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Abstract— We give, for the first time, a precise math-
ematical analysis of the connectivity and security prop-
erties of sensor networks that make use of the random
pre-distribution of keys. We also show how to set the
parameters— pool and key-ring size— in such a way that
the network is not only connected with high probability
via secure links, but also provably secure, in the following
sense: we formally show that any attacker that captures
sensors at random with the aim of compromising a constant
fraction of the secure links, must capture at least a
constant fraction of the nodes of the network. In the
context of wireless sensor networks where random pre-
distribution of keys is employed, we are the first to provide
a mathematically precise proof, with a clear indication of
parameter choice, that two crucial properties — connectivy
via secure links and resilience against malicious attacks—
can be obtained simultaneously. Our theoretical results &
complemented by extensive simulations that reinforce our
main conclusions.

Index Terms— Wireless security, sensor networks.

I. INTRODUCTION

has to be enforced by using symmetric key algorithms
[17]. Key management is thus a central issue in secure
wireless sensor networks. One of the most promising
approaches is the so-calledndom pre-distribution of
keysintroduced in [11]. This model is the object of study
of this paper.

We begin by describing the model introduced in [11].
A Secure Wireless Sensor NetwdBWSN) is composed
of N sensors. Each sensor is pre-assignkeyaringof k
secret keys randomly drawn from a common pooKof
random keys. The sensors are then randomly deployed
in a given geographical area. Two sensors share a secure
communication link if they lie within communication
range and they share a common pre-assigned key. A first
fundamental problem in secure wireless sensor networks
is to choose propek and K such that the network is
connected by using secure links alone. This problem is
addressed by Eschenauer and Gligor in [11]. Their basic
idea is that a SWSN can be considered to be a random
graph in the sense of Erdds and Rényi [10]. According

A Wireless Sensor Network (WSN) is a collectiorto this well-known model, aandom graphof N vertices
of sensors whose size can range from a few hundradd parametep is defined as follows: for every pair of
sensors to a few hundred thousand or possibly more. Therticesu andv the edgeuv is inserted with probability
sensors do not rely on any pre-deployed network archg; by flipping a coin. Crucially, for every potential edge

tecture, thus they communicate via an ad-hoc wireleasnew coin flip, independent of the previous ones, is
network. The power supply of each individual sensquerformed. Therefore edges exist independently of each
is provided by a battery, whose consumption for botbther.

communication and computation activities must be opti- Notice that a SWSN is generated by a completely
mized. Distributed in irregular patterns across remote adifferent random process and it is not clear that this
often hostile environments, sensors should autonomouplpcess can be approximated and if so, to what extent,
aggregate into collaborative, peer-to-peer networks: Sdsy a random graph in the sense of Erdds and Rényi.
sor networks must be robust and survivable in orddo appreciate the problem, consider for instance the
to overcome individual sensor failure and intermitterfbllowing situation. There are three sensory and
connectivity (due, for instance, to a noisy channel or z all within transmission range, whose key rings are
shadow zone). of size 2, and suppose that the pool sizeKis= 10°.

It is widely believed that WSNs can be useful in manjssume that we know already that edges and yz
diverse settings [1]. In many applications establishing sexist. What is the probability that edgez also ex-
cure pair-wise communications is very important and, iists? If we assume independence, following Erdos and
some cases, critical. In particular, it is a pre-requisite f Rényi, then this probability isv %J, but in reality
the implementation of secure routing, and can be usefi{xz exists| both xy andyz exisf ~ 5. This choice of
for secure group communications as well. However, dymrameters is made for the sake of clarity: the problem
to the scarceness of resources, public key cryptograpbkypresent in every practical situation.
may not be a viable solution. In this case confidentiality In fact, random graphs and SWSNs have different



structural properties as illustrated in Figure 1, that repo  Our results concerning connectivity holds both in

the clustering coefficients and the number of triangles fae full-visibility case (i.e. every two nodes are within

these two kinds of graphs. The clustering coefficient dfansmission range of each other) and in the general case.

a vertexu is the number of links between neighbours of Let us now turn to security. A first observation is

u divided by the number of all such potential links, i.e . . i

(degu))_ The clustering coefficient of a graph is the avthat that the kind of stoch_astlc dependency exhibited _by
2 the model that was described earlier is bad for security.

erage clustering coefficient, taken over all vertices. Thi .
. . . . ssume that an attacker is able to collect a subset of the
guantity was introduced in the seminal paper by Watts

X X ensors and extract their keys. Clearly, all links incident
and Strogatz in their study of small-world networks, an ) :
) on captured nodes will be compromised but can the
is a useful structural parameter of a network [20] (se .
. . amage extend to other links? The example above shows
also [15] and references therein). All this clearly show; . .
X . . ) t once a nodel is captured not only are the links
a discrepancy between the classical Erdds-Renyi model. . o
incident tou compromised, but it is likely that many

proposed in [.11]. aqd the real networks generated lﬁ}{lks between neighbours afare also compromised. In
random pre-distribution of keys.

e 1 i . eneral, the stochastic dependencies of the model can
There are ot.h_erl d ifficulties. The E.rdos-Renyl mod ive raise to unexpected correlations that an adversary
assumes full-visibility— any two devices can be con:

ted b direct link dl f thei hi c?n exploit and must therefore be carefully analysed.
nected by a direct link regardless of Iheir geographicyl, e make use of the Erdods-Renyi model this crucial
position. There is no guarantee that the Erdds-Ren

Theorem as used in [11] ensures high probability o pectis completely overlooked.
connectivity in the general case, when devices are notlt is not hard to give examples where the adversary can
within transmission range. compromise the entire network just by capturing a sub-
In this paper, we present a precise mathematidipear fraction of the vertices. The relevant question is
analysis of SWSNs. We remark that having a precisghether there exists a choice of the relevant parameters—
understanding of a model is always important, but espkey-ring size and pool size- such that, in essence, the
cially so when security is at stake. Note a very importastamage is limited to the edges incident on the captured
point in this respect. If we keel fixed and letk grow, nodes. In this paper we show that such a choice of
the probability of connectivity increases but the securitine parameters exists. Crucially, the same choice also
of the network decreases. Intuitively, if key-ring size ignsures connectivity. The following definition embod-
large then capturing just a few sensors is likely to bies the notion of security just described. We say that
enough to reconstruct the entire pool and compromigenetwork isredoubtableif the following holds: any
the whole network. Viceversa, K is very small when attacker that captures sensors at random with the aim
compared tK, every key will be used by very few links, of compromising a constant fraction of the links, must
which is good for security, but the network is likely tocapture at least a constant fraction of the nodes. The
be disconnected. Thus, security and connectivity are iandom attacker is the one commonly considered in the
conflict. It is a very important problem whether therditerature.
exists a choice of key-ring size and pool size that ensure
both. In this paper we show that the answer is yes.
Concerning connectivity, we show thatkf > N and

We formally prove that, iK > NlogN andk is chosen

to satisfy (1), the network is not only connected with
high probability, but it is also redoubtable. For instance,
K2 logN we can choos& ~ logN andK ~ NlogN. To the best
—~— (1) of our knowledge, this is the first asymptotic bound on
K N the resilience of wireless sensor networks using random

then the network is connected with high probabilitypre-distribution of keys. Note that results of this kind
(In fact, the conditionK > N can be replaced by acannot even be formulated in the Erdos-Renyi model.

. - 2
weakgr but more _techmcal condition.) The raﬁoha_s & 7o summarize, we show by a precise mathematical
meaning. Wherk is small when compared t, which  55\vis how to design sensor networks that are at the
is not only usually the case in the applications but alS9, e ime connected (with high probability) and prov-
highly desirable for security reasons, the ratio is roughymy secure. Thus, our results put on a firm theoretical

equal to the probability that a link exists between a give \ndation the large body of experimental work that

pair of nodes since followed the original paper of Eschenauer and Gligor,
K2 and lay the foundations for the rigorous investigation of

Prllink exist§ =1— (1— R) ~ K security properties.
Lastly, we complement the above mentioned theoret-

WhenK > N, condition 1 is in some sense optimal. Adcal results with extensive simulations. The experiments
we prove in this paper, if the rati@E is smaller the support the conclusion that our design guidelines guar-
network is likely to be disconnected. (If the ratio is largeantee both connectivity and resilience for a wide interval
the probability of connectivity can only improve.) of practical network sizes and communication ranges.



1. RELATED WORK In 1945, E Marczewski (see [13]) considered graphs
.where sets where associated with vertices and two

The idea of probabilistic key sharing for WSNs 'Srertices were connected if their associated sets had

introduced by Eschenauer and Gligor [11]. The authog% element in common. Recently, graphs obtained by

also provide a simple and centralized algorithm for r&4h00sing th t domlv h b . tioated [13
keying in a distributed WSN. Later, in [6], three mech choosing the sets randomly have been investigated [13],

nisms are described in the framework of random key pr 12], [18], [19]. In these works, the sets associated with

distribution. First of all. th taandom k e vertices are usually large. For a certain choice of
istribution. FIrst of afl, th&j-compositeandom K€y preé- 5.5 meters this model of random graphs is shown to be
distribution scheme, a modification of the basic sche

in 111 hi bett v und I le att fmilar to theG(n, p) model of Erdés-Rényi. However,
n [. ] achieves better secunty under smafl scale allagie y,q range of parameters of interest to us these results
while trading off increased vulnerability in the face o :
. are not applicable.
a large scale physical attack on the network sensors.
Secondly, the multi-path key reinforcement protocol
substantially increases the security of the channel by [1l. PRELIMINARIES
leveraging the security of other links. Lastly, the random-

pairwise keys scheme assigns private pairwise keys%We say thatf(n) = o(1) if f(n) goes to zero as

) Bes to infinity. If an event (depending an) happens
randomly selected pairs of sensors so as to guarantee We% probability 1—o(1), we say that it occurs withigh

the rest of the network remains fully secure even Whe\iﬂobablllty or almost surely
some of the sensors have been compromised. Moreover, .
. .~ “Fact 3.1: (UNION BOuND) Let Ej,...,En be m
this latter scheme supports node to node authenticatign,
. L eYents. Then,
Two schemes build up a secure pairwise channe
which combine a deterministic technique with a pre-

m m
distribution random scheme. The first scheme is pro- PrilJE S_ZPV[Ei]-

. S i1 &
posed in [9]. The authors use a deterministic protocol We recall some basic facts and definitions from graph

proposed by Blom [3] that allows any pair of nodes in ?heory (see for instance [5]). As customanyG) and

network to find a pairwise secret key. As a salient featurE(G) denote the vertex and the edge set of a giGph
Blom’s scheme guarantees a so calledecure property respectively. Given a grapB — (V,E) a cutis a proper
as long as no more thah nodes are compromised, the ’

work i fect] A data struct subsetS C V such that there is no edge connecting a
network is perfectly secure. A-secure data structure, .. in's with a vertex inv — S.
built this way is called a key space. The authors in [9

create a se¥’ composed ofo key spaces, and randomlyn F?L(j:ttSS.Z: A graphG is connected if and only if it has

assign up tor spaces per sensor. TW(.) nodes can fin The terms point, node and vertex will be used inter-
a common secret key if they have picked a commo
nangeably.

key space. The second scheme is proposed in [14].%

principle, this work is similar to [9], where Blundo et

al’'s polynomial scheme [4] is used instead of Blom's. V. CONNECTIVITY OF SECUREWIRELESSSENSOR
Pairwise secure channel establishment is a key re- NETWORKS

quirement in order to perform in-networking processing . - .

in a framework of confidentiality [21]. However, note The following definition captures exactly the kind of

that to support pairwise key establishment, neighborirqlea’grsks that are generated with randon pre-distribution

sensors have to discover the keys they possibly share. Cbefinition 4.1 Let K be the size of a finite set of

this aim, the solution in [7],[8] address the issue of ke :
discovery in a very efficient way, trading off commugf’s(gegc?l), 2;% éeilr(] egilgdt;i aS gltxi? tazrell(rg;;eirr.] l}ﬁ;

nications with local computations, while not weakenin . : .
p ommon pool of siz&. The graphGl . is defined as

the overall security of the established links. Note th i d h obtained by the followi
these solutions can be applied to the model we proposee geometric random graph obtained by the Toflowing

: : procedure:

in this paper. . . _ _
Connectivity properties have been studied for non- * First, each node is assigned a subset of keys, its

secure wireless sensor networks as well. In [2], a ge- Key ring whose indexes are K, C [K] by sampling

ometric random model has been used to investigate [K] without replacemerk times. _

minimum node degree ardconnectivity. Using arecent * Second, theN nodes are distributed uniformly at

asymptotic result from Penrose [16], Bettstetter experi- fandom on the given square geographical area, that,

mentally shows how to compute a communication range  Without loss of generality, we assume to be of side

r such that, for a given number of nodes and a given ©neé (called theunit squarg. .

integerh, the network is guaranteed to beconnected. * Third, uvis an edge if (a) the two nodes are within

Equivalently, it is possible to compute how many sensors  distancer; and (b)KyNKy # 0.

are needed to cover a given geographical area with @he resulting grathE‘k‘K is called akryptographwith

h-connected network. parameters, k, K andN. In the special case in which



every two nodes are within transmission range, the seherea > % The probability of connectivity will depend
calledfull visibility case, the resulting graph is denotedn the constants anda. As a rule of thumb the larger
asGEK. ¢ and a the higher the probability of connectivity. In

In the sequel, for sake of simplicity we shall identifypractical application, these conditions on the parameters
[K] with the set of keys an&, with the key ring of a are easily seen to hold.

vertexu. Definition 4.2: Let S be a set of vertices, and lktx)

Note that all links ofG|  are secure by definition pq the set of keys chosen by vertexWe define
(edgeuv exists only if verticesi andv share at least one

key). Therefore if the kryptograph is connected it is so
via secure links alone. K(S) := U K(X).

In the proof of connectivity we will assume that the x€S
keyrings are generated by sampling with replacemeMihen the size of a set of vertices is “small” the
This simplifies the analysis of connectivity without losgexpected size ok(S) is (roughly) sk The next lemma
of generality. In fact, sampling without replacement cagays that it is unlikely that we deviate far below the
only be better, as it can be seen by the following couplirexpectation.

argument. Suppose each node picks a set of kit® | emma 4.3:Assume conditions (2)—(4). Le¥’ be the

the following way. It first picks a set by sampling witheqjection of non-empty sets of vertices of size at most
replacementk times. Now, if did not pickk distinct min{K /k,N/2}. Then

elements it picks whatever more is needed by sampling
without replacement. So, in the end it has a set of size
exactlyk, and the distribution of this key ring is uniform.
Thus, we can always assume that key rings sampled P3Sc .7, k(S| < [Sk/4] < N<
without replacement were generated by this process, but pyof: By the union bound

the key rings we consider in the proofs (i.e. the fikst

samples) are actually subsets of the actual sets the nodes

hold. So, if there is connectivity using sampling with Pri3se .7, [k(S)| < |Sk/4] <
replacement there must be connectivity using sampling ’ - -

without replacement. < Z PIES [S=s, k(S)] < sk/4].

eclogN\ ¢
N .

We now proceed to establish almost sure connectivity s<N/2

in the full visibility case under the following three

assumptions on the paramet&randK. The first is, To estimate ABS, | =s, |k(S)| < sk/4], we first choose
K2 logN ) a setSCV of sizes. There are
— =C——
K N (2)

where ¢ > 8 is a constant. The terrk?/K is (very N

nearly) the probability that a secure link exists between s

two given endpoints. It can be shown thatkf/K =

o(logN/N) then the graph is disconnected with positive

probability. Thus the conditioh?/K = Q(logN/N) is many ways to do this. We then fix a SBIC [K] of keys
necessary to establish that the graph is connected alnf@sgize sk/4. This can be done in

surely. If we establish connectivity under condition (2),

the result will follow immediately for higher valuég /K K
(by an easy coupling argument). The second assumption ( )
is ks/4
K>N. 3)
In what follows, the weaker, but uglier condition different ways. Finally, we need to compute the proba-

bility that k(S) is included in the seT. This probability

(':) < (k:/4) is equal to

wheres is the size of a vertex set, would do. We keep ks \ ks
condition (3) because it is cleaner and always satisfied (R)
in practice. The last condition is

k=5 ) Therefore, recalling thal < K and the basic inequality

which, again, is easily satisfied in practice. To express
our results in a parameterized fashion we shall define (

k:=2a (5)



we have The next theorem uses the previous two lemmas to
establish that the graph is connected almost surely. The
P3S, S =s, k()| <sk/4] < basic strategy is to prove that almost surely no set of

N K ks ks vertices is a cut . Lemma 4.3 says that, for all “small”
< (s) (ks/4) <R> sets S simultaneously, the set of keygS) is “large”
ks almost surely. Technically, this is the difficult claim to
< (K ( K ) (E) establish, since iBis “big” the odds thak(S) is “large”
~\s/\ky/4/ \ 4 are easily seen to be overwhelming (this is proven in the
< K \2/ ks\* next theorem). Therefore, for all seSssimultaneously,
= (ks/4) (4_) k(S) is “large” with high probability. If we consider now
26K\ K2 / s\ kS the sets of vertices of typé — Swe see in the following
< (—) <—> proof that almost surely there is a vertex V — S such
ks 4 thatk(x) intersects botlk(S) and itsk(V —S). But this,
_ 2 (ﬁ)ks/z by Lemma 4.5, implies tha§ is not a cut.
o 4K Theorem 4.6:Assume conditions (2)—(4). Then, al-
eks\ ks/2 most surely, the graph is connected.
= (R) Proof: We will show that, almost surely, there is
no cut in the graph. Given any non-trivi8IC V, either
Let ks/2 SorV —Shas size at mostl/2. Therefore without loss
p(s) == (%5) _ of generality we can assume thi@ < N/2. Let & be
4K the event: for all sets of vertices of size at méstk,
To compute the maximum value of this quantity ss the size ofk(S) is at least{Slk/4. By Corollary 4.4 this
varies, write it as event happens almost surely. We want to estimate the
() probability thatk(V — S) does not intersedt(S). Let s
_ be fixed. Recalling the basic inequality-Ix < e %, by
with eks the union bound we have,
Z.= R

Pr3s|9 =s,Sis a cut| &] =

= <
andt = 2K /e. Note thatz< 1 and that does not depend — Pr3S|S = sk(S)NKV -9 =0 &] <

ons. The function is monotone decreasing in the range

z< 1. So, the maximum is achieved for the valuespf < N 1 sk \ KN=9)
wherez is as small as possible, thatss= 1. The value =\s 4K
of p(s) ats=1is < NSexp(—sk(N — s) /4K)
ek\¥2  /eclogN\® < NSexp(—sk®N/8K)
pl)=(4] <= (6) e
aK N _ N-(e/8-Ds
|

where the last inequality follows from assumption (2).

: . By summing over all sizes and recalling that > 16,
7, [K(S)| < |.S| k/4LPy any Inverse polynomial (for I_argewe have that the probability of having a cut in the graph
enoughN), i.e. N7' for any fixedt. In the following is at most

corollary we commit to a particular choice of the pa-

rameters for the rest of the section. N/2 —(¢/8-1)s > s 1
Corollary 4.4: Assume conditions (2)—(4). Le¥ be ZiN < ZiN N

the collection of non-empty sets of vertices of size at > .

most mi{K /k,N/2}. Then, forN large enough, If K/k>N/2, then we have already covered all cases.
Otherwise, we have to consider the sets of vertices of size

Pr3se .7, k(S)| < |9k/4] < 1 sin the rangeK /k < s< N/2. There are at mosf‘2such
Proof: If a >3 (i.e.k>5) the qualwltity sets. Assuming?, each such set has a key ring of size
=2 - at leastK /4 (by restricting attention to a subset of size
eclogN\ ¢ K/K). So, there exists aa > 0 such that the probability
N that one such set of vertices is a cut is at mosk, if 5,

is (much) smaller than /N2, for N large enough. ® N 1\ N2
Lemma 4.5:Let S be a proper set of vertices and let 2 <1_ _>
xeV =S If k(x)Nk(S) # 0 thenSis not a cut. )
Proof: Let a € k(x) Nk(S). By definition, k(S) = To sum up:
Uyesk(y). Therefore there existse Ssuch that € k(2). Pi3SSisacut < PH3SSis a cut| &+ P&

But thenz and x have a key in common, and therefore 1 1 3

—&eN
xz€ E. m N+2£ NN

By fixing the parameters anda we can bound PES e

IN



for N large enough. The claim follows. B possible, we say that the network is redoubtable, that is,
The proof of connectivity shows that the probabilityessentially secure against massive attacks.

that the graph is not connected goes to zerbl agows. Definition 5.2: A Secure Wireless Sensor Network is

How quickly depends on the parametersand a. In redoubtableif the probability that a collusion 06(N)

the experimental section we will show that for the kinshodes uniformly chosen at random in the network can

of parameters that reflect practical usage the probabilitpmpromise a constant fraction of the network links is

of connectivity is overwhelming. Here we try to getzero.

a feeling directly from the formulae. By analysing the Theorem 5.3:If a secure wireless sensor network is

proofs one can see that the probability that the graphbsilt in such a way that

disconnected is at most K 1
K\ @ 3\ kN/2 =~ = (7
p:= (e—> + 2N~ (@81 4 oN <—) KN
4K 4 then the network is redoubtable.

AssumeN — 28 — 256. K — 214 — 16384. and that each Proof: Let a collusion ofc = o(N) nodes be
Sensor is givelk:27:,128 keys, which implies(:64 uniformly chosen at random in the network. Assume

With this choice we get — 32. Assuming furthermore that the collusion can gompromisg a copstant fraction
for the sake of simplicity that logarithms are to the bas%'c the r_1etwor_k links with probab|l|ty£._ Since every
2 we have that sensor is assignekl of keys, the collusion as a whole
’ pr2 2B has a collection ob(kN) = o(K) compromised keys at
most. Consider a secure link/ in the network. Clearly,
Essentially the same results can be proven for thg¢ NK, contains at least one key. Therefore, link is
general, and more practical case, when visibility is n@ompromised with probabilitp(1). As a consequence,
full. Calculations are omitted for the sake of brevity. at most a fraction ob(1) edges are compromised, on
average. But this is impossible & > 0, so, it must be
V. SECUREWIRELESSSENSORNETWORKSARE e=0. u
PROVABLY SECURE This result shows that secure wireless sensor networks
While connectivity is a fundamental property ofcan be designed in such a way to be provably secure.
SWSNs (we cannot really call it a network if it isOne of the key results of our work is to show that there

disconnected), also fundamental is it to understand h&¥ists a way to choose the parameteendK such that
resilient is a SWSN against external attacks. the network isbothredoubtable and connected with high

We want to model the following attack: an externaprobability. This is claimed in the following corollary.
entity tampers with the sensors and collects all the keysCorollary 5.4: If a secure wireless sensor network is
in the keyrings. The sensors to tamper with are chosEHilt in such a way thakK > NlogN and such that

randomly among the ones yet to be compromised. The K logN
attacker's goal is to collect enough keys to decrypt as KN (8)
en the network is redoubtable and connected with high

kind of an attacker that is considered in the large majori babil
of works on security for wireless sensor networks in th robaility.

literature. An equivalent attack can be carried on by‘g _Proof: Combine Theorem 4.6 and Theorem 5i8.
>()r instance, we can chooke- logN andK ~ NlogN.

subset of the sensors in the network that are actua(éﬁt lIv. this is the choiche that minimi the Kevri
malicious and cooperate to subvert the communicati ually, This 1S the choiche that minimizes the keyring
size, that can be important especially in devices with

confidentiality by using all their knowledge and keys. ) .
Definition 5.1: A collusionin a secure wireless sensmsma" memory like sensors. If we take a ""Frgef keyrln_g,
network is a subset of the network sensors. Given Sé'f‘yk; VN, and set the poolsize apcordmgly, that is
collusion, a key of the pool is compromised if it belongé< ~N?/logN, we_get a network t_h_at Is provably secure
and connected with high probability, but not essentially

to the keyring of some sensev in the collusion. We ) . )
also say that, given two sensarsandv, secure linkuy MOre secure against massive attacks than the previous
’ ' one, in spite of the much larger keyring.

is compromised if and only it andv share some key
(that is, the secure link exists) and all the shared keys
compromised. VI. SIMULATION RESULTS

When random key pre-distribution is used, the at- As discussed in the introduction, the Erdds and Rényi
tacker, by compromising a senser, not only does random graph has been used in the literature to model
compromise all the communication links from sengpr wireless sensor networks with random pre-distribution
also compromises a number of other links in the networkf keys. There are a number of problems with this
those using the same compromised keys. This isapproach. To show that the structure of a random graph
weakness. So, it is possible that the attacker takes contaad of a kryptograph are different, we have set up an
over a constant fraction of the network by compromisingxperiment that measure the clustering coefficient of the
a sub-linear number of the sensors. When thisids two networks. In this experiment, we have set the key

many network communications as possible. This is trg
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Fig. 1. Number of triangles in the Erdos and Rényi randomphr
and in the kryptograph as a function of the network size.

Fig. 3. Randomly generated secure sensor network of size 200
Communication range is 0.2, key ring size is 4, and pool sz£00.
Lighter lines mean physical visibility, darker lines seswisibility. The
network has a few isolated sensors.

Fig. 2. Randomly generated secure sensor network of size 200
Communication range is 0.2, key ring size is 4, and pool szB0i.
Lighter lines mean physical visibility, darker lines sezurisibility.

This graph is connected by using secure links alone.

ring Size to logN and the pOO_l _SiZ_e tc(1/2)NIc_>g_N_._ Fig. 4. Randomly generated secure sensor network of size 200
This is enough to get connectivity in the full visibility Communication range is 0.2, key ring size is 4, and pool $z&50.

case. Figure 1 shows the results: The kryptograph 'ghter lines mean physical visibility, darke_r lines sesurisibility.
. . e network has a slightly larger number of isolated senandseven
a much higher number of triangles (and consequentlysgme very small disconnected components.
much higher clustering coefficient). While this difference
is small whenN = 16, it gets larger and larger as the
network size grows. WheiN = 128, the kryptograph our design methodology generate a disconnected graph,
shows twice the number of triangles of the randoritis almost surely connected except a very small number
graph, and the gap keeps growing in larger networks.of isolated points.

To help visualize the structure of secure wireless In our experiments, we set the communication range
sensor networks, Figures 2, 3, and 4 show three simil@r .2, while the network sizél ranges from 1,000 to
networks where the pool size is increased from 50 to 1d®,000 sensors. To choose the parameters, we-s&2
and then to 150. Note that, as soon as the pool sizeinsEquation 1. Constant depends on network density.
too big to guarantee connectivity, isolated sensors siartExperimentally,c = 32 guarantees that high probability
appear in the graph. This is perfectly analogous to what connectivity holds from very low density networks.
is predicted by well-known graph-theoretic results o®o, if we fix the keyring size to loy, then the pool
other random models and very important from a practicaize is equal to/1/32)NlogN. Similarly, if we fix the
point of view. Indeed, even in the remote probability thateyring size to 2lod\, then the pool size is equal to



number of sensors to corrupt

Fig.
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[10]

to N/logN.

[11]

(1/8)NlogN. Finally, a key ring size of 8loly implies

a pool size of RllogN. We performed a large set of 12l
experiments for all of the above options. These networks
are virtually “always” connected, meaning that we got
no disconnected network among the 10,000 general[éa]
per each parameter choice and network size.

Lastly, we performed experiments to validate oui4]
theoretical results on network resilience. Figure 5 shows
the number of sensors that a coalition must have to
compromise 50% of the secure links in a network whei&S]

the pool size is set ttN/logN and the key ring to a 16

constant. This graph can be almost exactly interpolated

by function hN/logN, for some constanh. This ex-

[17]

perimental evidence supports the asymptotic result in
Theorem 5.3.

(18]

VII. CONCLUSION
[19]

In this paper, we have shown that wireless sensor

networks using random pre-distribution of keys can

designed in such a way to be both provably connected;
with high probability and provably secure against mas-
sive attacks. To the best of our knowledge, this is the first
fundamental result that rigorously combines two central
properties of this kind of networks.

(1]

(2]

(3]

(4

(5]
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