
Cuts and Disjoint Paths in the Valley-Free Path Model∗

Thomas Erlebach† Alexander Hall‡ Alessandro Panconesi§

Danica Vukadinović¶

October 30, 2005

Abstract

In the valley-free path model, a path in a given directed graph is valid if it consists
of a sequence of forward edges followed by a sequence of backward edges. This model
is motivated by routing policies of autonomous systems in the Internet. We give
a 2-approximation algorithm for the problem of computing a maximum number of
edge- or vertex-disjoint valid paths between two given vertices s and t, and we show
that no better approximation ratio is possible unless P = NP . Furthermore, we give
a 2-approximation algorithm for the problem of computing a minimum vertex cut
that separates s and t with respect to all valid paths and prove that the problem is
APX-hard. The corresponding problem for edge cuts is shown to be polynomial-time
solvable. For the multiway variant of the cut problem, we give a 4-approximation
algorithm. We present additional results for acyclic graphs.

1 Introduction

Let G = (V,E) be a directed, simple graph without anti-parallel edges, i.e., a graph in
which (u, v) ∈ E implies (v, u) /∈ E. For s, t ∈ V , a path from s to t is valid if it consists of
a (possibly empty) sequence of forward edges followed by a (possibly empty) sequence of
backward edges. We refer to this model of valid paths as the valley-free path model. The
reason for this terminology is that if we view directed edges as “pointing upward” towards

∗Research partially supported by the Hasler Foundation in DICS-Project No. 1838 and by the European
Commission under contracts IST-2001-32007 (APPOL II) and 001907 (DELIS), with funding for the Swiss
partners provided by SBF. A preliminary abstract describing some of these results has been presented in
the Proceedings of the First Workshop on Combinatorial and Algorithmic Aspects of Networking (CAAN
2004), LNCS 3405, Springer, 2005, pp. 49–62.

†Department of Computer Science, University of Leicester, Leicester, United Kingdom. E-mail:
t.erlebach@mcs.le.ac.uk

‡Department of Computer Science, ETH Zürich, Switzerland. E-mail: alex.hall@inf.ethz.ch
§DSI – Università La Sapienza, Rome, Italy. E-mail: ale@dsi.uniroma1.it
¶Computer Engineering and Networks Laboratory (TIK), Department of Information Technology and

Electrical Engineering, ETH Zürich, Switzerland. E-mail: vukadin@tik.ee.ethz.ch

1

their heads, a path is valid if and only if it does not contain a “downward” edge followed
by an “upward” edge, i.e., a valley (

•

↖
•
↗

•

).
The motivation for studying the valley-free path model comes from BGP routing poli-

cies in the Internet on the level of autonomous systems, as explained in more detail in
Section 1.1. Robustness considerations of the Internet topology then lead naturally to the
problem of computing large sets of disjoint valid paths between two given vertices, and
of computing small vertex or edge cuts separating two given vertices with respect to all
valid paths. The corresponding optimization problems for standard directed paths can be
solved efficiently using network flow techniques (see, e.g., [1]). In this paper, we initiate
the investigation of these problems in the valley-free path model. It turns out that several
of these problems are NP -hard in this model. We also consider the multiway version of
the cut problems, where the goal is to separate all pairs among a given set of k terminal
nodes. Our main results are:

• We give 2-approximation algorithms for the problems of computing a maximum num-
ber of vertex- or edge-disjoint valid paths between two given vertices s and t, and we
show that it is NP -hard to approximate these problems within ratio 2 − ε for any
fixed ε > 0.

• We prove APX -hardness for the problem of computing a min valid s-t-vertex-cut,
i.e., a minimum-size set of vertices whose removal from G disconnects all valid paths
between s and t. Furthermore, we give a 2-approximation algorithm for this problem.

• For the edge version of the latter problem, i.e., computing a min valid s-t-edge-cut,
we give a polynomial algorithm that computes an optimal solution.

• For the problem of computing a minimum-size valid multiway cut, we present 4-
approximation algorithms for the vertex version and the edge version.

• We prove that the size of a min valid s-t-cut is at most twice the maximum number
of disjoint valid s-t-paths, both for the edge version and the vertex version of the
problems, and we show that this bound is tight.

• For the special case that the given graph G is acyclic (where “acyclic” is to be
understood in the standard sense, i.e., the directed graph G is acyclic if it does not
contain a directed cycle), we give a polynomial algorithm for finding k edge- or vertex-
disjoint valid paths between s and t if they exist, where k is an arbitrary constant. We
also prove NP -hardness for the general problem of computing a maximum number
of vertex- or edge-disjoint valid s-t-paths in acyclic graphs.

Our results give interesting insights for natural variations of the classical problems
of computing disjoint s-t-paths, minimum s-t-cuts, and minimum multiway cuts. Fur-
thermore, the algorithms we provide may be useful for investigating issues related to the
robustness of the Internet topology while taking into account the effects of routing policies.

2

1.1 Motivation: Autonomous Systems in the Internet

In this section, we provide some information about the issues in Internet routing on the
autonomous system level that have motivated our study. An autonomous system (AS)
in the Internet is a subnetwork under separate administrative control. ASs are connected
by physical links and exchange routing information using the Border Gateway Protocol
(BGP). An AS can consist of tens to thousands of routers and hosts. On the level of ASs,
the Internet can be represented as an undirected graph by creating a vertex for each AS
and adding an edge between two ASs if they have at least one physical link between them.
However, such an undirected graph is not sufficient to model the effects of routing policies
enforced by individual ASs.

Each AS announces the routes to a certain set of destination ASs (more precisely,
address prefixes) to some of its neighbors. The decisions which routes will be announced
to which neighbor are determined by BGP routing policies. These policies depend mostly
on the economic relationships between the ASs.

The nature of the commercial agreements between ASs has attracted a lot of attention
in the Internet economics research community [13, 14, 3]. The main trends in the diversity
of these agreements were described in [13, 14]. The impact of economic relationships on
the engineering level, more precisely on BGP routing, has not been immediately recognized
despite the direct implication that an existing link between two ASs will not be used to
transfer traffic that collides with their mutual agreement. Then several papers showing the
impact of BGP policies on features such as path inflation and routing convergence have
appeared [19, 15].

As a consequence, the previously developed undirected model for the AS topology is not
satisfactory because it allows some prohibited paths between ASs and thus might produce
a distorted picture of BGP routing. On the other hand, involving all of the peculiarities of
the contracts between autonomous systems in a new model would add too much complexity.
Thus, in [10] a rough classification into a small number of categories was proposed for the
BGP policies adopted by a pair of ASs: customer-provider, peer-to-peer, and siblings.
Later on, a simplified model with only two categories, customer-provider and peer-to-peer,
was proposed [18]. A customer-provider relationship between A and B can be represented
as a directed edge from A to B, and a peer-to-peer relationship as an undirected edge. If
ASs A and B are in a customer-provider relationship, B announces all its routes to A, but
A announces to B only its own routes and routes of its customers. If they are peers, they
exchange their own routes and routes of their customers, but not routes that they learn
from their providers or other peers. This leads to the model proposed in [18] that a path
is valid if and only if it consists of a sequence of customer-provider edges (•→•), followed
by at most one peer-to-peer edge (•−•), followed by a sequence of provider-customer edges
(•←•). Furthermore, it is easy to see that a peer-to-peer edge (undirected edge) between
A and B can be replaced by two customer-provider edges from A to X and from B to X,
where X is a new node, without affecting the solutions to any of the optimization problems
(minimum cut problems and maximum disjoint paths problems) we study in this paper.
Therefore, without losing generality, we can consider a model with only customer-provider

3

edges. In other words, this model consists of a directed graph with ASs as nodes and where
the edge directions represent economic relationships. Here the valley-free paths are exactly
the paths permitted by the BGP routing policies.

Information about the economic relationships between autonomous systems is not pub-
licly available. Therefore, several approaches to inferring these relationships from available
topology data or AS path information have been proposed in the literature [10, 18, 8, 6, 21].

If a communication network is represented as an undirected or directed graph in a
model without routing policies, it is natural to measure the connectivity provided to an
s-t-pair as the maximum number of disjoint s-t-paths or the minimum size of an s-t-cut;
by Menger’s theorem, these two quantities are the same. This motivates us to study the
corresponding notions for the valley-free path model in this paper.

It seems natural to expect that the directed graph of customer-provider edges will be
acyclic (i.e., does not contain a directed cycle), because providers should always be higher
up in the Internet hierarchy than their customers. However, it turns out that the graphs
obtained with several of the abovementioned algorithms do in fact contain directed cycles.
Therefore, we are interested in cuts and disjoint paths both in general directed graphs and
in acyclic graphs.

1.2 Outline

The remainder of the paper is structured as follows. In Section 2, we give the necessary
definitions and discuss some preliminaries. Section 3 contains our complexity results and
algorithms for disjoint paths and minimum cuts in general directed graphs. In Section 4,
we consider acyclic graphs. We give our conclusions and point to some open problems in
Section 5.

2 Preliminaries

Following the terminology from [18, 6, 8], where the problem of classifying the relation-
ships between ASs is called the Type-of-Relationship (ToR) problem, we will call a simple
directed graph G = (V,E) a ToR graph if G has no loops and no anti-parallel edges, i.e.,
(u, v) ∈ E implies (v, u) /∈ E. In terms of the underlying motivation, a directed edge from
u to v, where u, v ∈ V, means that u is a customer of v.

A path p = v1, v2, . . . , vr in a ToR graph is valid (and called a valid v1-vr-path), if it
satisfies the following condition:

There exists some j, 1 ≤ j ≤ r, such that (vi, vi+1) ∈ E for 1 ≤ i ≤ j − 1 and
(vi, vi−1) ∈ E for j + 1 ≤ i ≤ r.

The part of the path from v1 to vj is called its forward part, the part from vj to vr its
backward part. If a path does not satisfy the above condition, it is called invalid. Note
that the reverse of a valid s-t-path is a valid t-s-path. The existence of a valid s-t-path

4

can be checked in linear time by performing a standard directed depth-first-search from s
and from t and testing if any vertex is reachable from both s and t along a directed path.

Let G = (V,E) be a ToR graph and let s, t ∈ V be two distinct vertices. A set
C ⊆ V \ {s, t} is a valid s-t-vertex-cut if there is no valid path from s to t in G − C.
A smallest such set C is called a min valid s-t-vertex-cut. Note that there is no valid
s-t-vertex-cut if there is a direct edge (s, t) or (t, s). The min valid s-t-edge-cut is defined
analogously: instead of removing vertices, we remove edges. Two valid s-t-paths are called
vertex-disjoint if the only vertices that they have in common are s and t. Similarly, they
are called edge-disjoint if they have no edges in common.

For a given ToR graph G = (V,E) and a subset T ⊂ V of k terminals, a valid multiway
vertex-cut is a subset C ⊆ V \ T such that no two terminals in T are connected by a valid
path in G− C. A valid multiway edge-cut is defined analogously.

The optimization problems that we are interested in are those of computing minimum
size cuts and maximum size sets of disjoint paths, both in the vertex version and in the
edge version: the min valid s-t-vertex-cut problem, the min valid s-t-edge-cut problem, the
min valid multiway vertex-cut problem, the min valid multiway edge-cut problem, the max
vertex-disjoint valid s-t-paths problem, and the max edge-disjoint valid s-t-paths problem.

An approximation algorithm A for an optimization problem P is a polynomial algorithm
that always outputs a feasible solution. We say that A is a ρ-approximation algorithm,
or that its approximation ratio is ρ, if for all inputs I, OPT (I)/A(I) ≤ ρ, if P is a maxi-
mization problem, or A(I)/OPT (I) ≤ ρ, if P is a minimization problem. Here OPT (I) is
the objective value of an optimal solution, and A(I) is the objective value of the solution
computed by algorithm A, for a given input I.

APX is the class of all optimization problems (with some natural restrictions, see [2])
that can be approximated within a constant factor. A problem is APX -hard if every
problem in APX can be reduced to it via an approximation preserving reduction. A con-
sequence of APX -hardness is that there exists a constant ρ > 1 such that it is not possible
to find a ρ-approximation algorithm for the problem unless P = NP . See [2] for further
information about approximability classes and approximation preserving reductions.

3 Complexity and Algorithms for General Graphs

Before going into the complexity issues and algorithms, we introduce a very helpful two-
layer model which leads to a relaxation of disjoint paths and cuts in ToR graphs.

3.1 The Two-Layer Model

From a ToR graph G = (V,E) and s, t ∈ V we construct a two-layer model H, which is a
directed graph, in the following way. Two copies of the graph G are made, called the lower
layer and the upper layer. In the upper layer all edge-directions are reversed. Every node
v in the lower layer is connected with an edge to the corresponding copy of v, denoted
v′, in the upper layer. The edge is directed from v to v′. For the edge versions of the

5

considered problems, i.e., min valid s-t-edge-cut and max edge-disjoint valid s-t-paths, we
actually add n = |V | parallel copies of the edge (v, v′); the reason for this will become clear
later. Finally, we obtain the two-layer model H by identifying the two s-nodes (of lower
and upper layer) and also the two t-nodes, and by removing the incoming edges of s and
the outgoing edges of t.

A valid path p = v1, . . . , vr in G with v1 = s and vr = t is equivalent to a directed
path in H in the following way. The forward part of p, i.e., all edges (vi, vi+1) ∈ p that
are directed from vi to vi+1, is routed in the lower layer. Then there is a possible switch
to the upper layer with a (v, v′) type edge (there can be at most one such switch). The
backward part of p is routed in the upper layer. See Figure 1 for an example. If there is
only a forward or a backward part of p, then the corresponding path in H is only in the
lower or the upper layer, respectively.

backward part

G ts

forward part lower layer

upper layer
H

s t

G

reverse(G)

Figure 1: A path in the ToR graph G and the corresponding path in the two-layer model
H.

We now describe in detail in which sense the two-layer model yields relaxations of
vertex- respectively edge-disjoint paths and vertex- respectively edge-cuts in ToR graphs.

Note that two vertex-disjoint valid paths in G directly give two vertex-disjoint paths in
H, but two vertex-disjoint paths p1, p2 in H do not necessarily correspond to vertex-disjoint
valid paths in G. The path p1 might use the node v and the path p2 its counterpart v′ in
the other layer, yielding two valid paths that are not vertex-disjoint in G. The analogous
statements apply to edge-disjoint paths. The n parallel edges of type (v, v ′) going from
each node of the lower layer to its copy in the upper layer have been added to H so as to
ensure that an arbitrary number of paths arising from edge-disjoint paths in G can switch
from the lower layer to the upper layer at the same node.

A valid s-t-vertex-cut in G directly gives an s-t-vertex-cut in H of twice the cardinality:
simply take for each cut node in G the corresponding nodes from both layers in H. On
the other hand, there might be an s-t-vertex-cut in H without the property that for each
node v in the cut, also its counterpart v′ is in the cut. Analogous statements apply to
edge-cuts. The n parallel edges of type (v, v′) have been added to H to ensure that no min
s-t-edge-cut in H will ever contain an edge of type (v, v ′); note that an s-t-edge-cut of size
at most n− 1 always exists.

6

3.2 Min Valid s-t-Vertex-Cut

3.2.1 NP- and APX -Hardness

Theorem 1 For a given ToR graph G = (V,E) and s, t ∈ V , finding the min valid s-t-
vertex-cut is NP-hard and even APX -hard.

Proof: We use a similar technique as in [12], reducing the undirected 3-way edge cut
problem to the min valid s-t-vertex-cut problem in ToR graphs. In the undirected 3-way
edge cut problem, we are given an undirected graph G, and three terminals v1, v2, v3. The
goal is to find a minimum set of edges in G such that after removing this set, all pairs
of vertices in {v1, v2, v3} are disconnected. This problem is proven to be NP -hard and
APX -hard in [5].

Let G = (V,E) be such an undirected graph with 3 distinct terminals v1, v2 and v3.
We create a ToR graph G′ in the following way: each node v of G is replaced with deg(v)
copies of the same node. For each edge {u,w} in G, a gadget consisting of 2 new nodes,
eu,w
1 and eu,w

2 , is added. The gadget includes an edge from eu,w
1 to eu,w

2 , edges from all copies
of u and w to eu,w

1 and from eu,w
2 to all copies of u and w. We also add two nodes s and t

and the edges from s to all copies of v1, from all copies of v2 to s and t, and from t to all
copies of v3. See Figure 2 for a simple example.

v2v1 v3

wG

e
w,v1

1
e
w,v3

2

e
w,v2

1
e
w,v2

2

copies of one original node

copies of the node
to respectively from all

G′ w

v1 v3

v2

t

e
w,v1

2 e
w,v3

1

s

Figure 2: A simple example for the transformation of the original undirected graph G to
the ToR graph G′ .

Note that every valid path between any copy of u and any copy of w via the gadget
added for the edge {u,w} contains eu,w

1 . This holds because no path “copy of w, eu,w
2 , copy

of u” or “copy of u, eu,w
2 , copy of w” is valid.

In the following we will first show that any valid s-t-vertex-cut in G′ can be transformed
into a cut of at most the same cardinality that only contains e1 type nodes. Then we prove
that there is a direct correspondence between 3-way-cuts in G and valid s-t-vertex-cuts in
G′ that contain only such e1 type nodes. This yields in particular that an approximation
algorithm for the min valid s-t-vertex-cut problem gives an approximation algorithm of
the same ratio for the 3-way edge cut problem.

Assume we are given a valid s-t-vertex-cut C in G′ that contains nodes that are not of
type e1. We can assume that C is a minimal cut (inclusion-wise). If the cut contains a

7

copy u′ of u, where u is a node in the original graph G, it must also contain all other copies
of u. Otherwise there is always an equivalent “detour” path via one of these other copies,
rendering the addition of u′ to C superfluous, which would contradict the minimality of C.
If C contains all deg(u) copies of a node u, we replace these nodes in C by the e1 type
nodes of the neighboring gadgets. There are exactly deg(u) such nodes. Every valid s-
t-path containing a copy of u traverses at least one of these neighboring gadgets (and
therefore its e1 node, see above). To see this, note that the paths “s, copy of v2, t” and
“t, copy of v2, s” are not valid. Thus by this replacement we did not reintroduce previously
cut paths. The cardinality of C did not increase. If C contains an e2 type node, we replace
it by the corresponding e1 type node. Once more the cardinality of C does not increase
and no valid paths are reintroduced. Now C contains only e1 type nodes.

Next, we show that for a set of edges Q in the graph G, the corresponding set of nodes
C = {eu,w

1 |{u,w} ∈ Q} in G′ is a valid s-t-vertex-cut if and only if Q is a 3-way cut for
terminals v1, v2 and v3 in G. Recall that a 3-way cut disconnects all possible pairs in
{v1, v2, v3}.

Note that the gadgets ensure that for any two nodes u and w in G′ corresponding to
the endpoints of an undirected edge {u,w} in G, there exists a directed path from u to
w and from w to u in the gadget added for {u,w}. To disconnect all such u-w paths, it
suffices to cut the eu,w

1 node.
First, if C is a valid s-t-vertex-cut, Q is a 3-way cut, because otherwise, if any pair of

terminals v1, v2, v3 is connected in G, then there is a valid path between s and t, which
gives a contradiction. On the other hand, if Q is a 3-way cut, there is no valid path
between s and t in G′−C, because at least one gadget is disconnected on every valid path
corresponding to an undirected path between vi and vj for i 6= j in G and, as noted before,
the paths “s, copy of v2, t” and “t, copy of v2, s” are not valid.

Thus, we have shown that min valid s-t-vertex-cut is NP -hard. APX -hardness also
follows directly from the APX -hardness of 3-way edge cut [5]. 2

Note that the proof does not carry over to min valid s-t-edge-cut, because no gadget
can be found where the role of the eu,w

1 node is taken over by exactly one edge (such that
the copies of u and the copies of w are disconnected if this edge is deleted). In fact, in
Section 3.3 it is shown that a polynomial-time optimal algorithm exists for the min valid
s-t-edge-cut problem.

3.2.2 A Simple 2-Approximation

Given a ToR graph G = (V,E) and s, t ∈ V (where we assume that there is no direct edge
in G between s and t, because otherwise a valid s-t-vertex-cut does not exist), the min
valid s-t-vertex-cut approximation algorithm is given in Figure 3.

Clearly |CG| ≤ |CH | holds and CG is a valid s-t-vertex-cut in G. Let Copt be a min
valid s-t-vertex-cut in G. As mentioned in Section 3.1, by duplicating Copt for both layers
of H one obtains an s-t-vertex-cut in H. Thus |CH | is at most twice |Copt|. This gives the
following theorem.

8

Algorithm VertexCut

1. From G construct the two-layer model H as described in Section 3.1.

2. Compute a min s-t-vertex-cut CH in H.

3. Output the set CG = {v ∈ V | at least one copy of v is in CH} as valid s-t-vertex-cut.

Figure 3: Algorithm for min valid s-t-vertex cut problem.

Theorem 2 There is a 2-approximation algorithm for the min valid s-t-vertex-cut problem
in ToR graphs.

3.3 Min Valid s-t-Edge-Cut

Quite surprisingly, there is a polynomial-time optimal algorithm for the min valid s-t-edge-
cut problem in ToR graphs. This is in contrast to many flow and cut problems in directed
and undirected graphs, where the node and the edge variant of the respective problem are
of the same complexity.

Let EdgeCut be the reformulation of algorithm VertexCut from Section 3.2.2 that
considers edges instead of vertices. It is clear that the same simple argumentation as given
in that section shows that EdgeCut is a 2-approximation algorithm for the min valid
s-t-edge-cut problem in ToR graphs. The proof of the following theorem shows that this
algorithm in fact computes an optimal solution.

Theorem 3 There is a polynomial-time optimal algorithm for the min valid s-t-edge-cut
problem in ToR graphs.

Proof: We begin by proving a lemma that states a crucial property of (optimal) valid
s-t-edge-cuts in ToR graphs.

Lemma 1 Let G = (VG, EG) be a ToR graph, s, t ∈ VG and CG any valid s-t-edge-cut in
G. From CG an s-t-edge-cut CH in the corresponding two-layer model H = (VH , EH) can
be derived with |CH | = |CG|.

Proof: We start by adding for each edge e ∈ CG the two corresponding edges from the
lower and upper layer to CH . This yields an s-t-edge-cut CH in H with |CH | = 2 · |CG|,
as already described in Section 3.1. Then, iteratively for each edge pair e, e′ ∈ CH either e
or e′ is removed from CH , where e = (v, w) ∈ EH is in the lower layer and e′ = (w′, v′) ∈ EH

is its counterpart in the upper layer. Below we show that, assuming CH is a cut before the
removal, it will still be a cut afterwards, if the edge is properly chosen. Thus, in the end,
after considering all edge pairs in the original cut, CH is still a cut and |CH | = |CG| holds.

9

Now we consider a single step of the iteration where the pair e = (v, w), e′ = (w′, v′) ∈
CH is treated, assuming that the (perhaps already modified) set CH is still an s-t-edge-cut
in H. Assume an s-t-path p exists that traverses only e and no other edge of the cut, i.e.
e ∈ p and ec 6∈ p, for all ec ∈ CH \ {e}. We claim that in this case no s-t-path p′ exists
that traverses only e′ and no other edge of the cut. It is then safe to remove e′ from CH .
Symmetrically, if such a path p′ exists, there cannot be a path p and thus e can be removed
safely. (If neither p nor p′ exists, remove e and continue the iteration.)

s ts t

p′

pp

p1

p2

p′

w

w′

v′

v

w

v

w′

v′ e′

e

HH

e

e′

Figure 4: Example showing how p and p′ can be recombined.

Aiming for a contradiction, we assume that both such paths p and p′ exist. The edge
e ∈ p is directed from v to w, thus p has the form s, . . . , v, w, . . . , t. Let p1 = s, . . . , v
denote the first part of p. Analogously the edge e′ ∈ p′ is directed from w′ to v′ and thus p′

has the form s, . . . , w′, v′, . . . , t. Let p2 = v′, . . . , t denote the last part of p′. Neither p1 nor
p2 contain an edge from CH . Therefore, p1 and p2 can be recombined via the edge (v, v′)
to form an s-t-path that does not contain any cut edge. See Figure 4 for an example. This
is a contradiction to the assumption that CH is an s-t-edge-cut. 2

Lemma 1 implies that the optimal s-t-edge-cut in H has at most as many edges as
the optimal valid s-t-edge-cut in G. Conversely, every cut in H gives a valid cut in G of
at most the same cardinality: consider the sets CG and CH in the Algorithm EdgeCut,
clearly |CG| ≤ |CH | holds. Thus, an optimal s-t-edge-cut in the two-layer model H yields
an optimal valid s-t-edge-cut in the ToR graph G. The former can be found in polynomial
time by network flow techniques [1]. Note that a min s-t-edge-cut in H does not contain
any edge of type (v, v′), since there are n parallel copies of such an edge by construction
of the two-layer model. This concludes the proof of Theorem 3. 2

3.4 Min Valid Multiway Cut

In this section, we consider the multiway version of the cut problems. We are given a
ToR graph G = (V,E) and a subset T ⊂ V of terminals, and the goal is to separate

10

each terminal from all the other terminals. For the standard model of directed paths in
directed graphs, the edge version and the vertex version of the multiway cut problem are
polynomially equivalent and have been shown to be NP -hard and APX -hard by Garg,
Vazirani and Yannakakis [12]. These hardness results hold even for the case |T | = 2, i.e.,
for the problem of cutting all directed paths from s to t and all directed paths from t to s.
The multiway cut problem in directed graphs can be approximated within a factor of 2
using an algorithm due to Naor and Zosin [16].

In order to tackle multiway cut problems in the valley-free path model, we adapt the
two-layer model of Section 3.1. Again, we create two copies of the given ToR graph G,
the lower layer and the upper layer, and we reverse the edge directions in the upper layer.
Furthermore, we join each vertex v in the lower layer to its counterpart v ′ in the upper
layer by a directed edge (or by 4|E|+ 1 parallel directed edges, if we are dealing with the
edge-version of the valid multiway cut problem). Finally, for each of the terminals in T ,
we identify its copy in the lower layer with its copy in the upper layer. Let H denote the
resulting two-layer model.

To solve the min valid multiway vertex-cut problem in G, we compute a standard
multiway vertex-cut in H using the 2-approximation algorithm from [16]. Let CH denote
the set of vertices in this cut. Then we output the set CG of vertices in G at least one of
whose copies is contained in CH .

To solve the min valid edge-cut problem, we proceed analogously and apply the 2-
approximation algorithm from [16] to compute a standard multiway edge-cut FH in H;
then we output the set of edges of G at least one of whose copies is contained in FH . Note
that taking all edges of the upper and of the lower layer gives a multiway edge-cut of size
2|E| in H, hence the 2-approximation algorithm from [16] will output a multiway edge-cut
of size at most 4|E|. Thus, as H contains 4|E|+ 1 parallel vertical edges from each vertex
in the lower layer to its copy in the upper layer, we can assume without loss of generality
that none of the vertical edges are contained in FH .

Theorem 4 There is a 4-approximation algorithm for the min valid multiway vertex-cut
problem and for the min valid multiway edge-cut problem.

Proof: Let us first consider the vertex version of the problem. Let C∗ be an optimal valid
multiway cut in G. By taking both copies of each vertex in C∗, we obtain a multiway
cut C∗

H in H satisfying |C∗

H | ≤ 2|C∗|. As the algorithm from [16] is a 2-approximation
algorithm, we get that the computed cut CH has size at most 4|C∗|. The set CG output
by the algorithm is a valid multiway cut and satisfies |CG| ≤ |CH | ≤ 4|C∗|.

The analysis for the edge version of the problem is analogous. 2

In Theorem 1 we have shown that the min valid s-t-vertex-cut problem is APX -hard.
The min valid multiway vertex-cut problem, being a generalization, is thus also APX -hard.
We do not know the complexity of the min valid multiway edge-cut problem.

11

3.5 Max Disjoint Valid s-t-Paths

3.5.1 NP-Hardness and Inapproximability

Theorem 5 For a given ToR graph G = (V,E) and s, t ∈ V , finding the maximum number
of vertex- respectively edge-disjoint valid s-t-paths is NP-hard. Moreover the number of
paths is even inapproximable within a factor 2− ε for any ε > 0, unless P equals NP.

Proof: We will reduce the problem of finding two disjoint paths between two pairs of
terminals in a directed graph to this problem. Let G be directed graph and s1, t1 and
s2, t2 four distinct vertices of G. Form a ToR graph G′ from G by adding two vertices s
and t, and edges from s to s1, from t1 to t, from t to s2 and from t2 to s, see Figure 5.
Note that no path s, t2, . . . , t1, t is valid. Thus, revealing the maximum number of vertex-
respectively edge-disjoint valid s-t-paths would give a solution to the problem of finding two
vertex- respectively edge-disjoint paths between s1, t1 and s2, t2. The latter two problems
are known to be NP -complete in general directed graphs [9].

ts

s1

t1

s2

t2

?

G
G′

Figure 5: From a directed graph G with sources s1, s2 and sinks t1, t2 a ToR graph G′ is
constructed. It is NP -hard to decide whether there are two vertex- or edge-disjoint paths,
respectively, between s1, t1 and s2, t2 in the directed graph G.

This also directly gives the inapproximability gap. For an arbitrary k ∈ N, we simply
make k copies of the graph G′. Next we identify all copies of s to one node and all copies
of t to one node. We then so to speak have k “parallel” copies of G. Depending on G
there are either k or 2k vertex- respectively edge-disjoint valid paths between s and t. Let
ε > 0 be some constant, independent of k. Clearly, if a (2 − ε)-approximation existed for
max vertex- respectively edge-disjoint valid s-t-paths, we could again solve the problem
of finding two vertex- respectively edge-disjoint paths between s1, t1 and s2, t2 in G in
polynomial time. 2

3.5.2 A Tight Approximation Algorithm

For simplification of presentation we focus on the max vertex-disjoint valid s-t-paths prob-
lem and comment at the end of the section how the result can be transfered to the edge-
disjoint case.

In order to state the approximation algorithm we need some definitions. If a forward
part of a valid s-t-path p1 intersects with the backward part of a path p2 at a node v, we

12

Algorithm VertexDisjointPaths

1. From G construct the two-layer model H, and compute max vertex-disjoint s-t-paths
PH in H.

2. Interpret PH as set PG of valid s-t-paths in G. Note that PG is not necessarily
vertex-disjoint! Let F denote the forward parts of paths in PG and B the backward
parts. Recombine the parts as follows:

(a) Select any not yet recombined forward part pf in F that has at least one re-
maining (i.e. not discarded, see below) crossing.

(b) Choose the first remaining crossing on pf , let pb in B be the corresponding
backward part.

(c) Recombine pf and pb, and discard all previous crossings on pb. In particular if
pb was already recombined with p′

f , mark p′f as not yet recombined.

(d) Repeat until each forward part is either recombined or has no remaining cross-
ings.

Figure 6: Algorithm for max vertex-disjoint valid s-t-paths problem.

call this a crossing at v. The two paths can be recombined at the crossing to form a new
path, consisting of the first part of p1: s, . . . , v and the last part of p2: v, . . . , t. If p1 and p2

are recombined at v, the potential crossings on p1 after node v and on p2 before node v can
be discarded. In the algorithm a recombination of such paths p1 and p2 may be revoked
later on, and thus not all these potential crossings can be discarded. However, it will be
possible to discard the crossings of one of the paths. Note that p1 and p2 can be the same.
In particular, if a path p contains a forward and a backward part, which meet at node u,
we also say that the two parts cross at u. The algorithm is shown in Figure 6.

Theorem 6 The algorithm VertexDisjointPaths is a 2-approximation algorithm for
the max vertex-disjoint valid s-t-paths problem.

Proof: We first prove that the algorithm actually outputs a set of vertex-disjoint paths,
then mention why the running time is polynomial and finally show that the approximation
ratio of 2 is achieved.

Note that since the paths PG are derived in the two-layer model H, all forward parts
F are disjoint and also all backward parts B. Let Ri denote the set of recombined paths
after the ith recombination. R0 is the empty set and thus vertex-disjoint. We now argue
that if Ri is vertex-disjoint, then also Ri+1 will be. In the (i + 1)th recombination the
selected forward part pf does not intersect with any backward part in Ri up to the chosen
crossing, say at node v. Since step 2.(b) chooses the first remaining crossing on pf , all

13

potential crossings before v on pf were discarded previously. We argue that also the rest
of the backward part pb: v, . . . , t does not intersect with any other path q in Ri. Assume
the contrary, then there is a path q in Ri whose forward part qf intersects with pb, say at
node u. Let qb be the backward part of q. Since the paths were derived from the two-layer
model, at most two paths cross in each node. Thus qf and qb were recombined at a node
w 6= u and clearly w is after u on the forward part qf (otherwise pb would not intersect
qf). This gives the contradiction, since the algorithm would then have recombined qf and
pb at node u instead of qf and qb at node w.

We have shown that the first part of pf from s to v and the last part of pb from v to
t do not intersect any other path in Ri. In case pb was already recombined in Ri with
some other forward part, this previous recombination is removed from Ri, see step 2.(c).
We conclude that Ri+1 is vertex-disjoint. Since each crossing is considered at most once
for recombination, the number of recombinations is in O(|V |) and thus the running time
is polynomial.

It remains to prove the approximation ratio. Assume that k is the optimal number of
paths for a given instance. Clearly |PG| is at least k. For each path p in PG either its
forward part pf , its backward part pb or both are recombined by the algorithm. If neither
pf nor pb are recombined, pf has at least one remaining crossing: namely the crossing with
pb. This crossing could not have been discarded, since pb was never recombined with any
forward part. Hence, either forward or backward part of each path are recombined, and
thus at least |PG|/2 ≥ k/2 disjoint valid s-t-paths are found. 2

The algorithm can be easily adapted to the edge-disjoint paths setting. Here the cross-
ings are at edges instead of nodes. The recombination of two paths that cross at an edge
e = (u, v) is done at node u, where e is directed from u to v. An analogous argumentation
as in the proof of Theorem 6 yields:

Theorem 7 There is a 2-approximation algorithm for the max edge-disjoint valid s-t paths
problem.

Note that Theorem 5 implies that the approximation ratios of Theorems 6 and 7 are
best possible unless P = NP .

3.6 On the Gap between Disjoint Paths and Minimum Cuts

In the standard model of paths in directed or undirected graphs, it is well known by
Menger’s theorem that the maximum number of edge-disjoint s-t-paths is equal to the size
of a minimum s-t-edge-cut, and the analogous result holds for vertex-disjoint paths and
vertex-cuts (provided that there is no direct edge from s to t). Therefore, it is interesting
to consider whether similar properties hold for the valley-free path model.

Our approximation algorithms for disjoint valid paths and valid cuts are based on the
two-layer graph model introduced in Section 3.1. If we consider standard directed paths
in the two-layer graph H obtained from the ToR graph G, Menger’s theorem applies and
shows that the maximum number of vertex-disjoint paths from s to t in H is equal to

14

s t s t

Figure 7: ToR graphs demonstrating a gap of 2 between disjoint paths and cuts.

the size of a minimum s-t-vertex-cut in H (assuming that there is no direct edge (s, t) in
H). Denote this number by k. Our algorithm of Theorem 2 outputs a valid s-t-vertex-cut
of size at most k in G and our algorithm of Theorem 6 produces a set of at least k/2
vertex-disjoint valid s-t-paths in G. This shows that if s and t are not connected by a
direct edge, the size of a min valid s-t-vertex-cut is at most twice the maximum number
of vertex-disjoint valid s-t-paths. To see that the bound of 2 is tight, consider the ToR
graph shown in Figure 7 (left). Similar argumentation shows that the bound of 2 applies
also to the edge-version of disjoint valid paths and valid cuts, and again the bound is tight
as witnessed by the example shown in Figure 7 (right). In both examples, the maximum
number of disjoint valid paths is 1 and the size of a minimum valid cut is 2. The examples
can be generalized so that the maximum number of disjoint paths is k and the size of a
minimum cut is 2k, simply by introducing k copies of the subgraph between the vertices s
and t.

4 Max Disjoint Valid s-t-Paths in DAGs

In this section, we consider the problem of computing vertex- or edge-disjoint valid paths in
directed acyclic graphs. This is motivated by the consideration that in a strictly hierarchical
network where customer-provider edges (cf. Section 1.1) always go from a lower to a higher
level of the hierarchy, one would obtain ToR graphs that are acyclic.

4.1 NP-Hardness for Arbitrary Number of Paths

First, we are able to prove that the problems remain NP -hard even for acyclic graphs.

Theorem 8 For a given acyclic ToR graph G = (V,E) and s, t ∈ V , finding the maximum
number of vertex- respectively edge-disjoint valid s-t-paths is NP-hard.

Proof: In the following we will reduce the well known 3-Partition problem [11]. In this
problem a set of 3n items A = {1, . . . , 3n} with associated sizes a1, . . . , a3n ∈ N, and a
bound B ∈ N are given, with B/4 < ai < B/2, for each i, and

∑3n

i=1 ai = nB. It is then
strongly NP -hard to decide whether A can be partitioned into n disjoint sets I0, . . . , In−1

such that
∑

i∈Ij
ai = B, for j = 0, . . . , n − 1. Note that due to the bounds for the item

sizes ai, all sets Ij must have cardinality 3. Since the problem is strongly NP -hard, it is
already NP -hard if all ai and consequently B are polynomially bounded in the input size.
For our proof, we assume that this is the case.

15

For simplicity of notation we again focus on the vertex-disjoint case. It is easy to see
that all arguments, with slight modification, transfer to the edge-disjoint case.

We start by describing how to construct an acyclic ToR graph G from the given 3-
Partition instance. In optimal solutions for G there will generally be two different types of
paths: The set-paths where each path corresponds to one of the sets I0, . . . , In−1 and the
blocker-paths which make sure that each item in A is only in one of the sets Ij.

The structure in G which is dedicated to contain the set-paths consists of n rows, where
the jth row corresponds to set Ij, and at most one set-path can be routed along this row.
Figure 8 depicts the subgraph added for the jth row.

0 B
t

a2 + 1a2a1 + 1a121

B − a3 + 1 nodes

B − a2 + 1 nodes

B − a1 + 1 nodes

a3,j-type nodes:

a2,j-type nodes:

a1,j-type nodes:

row j:

s

Figure 8: The structure added for the jth set-path. For each item i, a set of B − ai + 1
nodes is added, these are referred to as ai,j-type nodes. Each of these nodes serves as a
“bridge” to skip ai nodes in the jth row.

Clearly the graph so far is acyclic: all edges except the ones leaving s are directed from
“right to left.” An s-t-path traversing the jth row must contain three ai,j-type nodes, say
an ai1,j-, an ai2,j- and an ai3,j-type node, such that ai1 + ai2 + ai3 = B. Note that if we
set Ij to be {i1, i2, i3}, and repeat this analogously for all j, the resulting sets I0, . . . , In−1

need not be disjoint. In the previous example it could even hold that e.g. i1 = i2.
The goal of the blocker-paths is to force that the sets I0, . . . , In−1 corresponding to the

set-paths are actually disjoint. For item i ∈ A we add the subgraph depicted in Figure 9.
One can check that no cycles are created by the addition of these subgraphs to G. Note
that the size of G is polynomial in the size of the 3-Partition instance.

The idea of the construction is that in an optimal solution each blocker-path will come
from some u node, pass through exactly one ai,j-type node and then go directly to t via
some v node. Then for each item i there remains only one ai,j-type node which is free and
can be traversed by one of the set-paths.

Let K =
∑3n

i=1 ki, where ki is defined as in the caption of Figure 9, be the total number
of possible blocker-paths. Our goal is to prove that the given 3-Partition instance can be
partitioned in the desired way if and only if there are K + n vertex-disjoint valid s-t-paths
in G.

We start with the easier direction: given a partition I0, . . . , In−1 we describe how to
route K + n vertex-disjoint paths. For the set Ij = {i1, i2, i3} we add a set-path pj via
the jth row of G, such that it passes through an ai1,j-, an ai2,j- and an ai3,j-type node.
This can be done in an arbitrary order, the choice of the order determines which three

16

u1

uki
vki

v1

(B − ai + 1 nodes each)

from row 3

from row 2

t

from row 1

ai,3-type nodes:

ai,2-type nodes:

ai,1-type nodes:

s

Figure 9: The structure added for the blocker-paths for item i. Note that each of the
nodes u1, . . . , uki

is connected to each ai,j-type node (for fixed i). Similarly each ai,j-type
node (for fixed i) is connected to each of the v1, . . . , vki

nodes. The number of potential
blocker-paths is bounded by ki, which is set to be the total number of ai,j-type nodes (for
fixed i and all j = 0, . . . , n− 1) minus one.

ai,j-type nodes are actually traversed. Clearly pj is a valid s-t-path. We repeat this for
all j = 0, . . . , n − 1. Since I0, . . . , In−1 are disjoint, the set-paths will touch exactly one
ai,j-type node for each item i. Thus the K possible blocker-paths can be routed in the
canonical way.

Now we come to the harder direction: given K + n vertex-disjoint paths we show how
to derive a partition I0, . . . , In−1. First of all note that a valid s-t-path entering row j of G
cannot “leave” this row. In other words when it passes through an ai,j-type node, say w, it
has to continue back to row j: It cannot continue directly to t via a v node (cf. Figure 9),
since this would produce a valley. It also cannot continue via a u node, since such a path
cannot be completed to be a valid s-t-path because the only incoming edge of a u node is
incident to s.

Thus our set-paths have the desired form and in particular each such path contains
exactly three ai,j-type nodes, whose corresponding item-sizes sum up to B. We are given
K + n vertex-disjoint paths, hence there must be exactly n set-paths and exactly K paths
leaving s via the subgraphs added for the blocker-paths. Clearly each of the latter paths
contains at least one ai,j-type node. This yields that for each item i at most one ai,j-
type node is free and can be used by a set-path. This concludes the proof, since the
sets I0, . . . , In−1 derived from the set-paths are disjoint and

∑
i∈Ij

ai = B holds for all j =
0, . . . , n− 1. 2

4.2 Efficient Algorithm for Constant Number of Paths

In general ToR graphs, it turned out to be NP -hard to decide whether there are two edge-
or vertex-disjoint valid paths from s to t (Theorem 5). For acyclic graphs, on the contrary,
we are able to show that this decision problem can be solved in polynomial time for any
constant number of paths. Our proof is an extension of a pebbling game introduced by
Fortune et al. [9] in order to solve the subgraph homeomorphism problem for subgraphs
of fixed size in directed acyclic graphs (for example, their algorithm solves the problem

17

of computing edge- or vertex-disjoint paths for a constant number of terminal pairs in a
directed acyclic graph).

Theorem 9 For a given acyclic ToR graph G = (V,E), s, t ∈ V , and a constant k, one
can decide in polynomial time if there exist k vertex-disjoint (edge-disjoint) valid paths
between s and t in G (and compute such paths if the answer is yes).

Proof: We present a polynomial-time algorithm which solves this problem. The algorithm
uses a pebbling game played on the vertices of G.

First, consider the vertex-disjoint case. We show below that the winning of the pebbling
game corresponds to finding k vertex-disjoint paths in G, and if there is no winning strategy,
there are no k vertex-disjoint paths in the graph.

First, for each node we define its level as the length of the longest directed path starting
at the node. At the beginning of the game, there are k red pebbles on the vertex s, and k
blue pebbles on the vertex t. The game is won when all pebbles are removed. The rules
how to move pebbles through the graph and how to remove them are as follows:

1. Pebble Pi can be moved along directed edge (v, w) from vertex v to vertex w if

a) v has the highest level of any vertex containing a pebble.

b) There is no pebble with the opposite color at v.

c) w is equal to s or t; or w does not contain any pebble; or, if Pi is red, w contains
exactly one blue pebble and no red pebble, and if Pi is blue, w contains exactly
one red pebble and no blue pebble.

2. If v is a vertex of highest level among all vertices containing at least one pebble and
if v contains a red pebble and a blue pebble, then these two pebbles can be removed
from the graph.

If the pebble game is won, we have k vertex-disjoint valid paths, each one given by the
trails of moving pebbles P r

i from s and P b
i from t to the vertex where they meet and are

removed.
We have to show that these paths are indeed vertex-disjoint. Suppose for a contradiction

that the trails of pebbles P x
i and P y

j (which do not arrive at the same node and are removed
together) cross at a node w 6= s, t. The pebble that came first had to be moved away from w
before the other pebble arrived, because of rule 1c); otherwise, the two pebbles would have
different colors and would be removed together from w, contrary to our assumption. But
the first pebble cannot be moved away from w before the second pebble arrives, because
rule 1a) ensures that only pebbles at nodes with highest level can be moved (note that the
vertex from which the second pebble arrives at w must have higher level than w). Thus,
we arrive at a contradiction. This shows that the trails of pebbles belonging to different
paths cannot cross at any nodes except s and t, implying that the k paths corresponding
to the trails of the pebbles are indeed vertex-disjoint.

18

On the other hand, if there are k vertex-disjoint valid paths between s and t in G, it is
easy to see that the pebbling game can be won. For each of the k paths from s to t, let a
pebble start at s and trace the forward part of the path, let a second pebble start at t and
trace the (reverse of) the backward part of the path, and remove the pebbles when they
meet. During this process, the pebbles can obviously be moved and removed according to
the rules above.

A configuration of the pebbling game is given by the at most 2k positions of the red
pebbles and the blue pebbles. Thus there are at most (|V | + 1)2k configurations. One
can build a graph on these configurations, with a directed edge from one configuration to
another if it can be reached with one move or removal operation satisfying the rules above.
The graph has polynomial size, and it suffices to check whether the node corresponding
to the configuration without any pebbles can be reached from the node corresponding to
the initial configuration. This can obviously be done in polynomial time, and the path
from the initial to the final configuration yields also the trails of the pebbles and thus the
vertex-disjoint valid s-t-paths that we are looking for.

The adaptation of this algorithm to the case of edge-disjoint paths is straightforward.
Essentially it suffices to place pebbles on edges instead of vertices of G. 2

5 Conclusions

In this paper, we have initiated the study of disjoint valid s-t-paths and valid s-t-cuts
in the valley-free path model. These problems arise in the analysis of the autonomous
systems topology of the Internet if commonly used routing policies are taken into account.
For example, the size of a minimum valid s-t-vertex-cut can be viewed as a reasonable
measure of the robustness of the Internet connection between autonomous systems s and
t. If the minimum cut has size k, this means that k autonomous systems must fail in order
to completely disconnect s and t. Therefore, our algorithms could be useful for network
administrators who want to assess the quality of their network’s connection to the Internet.
Note that our approximation algorithm for the min valid s-t-vertex-cut problem can be
easily adapted to the weighted version of the problem, where an AS that is unlikely to fail
can be given a large weight.

We have proved that the problem of maximizing the number of vertex- or edge-disjoint
valid paths can be approximated within a factor of 2, but no better unless P = NP . For
the min valid s-t-cut problem, we showed that the vertex version is APX -hard and can be
approximated within a factor of 2 while, somewhat surprisingly, the edge version can be
solved optimally in polynomial time. We have given a 4-approximation algorithm for the
min valid multiway cut problem, both in the edge version and in the vertex version. For
acyclic graphs, we have shown that a constant number of disjoint valid s-t-paths can be
found in polynomial time (if they exist), while the max disjoint valid s-t-paths problem
remains NP -hard.

The problems we have studied may be seen as instances of a more general family of
problems whose common theme is that the allowed paths in the graph must obey certain

19

restrictions. One example of such a restriction is given by oriented paths, i.e., paths
containing at least one directed edge, in mixed graphs, i.e., graphs with undirected and
directed edges. Oriented paths were considered by Wanke and Kötter [20] in the context
of the analysis of different parcellation schemes of the macaque brain. Another example
is given by paths in graphs with labeled edges where a path is only valid if the sequence
of its edge labels forms a word from a given formal language; shortest-path problems for
this type of restriction are studied by Barrett et al. [4] in the context of transportation
problems. It would be interesting to study the max disjoint s-t-paths problem and min
s-t-cut problem in such a setting.

There are also several open problems for the valley-free path model. First, we do not
have any inapproximability results for computing disjoint valid paths in acyclic graphs. It
would be useful to study whether the maximum edge-disjoint or vertex-disjoint valid s-t-
paths problem can be approximated better for acyclic graphs. Also, one could study the
question whether there is a fixed-parameter tractable (FPT) algorithm [7] for the problem
of finding k disjoint valid s-t-paths in acyclic graphs, i.e., an algorithm whose running-time
is a polynomial of the input size multiplied by an arbitrary function of k. Recently, it was
shown that the disjoint-paths problem (in the standard model of directed paths) for k
terminal pairs in directed acyclic graphs is W[1]-hard, implying that the existence of FPT
algorithms for that problem is unlikely [17].

In addition, it would be interesting to determine the complexity and approximability of
the min s-t-vertex-cut problem for acyclic graphs. Furthermore, improved approximation
algorithms for the min valid multiway edge- and vertex-cut problems would be desirable.
Moreover, we do not know the complexity of the min valid multiway edge-cut problem.

References

[1] A. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Ap-
plications. Prentice-Hall, Englewood Cliffs, N.J., 1993.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation. Combinatorial Optimization Problems
and their Approximability Properties. Springer, Berlin, 1999.

[3] P. Baake and T. Wichmann. On the economics of Internet peering. Netnomics,
1(1):89–105, 1999.

[4] C. L. Barrett, R. Jacob, and M. Marathe. Formal language constrained path problems.
SIAM Journal on Computing, 30(3):809–837, 2000.

[5] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis. The
complexity of multiway cuts. SIAM Journal on Computing, 4(23):864–894, 1994.

[6] G. Di Battista, M. Patrignani, and M. Pizzonia. Computing the types of the relation-
ships between autonomous systems. In Proceedings of INFOCOM’03, 2003.

20

[7] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, New York,
1999.

[8] T. Erlebach, A. Hall, and T. Schank. Classifying customer-provider relationships in the
Internet. In Proceedings of the IASTED International Conference on Communications
and Computer Networks, pages 538–545, 2002.

[9] S. Fortune, J. Hopcroft, and J. Willie. The directed subgraph homeomorphism prob-
lem. Theoretical Computer Science, 10(2):111–121, 1980.

[10] L. Gao. On inferring Autonomous System relationships in the Internet. IEEE/ACM
Transactions on Networking, 9(6):733–745, 2001.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York-San Francisco, 1979.

[12] N. Garg, V. Vazirani, and M. Yannakakis. Multiway cuts in directed and node
weighted graphs. In Proceedings of the 21st International Colloquium on Automata,
Languages and Programming (ICALP’94), LNCS 820, pages 487–498. Springer, 1994.

[13] G. Huston. Interconnection, peering and settlements—Part I. Internet Protocol Jour-
nal, 2(1):2–16, March 1999.

[14] G. Huston. Interconnection, peering and settlements—Part II. Internet Protocol
Journal, 2(2):2–23, June 1999.

[15] C. Labovitz, A. Ahuja, R. Wattenhofer, and S. Venkatachary. The impact of Internet
policy and topology on delayed routing convergence. In Proceedings of INFOCOM’01,
2001.

[16] J. Naor and L. Zosin. A 2-approximation algorithm for the directed multiway cut
problem. SIAM Journal on Computing, 31(2):477–482, 2001.

[17] A. Slivkins. Parametrized tractability of edge-disjoint paths on directed acyclic graphs.
In Proceedings of the 11th Annual European Symposium on Algorithms (ESA’03),
LNCS 2832, pages 482–493. Springer, 2003.

[18] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz. Characterizing the Interenet
hierarchy from multiple vantage points. In Proceedings of INFOCOM’02, 2002.

[19] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin. The impact of routing
policy on Internet paths. In Proceedings of INFOCOM’01, 2001.

[20] E. Wanke and R. Kötter. Oriented paths in mixed graphs. In Proceedings of the 15th
International Symposium on Algorithms and Computation (ISAAC’04), LNCS 3341,
pages 629–643. Springer, 2004.

21

[21] J. Xia and L. Gao. On the evaluation of AS relationship inferences. In Proceedings of
IEEE Global Communications Conference (GLOBECOM 2004), 2004.

22

