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Abstract— We give, for the first time, a precise math-
ematical analysis of the connectivity and security prop-
erties of sensor networks that make use of the random
pre-distribution of keys. We also show how to set the
parameters– pool and key-ring size– in such a way that
the network is not only connected with high probability
via secure links, but also provably secure, in the following
sense: we formally show that any attacker that captures
sensors at random with the aim of compromising a constant
fraction of the secure links, must capture at least a
constant fraction of the nodes of the network. In the
context of wireless sensor networks where random pre-
distribution of keys is employed, we are the first to provide
a mathematically precise proof, with a clear indication of
parameter choice, that two crucial properties – connectivity
via secure links and resilience against malicious attacks–
can be obtained simultaneously. Our theoretical results are
complemented by extensive simulations that reinforce our
main conclusions.

Index Terms— Wireless security, sensor networks.

I. I NTRODUCTION

A Wireless Sensor Network (WSN) is a collection
of sensors whose size can range from a few hundred
sensors to a few hundred thousand or possibly more. The
sensors do not rely on any pre-deployed network archi-
tecture, thus they communicate via an ad-hoc wireless
network. The power supply of each individual sensor
is provided by a battery, whose consumption for both
communication and computation activities must be opti-
mized. Distributed in irregular patterns across remote and
often hostile environments, sensors should autonomously
aggregate into collaborative, peer-to-peer networks. Sen-
sor networks must be robust and survivable in order
to overcome individual sensor failure and intermittent
connectivity (due, for instance, to a noisy channel or a
shadow zone).

It is widely believed that WSNs can be useful in many
diverse settings [1]. In many applications establishing se-
cure pair-wise communications is very important and, in
some cases, critical. In particular, it is a pre-requisite for
the implementation of secure routing, and can be useful
for secure group communications as well. However, due
to the scarceness of resources, public key cryptography
may not be a viable solution. In this case confidentiality

has to be enforced by using symmetric key algorithms
[17]. Key management is thus a central issue in secure
wireless sensor networks. One of the most promising
approaches is the so-calledrandom pre-distribution of
keysintroduced in [11]. This model is the object of study
of this paper.

We begin by describing the model introduced in [11].
A Secure Wireless Sensor Network(SWSN) is composed
of N sensors. Each sensor is pre-assigned akey ringof k
secret keys randomly drawn from a common pool ofK
random keys. The sensors are then randomly deployed
in a given geographical area. Two sensors share a secure
communication link if they lie within communication
range and they share a common pre-assigned key. A first
fundamental problem in secure wireless sensor networks
is to choose properk and K such that the network is
connected by using secure links alone. This problem is
addressed by Eschenauer and Gligor in [11]. Their basic
idea is that a SWSN can be considered to be a random
graph in the sense of Erdös and Rényi [10]. According
to this well-known model, arandom graphof N vertices
and parameterp is defined as follows: for every pair of
verticesu andv the edgeuv is inserted with probability
p, by flipping a coin. Crucially, for every potential edge
a new coin flip, independent of the previous ones, is
performed. Therefore edges exist independently of each
other.

Notice that a SWSN is generated by a completely
different random process and it is not clear that this
process can be approximated and if so, to what extent,
by a random graph in the sense of Erdös and Rényi.
To appreciate the problem, consider for instance the
following situation. There are three sensorsx,y and
z, all within transmission range, whose key rings are
of size 2, and suppose that the pool size isK = 104.
Assume that we know already that edgesxy and yz
exist. What is the probability that edgexz also ex-
ists? If we assume independence, following Erdös and
Rényi, then this probability is∼ 1

5000, but in reality
Pr[xz exists| both xy andyz exist] ∼ 1

2. This choice of
parameters is made for the sake of clarity: the problem
is present in every practical situation.

In fact, random graphs and SWSNs have different
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structural properties as illustrated in Figure 1, that reports
the clustering coefficients and the number of triangles for
these two kinds of graphs. The clustering coefficient of
a vertexu is the number of links between neighbours of
u divided by the number of all such potential links, i.e.
(deg(u)

2

)

. The clustering coefficient of a graph is the av-
erage clustering coefficient, taken over all vertices. This
quantity was introduced in the seminal paper by Watts
and Strogatz in their study of small-world networks, and
is a useful structural parameter of a network [20] (see
also [15] and references therein). All this clearly shows
a discrepancy between the classical Erdös-Renyi model
proposed in [11] and the real networks generated by
random pre-distribution of keys.

There are other difficulties. The Erdös-Renyi model
assumes full-visibility– any two devices can be con-
nected by a direct link regardless of their geographical
position. There is no guarantee that the Erdös-Renyi
Theorem as used in [11] ensures high probability of
connectivity in the general case, when devices are not
within transmission range.

In this paper, we present a precise mathematical
analysis of SWSNs. We remark that having a precise
understanding of a model is always important, but espe-
cially so when security is at stake. Note a very important
point in this respect. If we keepK fixed and letk grow,
the probability of connectivity increases but the security
of the network decreases. Intuitively, if key-ring size is
large then capturing just a few sensors is likely to be
enough to reconstruct the entire pool and compromise
the whole network. Viceversa, ifk is very small when
compared toK, every key will be used by very few links,
which is good for security, but the network is likely to
be disconnected. Thus, security and connectivity are in
conflict. It is a very important problem whether there
exists a choice of key-ring size and pool size that ensures
both. In this paper we show that the answer is yes.

Concerning connectivity, we show that ifK ≥ N and

k2

K
∼ logN

N
(1)

then the network is connected with high probability.
(In fact, the conditionK ≥ N can be replaced by a
weaker but more technical condition.) The ratiok2

K has a
meaning. Whenk is small when compared toK, which
is not only usually the case in the applications but also
highly desirable for security reasons, the ratio is roughly
equal to the probability that a link exists between a given
pair of nodes since

Pr[link exists] = 1−
(

1− k
K

)k

∼ k2

K
.

WhenK ≥ N, condition 1 is in some sense optimal. As
we prove in this paper, if the ratiok

2

K is smaller the
network is likely to be disconnected. (If the ratio is larger
the probability of connectivity can only improve.)

Our results concerning connectivity holds both in
the full-visibility case (i.e. every two nodes are within
transmission range of each other) and in the general case.

Let us now turn to security. A first observation is
that that the kind of stochastic dependency exhibited by
the model that was described earlier is bad for security.
Assume that an attacker is able to collect a subset of the
sensors and extract their keys. Clearly, all links incident
on captured nodes will be compromised but can the
damage extend to other links? The example above shows
that once a nodeu is captured not only are the links
incident to u compromised, but it is likely that many
links between neighbours ofu are also compromised. In
general, the stochastic dependencies of the model can
give raise to unexpected correlations that an adversary
can exploit and must therefore be carefully analysed.
If we make use of the Erdös-Renyi model this crucial
aspect is completely overlooked.

It is not hard to give examples where the adversary can
compromise the entire network just by capturing a sub-
linear fraction of the vertices. The relevant question is
whether there exists a choice of the relevant parameters–
key-ring size and pool size– such that, in essence, the
damage is limited to the edges incident on the captured
nodes. In this paper we show that such a choice of
the parameters exists. Crucially, the same choice also
ensures connectivity. The following definition embod-
ies the notion of security just described. We say that
a network is redoubtableif the following holds: any
attacker that captures sensors at random with the aim
of compromising a constant fraction of the links, must
capture at least a constant fraction of the nodes. The
random attacker is the one commonly considered in the
literature.

We formally prove that, ifK ≥N logN andk is chosen
to satisfy (1), the network is not only connected with
high probability, but it is also redoubtable. For instance,
we can choosek ∼ logN and K ∼ N logN. To the best
of our knowledge, this is the first asymptotic bound on
the resilience of wireless sensor networks using random
pre-distribution of keys. Note that results of this kind
cannot even be formulated in the Erdös-Renyi model.

To summarize, we show by a precise mathematical
analysis how to design sensor networks that are at the
same time connected (with high probability) and prov-
ably secure. Thus, our results put on a firm theoretical
foundation the large body of experimental work that
followed the original paper of Eschenauer and Gligor,
and lay the foundations for the rigorous investigation of
security properties.

Lastly, we complement the above mentioned theoret-
ical results with extensive simulations. The experiments
support the conclusion that our design guidelines guar-
antee both connectivity and resilience for a wide interval
of practical network sizes and communication ranges.
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II. RELATED WORK

The idea of probabilistic key sharing for WSNs is
introduced by Eschenauer and Gligor [11]. The authors
also provide a simple and centralized algorithm for re-
keying in a distributed WSN. Later, in [6], three mecha-
nisms are described in the framework of random key pre-
distribution. First of all, theq-compositerandom key pre-
distribution scheme, a modification of the basic scheme
in [11], achieves better security under small scale attack
while trading off increased vulnerability in the face of
a large scale physical attack on the network sensors.
Secondly, the multi-path key reinforcement protocol
substantially increases the security of the channel by
leveraging the security of other links. Lastly, the random-
pairwise keys scheme assigns private pairwise keys to
randomly selected pairs of sensors so as to guarantee that
the rest of the network remains fully secure even when
some of the sensors have been compromised. Moreover,
this latter scheme supports node to node authentication.

Two schemes build up a secure pairwise channel
which combine a deterministic technique with a pre-
distribution random scheme. The first scheme is pro-
posed in [9]. The authors use a deterministic protocol
proposed by Blom [3] that allows any pair of nodes in a
network to find a pairwise secret key. As a salient feature,
Blom’s scheme guarantees a so calledλ -secure property:
as long as no more thanλ nodes are compromised, the
network is perfectly secure. Aλ -secure data structure
built this way is called a key space. The authors in [9]
create a setW composed ofω key spaces, and randomly
assign up toτ spaces per sensor. Two nodes can find
a common secret key if they have picked a common
key space. The second scheme is proposed in [14]. In
principle, this work is similar to [9], where Blundo et
al’s polynomial scheme [4] is used instead of Blom’s.

Pairwise secure channel establishment is a key re-
quirement in order to perform in-networking processing
in a framework of confidentiality [21]. However, note
that to support pairwise key establishment, neighboring
sensors have to discover the keys they possibly share. To
this aim, the solution in [7],[8] address the issue of key
discovery in a very efficient way, trading off commu-
nications with local computations, while not weakening
the overall security of the established links. Note that
these solutions can be applied to the model we propose
in this paper.

Connectivity properties have been studied for non-
secure wireless sensor networks as well. In [2], a ge-
ometric random model has been used to investigate
minimum node degree andh-connectivity. Using a recent
asymptotic result from Penrose [16], Bettstetter experi-
mentally shows how to compute a communication range
r such that, for a given number of nodes and a given
integerh, the network is guaranteed to beh-connected.
Equivalently, it is possible to compute how many sensors
are needed to cover a given geographical area with an
h-connected network.

In 1945, E Marczewski (see [13]) considered graphs
where sets where associated with vertices and two
vertices were connected if their associated sets had
an element in common. Recently, graphs obtained by
choosing the sets randomly have been investigated [13],
[12], [18], [19]. In these works, the sets associated with
the vertices are usually large. For a certain choice of
parameters this model of random graphs is shown to be
similar to theG(n, p) model of Erdős-Rényi. However,
for the range of parameters of interest to us these results
are not applicable.

III. PRELIMINARIES

We say that f (n) = o(1) if f (n) goes to zero asn
goes to infinity. If an event (depending onn) happens
with probability 1−o(1), we say that it occurs withhigh
probability or almost surely.

Fact 3.1: (UNION BOUND) Let E1, . . . ,Em be m
events. Then,

Pr

[

m
⋃

i=1

Ei

]

≤
m

∑
i=1

Pr[Ei ] .

We recall some basic facts and definitions from graph
theory (see for instance [5]). As customaryV(G) and
E(G) denote the vertex and the edge set of a graphG,
respectively. Given a graphG = (V,E) a cut is a proper
subsetS⊆ V such that there is no edge connecting a
vertex inS with a vertex inV −S.

Fact 3.2: A graphG is connected if and only if it has
no cuts.

The terms point, node and vertex will be used inter-
changeably.

IV. CONNECTIVITY OF SECURE WIRELESSSENSOR

NETWORKS

The following definition captures exactly the kind of
networks that are generated with randon pre-distribution
of keys.

Definition 4.1: Let K be the size of a finite set of
keys (thepool), and letk≤ K be a fixed parameter. Let
[K] = {1,2, . . . ,K} be the index set of the keys in the
common pool of sizeK. The graphGN

r,k,K is defined as
the geometric random graph obtained by the following
procedure:

• First, each nodeu is assigned a subset of keys, its
key ring, whose indexes are inKu ⊆ [K] by sampling
[K] without replacementk times.

• Second, theN nodes are distributed uniformly at
random on the given square geographical area, that,
without loss of generality, we assume to be of side
one (called theunit square).

• Third, uv is an edge if (a) the two nodes are within
distancer; and (b)Ku∩Kv 6= /0.

The resulting graphGN
r,k,K is called akryptographwith

parametersr, k, K and N. In the special case in which
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every two nodes are within transmission range, the so-
called full visibility case, the resulting graph is denoted
asGN

k,K .
In the sequel, for sake of simplicity we shall identify
[K] with the set of keys andKu with the key ring of a
vertexu.

Note that all links ofGN
r,k,K are secure by definition

(edgeuv exists only if verticesu andv share at least one
key). Therefore if the kryptograph is connected it is so
via secure links alone.

In the proof of connectivity we will assume that the
keyrings are generated by sampling with replacement.
This simplifies the analysis of connectivity without loss
of generality. In fact, sampling without replacement can
only be better, as it can be seen by the following coupling
argument. Suppose each node picks a set of sizek in
the following way. It first picks a set by sampling with
replacementk times. Now, if did not pickk distinct
elements it picks whatever more is needed by sampling
without replacement. So, in the end it has a set of size
exactlyk, and the distribution of this key ring is uniform.
Thus, we can always assume that key rings sampled
without replacement were generated by this process, but
the key rings we consider in the proofs (i.e. the firstk
samples) are actually subsets of the actual sets the nodes
hold. So, if there is connectivity using sampling with
replacement there must be connectivity using sampling
without replacement.

We now proceed to establish almost sure connectivity
in the full visibility case under the following three
assumptions on the parametersk andK. The first is,

k2

K
= c

logN
N

(2)

where c > 8 is a constant. The termk2/K is (very
nearly) the probability that a secure link exists between
two given endpoints. It can be shown that ifk2/K =
o(logN/N) then the graph is disconnected with positive
probability. Thus the conditionk2/K = Ω(logN/N) is
necessary to establish that the graph is connected almost
surely. If we establish connectivity under condition (2),
the result will follow immediately for higher valuesk2/K
(by an easy coupling argument). The second assumption
is

K ≥ N. (3)

In what follows, the weaker, but uglier condition
(

N
s

)

≤
(

K
ks/4

)

wheres is the size of a vertex set, would do. We keep
condition (3) because it is cleaner and always satisfied
in practice. The last condition is

k≥ 5 (4)

which, again, is easily satisfied in practice. To express
our results in a parameterized fashion we shall define

k := 2α (5)

whereα ≥ 5
2. The probability of connectivity will depend

on the constantsc andα. As a rule of thumb the larger
c and α the higher the probability of connectivity. In
practical application, these conditions on the parameters
are easily seen to hold.

Definition 4.2: Let S be a set of vertices, and letk(x)
be the set of keys chosen by vertexx. We define

k(S) :=
⋃

x∈S

k(x).

When the size of a set of verticesS is “small” the
expected size ofk(S) is (roughly) sk. The next lemma
says that it is unlikely that we deviate far below the
expectation.

Lemma 4.3:Assume conditions (2)–(4). LetS be the
collection of non-empty sets of vertices of size at most
min{K/k,N/2}. Then

Pr[∃S∈ S , |k(S)| ≤ |S|k/4] ≤ N

(

eclogN
N

)α
.

Proof: By the union bound

Pr[∃S∈ S , |k(S)| ≤ |S|k/4]≤
≤ ∑

s≤N/2

Pr[∃S, |S| = s, |k(S)| ≤ sk/4].

To estimate Pr[∃S, |S|= s, |k(S)| ≤ sk/4], we first choose
a setS⊆V of sizes. There are

(

N
s

)

many ways to do this. We then fix a setT ⊆ [K] of keys
of sizesk/4. This can be done in

(

K
ks/4

)

different ways. Finally, we need to compute the proba-
bility that k(S) is included in the setT. This probability
is equal to

(

ks
4K

)ks

.

Therefore, recalling thatN ≤ K and the basic inequality

(

n
k

)

≤
(en

k

)k
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we have

Pr[∃S, |S| = s, |k(S)| ≤ sk/4]≤

≤
(

N
s

)(

K
ks/4

)(

ks
4K

)ks

≤
(

K
s

)(

K
ks/4

)(

ks
4K

)ks

≤
(

K
ks/4

)2(

ks
4K

)ks

≤
(

4eK
ks

)ks/2(

ks
4K

)ks

= eks/2
(

ks
4K

)ks/2

=

(

eks
4K

)ks/2

Let

p(s) :=

(

eks
4K

)ks/2

.

To compute the maximum value of this quantity ass
varies, write it as

(zz)t

with
z :=

eks
4K

andt = 2K/e. Note thatz≤ 1 and thatt does not depend
ons. The functionzz is monotone decreasing in the range
z≤ 1. So, the maximum is achieved for the value ofs,
wherez is as small as possible, that iss= 1. The value
of p(s) at s= 1 is

p(1) =

(

ek
4K

)k/2

≤
(

eclogN
N

)α
(6)

By fixing the parametersc andα we can bound Pr[∃S∈
S , |k(S)| ≤ |S|k/4] by any inverse polynomial (for large
enoughN), i.e. N−t for any fixed t. In the following
corollary we commit to a particular choice of the pa-
rameters for the rest of the section.

Corollary 4.4: Assume conditions (2)–(4). LetS be
the collection of non-empty sets of vertices of size at
most min{K/k,N/2}. Then, forN large enough,

Pr[∃S∈ S , |k(S)| ≤ |S|k/4]≤ 1
N

.

Proof: If α ≥ 5
2 (i.e. k≥ 5) the quantity
(

eclogN
N

)α

is (much) smaller than 1/N2, for N large enough.
Lemma 4.5:Let S be a proper set of vertices and let

x∈V −S. If k(x)∩k(S) 6= /0 thenS is not a cut.
Proof: Let a ∈ k(x)∩ k(S). By definition, k(S) =

⋃

y∈Sk(y). Therefore there existsz∈Ssuch thata∈ k(z).
But thenz and x have a key in common, and therefore
xz∈ E.

The next theorem uses the previous two lemmas to
establish that the graph is connected almost surely. The
basic strategy is to prove that almost surely no set of
vertices is a cut . Lemma 4.3 says that, for all “small”
sets S simultaneously, the set of keysk(S) is “large”
almost surely. Technically, this is the difficult claim to
establish, since ifS is “big” the odds thatk(S) is “large”
are easily seen to be overwhelming (this is proven in the
next theorem). Therefore, for all setsS simultaneously,
k(S) is “large” with high probability. If we consider now
the sets of vertices of typeV−Swe see in the following
proof that almost surely there is a vertexx∈V−S such
that k(x) intersects bothk(S) and itsk(V −S). But this,
by Lemma 4.5, implies thatS is not a cut.

Theorem 4.6:Assume conditions (2)–(4). Then, al-
most surely, the graph is connected.

Proof: We will show that, almost surely, there is
no cut in the graph. Given any non-trivialS⊆V, either
S or V−S has size at mostN/2. Therefore without loss
of generality we can assume that|S| ≤ N/2. Let E be
the event: for all sets of vertices of size at mostK/k,
the size ofk(S) is at least|S|k/4. By Corollary 4.4 this
event happens almost surely. We want to estimate the
probability thatk(V −S) does not intersectk(S). Let s
be fixed. Recalling the basic inequality 1−x≤ e−x, by
the union bound we have,

Pr[∃S, |S|= s,S is a cut| E ] =

= Pr[∃S, |S|= s,k(S)∩k(V −S) = /0 | E ] ≤

≤
(

N
s

)(

1− sk
4K

)k(N−s)

≤ Nsexp(−sk2(N−s)/4K)

≤ Nsexp(−sk2N/8K)

= N−(c/8−1)s

where the last inequality follows from assumption (2).
By summing over all sizess and recalling thatc > 16,
we have that the probability of having a cut in the graph
is at most

N/2

∑
s=1

N−(c/8−1)s ≤
∞

∑
s=1

N−s ∼ 1
N

.

If K/k≥N/2, then we have already covered all cases.
Otherwise, we have to consider the sets of vertices of size
s in the rangeK/k≤ s≤ N/2. There are at most 2N such
sets. AssumingE , each such set has a key ring of size
at leastK/4 (by restricting attention to a subset of size
K/k). So, there exists anε > 0 such that the probability
that one such set of vertices is a cut is at most, ifk≥ 5,

2N
(

1− 1
4

)kN/2

≤ 2−εN.

To sum up:

Pr[∃S,S is a cut] ≤ Pr[∃S,S is a cut| E ]+Pr[E c]

≤ 1
N

+2−εN +
1
N

≪ 3
N
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for N large enough. The claim follows.
The proof of connectivity shows that the probability

that the graph is not connected goes to zero asN grows.
How quickly depends on the parametersc and α. In
the experimental section we will show that for the kind
of parameters that reflect practical usage the probability
of connectivity is overwhelming. Here we try to get
a feeling directly from the formulae. By analysing the
proofs one can see that the probability that the graph is
disconnected is at most

p :=

(

ek
4K

)α
+2N−(c/8−1) +2N

(

3
4

)kN/2

AssumeN = 28 = 256, K = 214 = 16384, and that each
sensor is givenk= 27 = 128 keys, which impliesα = 64.
With this choice we getc = 32. Assuming furthermore
for the sake of simplicity that logarithms are to the base
2, we have that

p≈ 2−23.

Essentially the same results can be proven for the
general, and more practical case, when visibility is not
full. Calculations are omitted for the sake of brevity.

V. SECURE WIRELESSSENSORNETWORKSARE

PROVABLY SECURE

While connectivity is a fundamental property of
SWSNs (we cannot really call it a network if it is
disconnected), also fundamental is it to understand how
resilient is a SWSN against external attacks.

We want to model the following attack: an external
entity tampers with the sensors and collects all the keys
in the keyrings. The sensors to tamper with are chosen
randomly among the ones yet to be compromised. The
attacker’s goal is to collect enough keys to decrypt as
many network communications as possible. This is the
kind of an attacker that is considered in the large majority
of works on security for wireless sensor networks in the
literature. An equivalent attack can be carried on by a
subset of the sensors in the network that are actually
malicious and cooperate to subvert the communication
confidentiality by using all their knowledge and keys.

Definition 5.1: A collusionin a secure wireless sensor
network is a subset of the network sensors. Given a
collusion, a key of the pool is compromised if it belongs
to the keyring of some sensorw in the collusion. We
also say that, given two sensorsu andv, secure linkuv
is compromised if and only ifu and v share some key
(that is, the secure link exists) and all the shared keys
compromised.

When random key pre-distribution is used, the at-
tacker, by compromising a sensorw, not only does
compromise all the communication links from sensorw,
also compromises a number of other links in the network,
those using the same compromised keys. This is a
weakness. So, it is possible that the attacker takes control
over a constant fraction of the network by compromising
a sub-linear number of the sensors. When this isnot

possible, we say that the network is redoubtable, that is,
essentially secure against massive attacks.

Definition 5.2: A Secure Wireless Sensor Network is
redoubtableif the probability that a collusion ofo(N)
nodes uniformly chosen at random in the network can
compromise a constant fraction of the network links is
zero.

Theorem 5.3:If a secure wireless sensor network is
built in such a way that

k
K

∼ 1
N

, (7)

then the network is redoubtable.
Proof: Let a collusion of c = o(N) nodes be

uniformly chosen at random in the network. Assume
that the collusion can compromise a constant fraction
of the network links with probabilityε. Since every
sensor is assignedk of keys, the collusion as a whole
has a collection ofo(kN) = o(K) compromised keys at
most. Consider a secure linkuv in the network. Clearly,
Ku∩Kv contains at least one key. Therefore, linkuv is
compromised with probabilityo(1). As a consequence,
at most a fraction ofo(1) edges are compromised, on
average. But this is impossible ifε > 0, so, it must be
ε = 0.
This result shows that secure wireless sensor networks
can be designed in such a way to be provably secure.
One of the key results of our work is to show that there
exists a way to choose the parametersk andK such that
the network isbothredoubtable and connected with high
probability. This is claimed in the following corollary.

Corollary 5.4: If a secure wireless sensor network is
built in such a way thatK ≥ N logN and such that

k2

K
∼ logN

N
, (8)

then the network is redoubtable and connected with high
probability.

Proof: Combine Theorem 4.6 and Theorem 5.3.
For instance, we can choosek∼ logN andK ∼ N logN.
Actually, this is the choiche that minimizes the keyring
size, that can be important especially in devices with
small memory like sensors. If we take a larger keyring,
say k ∼

√
N, and set the poolsize accordingly, that is

K ∼ N2/ logN, we get a network that is provably secure
and connected with high probability, but not essentially
more secure against massive attacks than the previous
one, in spite of the much larger keyring.

VI. SIMULATION RESULTS

As discussed in the introduction, the Erdös and Rényi
random graph has been used in the literature to model
wireless sensor networks with random pre-distribution
of keys. There are a number of problems with this
approach. To show that the structure of a random graph
and of a kryptograph are different, we have set up an
experiment that measure the clustering coefficient of the
two networks. In this experiment, we have set the key
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Fig. 1. Number of triangles in the Erdös and Rényi random graph
and in the kryptograph as a function of the network size.

Fig. 2. Randomly generated secure sensor network of size 200.
Communication range is 0.2, key ring size is 4, and pool size is 50.
Lighter lines mean physical visibility, darker lines secure visibility.
This graph is connected by using secure links alone.

ring size to logN and the pool size to(1/2)N logN.
This is enough to get connectivity in the full visibility
case. Figure 1 shows the results: The kryptograph has
a much higher number of triangles (and consequently a
much higher clustering coefficient). While this difference
is small whenN = 16, it gets larger and larger as the
network size grows. WhenN = 128, the kryptograph
shows twice the number of triangles of the random
graph, and the gap keeps growing in larger networks.

To help visualize the structure of secure wireless
sensor networks, Figures 2, 3, and 4 show three similar
networks where the pool size is increased from 50 to 100
and then to 150. Note that, as soon as the pool size is
too big to guarantee connectivity, isolated sensors start to
appear in the graph. This is perfectly analogous to what
is predicted by well-known graph-theoretic results on
other random models and very important from a practical
point of view. Indeed, even in the remote probability that

Fig. 3. Randomly generated secure sensor network of size 200.
Communication range is 0.2, key ring size is 4, and pool size is 100.
Lighter lines mean physical visibility, darker lines secure visibility. The
network has a few isolated sensors.

Fig. 4. Randomly generated secure sensor network of size 200.
Communication range is 0.2, key ring size is 4, and pool size is 150.
Lighter lines mean physical visibility, darker lines secure visibility.
The network has a slightly larger number of isolated sensorsand even
some very small disconnected components.

our design methodology generate a disconnected graph,
it is almost surely connected except a very small number
of isolated points.

In our experiments, we set the communication range
to .2, while the network sizeN ranges from 1,000 to
10,000 sensors. To choose the parameters, we setc= 32
in Equation 1. Constantc depends on network density.
Experimentally,c = 32 guarantees that high probability
of connectivity holds from very low density networks.
So, if we fix the keyring size to logN, then the pool
size is equal to(1/32)N logN. Similarly, if we fix the
keyring size to 2 logN, then the pool size is equal to
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Fig. 5. Number of sensors that the attacker has to collect to
compromise 50% and 25% of the network links. Pool sizeK is set
to N/ logN.

(1/8)N logN. Finally, a key ring size of 8 logN implies
a pool size of 2N logN. We performed a large set of
experiments for all of the above options. These networks
are virtually “always” connected, meaning that we got
no disconnected network among the 10,000 generated
per each parameter choice and network size.

Lastly, we performed experiments to validate our
theoretical results on network resilience. Figure 5 shows
the number of sensors that a coalition must have to
compromise 50% of the secure links in a network where
the pool size is set toN/ logN and the key ring to a
constant. This graph can be almost exactly interpolated
by function hN/ logN, for some constanth. This ex-
perimental evidence supports the asymptotic result in
Theorem 5.3.

VII. C ONCLUSION

In this paper, we have shown that wireless sensor
networks using random pre-distribution of keys can be
designed in such a way to be both provably connected
with high probability and provably secure against mas-
sive attacks. To the best of our knowledge, this is the first
fundamental result that rigorously combines two central
properties of this kind of networks.
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