two steps:

1. Prove an abstract isoperimetric inequality in the form (
eq:absiso
10.3) for s suitable

family B.

2. Explicitly compute P (B) for B ∈ B to determine g.

(In § sec:martingale-iso
10.4, there is an exception to this rule: the function g there is bounded from

above directly.)

10.2 Isoperimetry and Concentration
sec:iso-to-conc

An isoperimetric inequality such as (
eq:absiso-2
10.4) implies measure concentration if the

function g decays sufficiently fast to zero as t → ∞. Thus, if A ⊆ Ω satisfies
Pr(A) ≥ 1/2, then (

eq:absiso-2
10.4) implies Pr(At) ≥ 1− 2g(t). If g goes sufficiently fast to

0, then Pr(At) → 1. Thus

“Almost all the meausre is concentrated around any subset of measure
at least a half”!

10.2.1 Concentration of Lipschitz functions

It also yields concentration of Lipschitz functions on a space (Ω, d, P ). Let f be
a Lipschitz function on Ω with constant 1, that is,

|f(x) − f(y)| ≤ d(x, y).

A median Lévy Mean of f is areal number M [f ] such that

P (f ≥M [f ]) ≥ 1/2, and P (f ≤M [f ]) ≥ 1/2.
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Exercise 10.2 Let (Ω, P ) be a probability space and let f be a real-valued func-
tion on Ω. Define

med(f) := sup{t | P [f ≤ t] ≤ 1/2}.
Show that:

P [f < med(f)], P [f > med(f)] ≤ 1/2.

Set
A := {x ∈ Ω | f(x) ≤M [f ]}.

Then, by defintiion of a median, Pr(A) ≥ 1/2. Note that since f is Lipschitz,

{x | f(x) > M [f ] + t} ⊆ At,

and hence,
Pr[f(x) > M [f ] + t] ≤ Pr(At) ≤ 2g(t) → 0.

Exercise 10.3 Show that (
eq:absiso-2
10.4) also implies a similar bound on

Pr[f(x) > M [f ] − t].

.

Exercise 10.4 Show that it suffices to impose a one-sided condition on f :

f(x) ≤ f(y) + d(x, y),

or
f(x) ≥ f(y) − d(x, y).

to obtain two-sided concentration around a Lévy Mean.

Usually one has a concentration around the expectation. In Problem
prob:means
10.15 you are

asked to check that if the concentration is strong enough, concentration around
the expectation or a median are essentially equivalent.

To get a quantitative bound on how good the concentration is, one needs to look
at the behaviour of g in (

eq:absiso-2
10.4). Let (Ω, P, d) be a MM-space, and let

D := max{d(x, y) | x, y ∈ Ω}.
For 0 < ǫ < 1, let

α(Ω, ǫ) := max{1 − P (AǫD) | P (A) ≥ 1/2}.
So a space with small α(Ω, ǫ) is one in which there is measure concentration
around sets of measure at least 1/2.

A family of spaces (Ωn, dn, Pn), n ≥ 1 is called
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• a Lévy family if
lim

n→∞
α(Ωn, ǫ) = 0.

• a concentrated Lévy family if there are constants C1, C2 > 0 such that

α(Ωn, ǫ) ≤ C1 exp
(

−C2ǫ
√
n
)

.

• a normal Lévy family if there are constants C1, C2 > 0 such that

α(Ωn, ǫ) ≤ C1 exp
(

−C2ǫ
2n
)

.

10.3 Examples: Classical and Discrete
sec:iso-exs

10.3.1 Euclidean Space with Lebesgue Measure

Consider Euclidean space Rn with the Eucledean metric and Lebesgue measure
µ.

Theorem 10.5 (Isoperimetry for Euclidean Space) For any compact sub-
set A ⊆ Rn, and any t ≥ 0,

µ(At) ≥ µ(Bt),

where B is a ball with µ(B) = µ(A).

In Problem
prob:brunn-min
10.16 you are asked to prove this using the famous Brunn-Minkowski

inequality.

10.3.2 The Euclidean Sphere

For the sphere Sn−1 with the usual Eucledean metric inherited from Rn, a r-ball
is a sphereical cap i.e. an intersection of Sn−1 with a half-space.

Theorem 10.6 (Isoperimetry for Euclidean Sphere) For any measurable A ⊆
Sn−1, and any t ≥ 0,

Pr(At) ≥ Pr(Ct),

where C is a spherical cap with Pr(C) = Pr(A).

A calculation for spherical caps then yields:
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Theorem 10.7 (Measure Concentration on the Sphere) Let A ⊆ Sn−1 be
a meqsurable set with Pr(A) ≥ 1/2. Then,

P (At) ≥ 1 − 2e−t2n/2.

Note that the Sphere Sn−1 has diameter 2 so this inequality shows that the faimily
of spheres {Sn−1 | n ≥ 1} is a normal Lévy family.

10.3.3 Euclidean Space with Gaussian Measure

Consider Rn with the Eucledean metric and the n-dimensional Gaussian measure
γ:

γ(A) := (2π)−n/2

∫

A

e−||x||2/2dx.

This is a probability distribution on Rn corresponding to the n-dimensional nor-
mal distribution. Let Z1, . . . , Zn be i.i.d. variables with the normal distribution
N(0, 1) i.e. for any real z,

Pr[Zi ≤ z] =
1√
2π

∫ z

−∞
e−t2/2dt.

Then the vector (Z1, · · · , Zn) is distributed according to the measure .γ. The
distribution γ is spherically symmetric: the density function depends only on the
distance from the origin.

The isoperimetric inequality for Gaussian measure asserts that among all subsets
A with a given γ(A), a half space has the smallest possible measure of the t-
neighbourhood. By a simple calculation, this yields,

Theorem 10.8 (Gaussian Measure Concentration) Let A ⊆ Rn be mea-
surable and satisfy γ(A) ≥ 1/2. Then γ(At) ≥ 1 − e−t2/2.

10.3.4 The Hamming Cube
subsec: hcube

Consider the Hamming cube Qn := {0, 1}n with uniform measure and the Ham-
ming metric:

d(x, y) := |{i ∈ [n] | xi 6= yi}.
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A r-ball in this space is Br := {x | d(x, 0) ≤ r} i.e. the set of all 0/1 sequences
that has at most r 1s. Clearly

Pr(Br) =
1

2n

∑

0≤i≤r

(

n

i

)

.

Note that the t-neighbourhood of a r-ball is a r + t-ball: Br
t = Br+t.

th:harper Theorem 10.9 (Harper’s Isoperimetric inequality) If A ⊆ Qn satisfies Pr(A) ≥
Pr(Br), then Pr(At) ≥ Pr(Br+t).

cor:hamconc Corollary 10.10 (Measure Concentration for the Hamming Cube) Let A ⊆
Qn be such that Pr(A) ≥ 1/2. Then Pr(At) ≥ 1 − e−2t2/n.

Since the diameter of Qn is n, this shows that the family of cubes {Qn | n ≥ 1}
is a normal Lévy family.

Exercise 10.11 Use the CH bound to deduce Corollary
cor:hamconc
10.10 from Harper’s

isoperimetric inequality.

Exercise 10.12 Deduce the Chernoff bound for iid variables corresponding to
fair coin flips from Corollary

cor:hamconc
10.10.

10.4 Martingales and Isoperimetric inequalities
sec:martingale-iso

In § sec:iso-to-conc
10.2 we saw that an isoperimetric inequality yields the method of bounded

differences i.e. concentration for Lipschitz functions. In this section we see that
conversely, isoperimetric inequalities can be derived via the method of bounded
differences. So, isoperimetric inequalities and the concentration of Lipschitz func-
tions are essentially equivalent.

Consider the space {0, 1}n with the uniform measure (which is also the prod-
uct measure with p = 1/2 in each co–ordinate) and the Hamming metric, dH .
Let A be a subset of size at least 2n−1 so that µ(A) ≥ 1/2. Consider the func-
tion f(x) := dH(x,A), the Hamming distance of x to A. Surely f is Lipshitz.
Let X1, . . . , Xn be independent and uniformly distributed in {0, 1}. Then, by
applying the method of bounded differences,

µ[f > E[f ] + t], µ[f < E[f ] − t] ≤ e
−t2

2n .
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In particular,

1/2 ≤ µ(A)

= µ(f = 0)

≤ µ(f < E[f ] − E[f ])

≤ e
−E[f ]2

2n .

Thus E[f ] ≤ t0 :=
√

2 ln 2n. Finally then,

µ(At) ≥ 1 − exp

(−(t− t0)
2

2n

)

.

Consider now a weighted verison: the space is {0, 1}n with the uniform measure,
but the metric is given by

dα(x, y) :=
∑

xi 6=yi

αi,

for fixed non=negative reals αi, i ∈ [n].

Exercise 10.13 Show that

µ(At) ≥ 1 − exp

(−(t− t0)
2

2
∑

i α
2
i

)

.

Exercise 10.14 Check that the result of the previous exercise holds in arbitrary
product spaces with arbitrary product distributions and a weighted Hamming met-
ric.

In the next chapter we will see a powerful extension of this inequality.

10.5 Bibliographic Notes

Ledoux
Led01
[39][Chapter 1] has a thorough discussion of isoperimetric inequalities

and concentration. The vexed issue of concentration around the mean or the
median is addressed in Prop. 1.7 and the following discussion there. See also
McDiarmid

McD98
[50]. Examples of isoperimetric inequalities in different spaces are

discussed in Ledoux
Led01
[39][§2.1]. Matousek

Mat02
[46][Chapter 14] has a nice discussion

and many examples.
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10.6 Problems

Problem 10.15 [Expectation versus Median] In this problem, we check thatprob:means
concentration around the expectation or a median are essentially equivalent.

(a) Let Ωn, Pn, dn), n ≥ 1 be a normal Lévy family. let Ωn have diameter Dn.
Show that if f is a 1-Lipschitz function on Ωn, then for some constant c > 0,

|M [f ] − E[f ]| ≤ c
Dn√
n
.

(b) Deduce that if f : Sn−1 → R is 1-Lipschitz, then for some constant c > 0,

|M [f ] − E[f ]| ≤ c
1√
n
.

(c) Deduce that if f : Qn → R is 1-Lipschitz, then for some constant c > 0,

|M [f ] − E[f ]| ≤ c
√
n.

▽

Problem 10.16 [Brunn-Minkowski] Recall the famous Brunn-Minkowski in-prob:brunn-min
equality: for any non-emty compact subsets A,B ⊆ Rn,

vol1/n(A) + vol1/n(B) ≤ vol1/n(A+B).

Deduce the isoperimetric inequality for Rn with Lebesgue measure and Euclidean
distance form this. (Hint: Note that At = A + tB where B is a ball of unit
radius.) ▽

Problem 10.17 [Measure Concentration in Expander Graphs] The edge ex-
pansion or conductance Φ(G) of a graph G = (V,E) is defined by:

Φ(G) := min

{

e(A, V \ A)

|A| | ∅ 6= A ⊆ V, |A| ≤ |V |/2
}

.

where e(A,B) denotes the number of edges with one endpoint in A and the other
in B. Regard G as a MM-space by G with the usual graph distance metric and
equipped with the uniform measure P on V . Suppose Φ := Φ(G) > 0, and
that the maximum degree of a vertex in G is ∆. Prove the following measure
concentration inequality: if A ⊆ V satisfies P (A) ≥ 1/2, then P (At) ≥ 1 −
1
2
e−tΦ/∆. (A constant degree expander graph G satisfies Φ(G) ≥ c1 and ∆ ≤ c2

for constants c1, c2 > 0.) ▽
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Problem 10.18 [Concentration for Permutations] Apply the average method of
bounded differences to establish an isoperimetric inequality for the space of all
permutations with the uniform measure and transposition distance. ▽

Problem 10.19 [Measure Concentration and Length] Schectmann, generalizingprob:conc-length
Maurey, introduced the notion of length in a finite metric space (Ω, d). Say that
(Ω, d) has length at most ℓ if there are constants c1, · · · , cn > 0 with

√

∑

i c
2
i = ℓ

and a sequence of partitions P0 � · · · � Pn of Ω with P0 trivial, Pn discrete
and such that whenever we have sets A,B ∈ Pk with A ∪ B ⊆ C ∈ Pk−1, then
|A| = |B| and there is a bijection φ : A→ B with d(x, φ(x)) ≤ ck for all x ∈ A.

(a) Show that the discrete Hamming Cube Qn with the Hamming metric has
length at most

√
n by considering the partitions induced by the equivalence

relations x ≡k y iff Xi = yi, i ≤ k for 0 ≤ k ≤ n.

(b) Let α := (α1, · · · , αn) ≥ 0. Show that the discrete Hamming Cube Qn with
the weighted Hamming metric dα(x, y) :=

∑

xi 6=yi
αi has length at most

‖α‖2.

(c) Show that the group of permutations Sn equipped with the usual trans-
porsition metric has small length.

(d) Show that Lipschitz functions on a finite metric space of small length are
strongly concentrated around their mean. when the space is equppied with
the uniform measure:

Theorem 10.20 Let (Ω, d) be a finite metric space of length at most ℓ, and
let f be a Lipschitz function i.e. |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ Ω.
Then, if P is the uniform measure on Ω,

P (f ≥ E[f ] + a) , P (f ≤ E[f ] − a) ≤ e−a2/2ℓ2 .

(e) Generalize to the case when P is not the uniform distribution by requiring
that the map φ : A→ B above is measure preserving. Show that a similar
result holds for the concentration of Lipschitz functions with this condition.

▽

Problem 10.21 [Diameter, Laplace Functional and Concentration] Let (Ω, P, d)
be a MM-space. The Laplace functional , E = EΩ,P,d is defined by:

E(λ); = sup{E[eλf ] | f : Ω → R is 1-Lipschitz and E[f ] = 0}.
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(a) Show that if E(λ) ≤ eaλ2/2 for some a > 0, then Pr[|f −Ef | > t] ≤ e−t2/2a.
(Hint: recall basic Chernoff bound argument!)

(b) Show that the Laplace functional is sub-additive under products: let (Ωi, Pi, di), i =
1, 2 be two spaces, and let (Ω, P, d) be the product space with Ω := Ω1×Ω2,
P := P1 × P2 and d := d1 + d2. Then

EΩ,P,d ≤ EΩ1,P1,d1 · EΩ2,P2,d2 .

(c) If (Ω, d) has diameter at most 1, show that E(λ) ≤ e−λ2/2. (Hint: First
note that by Jensen’s inequality, eE[f ] ≤ E[ef ], hence if E[f ] = 0, then
E[e−f ] ≥ 1. Now, let f be 1-Lipschitz, and let X and Y be two independent
variables distributed according to P . Then,

E[eλf(X)] ≤ E[eλf(X)]E[e−λf(Y )]

= E[eλ(f(X)−f(Y ))]

= E

[

∑

i≥0

λi (f(X) − f(Y ))i

i!

]

=
∑

i≥0

E

[

λi (f(X) − f(Y ))i

i!

]

Argue that the terms for odd i vanish and bound the terms for even i by
using the Lipschitz condition on f .

(d) Deduce the Chernoff-Hoeffding bound from (b) and (c).

▽
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Chapter 11

Talagrand’s Isoperimetric
Inequality

[Talagrand Inequality]ch:talagrand

11.1 Statement of the inequality
eq:tineq

Recall that the setting for an isoperimetric inequality is a space Ω equipped with a
probabilty measure P and a metric d. An isoperimetric inequality in this scenario
states that if A ⊆ Ω is such that P (A) ≥ 1/2 then P (At) ≥ 1 − α(t) for some
rapidly decreasing function α. (Recall that the neighbourhood set At := {x ∈
Ω | d(x,A) ≤ t}.

Talagrand’s inequality applies in the setting where Ω =
∏

i∈I Ωi is a product
space indexed by some finite index set I with the product measure

∏

i∈I Pi where
Pi is an arbitrary measure on the Ωi, for i ∈ I. Below we will always assume this
setting.

Recall the normalized weighted Hamming distance, dα specified by a given set of
non-negative reals αi, i ∈ [n]:

dα(x, y) :=

∑

xi 6=yi
αi

√
∑

i α
2
i

. (11.1) eq:unif-wt-dist

Suppose now that each point x ∈ Ω is associated with a set of non-negative reals

151
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α(x)i, i ∈ [n]. Consider the asymmetric “diatance” on Ω given by:

dα(x, y) :=

∑

xi 6=yi
α(x)i

√
∑

i α(x)2
i

(11.2) eq:non-unif-wt-dist

This is the same as the normalized weighted Hamming distance (
eq:unif-wt-dist
11.1), except

that it involves a set of non-uniform sweights α(x)i, i ∈ [n]. As usual, for A ⊆ Ω,

dα(x,A) := min
y∈A

dα(x, y).

Theorem 11.1 (Talagrand’s Inequality) Let A be a subset in a product space
with the “distance” (

eq:non-unif-wt-dist
11.2). Then for any t > 0,

Pr[A]Pr[At] ≤ e−t2/4. (11.3) eq:talineq

Remarks’:

1. The inequality will be stated in a seemingly stronger form in a later chapter
where it will be proved. However, for all the applications we consider, the
form given above suffices and is most conveninet.

2. The inequality should be compared to the statement of the isoperimetric in-
equality for product spaces and weighhted Hamming distance in a previous
chapter. The main difference here is that the “distnace” here is non-uniform
and asymmetric.

To gain some intuition about the Talagrand distance, let us set α(x)i := 1 for
each i ∈ [n] and ecah x ∈ Ω; then we get

ddα(x,A) = min
y∈A

∑

xi 6=yi
1

√
n

= dH(x,A)/
√
n, (11.4) eq:talham

where dH is the familiar Hamming distance. This implies that for any t > 0,

Adα

t/
√

n
= AH

t . (11.5) eq:talham2

These two simple observations give us some notable consequences.

Consider the simplest product space, {0, 1}n equipped with the product measure
where Pr[0] = 1/2 = Pr[1] in each co–ordinate (this is the same as the uniform
measure on the whole space). Take

A := {x ∈ {0, 1}n |
∑

i

xi ≥ n/2}.
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Note that
AH

t = {x ∈ {0, 1}n |
∑

i

xi ≥ n/2 − t},

and by (
eq:talham2
11.5) and Talagrand’s inequality (

eq:talineq
11.3), we get

Pr[AH
t ] = Pr[Adα

t/
√

n
]

≤ 1

Pr[A]
e−t2/4n

≤ 2e−t2/4n since Pr[A] ≥ 1/2.

This is a disguised form of the Chernoff bound (except for small constant factors)
for deviations below the mean! By considering A′ := {x ∈ {0, 1}n |∑i xi ≤ n/2},
we can similarly get the Chernoff bound for deviations above the mean.

Exercise 11.2 Show that one can extend this to the heterogeneous case as well
(once again upto constant factors).

Now let A ⊆ {0, 1}n be an arbitrary set with Pr[A] ≥ 1/2. By the same reasoning
as above, we get:

Pr[AH
t ] ≤ 2e−t2/4n,

a cleaner form of the isoperimetric inequality we derived using martingales and
the method of bounded differences.

11.2 Hereditary Functions of of Index Sets
sec:configf

We will develop a general framework to analyse a certain class of functions on
product spaces which are defined by hereditary (i.e. monotone) properties of in-
dex sets. This framework generalises slightly the results implicit in Talagrand

Tal95
[67]

and explicit in in Steele
Ste97
[66] and Spencer

Spen96
[65]. We then illustrate the versatality

of this framework by several examples.

11.2.1 A General Framework

For x, y ∈ Ω and J ⊆ I, we use the notation xJ = yJ to mean xj = yj, j ∈ J , For
J ⊆ [n], let Jx=y := {j ∈ J | xj = yj}. Note that xJx=y = yJx=y .

Let φ(x, J) be a boolean property such that it is
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• a property of index sets i.e. if xJ = yJ , then φ(x, J) = φ(y, J), and

• non–increasing on the index sets, i.e. if J ⊆ J ′ then φ(x, J ′) ≤ φ(x, J).

. We shall say that φ is a hereditary property of index sets.

Ket fφ be the function determined by a hereditary property of index sets φ given
by:

fφ(x) := max
φ(x,J)

|J |. (11.6) eq:heredit-f

A function f such that f = fφ for some hereditary property φ of index sets will
be called a hereditary function of index sets.

th:config Theorem 11.3 Let f be a hereditary function of index sets. Then for all t > 0,

Pr[f > M[f ] + t] ≤ 2 exp

( −t2
4(M [f ] + t)

)

,

and

Pr[f < M[f ] − t] ≤ 2 exp

( −t2
4M [f ]

)

,

where M[f ] is a median of f .

The Theorem follows from a more general result in the next section. Here we
illustrate how to use it.

11.2.2 Increasing subsequences
sec:incsubseq

Let I(x1, . . . , xn) denote the length of the largest increasing subsequence from
x1, . . . , xn. Let X1, . . . , Xn be chosen independently at random from [0, 1]. Propo-
sition

th:config
11.3 can be applied immediately to give a sharp concentration result on

I(X1, . . . , Xn).

Take the hereditary property φ(x, J) to be: for jj′ ∈ J such that j < j′, we have
that xj ≤ xj′ i.e. J corresponds to an increasing subsequence in x. Check that I
is defined by φ, hence:

Pr[I(x) > M[f ] + t] ≤ 2 exp

( −t2
4(M [f ] + t)

)

,

and

Pr[I(x) < M[f ] − t] ≤ 2 exp

( −t2
4(M [f ]

)

,

In this example, since E[I] is of the order of
√
n, this bound is a dramatic improve-

ment over what could be achieved by the simple method of bounded differences.



DRAFT

11.3. CERTIFIABLE FUNCTIONS 155

11.2.3 Balls and Bins

Consider the probabilistic experiment where m balls are thrown independently
at random into n bins and we are interested in a sharp concentration result on
the number of empty bins. Equivalently, we can give a sharp concentration result
on the number of non–empty bins.

To cast this in the framework of configuration functions, consider the product
space [n]m with the product measure where Pr[Xk = i] is the probability that
ball k is thown into bin i. What herediatry function of index sets φ can we cook
up so that fφ is the the number of non–empty bins? Take φ(x, J) to hold iff
x(j) 6= x(j′) for all j, j′ ∈ J with j 6= j′ i.e. the balls indexed by J go into
distinct bins. A moment’s thought shows tha φ is a hereditary function of index
sets and that fφ is the number of non-empty bins. Applying Theorem

th:config
11.3 we

get:that if Z is the number of non=empty bins, then

Pr[Z > M[Z] + t] ≤ 2 exp

( −t2
4(M [Z] + t)

)

,

and

Pr[Z < M[Z] − t] ≤ 2 exp

( −t2
4(M [Z]

)

,

11.2.4 Discrete Isoperimetric Inequalities

Let A be a downward closed subset of the cube {0, 1}n equipped with the product
measure, and let us consider the Hamming distance dH(x,A) from a point x to the
set A. This is in fact a function of hereditary index sets (why?).Applying Theo-
rem

th:config
11.3 yields bounds comparable with those obtained directly by isoperimetric

inequalities in the theory of hereditary sets
BL91
[8] (see also

Ste97
[66, p. 132].

11.3 Certifiable Functions

In this section, we consider a generalization of the previous section which is
somewhat more flexible and powerful. A function f on a product space Ω :=
∏

i∈[n] Ωi is said to be lower bound certifiable or just certifiable if:

Lower Bound Certificate (LBC): for each x ∈ Ω, there is a subset J(x) ⊆ [n]
such that
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(a) f(x) ≥ ρ|J(x)|, for some constant ρ > 0.

(b) for any y ∈ Ω that agrees with x on J(x) (i.e. xi = yi, i ∈ J(x)), we
have f(y) ≥ f(x).

Intuitively, for each x ∈ Ω, there is a an index set J(x) that acts as a “certificate”
for a lower bound of ρ times the cardinality of the certificate J(x) on the value
of f at any point that agrees with x on J(x).

Exercise 11.4 Show that a hereditary function of index sets is certifiable.

th:config-2 Theorem 11.5 Let f : Ω → R be certifiable and suppose it is Lipschitz with
constant c (i.e. changing any co-ordinate changes the value of f by at most c).
Then for all t > 0,

Pr[f > M[f ] + t] ≤ 2 exp

(

− ρ

4c2
u2

M[f ] + t

)

.

and

Pr[f < M[f ] − t] ≤ 2 exp

(

− ρ

4c2
u2

M[f ]

)

.

where M[f ] is a median of f and c2 :=
∑

i c
2
i .

Proof. For each x ∈ Ω. let J(x) be the certifying interval for f . Set α(x)i := c
if i ∈ J(x) and 0 otherwise. Note that

α2 :=
∑

i

α2
i (x) = c2|J(x)| ≤ c2

ρ
f(x), (11.7) eq:sum-alphas

where in the final inequality, we use part (a) of the (LBC) condition.

Let y := argmin{dα(x, z) | z ∈ A}. Define y′ by setting

y′i :=

{

xi if i ∈ J(x),

yi otherwise.
(11.8) eq:def-y’

Note that f(y′) ≥ f(x) since J(x) is a lower bound certificate for x.
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Now,

a ≥ f(y) by definition of A

≥ f(y′) −
∑

y′

i 6=yi

c since f is Lipschitz with constant c

= f(y′) −
∑

xi 6=yi

c by (
eq:def-y’
11.8) nonumber (11.9) eq:x-y-y’

≥ f(x) −
∑

xi 6=yi

c since J(x) is a lower bound certificate for x.(11.10)

Now consider the weighted distance with the normalized weights c
α
:

dc/α(x,A) = dc/α(x, y)

=
∑

xi 6=yi

c

α

≥ 1

α
(f(x) − a) using (

eq:x-y-y’
11.9)

≥
√
ρ

c

f(x) − a
√

f(x)
using (

eq:sum-alphas
11.7) (11.11) eq:d-f

The function u 7→ (u−a)/√u is monotone increasing for u ≥ a, so for any a ≥ 0,

Pr[f(X) ≥ a+ t] = Pr

[

f(X) − a√
a+ t

≥ u√
a+ t

]

≤ Pr

[

f(X) − a
√

f(x)
≥ u√

a+ t

]

≤ Pr

[

dc/α(x,A) ≥
√
ρ

c

u√
a+ t

]

using (
eq:d-f
11.11)

≤ 1

P (A)
exp

(

− ρ

4c2
u2

a + t

)

In the last step we applied Talagrand’s inequality (
eq:talineq
11.3). That is, remembering

the definition of A,

Pr[f(X) ≤ a] Pr[f(X) ≥ a+ t] ≤ exp

(

− ρ

4c2
u2

a+ t

)

.

Putting a := M[f ] and a := M[f ] − t, we get the result.

Exercise 11.6 Deduce Theorem
th:config
11.3 from Theorem

th:config-2
11.5.



DRAFT

158 CHAPTER 11. TALAGRAND’S ISOPERIMETRIC INEQUALITY

Exercise 11.7 Rework the examples of increasing subsequences and non-empty
bins from the previous subsection using Theorem

th:config-2
11.5.

11.3.1 Edge Colouring

In this example, we shall give an alternative analysis of a simple randomised
algorithms for edge colouring a graph that we analysed in a previous chapter
using Martingale methods. For convenience, we recall the problem and algorithm.

Given a graph G and a palette ∆ of colours, we would like to assign colours to
the edges in such a way that no two edges incident on a vertex have the same
colour. We would also like the algorithm to be truly distributed, so we would
like it to have a local character. This leads naturally to randomised algorithms of
the type considered below. These algorithms run in stages. At each stage, some
edges are successfully coloured. The others pass on to the next stage. Typically
one analyses the algorithm stage by stage; in each stage, we would like to show
that a significant number of edges are successfully coloured, so that the graph
passed to the next stage is significantly smaller.

For simplicity, we assume that the graphG is bipartite with bipartition U, V (note
that even colouring bipartite graphs in a distributed fashion is non–trivial).

Algorithm: each edge picks a colour independently from the common palette
[∆]. Conflicts are resolved in a two steps:

• First the V vertices resolve conflicts: if there are two edges (ui, v) and (uj, v)
with the same colour with i < j, then (uj, v) “loses” and is decoloured.

• Next the U vertices resolve any remaining conflicts by choosing one “win-
ner” out of the remaining conflicting edges for each colour.

We are interested in a sharp concentration result on the number of edges around
a fixed vertex u ∈ U that are successfuly coloured (A similar analysis works for
a vertex in V ). Alternatively, we can give a sharp concentration result on the
number of edges around u that are not successfully coloured.

The underlying product space is [∆]E(u) where E(u) is the set of edges that are
incident to u or to a neighbour of u. The function f we consider is the number
of edges around u that are not coloured succesfully. Clearly f is Lipschitz with
all constants 1. Moreover,
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Lemma 11.8 The function f is a certifiable function with constants ρ = 1/2
and c = 1 function.

Proof. For each edge e that is unsuccessful, there is at least another edge that
gets the same tentative colour – fix one such edge w(e) arbitrarily as a witness
to this fact. For a given tentative colouring χ, the index set J = J(χ) ⊆ E(u)
consists of all unsuccessful edges together with their witnesses. The condition
(LBC) is now easily verified. First, the function is Lipschitz since changing the
tentative colour of any edge changes f by at most 1. Second, the edge set J
includes each unsucessful edge e and its witness, so it has at most twice as many
edges as unsucessful ones (it is exactly twice if the witness for each unsuccessful
edge is distinct from the others). Thus the (LBC) condition is satisfied with
ρ = 1/2 and c = 1.

Applying Theorem
th:config-2
11.5, we get the result:

Pr[f > M[f ] + t] ≤ 2 exp

(

−1

8

u2

M[f ] + t

)

.

and

Pr[f < M[f ] − t] ≤ 2 exp

(

−1

8

u2

M[f ]

)

.

11.4 The Method of Non–uniformly Bounded

Differences
sec:geometry

One can extract out from Talagrand’s inequality another nicely packaged lemma
1 that generalises the method of bounded differences.

prop:geom Theorem 11.9 (The Method of Non–uniformly Bounded Differences) Let
f be a real–valued function on a product space Ω such that for each x ∈ Ω, there
exist non–negative reals αi(x), i ∈ [n] with

f(x) ≤ f(y) +
∑

xi 6=yi

αi(x), for all y ∈ Ω. (11.12) eq:bddtal

Furthermore, suppose that there exists a constant c > 0 such that uniformly for
all x ∈ Ω,

∑

i

α2
i (x) ≤ c (11.13) eq:ubound

1In Steele
Ste97
[66][Lemma 6.2.1], this is stated with some additional superfluous conditions.
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(even though the αi(x) may be different individually). Then

Pr[|f − M[f ]| > t] ≤ 2e−t2/4c. (11.14) eq:gbound

Proof. Set A = A(a) := {y | f(y) ≤ a}, where a is a parameter to be fixed later.
By (

eq:bddtal
11.12), we have,

f(x) ≤ f(y) +
∑

xi 6=yi

αi(x),

for any y. Hence minimising over y ∈ A, we have,

f(x) ≤ min
y∈A

f(y) +
∑

xi 6=yi

αi(x)

≤ a+ cdT (x,A),

by the definition of the Talagrand distance and (
eq:ubound
11.13). Hence,

Pr[f(X) ≥ a + ct] ≤ Pr[dT (X,A)|geqt]
≤ 1

Pr[A]
e−t2/4,

by applying Talagrand’s inequality in the last step. Hence,

Pr[f(X) ≥ a+ t] ≤ exp

(−t2
4c

)

.

Remembering that A := {y | f(y) ≤ a}, write this as

Pr[f(X) ≥ a+ t]Pr[f(X) ≤ a] ≤ exp

(−t2
4c

)

.

Setting a := M[f ] and a := M[f ] − t successively gives the result.

Note that the condition of (
eq:bddtal
11.12) is just like the Lipschitz condition in the

method of bounded differences except that the bounding parameters can be non–
uniform i.e. a different set of parameters for each x. This is the crucial feature
that makes this version substantially more powerful than the usual method of
bounded differences as we illustrate with some examples below.

11.4.1 Chernoff–Hoeffding Bounds

Let f(x1, . . . , xn) :=
∑

i xi with x1, . . . , xn ∈ [0, 1]. Take αi(x) := xi; then clearly
(
eq:bddtal
11.12) is satisfied. Moreover

∑

i α
2
i ≤ n. Hence,

Pr[|f − M[f ]| > t] ≤ 2e−t2/n,

which is just the Chernoff–Hoeffding bound upto constant factors.
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11.4.2 Balls and Bins

Consider once again, the example of the number of non-empty bins when m balls
are thrown independently and uniformly at random into n bins. For a agiven
configuration x of balls in the bins, let αi(x) := 1 if ball i is the lowest numbered
ball in its bin and 0 otherwise. Then if f is the number of non-empty bins,

f(x) ≥ f(y) −
∑

xi 6=yi

αi(x).

Since
∑

i α
2
i (x) ≤ n, we get the bound:

Pr[|f − M[f ]| > t] ≤ 2e−t2/n,

11.4.3 Stochastic TSP

Let X1, . . . , Xn be points selected uniformly and independently at random in the
unit square and let TSP (X) denote the length of the minimum TSP tour through
these points. In this subsection, we shall show a sharp concentration result for
the TSP tour. This was a notable success of Talagrand’s inequality over the
previous approcahes using Martingales.

In order to apply Proposition
prop:geom
11.9, we need to find suitable α(x)i, i ∈ [n]. That

is, we need them to satisfy:

TSP (x) ≤ TSP (y) +
∑

xi 6=yi

α(x)i (11.15) eq:tsp-cond

Many proofs in the literature
Ste97,McD98
[66, 50] use the existence of space filling curves to

do this. Actually, all one needs is the following simple but surprising fact:

prop:stitch-cycle Proposition 11.10 There is a constant c > 0 such that or any set of n points
x1, . . . , xn ∈ [0, 1]2, there is a permutation σ : [n] → [n] satisfying

∑

i∈[n] |xσ(i) −
xσ(i+1)|2 ≤ c, (where the final index n+ 1 is taken modulo n). That is, there is a
tour through all points such that the sum of the squares of the lengths of all edges
in the tour is at bounded by an absolute constant c.

In Problem
prob-tal:new
11.14 we outline a completely elementary proof of this fact.

Let C(x) be this tour corresponding to the points x1, · · · , xn. We will use this
tour to “stitch” in the points x into the optimal tour for the points y1, · · · , yn
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and satisfy (
eq:tsp-cond
11.15). Take α(x)i to be twice the lengths of the two edges incident

to xi in C(x). Now, we verify that with this choice, (
eq:tsp-cond
11.15) is satisfied, First, we

note that the inequality is trivially true if x ∩ y = ∅ i.e. x and y have no points
in common. Otherwise, consider the cycle C(x) and mark the points common to
x and y on this tour. Double each edge in C(x). Starting at a point in x ∩ y
follow C(x) until the last point before hitting another vertex of x ∩ y. At this
point, follow the cycle backwards (using the doubled edges) to the starting point.
In this way, all the points in x have been attached by small cycles to a point in
x ∩ y. Let U ′ be the union of these cycles. Note that the sum of the lengths
of the edges in U ′ is at most

∑

xi 6=yi
αi. Finally consider the graph consisting of

vertex set x∪ y and edge set TSP (y)∪U ′. By “short circuiting”, we can extract
a tour of x ∪ y of length at most that of the edges in TSP (y) ∪ U ′. Since the
length of a tour through x is at most that of a tour through x ∪ y and, TSP (x)
is an optimal tour through x, this verifies (

eq:tsp-cond
11.15)

Since
∑

i α
2
i (x) ≤ 4c where c is the constant given by Proposition

prop:stitch-cycle
11.10, applying

Theorem
prop:geom
11.9, we arrive at the truly Gaussian tail bound:

Pr[|TSP (X) − M[TSP (X)]| > t] ≤ e−t2/4c.

11.4.4 First Birth Times in Branching Processes

Branching processes are a very attractive model of population growth dynamics
and have also proven very useful in the study of properties of trees grown by
incremental random processes. We consider here, branching processes of the
Galton–Watson type: there is a single ancestor at time 0. This ancestor produces
a number m of children at a random time Z (distributed with the exponential
distribution with parameter 1) and dies. Subsequently each child independently
of the others reproduces in exactly the same manner.

We can represent the process by an infinite m–ary tree whose vertices represent
the memebers of the population produced and are labelled as follows: the root
is given the empty label. If a vertex has label v, then its children are labelled
v1, . . . , vm. The root, representing the initia ancestor is the unique member of
the 0th generation. The children of a memeber of the kth generation fall in the
k + 1st generation.

A very important random variable associated with a branching process is the first
birth time in the kth generation, Bk: this is the time at which the first member
of the kth generation is born. A powerful theorem of Kingman from the theory
of sub–additive stochastic processes shows that Bk

k
→ γ almost surely for some

constant γ.
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Here we would like to find the rate of convergence by giving high probability
estimates on the deviation of Bk from its mean. Let us label the edges of the
branching process tree as follows: The unique edge leading into a vertex labelled
v is labelled with Zv, an independent and identical copy of the random variable
Z. Then, with P representing a path in the tree,

Bk = min
|P |=k

∑

v∈P

Zv.

Thus Bk is this function of the labels attached to the edges in the binary tree on
paths of length at most k from the root.

For a labelling x of the dedges, let P ∗(x) denote the minimising path determining
Bk and set α(x)v := xv for v ∈ P ∗ and 0 otherwise. Then clearly,

Bk(x) ≤ Bk(y) +
∑

xv 6=yv

α(x)v.

Moreover, by the result of Problem
prob:sumofZsq
1.17,

Pr[Pr[
∑

v

Z2
v > (1 + ǫ)2k] ≤ exp

(

−4(
ǫ

α
)2k1/3

)

+ ne−k1/3

.

Thus, applying Theorem
prop:geom
11.9,

Pr[|Bk − M[Bk]| > t] ≤ exp

( −t2
(1 + ǫ)2k

)

+ exp
(

−4(
ǫ

α
)2k1/3

)

+ ne−k1/3

.

For t := 2ǫk, this gives a probability that decreases exponentially in k1/3.

11.5 Bibliographic Notes

Other expositions of Talagrand’s isoperimetric inequality are
Ste97,McD98,AS00
[66, 50, 2]. The

original paper is the monumental tour de force
Tal95
[67]. Other applications in graph

colouring problems can be found in
MR02
[54]. McDiarmid

McD02
[51] gives an extension of

Talagrand’s inequality to permutation distributions that is particularly useful in
graph colouring applications. A further extension is given in

LM03
[42].

11.6 Problems

Problem 11.11 [Independent Sets in Random Graphs] Let G be a graph on the
vertex set [n] and let α(G) denote the size of the largest independent set in G.
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(a) Show that α(G) is a hereditary property of index sets.

(b) The Erdös-Renyi random graph G(n, p) is the (undirected) graph on vertex
set [n] and edge set E defined by picking each possible edge (i, j) ∈ [n]× [n]
independently with probability p. Deduce a sharp concentration result on
α(G(n, p)).

▽

Problem 11.12 [VC Dimension] One of the central notions in statistical learningprob:vcdim
theory is the Vapnik-Chervonenkis (VC) dimension. Let A be a collection of
subsets of a base set X and let x := (x1, · · · , xn) ∈ Xn. The trace of A on x is
defined by:

tr(x) = trA(x) := {A ∩ {x1, · · · , xn} | A ∈ A}.
That is, it is the collection of subsets that can be obtained by intersecting sets in
A with {x1, · · · , xn}. The number of such subsets, T (x) := |tr(x)| is called the
shatter coefficient of A for x. A subset {xi1 , · · · , xik} ⊆ {x1, · · · , xn} is said to
be shattered if T (xi1, · · · , xik) = 2k. Finally, the VC dimension D(x) = DA(x)
is defined to be the largest cardinality of a subset of {x1, · · · , xn} shattered by
A. Show that the VC dimension is a hereditary function of index sets and hence
deduce a sharp concentration result for the VC dimension of a subset of points
chosen independently at random. ▽

Problem 11.13 [Self-Bounding Functions] A non-negative function f on a prod-
uct space Ω :=

∏

i∈[n] Ωi,has the self-bounding property if there exist functions

gi, i ∈ [n] such that for all x1, · · ·xn and all i ∈ [n],

0 ≤ g(x1, · · · , xn) − gi(x1, · · · , xi−1, xi+1, · · · , xn) ≤ 1,

and also
∑

i

(g(x1, · · · , xn) − gi(x1, · · · , xi−1, xi+1, · · · , xn)) ≤ g(x1, · · · , xn).

(a) Show that a hereditary function of index sets has the self-bounding property.

(b) Show that a similar concentration result extends to hold for this wider class
of functions.

(c) Show that the VC dimension (Problem
prob:vcdim
11.12) is a self-bounding function

▽
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Problem 11.14 [An Amazing Fact] In this problem, we outline an elementaryprob-tal:new
proof due to D.J. Newman of the following amazing fact: for any set of points in
the unit square, there is a tour going through all the points such that the sum
of the squares of the lengths of the edges in the tour is bounded by an absolute
constant!

(a) Show that for any set of points in a right-angled triangle, there is a tour
that starts at one endpoint of the hypotenuse, ends at the other endpoint
and goes through all the points such that the sum of the lengths of the edges
is bounded by the square of the hypotenuse. (Hint: Drop a perpendicular
to the hypotenuse from the opposite vertex and use induction.)

(b) Use (a) to deduce the amazing fact with the constant 4.

▽

Problem 11.15 [Steiner Tree] Obtain a Gaussian concentration result for the
length of a minimum Steiner tree containing a set of n points indepndently and
uniformly distributed in the unit square. (A Steiner tree of a set of points is a
tree containing the given subset among its vertices i.e. it could contain additional
vertices.) (Hint: Use the fact that there is a universal constant bounding the
sum of the squares of the lengths of the edges of a minimum spanning tree of any
number of points in the unit square.) ▽
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Chapter 12

Isoperimetric Inequalities and
Concentration via Transportation
Cost Inequalities

[Transportation Cost]ch:isoperimetric-2

In this chapter, we give an introduction to the first of two recent approches
to concentration via powerful information-theoretic inequalities: the so called
transportation cost inequalities. These inequalities relate two different notions
of ”distance” between probability distributions and lead easily to concentration
results.

12.1 Distance Between Probability Distributions

Perhaps the best known notion of “distance” between probability distributions is
the L1 or total variation distance:

d1(Q,R) :=
1

2

∑

x

|Q(x) −R(x)| . (12.1) eq:tot-var-dist

This is a special case of a more general way of defining a distance between two
distributions Q and R on a metric space (Ω, d). the coupling distance:

d1(Q,R) := inf
π(Y,Z)

Eπ [d(Y, Z)] , (12.2) eq:coupling-dist

where the inf ranges over all couplings π with π(Y ) ∼ Q and π(Z) ∼ R i.e. joint
distributions π(Y, Z) with the marginals π(Y ) ∼ Q and π(Z) ∼ R. The intuitive

167
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idea is: pick random variables Y and Z according to Q and R respectively and
compute the expected distance between them. The added crucial qualification is
that Y and Z are not picked independently, but via the best coupling.

Exercise 12.1 (Metric Properties) Show that this definition defines a bonafide
metric on the space of probability distributions on Ωn.

In Problem
prob:tot-var-coup
12.13, you are asked to show that when the distance on the space is

the Dirac distance, d(x, y) = 1[x 6= y], then this reduces to the total variation
distance.

A transportation cost (TC) inequality in a MM-space (Ω, P, d) is an inequality of
the form:

d1(Q,P ) ≤ c
√

D(Q||P ), for any distribution Q on Ω. (12.3) eq:tc-gen

12.1.1 Distance in Product Spaces with Hamming Metric

Of special interest is a product space. Given MM-spaces (Ωi, Pi, di), i ∈ [n], the
product space (Ω, P, d) is defined by setting

• Ω := Ω1 × · · · × Ωn

• P := P1 × · · · × Pn,

and the distance d = dH is given by the Hamming metric,

dH(xn, yn) :=
∑

i

di(xi, yi).

Recall the coupling distance (
eq:coupling-dist
12.2) in this setting equals

d1(Q
n, Rn) := min

π(Y n,Zn)

∑

i∈[n]

Eπdi(Yi, Zi),

where the minimum is over all couplings π of Qn and Rn i.e. π(Y n, Zn) is a joint
distribution of random variables Y n := (Y1, · · · , Yn) and Zn := (Z1, · · · , Zn) with
π(Y n) ∼ Qn and π(Zn) ∼ Rn.

Exercise 12.2 Check this.
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Exercise 12.3 Let Ωn := [n]n with the discrete Dirac metric in each component
and consider the distributions

• The product distribution P n,

P n(i1, · · · , in) :=
∏

i

1

n
=

1

nn
.

• The permutation distribution Qn which is concentrated and uniformly dis-
tributed on permutations σ of [n]:

Qn(σ(1), · · · , σ(n)) =
1

n!
.

Compute ||P n − Qn||1, d1(P
n, Qn), D(Qn||P n). (Note that D(P n||Qn) is

undefined.)

12.2 TC Inequalities Imply Isoperimetric Inequal-

ities and Concentration
sec:tc-to-iso

A transportation cost inequality in a MM space (Ω, P, d) immediately yields an
isoperimetric inequality. First, some notation: for a point x ∈ Ω and a subset
A ⊆ Ω, define

d1(x,A) := min
y∈A

d1(x, y),

and for subsets A,B ⊆ Ω, define

d1(A,B) := min
x∈A

d(x,B)

= min
x∈A,y∈B

d(x, y).

prop:tc-to-iso Proposition 12.4 (TC Implies Isometry) Let (Ω, P, d) be a MM-space sat-
isfying the TC inequality (

eq:tc-gen
12.3). Then, for A,B ⊆ Ω,

d1(A,B) ≤ c

(
√

log
1

P (A)
+

√

log
1

P (B)

)

.

Proof. Take Q and R to be the measure P conditioned on A and B respectively:

Q(x) :=

{

P (x)/P (A) if x ∈ A,

0 otherwise
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and

R(x) :=

{

P (x)/P (B) if x ∈ B,

0 otherwise

Note that

D(Q||P ) =
∑

Q(x)>0

Q(x) log
Q(x)

P (x)

=
∑

x∈A

P (x)

P (A)
log

1

P (A)

= log
1

P (A)
. (12.4) eq:div-comp-1

Similarly,

D(R||P ) = log
1

P (B)
. (12.5) eq:div-comp-2

Then,

d1(A,B) ≤ d1(Q,R),

since the min is at most an average

≤ d1(Q,P ) + d1(R,P ),

by the triangle inequality

≤ c
√

D(Q||P ) + c
√

D(R||P ),

by the Transportation cost Inequality

= c

(
√

log
1

P (A)
+

√

log
1

P (B)

)

,

by (
eq:div-comp-1
12.4) and (

eq:div-comp-2
12.5)

To obtain the familiar product form of the isoperimetric inequality, take B := At.
then,

t ≤ d(A,At)

≤ c

(√

log
1

P (A)
+

√

log
1

P (At)

)

.

≤
√

2c

(√

log
1

P (A)
+ log

1

P (At)

)

, concavity of
√·

=
√

2c

√

log
1

P (A)P (At)
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Hence,
P (A)P (At) ≤ e−t2/2c2 .

As we have seen before, such an insiperimetric inequality implies concentrations of
Lipschitz functions. One can also deduce concentration results for Lipschitz func-
tions directly from the transportation cost inequality as oulined in Problem

prob:tc-to-conc
12.14.

12.3 TC Inequality in Product Spaces with Ham-

ming Distance

In this section, we state and prove a TC inequality for product measures with
Hamming distance (with the discrete Dirac distance in each coordinate).

th:tc-prod Theorem 12.5 (TC Inequality for Product Measures and Hamming Distance)
Let (Ω, P, d) be a product space i.e.for arbitrary MM-spaces (Ωi, Pi, di), i ∈ [n],

• Ω := Ω1 × · · · × Ωn,

• P := P1 × · · · × Pn, and

• d(xn, yn) :=
∑

i[xi 6= yi].

Then for any measure Q on Ω,

d1(Q,P ) ≤
√

n

2
D(Q||P ).

Exercise 12.6 Deduce a familiar isoperimetric inequality for product spaces from
this TC inequality. (Hint: use Proposition

sec:tc-to-iso
12.2 above.)

The proof is by induction on the dimension. All the action takes place in the
base case i.e. dimension one! . The extension to higher dimensions is by abstract
nonsense.

12.3.1 One dimension

In one dimension, the basic result is



DRAFT

172CHAPTER 12. ISOPERIMETRIC INEQUALITIES AND CONCENTRATION VIA TRANSPOR

Theorem 12.7 (Pinsker’s inequality)

d1(Q,R) ≤
√

1

2
D(Q||R).

Proof. First we prove the inequality in the special case when Ω = {0, 1}. Let
q := Q(1) and r := R(1), and assume without loss of generaility that q ≥ r.
Then, we need to prove that:

q log
q

r
+ (1 − q) log

1 − q

1 − r
≥ 2(q − r)2. (12.6) eq:pinsk-calc

This is an exercise in elementary calculus.

For the general case, let A∗ := {x ∈ Ω | Q(x) ≥ R(x), and define measures Q∗

and R∗ on {0, 1} by:

Q∗(1) := Q(A∗). R∗(1) := R(A∗).

Then,

D(Q||R) ≥ D(Q∗||R∗), by Jensen’s Inequality

≥ 2 (Q∗(1) −R∗(1))2

= 2d2
1(Q,R).

Exercise 12.8 Establish (
eq:pinsk-calc
12.6) by calculus.

12.3.2 Higher dimensions

The “tensorization” step to higher dimesions is by abstract nonsense. We will do
it in an abstract general setting because, besides being natural, it is also useful
in this form for other applications (other than the one above for simple product
measures).

Recall that given MM-spaces (Ωi, Pi, di), i ∈ [n], the product space (Ω, P, d) is
defined by setting

• Ω := Ω1 × · · · × Ωn

• P := P1 × · · · × Pn,
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• the distance d = dH is given by the Hamming metric,

dH(xn, yn) :=
∑

i

di(xi, yi).

and The coupling distance
eq:coupling-dist
12.2 in this setting equals:

d1(Q
n, Rn) := inf

π(Y n,Zn)

∑

i∈[n]

Eπdi(Yi, Zi), (12.7) eq:d1-coup-high-dim

where the inf is over all couplings π of Qn and Rn i.e. π(Y n, Zn) is a joint
distribution of random variables Y n := (Y1, · · · , Yn) and Zn := (Z1, · · · , Zn) with
π(Y n) ∼ Qn and π(Zn) ∼ Rn.

prop:tensor Proposition 12.9 (Tensorization of Transportation Cost) Let (Ωi, Pi, di), i ∈
[n] be MM-spaces that each satisfy the transportation cost inequality:

d(Qi, Pi) ≤ c
√

D(Qi||Pi), for any distribution Qi on Ωi.

for some constant c > 0. Let (Ω, P, d) be the product space as defined above. Then
(Ω, P, d) satisfies the transportation cost inequality:

d(Q,P ) ≤ c
√

nD(Q||P ), for any distribution Q on Ω.

Proof. It suffices to construct a coupling π(Y n, Xn) with π(Y n) ∼ Q and
π(Xn) ∼ P such that

Eπ [d(Y n, Xn)] =
∑

i

Eπ [di(Yi, Xi)] ≤ c
√

nD(Q||P ).

Introduce the notational abbreviations:

Q(yi) := π(Y i = yi), Qi(yi | yi−1) := π(Yi = yi | Y i−1 = yi−1).

Define:

∆i(y
i−1) := D(Qi(· | yi−1)||Pi(· | yi−1)) = D(Qi(· | yi−1)||Pi),

where the second equality is because P is a product measure. By the chain rule
for divergence,

D(Q||P ) =

n
∑

i=1

∑

yi−1∈Ωi−1

∆i(y
i−1)Q(yi−1).
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We construct the coupling π inductively. Assume the joint distribution on (Y i−1, X i−1)
has already been defined. To extend the distribution, we define the joint distri-
bution of (Yi, Xi) conditioned on (Y i−1 = yi−1, X i−1 = xi−1) for any yi−1, xi−1.
First define the marginals by:

π(Yi = z | Y i−1 = yi−1, X i−1 = xi−1) := Qi(z | yi−1),

and
π(Xi = z | Y i−1 = yi−1, X i−1 = xi−1) := Pi(z).

That is, noth Yi and Xi are conditionally independent of X i−1 given Y i−1 = yi−1.

Now, we use the transportation cost inequality satisfied by the component space
Ωi to construct a coupling of (Yi, Xi) with these marginals so that for all yi−1,

Eπ

[

di(Yi, Xi) | Y i−1 = yi−1
]

≤ c
√

∆i(yi−1).

Finally we verify that this inductively constructed coupling satisfies the desired
inequality:
∑

i

Eπ [di(Yi, Xi)] =
∑

i

∑

yi−1

Eπ

[

di(Yi, Xi) | Y i−1 = yi−1
]

Q(yi−1)

≤
∑

i

∑

yi−1

c
√

∆i(yi−1)Q(yi−1)

= cn
∑

i

∑

yi−1

√

∆i(yi−1)
Q(yi−1)

n

≤ cn

√

√

√

√

∑

i

∑

yi−1

∆i(yi−1)
Q(yi−1)

n
, by concavity of

√·

= c
√

nD(Q||P ), by the chain rule for divergence.

We can now complete the proof of the Transportation Cost Inequality in product
spaces with the Hamming distance:

Proof. (of Theorem
th:tc-prod
12.5) Combine Pinsker’s inequality with the abstract ten-

sorization of Proposition
prop:tensor
12.9.

12.4 An Extension to Non-Product Measures

In this section, we state a theorem due to K. Marton which extends the TC in-
equality from independent distributions to certain dependent distributions where
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one has some handle to control the dependence. This extension is quite useful as
shown by the application in Problem

prob:TC-perm
12.17.

th:marton-dep Theorem 12.10 (TC Inequality with controlled dependence) Let (Ω, Q, d)
be MM-space with

• Ω := Ω1 × · · · × Ωn.

• d(xn, yn) :=
∑

i di(xi, yi), for arbitrary metrics di on Ωi for each i ∈ [n],
and

• Q a measure on Ω such that for each k ≥ 0 and each xk, x̂k differing only
in the last co-ordinate (i.e. xi = x̂i, i < k and xi 6= x̂i), there is a coupling
π(Y n

k , Z
n
k ) of the distributions Q(· | xk) and Q(· | x̂k) such that

Eπ

[

∑

i>k

di(Yi, Zi) | xk, x̂k

]

≤ u.

Then for any other measure R,

d(R,Q) ≤ (u+ 1)

√

n

2
D(R||Q).

Exercise 12.11 Deduce the TC inequality for product measures from Theorem
th:marton-dep
12.10
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12.5 Problems

prob:l1-dist Problem 12.12 Prove the following alternative characterizations of the total
variation distance:

d1(Q,R) =
1

2
EQ

[
∣

∣

∣

∣

1 − R(Y )

Q(Y )

∣

∣

∣

∣

]

(12.8)

= EQ

[(

1 − R(Y )

Q(Y )

)

+

]

(12.9)

=
∑

y

(

1 − R(y)

Q(y)

)

+

Q(y)

=
∑

y

(

1 − Q(y)

R(y)

)

+

R(y)

= ER

[(

1 − Q(Y )

R(Y )

)

+

]

(12.10)

= max
A⊆Ω

|Q(A) − R(A)| (12.11)

▽

prob:tot-var-coup Problem 12.13 Show that the total variation distance is also given by:

d1(Q,R) = min
π(Y,Z)

Eπ[Y 6= Z], (12.12) eq:d1-coupling

where the minimum ranges over all couplings π(Y, Z) of Q and R: π(Y ) ∼ Q and
π(Z) ∼ R.

Proof. We start with the characterization (see Problem
prob:l1-dist
12.12)

d1(Q,R) = max
A⊆Ω

|Q(A) − R(A)| .

Let A ⊆ Ω achieve the maximum on the right hand side. Then,

d1((Q,R) = |Q(A) − R(A)|
= |π(Y ∈ A) − π(Z ∈ A)|
≤ Eπ [Y 6= Z] .

Equality is attained by the following coupling ofQ andR. Let θ(x) := min(Q(x), R(x)).
and let

π(Y = x, Z = x) := θ(x),
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and for x 6= x′, let

π(Y = x, Z = x′) :=
(Q(x) − θ(x))(R(x′) − θ(x′))

1 −∑x θ(x)
.

(Note that if the denominator vanishes then Q = R.)

▽

prob:tc-to-conc Problem 12.14 Use the Transportation Cost inequality to directly deduce a
measure concentration result for Lipschitz functions. Let (Ω, P, d) be a MM-
space satisffying a TC inequality:

d1(Q,P ) ≤ c
√

D(Q||P ),

and let f be a Lipschitz function on Ω. Let

A := {x ∈ Ω | f(x) > EP [f ] + t}.

Let Q be the measure P conditioned on A.

(a) Argue that
d1(Q,P ) ≥ EQ[f ] − EP [f ] ≥ t.

(b) Deduce that

P [f > EP [f ] + t] ≤ e−2t2/c2n.

(c) Similarly deduce the other tail inequality.

▽

Problem 12.15 [A Weighted Transportation Cost Inequality in Product Spaces]
Let α := (α1, · · · , αn) ≥ 0 and let (Ω, Pi, di) be arbitrary MM-spaces. Consider
the product space (Ω, P, dα) with Ω and P as usual, but with the weighted Ham-
ming metric:

dα(xn, yn) :=
∑

i

αid(xi, yi) (12.13) eq:weighted-hamming

Prove:

Theorem 12.16 (TC Inequality in Product Spaces with Weighted Hamming Distance)
Let (Ω, P, dα) be a product space with a weighted Hamming metric (

eq:weighted-hamming
12.13). Sup-

pose the component spaces satisfy a transportation cost inequality:

d(Q,Pi) ≤ c
√

D(Q||Pi) for i ∈ [n].
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Then, for any measure Q on Ω,

d(Q,P ) ≤ c||α||1
√

D(Q||P ).

In particular, if ||α||1 = 1 i.e. α is a (non-negative) vector with unit L1 norm,
then,

d(Q,P ) ≤ c
√

D(Q||P ).

Verify that the unweighted case is a special case of this. ▽

Problem 12.17 [Transportation Cost and Concentration for Permutations] Considerprob:TC-perm
the group of permutations Sn as a MM-space by endowing it with the uniform
distribution P and the transposition distance d between permutations. Show
that this space satisfies the transportation cost inequality

d(Q,P ) ≤
√

2nD(Q||P ).

Deduce an isoperimetric inequality and a measure concentration result for Lips-
chitz functions on permutations. (Hint: Apply Marton’s Theorem

th:marton-dep
12.10.) ▽

Problem 12.18 Prove Theorem
th:marton-dep
12.10 and give a weighted analogue. ▽

12.6 Bibliographic Notes

The approach to measure concentration via transportation cost was introduced by
Marton

Mar96
[44]. The extension to dependent measures is from Marton

Mar98
[45]. Ledoux

Led01
[39][Chapter 6] covers the Transportation cost approach in more detail.
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Chapter 13

Quadratic Transportation Cost
and Talagrand’s Inequality

[Transportation Cost and Talagrand’s Inequality]ch:quad-transportation-cost

13.1 Introduction

In this chapter, we will prove Talagrand’s convex distance inequality via the
transportation cost method, an approach pioneered by Kati Marton

Mar98
[45] and

further developed by Amir Dembo
Dem97
[14]. This approach is particularly interesting

because:

• It places both the theorem and its proof in its natural place within the
context of isoperimetric inequalities.

• It places a standard structure on the proof as opposed to the somewhat ad
hoc and mysterious nature of the original inductive proof of Talagrand..

• It isolates very clearly the essential content of the proof in one dimension,
and shows that the extension to higher dimensions is routine.

• It also allows a stronger version of the method of bounded differences that
leads to concrete improvements in applications.

• It allows generalization to dependent measures.

179
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13.2 Review and Roadmap

Recall the setup for the isoperimetric inequality for product measures and a
weighted Hamming distance: (Ω, P, dα) where Ω :=

∏

i∈[n] Ωi, P :=
∏

i Pi for

arbitrary spaces (Ωi, Pi), i ∈ [n] and the weighted Hamming distance is defined
by

dα(x, y) :=
∑

i∈[n]

αi[xi 6= yi], (13.1) eq:weighted-hamming-2

for a fixed α := (α1, . . . , αn) ≥ 0 with norm 1 i.e.
∑

i α
2
i = 1.

To prove this via the Transportation cost method, we introduced a distance
between probability measures on Ω that reflected (

eq:weighted-hamming-2
13.1): namely, if Q and R are

distributions on Ω, define

d1,α(Q,R) := inf
π(Y,Z)

∑

i∈[n]

αi[Yi 6= Zi] (13.2) eq:d1

We then proved the Transportation cost inequality for this distance in product
spaces: for any other distribution Q on Ω,

d1,α(Q,P ) ≤
√

D(Q||P )

2
. (13.3) eq:trans-cost-d1

From this information-theoretic inequality, the isoperimetric inequality for prod-
uct spaces and weighted Hamming distance followed readily: for any two subsets
A,B ⊆ Ω,check constant

in exponent P (X ∈ A) · P (d1,α(X,A) > t) ≤ e−2t2 (13.4) eq:iso-hamming

In the non-uniform setting, we have, for every point x ∈ Ω, a non-negative
unit norm vector α(x) := (α1(x), . . . , αn(x)) i.e. a function α : x → α(x) with
||α(x)||2 = 1, and one defines an asymmetric notion of “distance” by:

d2,α(x, y) :=
∑

i∈[n]

αi(x)[xi 6= yi], (13.5) eq:asymm-hamming

(The reason for the subscript “2” will emerge shortly.)

As usual, for A ⊆ Ω,

d2,α(x,A) := min
y∈A

d2,α(x, y).

The goal is to prove the following isoperimetric inequality which is analogous to
(
eq:iso-hamming
13.4) which was used in the applications in the previous chapter:



DRAFT

13.2. REVIEW AND ROADMAP 181

Theorem 13.1 For any A ⊆ Ω,

P (X ∈ A)P (d2,α(X,A) > t) ≤ e−t2/4.

Some thought shows that proving such an inequality is tantamount to proving
the inequality for all possible α simultaneously in the following sense. Define, for
x ∈ Ω and A ⊆ Ω,

d2(x,A) := sup
||α||=1

d2,α(x,A). (13.6) eq:Tal-dist

This is just the Talagrand convex distance between a point and a subset. Then
we will prove,

Theorem 13.2 (Talagrand’s Convex Distance Inequality) For any A ⊆
Ω,

P (X ∈ A)P (d2(X,A) > t) ≤ e−t2/4.

To prove this via the transportation cost method, we need to introduce a distance
between probability measures in Ω that reflects (

eq:asymm-hamming
13.5) and (

eq:Tal-dist
13.6). For probability

measures Q,R on Ω, define:

d2(Q,R) = inf
π(Y,Z)

sup
EQ[||α||2]≤1

Eπ[
∑

i∈[n]

α(Yi)[Yi 6= Zi] (13.7) eq:d2-def

(The sup is over all functions α : Ω → Rn such that EQ[||α(X)||] ≤ 1.) In Prob-
lem

prob:quad-traingle-ineq
13.17 you are asked to show that this notion of “distance” satisfies a traiangle

inequality. We will show that this “distance” satisfies a transportation cost in-
equality and as a consequence yields Talagrand’s convex distance inequality.
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13.3 A L2 (Pseudo)Metric on Distributions

13.3.1 One Dimension

A L2 notion of “distance” between two distributions Q and R on a space is given
by the following definition:

d2(Q,R) :=

(

EQ

(

1 − R(Y )

Q(Y )

)2
)1/2

=

(

∑

y

(

1 − R(y)

Q(y)

)2

Q(y)

)1/2

(13.8)

=

(

∑

y

R2(y)

Q(y)
− 1

)1/2

(13.9)

Note that this definition is asymmetric!

Compare this with the variational distance d1(Q,R):

d1(Q,R) :=
1

2
EQ

[
∣

∣

∣

∣

1 − R(Y )

Q(Y )

∣

∣

∣

∣

]

= EQ

[(

1 − R(Y )

Q(Y )

)

+

]

=
∑

y

(

1 − R(y)

Q(y)

)

+

Q(y)

An alternate characterization of d2 is via couplings:

Proposition 13.3

d2(Q,R) = inf
π(Y,Z)

sup
EQ[α]≤1

Eπ [α(Y )[Y 6= Z]] . (13.10) eq:l2-dist-prob-1-dim

= inf
π(Y,Z)

∑

y

(π(Z 6= y | Y = y))2Q(Y = y) (13.11)

Here,

• The inf is over all joint distributions π with marginals Q and R, and

• the sup is over all α : Ω → R.
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Proof. We will show that for any joint distribution π,

sup
‖α‖≤1

Eπ[α(Y )[Y 6= Z]] =
∑

y

(π(Z 6= y | Y = y))2 q(Y = y).

To show that the left hand side is at most the right hand side, we use the Cauchy-
Schwartz inequality:

Eπ[α(Y )[Y 6= Z]] =
∑

y

α(y)π(Z 6= y) | Y = y]q(Y = y)

≤
(

∑

y

(α(y))2q(Y = y)

)1/2(
∑

y

(π(Z 6= y | Y = y))2q(Y = y)

)1/2

≤
(

∑

y

(π(Z 6= y | Y = y))2q(Y = y)

)1/2

Exercise 13.4 Choose α suitably to prove the other direction.

13.3.2 Tensorization to Higher Dimensions

For probability measures Q,R on Ωn, definition
eq:d2-def
13.7 reduces to:

d2(Q,R) = inf
π(Y n,Zn)

sup
Eq[‖α‖2]≤1

Eπ





∑

i∈[n]

α(Yi)[Yi 6= Zi]





(The sup is over all functions αi : Ωi → R such that EQ[‖α(X)‖2] ≤ 1.) In
Problem

prob:quad-traingle-ineq
13.17 you are asked to show that this notion of “distance” satisfies a

triangle inequality.

An alternate characterization is:

d2(Q,R) = inf
π(Y n,Zn)

∑

i

∑

yn

(π(Zi 6= yi | Y n = yn))2Q(Y n = yn)

13.4 Quadratic Transportation Cost

th:quad-cost-prod Theorem 13.5 (Quadratic Transportation Cost Inequality in Product Spaces)
Let (Ω, P ) be a product space with Ω :=

∏

i∈[n] Ωi and P :=
∏

i∈[n] Pi where (Ωi, Pi)
are arbitrary spaces. Then, for any other measure Q on Ω,

d2(Q,P ) ≤
√

2D(Q‖P )
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The proof is by induction on dimension where all the action once again is in
dimension one!

13.4.1 Base case: One Dimension

In one-dimension, for the L1 distance d1, the standard inequality is Pinsker’s
inequality:

d1(Q,R) ≤
√

1

2
D(Q‖R) (13.12) eq:pinsker

We need an analogous inequality for d2. Notice that because the distance d2

is not symmetric (unlike d1), we actually need two inequalities. However there
is an elegant symmetric version due to P-M Samson

Sam00
[63] from which the two

asymmetric inequalities we need follow:

th:pinsker-analog Theorem 13.6 For any two distributions Q and R,

d2
2(Q,R) + d2

2(R,Q) ≤ 2D(R‖Q) (13.13) eq:d2-pin-symm

Hence,

d2(Q,R), d2(R,Q) ≤
√

2D(R||Q). (13.14) eq:d2-pin-asymm

Exercise 13.7 Consider two distributions Q and R on the two point space Ω :=
{0, 1}. Compute d1(Q,R) d2(Q,R) and D(Q‖R). Verify that

• D1(Q,R), d2(Q,R) ≤ D(Q‖R).

• d1(Q,R) ≤ d2(Q,R).

Exercise 13.8 Write down the inequality in the case of a two point space and
compare with Pinsker’s inequality.

Proof. (Of Theorem
th:pinsker-analog
13.6): Consider the function

Ψ(u) := u log u− u+ 1,

and

Φ(u) := Ψ(u)/u.
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By elementary calculus, it is easy to check that or 0 ≤ u ≤ 1,

Ψ(u) ≥ 1

2
(1 − u)2,

whereas for u ≥ 1,

Φ(u) ≥ 1

2
(1 − 1

u
)2.

Since
u logu− u+ 1 = Ψ(u)[u ≤ 1] + uΦ(u)[u > 1],

we have,

u log u− u+ 1 ≥ 1

2
(1 − u))2+ +

u

2

(

1 − 1

u

)2

+

.

Putting u := Q(X)
R(X)

and taking expectations with respect to the measure R(X)
gives the lemma.

Might add a
few lines
beacause this is
a bit tricky ...

13.4.2 Tensorization to Higher Dimensions
sec:tensor-quad-cost

Once we have the inequality in one dimension, it is routine (but tedious) to
extend the inequality to higher dimensions. We phrase the tensorization lemma
in a general abstract fashion to emphasise its generality (which is useful in other
applications).

prop:quad-tensor Proposition 13.9 (Tensorization of Quadratic Cost) Let (Ωi, Pi, di), i = 1, 2
be spaces that separately satisfy a quadratic transportation cost inequality: for any
measures Qi on Ωi,

d2(Qi, Pi) ≤
√

2D(Qi‖Pi), i = 1, 2.

Let Ω := Ω1 × Ω2 be the product space with product measure P := P1 × P2 and
distance d(x, y) := d(x1, y1) + d(x2, y2). Then, the measure P also satisfies a
quadratic transportation cost inequality: for any measure Q on Ω,

d2(Q,P ) ≤
√

2D(Q‖P ).

Proof. Co-ordinate by co-ordinate extension of the coupling, as in the previous
chapter. See also Ledoux

Led01
[39][Theorem 6.9]. pages 130-131.

Now we can complete the proof of the Quadratic Transportation Cost inequality
in product spaces:

Proof. (of Theorem
th:quad-cost-prod
13.5) Induction using Proposition

prop:quad-tensor
13.9 with Theorem

th:pinsker-analog
13.6 as

the base case.
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13.5 Talagrand’s Inequality via Quadratic Trans-

portation Cost

Exercise 13.10 Verify that if d2(A,B) := minx∈A d2(x,B) where d2(x,B) is the
Talagrand convex distance and d2(Q,R) is the distance defined above for any
probability distributions Q and R concentrated on A and B respectively, then
d2(A,B) ≤ d2(Q,R),

th:tala2 Corollary 13.11 (Talagrand’s Convex Distance Inequality in Product Spaces)

d2(A,B) ≤
√

2 log
1

P (A)
+

√

2 log
1

P (B)
.

Proof. Take Q(C) := P (C | A), R(C) := P (C | B). Then,

d2(A,B) ≤ d2(Q,R), since the min at at most an average

≤ d2(Q,P ) + d2(R,P ) triangle inequality

≤
√

2D(Q||P ) +
√

2D(R||P ) TC inequality

=

√

2 log
1

P (A)
+

√

2 log
1

P (B)
.

To obtain the familiar product form of Talagrand’s inequality, take B := At.
then,

t ≤ d(A,At)

≤
√

2 log
1

P (A)
+

√

2 log
1

P (At)
.

≤ 2

√

log
1

P (A)
+ log

1

P (At)
, concavity of

√·

= 2

√

log
1

P (A)P (At)

Hence,

P (A)P (At) ≤ e−t2/4.
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13.6 Method of Bounded Differences Revisited
sec:mobd-revisited

The Quadratic Transportation Cost inequality, Theorem
th:quad-cost-prod
13.5 can be used to give a

direct proof of a somewhat stronger version of the method of bounded differences.

th:av-tal Theorem 13.12 (Method of Average Non-Uniform Bounded Differences)
Let Q be a measure in a product space Ω =

∏

i∈[n] Ωi satisfying a quadratic trans-
portation cost inequality: there is a constant c1 > 0 such that for any other
measure R,

d2(Q,R) ≤ c1
√

D(R‖Q).

Let f be a function such that there is a function β : Ω → Rn with

EQ[
∑

i

β2
i (X)] ≤ c22,

and such that
f(x(n)) ≤ f(y(n)) +

∑

i∈[n]

βi(x)di(xi, yi),

for any x(n), y(n) ∈ Ω. Then

Pr[f < Ef − t] ≤ exp

( −t2
c21 · c22

)

.

Proof. Set
A := {x(n) ∈ Ω | f(x(n)) < Ef − t}.

Consider the measure R on Ω concentrated on A and defined by R(x) := Q(x |
A) = Q(x)/Q(A) for x ∈ A and 0 otherwise. Consider

d2(Q,R) = inf
π(Xn,Y n)

sup
EQ[||α||2]≤1

Eπ[
∑

i∈[n]

α(Xi)d(Xi, Yi)]

where π(Xn) ∼ Q and π(Y n) ∼ R. Let π be the coupling attaining the infimum.
Then

d2(Q,R) = sup
EQ[||α||2]≤1

Eπ[
∑

i∈[n]

α(Xi)d(Xi, Yi)]

≥ Eπ[
∑

i∈[n]

β(Xi)

c2
d(Xi, Yi)]

≥ 1

c2
Eπ(f(X(n)) − f(Y (n)))

=
1

c2
EQ[f(X(n))] − ER[f(Y (n))]

≥ 1

c2
t
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But, by hypothesis,

d2(Q,R) ≤ c1
√

D(R||Q). = c1

√

log
1

Q(A)
.

Hence,

Pr[f < Ef − t] = Q(A) ≤ exp

( −t2
c21 · c22

)

.

Exercise 13.13 Show that if we assume

f(x(n)) ≥ f(y(n)) −
∑

i∈[n]

βi(x)di(xi, yi),

then one obtains a similar concentration on Pr[f > Ef + t].

check!
Compare
Kim-Vu.

Example 13.14 [Subgraph Counts] Consider the random graph G(n, p) with
vertex set [n] and where ecah possible edge {i, j} is present with probbaility p
independently. Let H be a fixed graph and let YH denote the number of copies
of H in G(n, p). The study of YH is a clasical topic in the theory of random
graphs with a vast literature. We are interested concentration results obtained
by estimating the probbaility P [YH > (1 + ǫ)E[YH ]] for a fixed small constant
ǫ > 0.

Consider for illustration the case H := K3. Clearly E[YK3] =
(

n
3

)

p3 = Θ(p3n3).
Vu obtained the first exponential bound:

P [YK3 > (1 + ǫ)E[YK3 ]] ≤ exp(−Θ(p3/2n3/2)).

Subsequently, Kim nad Vu by using a “Divide and Conquer” martingale argument
improved this to the near optimal

P [YK3 > (1 + ǫ)E[YK3]] ≤ exp(−Θ(p2n2)).

We show how to obtain this easily from the average version of the method of
bounded differences above. The underlying product space is given by the indi-
cator random variables X := Xe, e ∈ E :=

(

[n]
2

)

corresponding to the presence
of edge e in G(n, p) and the function f(Xe, e ∈ E) is the number of triangles in
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the graph formed by the edges Xe = 1. Take βe(x) to be the number of triangles
containing the edge e in the graph fromed by the edges xe = 1.. Clearly,

f(x) ≥ f(y) −
∑

xe 6=ye

βe(x).

The random variable βe(X) has distribution Bin(n− 2, p2) and hence

E[β2
e (X)] = (n− 2)p2(1 − p2) + (n− 2)2p4 = Θ(n2p4),

and so
∑

e

E[β2
e (X)] = Θ(n4p4).

Substituting inot he bound of Theorem
th:av-tal
13.12 gives

P [YK3 > (1 + ǫ)E[YK3]] ≤ exp(−Θ(p2n2)).

▽

13.7 Extension to Dependent Processes
eq:dep-extension

In this section, we state an exetnsion of the Quadratic Transportation Cost in-
equality for certain classes of dependent measures. The result is due indepen-
dently to Kati Marton and P-M. Samson . In the formulation below, we follow
Samson

Sam00
[63].

Let Q be a a measure on Ω and let X1, . . .Xn be distributed according to Q. To
quantify the amount of dependence between these variables, introduce an upper
triangular matrix Γ = Γ(Q) with ones on the diagonal.

For 1 ≤ i < j ≤ n, denote the vector (Xi, . . . , Xj) by Xj
i . For every 1 ≤ i ≤ n,

every x1, . . . xi−1 with xk ∈ Ωk and xk, x
′
k ∈ Ωk, set:

aj(x
i−1
1 , x,, x

′
i) := d1

(

Q(· | X i−1
1 = xi−1

i , Xi = xi), Q(· | X i−1
1 = xi−1

i , Xi = x′i)
)

.

That is, take the total variation distance between the two conditional distribu-
tions of Q where the two conditionings differ only at one point. Set

Γ2
i,j := sup

xi,x′

i

sup
x1,...,xi−1

aj(x
i−1
1 , x,, x

′
i).

Theorem 13.15 (Transportation Cost Inequality for Dependent Measures)
For any probability measure R on Ω,

d2(R,Q), d2(Q,R) ≤ ‖Γ(Q)‖
√

2D(R‖Q). (13.15)

Exercise 13.16 Recover the inequality for independent measures from this one.
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13.8 Bibliographic Notes
sec:bib-quad

The transportation cost approach to proving Talagrand’s inequality was pioneered
by Kati Marton. Dembo

Dem97
[14] contains systematic generalizations to several other

geometric inequalities. The proof of the inequality in one dimension and the ex-
tension to dependent measures are from Samson

Sam00
[63]. Ledoux

Led01
[39][§ 6.3] contains

a complete exposition.

13.9 Problems
sec:problems-quad-cost

prob:quad-traingle-ineq Problem 13.17 Show that the asymmetric and non-uniform notion of distance
in (

eq:asymm-hamming
13.5) satsifies a triangle inequality. ▽
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Chapter 14

Log-Sobolev Inequalities and
Concentration

[Log-Sobolev Inequalities]ch:log-sobolev

14.1 Introduction

In this chapter, we give an introduction to Log-Sobolev inequalities and their use
in deriving concentration of measure results. This is a third importnat method-
ology for concentration of measure (the other two being martingales and trans-
portation cost) and it appears to be the most powerful of the three.

Given a probability space (Ω, µ), and a function f : Ω → R, define the entropy
of f by

Entµ(f) := Eµ[f log f ] − Eµ[f ] log Eµ[f ]. (14.1) eq:ent-f

By Jensen’s inequality applied to the convex function ψ(x) := x log x, Entµ(f) ≥
0 for any f .

A logarithmic Sobolev inequality or just log-Sobolev inequality bounds Entµ[f ],
for a “smooth” function f , by an expression involving its gradient. In Rn which is
the original context in which log-Sobolev inequalities were introduced, a measure
µ satisfies a log-Sobolev inequality if, for some C > 0 and all smooth enough
functions f ,

Entmu(f) ≤ 2CEµ[|∇f |2]. (14.2) eq:log-s-reals

191
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14.2 A Discrete Log-Sobolev Inequality on the

Hamming Cube
sec:discrete-log-sob

We are interested here in discrete settings: what is the analogue of ∇f is a
discrete setting in order to formulate a version of (

eq:log-s-reals
14.2)?

Consider the familiar Hamming cube {0, 1}n. Here a natural analogue of ∇f
would be:

∇f := (D1f, . . . , Dnf),

where, for each i ∈ [n],

Dif(x) := f(x) − f(σix),

and σi(x) is the result of flipping the bit in the ith position in x.

th:log-s-hcube Theorem 14.1 (Log-Sobolev Inequality in the Hamming Cube) For any
function f : {0, 1}n → R,

Entµ(f 2) ≤ 1

2

∑

1≤i≤n

Eµ[|Dif |2]. (14.3) eq:log-s-hcube

14.3 Concentration: The Herbst Argument
sec:herbst

The log-Sobolev inequality (
eq:log-s-hcube
14.3) in Theorem

th:log-s-hcube
14.1 yields the familiar measure

concentration results for Lipschitz functions on the Hamming cube. Ledoux
Led01
[39]

attributes the basic argument to Herbst.

Let F be 1-Lipschitz (with respect to the Hamming metric in the cube) and apply
(
eq:log-s-hcube
14.3) to the function f 2 := esF for some s ∈ R to be chosen later.

To bound the right hand side in (
eq:log-s-hcube
14.3), we use the Lipschitz property of F and

elementary calculus to get:

|Di(e
sF/2)| := |esF (x)/2 − esF (σk(x))/2|

≤ |s|esF (x)/2.

Putting this into (
eq:log-s-hcube
14.3),

Entµ(esF ) ≤ ns2

2
Eµ[esF ]. (14.4)
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Now, we introduce some generatingfunctionology : let

G(s) := Eµ[esF ].

be the (exponential moment) generating function of F . Then, the left hand side
is (with E = Eµ),

sE[FesF ] − E[e
sF ] log E[e

sF ] = sG′(s) −G(s) logG(s),

and the right hand side is
ns2

2
G(s).

Hence we arrive at the following differential inequality for G(s):

sG′(s) −G(s) logG(s) ≤ ns2

2
G(s). (14.5) eq:diff-eq-hcube

Let Ψ(s) := log G(s)
s

; then from (
eq:diff-eq-hcube
14.5), we get:

Ψ′(s) ≤ ns

2

≤ n

2
, since s ≤ 1.

Thus
Ψ(s) ≤ ns

2
+ a,

for some constant a. The constant is determined by noting that

lim
s→0

Ψ(s) = lim
s→0

G′(0)

G(0)
= E[f ].

Hence,

Ψ(s) ≤ E[f ] +
ns

2
,

i.e.

E[esF ] =: G(s) ≤ exp

(

sE[F ] +
ns2

2

)

. (14.6) eq:laplace-bound

Thus we have arrived at a bound on the moment generating function of F and
this yields as usual, via Markov’s inequality applied to esF , the concentration
bound:

µ (F > E[F ] + t) ≤ exp

(−t2
2n

)

.
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14.4 Tensorization
sec:tensor

The following theorem enables one to reduce the proof of a log-Sobolev inequality
in product spaces to a single dimension:

th:tensor-entropy Theorem 14.2 (Tensorization of Entropy) Let X1, . . . , Xn be independent ran-
dom variables with (Xi taking values in (Ωi, µi), i ∈ [n]). Let f be a non-negative
function on

∏

i Ωi. Then, with µ :=
∏

i µi and µ−i :=
∏

j 6=i µj,

Entµ(f) ≤
∑

i∈[n]

Eµ−i
[Entµi

[f | Xj, j 6= i]]. (14.7)

As a first application of Theorem
th:tensor-entropy
14.2, we prove Theorem

th:log-s-hcube
14.1:

Proof. (of Theorem
th:log-s-hcube
14.1): By Theorem

th:tensor-entropy
14.2, it suffices to prove the inequality

in one dimension, where it amounts to:

u2 log u2 + v2 log v2 − (u2 + v2) log
u2 + v2

2
≤ (u− v)2, (14.8) eq:log-sob-1dim

for any real u, v. This is easily checked by elementary calculus. Thus,

Entµ(f 2) ≤
∑

i∈[n]

Eµ−i
[Eµi

[f 2 | Xj, j 6= i]]

≤
∑

i∈[n]

Eµ−i
[
1

2
Eµi

[Dif
2 | Xj, j 6= i]]

=
1

2

∑

1≤i≤n

Eµ[|Dif |2].

Exercise 14.3 Verify (
eq:log-sob-1dim
14.8).

Theorem
th:tensor-entropy
14.2 itself follows faily easily from an basic inequality in information

theory.

Theorem 14.4 (Han’s Inequality for Entropy) Let X1, . . . , Xn be any set
of (discrete) random variables, with Xi taking values in Ωi for i ∈ [n] and let
Q be their distribution on the product space Ω :=

∏

i∈[n] Ω. Then,

HQ(X1, . . . , Xn) ≤
1

n− 1

∑

i∈[n]

HQ(X1, . . . , Xi−1, Xi+1, . . . , Xn).
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Given a distributions Q on a product space Ω :=
∏

i Ωi, let Q−i denote the
distribution on the product space Ω−i :=

∏

j 6=i Ωj and given by:

Q=i(x−i) :=
∑

xi∈Ωi

Q(x),

where x := (x1, . . . , xn) and x−i := (x1, . . . , xi−1, xi+1, . . . , xn).

Theorem 14.5 (Han’s Inequality for Relative Entropy) Let P be the prod-
uct measure on Ω and let Q be any other measure on Ω. Then,

D(Q||P ) ≥ 1

n− 1

∑

i∈[n]

D(Q−i||P−i),

or,

D(Q||P ) ≤
∑

i∈[n]

(D(Q||P ) −D(Q−i||P−i)) .

Proof. (Of Theorem
th:tensor-entropy
14.2): First note that if the inequality is true for a random

variable f , it is also true for cf for any constant c > 0, so we may rescale to
assume E[f ] = 1. Define

Q(x) := f(x)µ(x),

so that
D(Q‖µ) = Entµ[f ]

Thus,

Entµ[f ] = D(Q‖µ)

≤
∑

i∈[n]

(D(Q‖µ) −D(Q−i‖µ−i))

=
∑

i∈[n]

Eµ−i
[Entµi

[f | Xj, j 6= i]]

14.5 Modified Log-Sobolev Inequalities in Prod-

uct Spaces
sec:log-s-prod

Let X1, . . . , Xn be independent random variables and let X ′
i, . . . , X

′
n be an inde-

pendent identical copy of the variables X1, . . . , Xn. Let Z := f(X1, . . . , Xn be a
positive valued random variable and for each i ∈ [n], set

Z ′
i := f(X1, . . . , Xi−1.X

′
i, Xi+1, . . . , Xn).
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Theorem 14.6 (Symmetric Log-Sobolev Inequality in Product Spaces)
Let Xi, X

′
i, i ∈ [n] and Z,Z ′

i, i ∈ [n] be as above. Then,

Ent[esZ ] ≤
∑

i∈[n]

E[esZψ(−s(Z − Z ′
i))], (14.9) eq:log-s-symm-1

where ψ(x) := ex − x− 1. Moreover,

Ent[esZ ] ≤
∑

i∈[n]

E

[

esZτ(−s(Z − Z ′
i))[Z > Z ′

i]
]

. (14.10) eq:log-s-symm-2

and
Ent[esZ ] ≤

∑

i∈[n]

E

[

esZτ(−s(Z ′
i − Z))[Z < Z ′

i]
]

.. (14.11) eq:log-s-symm-3

where τ(x) := x(ex − 1).

Proof. We use Theorem (
th:tensor-entropy
14.2) applied to the function esZ and bound each term

in the sum on the right hand side. Lemma
lem:tech
14.7 below implies that if Y ′ is any

positive function of X1, . . . , Xi−1, X
′
i, Xi+1, . . . , XN , then,

Ei[Y log Y ] −Ei[Y ] logEi[Y ] ≤ Ei[Y (log Y − log Y ′) − (Y − Y ′)].

Applying this to Y := esZ and Y ′ := eZ′

i , we get:

Ei[Y log Y ] − Ei[Y ] logEi[Y ] ≤ Ei

[

esZψ (−s(Z − Z ′
i))
]

This yields (
eq:log-s-symm-1
14.9),

To prove the other two inequalities, write

esZψ (−s(Z − Z ′
i)) = esZψ (−s(Z − Z ′

i)) [Z > Z ′
i] + esZψ (s(Z ′

i − Z)) [Z < Z ′
i].

By symmetry, the conditional expectation of the second term may be written

Ei

[

esZψ (s(Z ′
i − Z)) [Z < Z ′

i]
]

= Ei

[

esZ′

iψ (s(Z − Z ′
i)) [Z > Z ′

i]
]

= Ei

[

esZe−s(Z−Z′

i)ψ (s(Z − Z ′
i)) [Z > Z ′

i]
]

.

Thus,

Ei

[

esZψ (−s(Z − Z ′
i))
]

= Ei

[

esZψ (−s(Z − Z ′
i)) + e−s(Z−Z′

i)ψ (s(Z − Z ′
i)) [Z > Z ′

i]
]

.

Now (
eq:log-s-symm-2
14.10) follows by noting that ψ(x) + exψ(−x) = x(ex − 1) =; τ(x).

The proof of (
eq:log-s-symm-3
14.11) is symmetric to that of (

eq:log-s-symm-2
14.10).
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lem:tech Lemma 14.7 Let Y be a positive random variable. Then, for any u > 0,

E[Y log Y ] − (E[Y ]) log(E[Y ]) ≤ E[Y log Y − Y log u− (Y − u)].

Proof. For any x > 0, log x ≤ x− 1, hence

log
u

E[Y ]
≤ u

E[Y ]
− 1,

and so,

E[Y ] log
u

E[Y ]
≤ u− E[Y ],

which is equivalent to the statement in the lemma.

14.6 The Method of Bounded Differences Re-

visited
sec;bdd-revis

th:bdd-sob Theorem 14.8 (Method of Bounded Differences) If
∑

i∈[n]

(Z − Z ′
i)

2 ≤ C,

for some constant C > 0, then

Pr[Z > E[Z] + t],Pr[Z < E[Z] − t] ≤ exp(−t2/4C).

Proof. Observe that for x < 0, τ(−x) ≤ x2 and hence for any s > 0, we have by
(
eq:log-s-symm-2
14.10),

Ent[esZ ] ≤ E



esZ
∑

i∈[n]

s2(Z − Z ′
i)

2[Z > Z ′
i]



 .

≤ E



esZ
∑

i∈[n]

s2(Z − Z ′
i)

2





≤ s2CE[esZ ],

where in the last step, we used the hypothesis.

Now we complete the Herbst argument via generatingfunctionology. Introduce
the generating function G(s) : −E[esZ ] and observe that the left hand side is

Ent[esZ ] = sG′(s) −G(s) logG(s).



DRAFT

198CHAPTER 14. LOG-SOBOLEV INEQUALITIES AND CONCENTRATION

so,
Ent[esZ ] = sG′(s) −G(s) logG(s) ≤ s2CG(s).

Divide both sides by s2F (s) and observe that the LHS is then the derivative of

Ψ(s) :=
logG(s)

s
.

Hence, we have
Ψ′(s) ≤ C,

which integrates to
Ψ(s) ≤ sC + a,

for some constant a. The constant is determined by noting that

lim
s→0

Ψ(s) = lim
s→0

G′(s)

G(s)
=
G′(0)

G(0)
= E[Z],

so
Ψ(s) ≤ E[Z] + Cs,

which gives a bound on the moment generating function

G(s) ≤ exp
(

E[Z]s+ s2C
)

.

This bound yields the desired concentration via the usual argument of applying
Markov’s inequality to esZ .

ex:bdd-extn Exercise 14.9 Check that it is sufficient to assume

∑

i∈[n]

(Z − Z ′
i)

2[Z > Z ′
i] ≤ C,

for the proof above.

14.7 Talagrand’s Inequality Revisited
sec:tal-sob

In this section we show how Talagrand’s inequality follows easily via log-Sobolev
inequalities.

Recall the setting of Talagrand’s inequality: we have a product distribution in
a product space, and the Talagrand convex distance:between a point x and a
subset A in the space:

dT (x,A) := sup
‖α|‖=1

dα(x,A),
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where

dα(x,A) : = min
y∈A

dα(x, y)

= min
y∈A

∑

i∈[n]

αi[xi 6= yi]

Eqvivalently, we may write:

dT (x,A) = inf
ν∈D(A)

sup
‖α‖=1

∑

i

αiEν [xi 6= Yi], (14.12) eq:tal-dist

where D(A) is the set of probability distributions concentrated on A.

Exercise 14.10 Check that (
eq:tal-dist
14.12) is equivalent to the usual definition.

Now we apply Sion’s MiniMax Theorem: if f : X×Y is convex, lower-semicontinuous
with respect to the first argument, concave and upper semi-continuous with re-
spect to the second argument, and X is convex and compact, then

inf
x

sup
y
f(x, y) = sup

y
inf
x
f(x, y) = min

x
sup

y
f(x, y).

Applying this to the characterization (
eq:tal-dist
14.12), we have,

dT (x,A) = inf
ν∈D(A)

sup
‖α‖=1

∑

i

αiEν [xi 6= Yi]

= sup
‖α‖=1

inf
ν∈D(A)

∑

i

αiEν [xi 6= Yi]

and the saddle point is achieved by some pair (ν, α).

Let Z denote the random variable dT (X,A). Given X = (X1, . . . , Xn), let (ν̂, α̂)
denote the saddle point corresponding to X. Then,

Z ′
i := inf

ν
sup

α

∑

j

αjEν

[

X
(i)
j 6= Yj

]

≥ inf
ν

∑

j

α̂jEν

[

X
(i)
j 6= Yj

]

where X
(i)
j = Xj if j 6= i and X

(i)
i = X ′

i. Let ν̃ denote the distribution achieving
the infimum in the last line. Then

Z = inf
ν

∑

j

α̂jEν [Xj 6= Yj]

≤
∑

j

α̂jEν̃ [Xj 6= Yj]
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Hence,

Z − Z ′
i ≤

∑

j

α̂jEν̃

(

[Xj 6= Yj] − [X
(i)
j 6= Yi]

)

= α̂iEν̃ ([Xi 6= Yj] − [X ′
i 6= Yi])

≤ α̂i

Hence,
∑

i

(Z − Z ′
i)

2[Z > Z ′
i] ≤

∑

i

α̂2
i = 1.

Now form the observation of the proof in Theorem
th:bdd-sob
14.8 needed in Exercise

ex:bdd-extn
14.9,

we get the result.

14.8 Problems

Problem 14.11 Consider the Hamming Cube with non-homogeneous product
measure.

(a) Derive a log-Sobolev inequality analogous to (
eq:log-s-hcube
14.3).

(b) Use the log-Sobolev inequality to derive a concentration result for Lipschitz
functions on the cube.

▽

Problem 14.12 Consider the convex cube [0, 1]n non-homogeneous product mea-
sure where the expected value on co-ordinate i ∈ [n] is pi.

(a) Derive a log-Sobolev inequality analogous to (
eq:log-s-hcube
14.3). (Hint: use a convexity

argument to reduce this to the previous problem.)

(b) Use the log-Sobolev inequality to derive a concentration result for Lipschitz
functions on the convex cube.

▽

Problem 14.13 Relax the codition of Theorem (
th:bdd-sob
14.8) as follows to get a average

version of the method of bounded differences. Show that if

E

[

∑

i

(Z − Z ′
i)

2[Z > Z ′
i] | X1, . . . , Xn

]

≤ C,
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then for all t > 0,
Pr[Z > E[Z] + t] ≤ e−t2/4C ,

while if

E

[

∑

i

(Z − Z ′
i)

2[Z < Z ′
i] | X1, . . . , Xn

]

≤ C,

then for all t > 0,
Pr[Z < E[Z] − t] ≤ e−t2/4C ,

▽

14.9 Bibliographic Notes

Our exposition is based on a combination of Ledoux
Led01
[39][§ 5.1, 5.4] and the notes

of Gabor Lugosi
Lug05
[43]. A nice survey of the Entropy method in the context of other

techniques is in
Bou04
[62]. The original article developing the modified Log-sobolev

inequalities with many other variations is
Bou03
[61]. Bobkov and Götze

BG99
[6] compare

the relative strengths of the transportaion cost and log-Sobolev inequalities.
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