COMPITO A

Esercizio 1 (17 punti)

Si hanno a disposizione due registri sorgente S0 e S1 da 16 bit che contengono reali memorizzati in rappresentazione a virgola mobile normalizzata : il primo bit (b_0) rappresenta il segno, i successivi 12 bit $8(b_1,b_2...b_{12})$ rappresentano la mantissa (normalizzata) e gli ultimi 3 bit $(b_{13}b_{14}b_{15})$ l'esponente in complemento a due. Si dispone anche di due registri destinazione da 12 bit D0 e D1. Si vuole realizzare la seguente interconnessione:

- se la parte intera del numero reale memorizzato in S0 è pari, allora trasferisci la mantissa del numero contenuto in Si nel registro Di (S0→D0, S1→D1)
- altrimenti S0 \rightarrow D1, S1 \rightarrow D0

(<u>NotaBene</u>: non richiesto che la mantissa del numero in S0 sia pari, ma che lo sia la <u>parte</u> intera del numero in virgola fissa corrispondente. Pertanto necessario riflettere su come sono collegati la rappresentazione in virgola mobile normalizzata di un numero reale e il numero reale effettivamente codificato in questo modo. Dovete passare, per ogni valore della tripla $b_{13}b_{14}b_{15}$, dalla rappresentazione in virgola mobile a quella in virgola fissa, e osservare quale sia l'ultimo bit della parte intera del numero così ottenuto).

Si descriva in dettaglio il circuito di interconnessione.

OSSERVAZIONE (che non dovrebbe <u>proprio</u> essere necessaria): dovete progettare un circuito COMBINATORIO!!!

Esercizio 2 (13 punti).

Si progetti un comparatore aritmetico SEQUENZIALE. Il comparatore riceve due stringhe di ingresso X(n)=x0x1...xn Y(n)=y0y1...yn (xi,yi rappresentano la coppia di bit ricevuta nell'istante ti), e produce in ogni istante ti un'uscita zi=1 sse la stringa X(i)>Y(i) (quindi verifica una maggioranza stretta).

Compito B

Esercizio 1 (17 punti)

Si progetti il circuito di controllo di un semaforo. Il funzionamento richiesto è il seguente:

- il semaforo deve tenere accesa per 10 secondi la luce verde
- poi deve spegnere la luce verde e tenere accesa per 6 secondi la luce gialla
- poi deve spegnere la luce gialla e tenere accesa per 16 secondi la luce rossa
- infine deve spegnere la luce rossa e ricominciare

Si assuma di avere a disposizione un clock con una frequenza di 1 Herz (cioè un impulso ogni secondo). Si utilizzino FF di tipo JK e non si dia per scontato l'utilizzo di alcun modulo predefinito (cioè, se si usa un qualche modulo visto a lezione è necessario mostrarne in dettaglio l'architettura, fino a porte logiche e FF). Per i contatori, potete usare un modulo predefinito, visto che sono oggetto del successivo esercizio.

Esercizio 2 (10 punti)

Progettate nel dettaglio un contatore sincrono parallelo modulo 32 con FF di tipo JK.

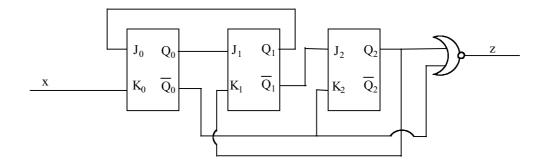
Esercizio 3 (2 punti)

Quale è la codifica in decimale delle stringhe 1000 e 0001 in complemento a due?

Compito C

Esercizio 1 (14 punti).

Analizzare il seguente circuito sequenziale e ricavare il diagramma di stato.



Esercizio 2 (14 punti).

Progettare un circuito il cui output è 1 quando viene riconosciuta una delle seguenti stringhe: 001, 101 oppure 000. L'output è zero altrimenti.

Il primo bit che viene letto è il bit **più a sinistra**. Le stringhe sono *sovrapponibili*, nel senso chiarito a lezione.

Pur non essendo richiesta l'applicazione di un criterio formale di minimizzazione dell'automa, sarà elemento di valutazione il numero degli stati complessivi utilizzati.

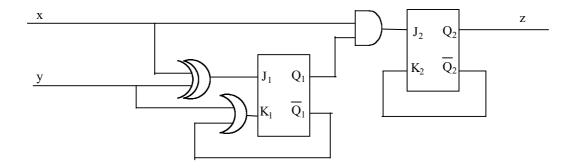
Esercizio 3 (2 punti)

Dati tre bit b2b1b0 scrivere tutte le possibili configurazioni di questi tre bit in complemento a due, con accanto il rispettivo numero intero con segno.

Compito D

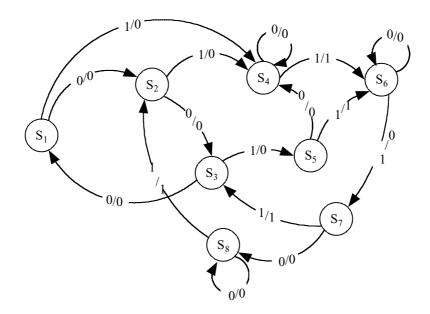
Esercizio 1 (14 punti).

Analizzare il seguente circuito sequenziale e ricavare il diagramma di stato:



Esercizio 2 (14 punti).

Minimizzare il seguente automa e progettare il relativo circuito utilizzando FF di tipo JK:



Esercizio 3 (2 punti)

In complemento a due, che valore hanno le stringhe 0011 e 1111 ?

Soluzione compito A

Esercizio 1

Si hanno a disposizione due registri sorgente S0 e S1 da 16 bit che contengono reali memorizzati in rappresentazione a virgola mobile normalizzata : il primo bit (b_0) rappresenta il segno, i successivi 12 bit $8(b_1,b_2...b_{12})$ rappresentano la mantissa (normalizzata) e gli ultimi 3 bit $(b_{13}b_{14}b_{15})$ l'esponente in complemento a due. Si dispone anche di due registri destinazione da 12 bit D0 e D1. Si vuole realizzare la seguente interconnessione:

- se la parte intera del numero reale memorizzato in S0 è pari, allora trasferisci la mantissa del numero contenuto in Si nel registro Di (S0→D0, S1→D1)
- altrimenti S0 \rightarrow D1, S1 \rightarrow D0

Diciamo che i registri sorgente siano del tipo

b0 b1		b12 1	b13	•••	b15
-------	--	-------	-----	-----	-----

dove b0 il bit di segno, b1//b12 sono i bit della mantissa e b13/b14/b15 i bit dell esponente. Il numero in virgola fissa corrispondente dunque espresso come:

$$\pm 0, b_1b_2b_3...b_{12} \times 2^{b_{13}b_{14}b_{15}}$$

Ed inoltre in Ca2 si ha per l'esponente:

b13b14b15	decimale
011	+3
010	+2
001	+1
000	0
111	-1
110	-2
101	-3
111	-4

Per definire il circuito di controllo, basta osservare che

- se b13 = 1 oppure b13 = b14 = b15 = 0 allora il numero ha parte intera uguale a 0 (che quindi è pari) Infatti, se l'esponente è zero o negativo, il numero decimale corrispondente avrà certamente la parte intera uguale a zero.
- se b13 b14 b15 = 001 allora il numero decimale corrispondente, a meno del segno, sarà: b1,b2b3..b12

la parte intera è dunque b1 (che quindi è pari sse b1 è 0)

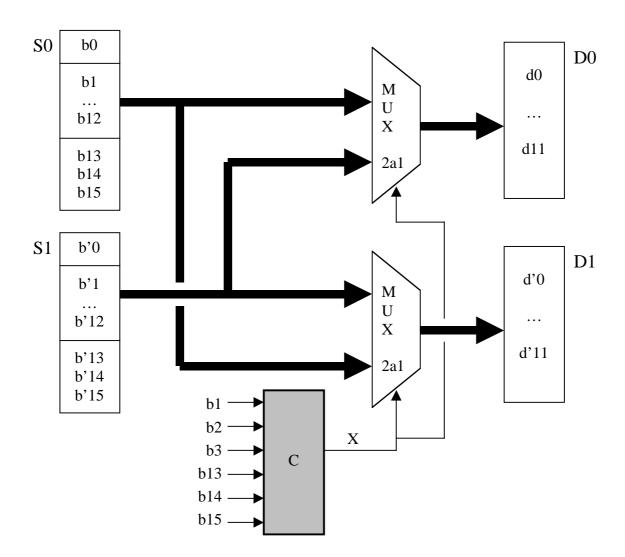
- se b13 b14 b15 = 010 allora la parte intera è b1 b2 (che quindi è pari sse b2 è 0)
- se b13 b14 b15 = 011 allora la parte intera è b1 b2 b3 (che quindi è pari sse b3 è 0)

Volendo rappresentare tutto questo mediante una tabella di verità, avrò:

b13b14b15	bit	(X)	che	determina	la	parit	
	(0=1	rue,	1=fals	se)			

011	se b3=0 true, altrimenti false
010	se b2=0 true, altrimenti false
001	se b1=0 true, altrimenti false
000	true
111	true
110	true
101	true
111	true

Pertanto il primo trasferimento verrà effettuato se e solo se X=1, dove X è definito come $X=b13+\underline{b}13\,\underline{b}14\,\underline{b}15+\underline{b}1\,\underline{b}13\,\underline{b}14\,\underline{b}15+\underline{b}2\,\underline{b}13\,\underline{b}14\,\underline{b}15+\underline{b}3\,\underline{b}13\,\underline{b}14\,\underline{b}15$ (la sootolineatura significa negazione) Infatti, X vale 1 se e solo se uno dei quttro casi sopra elencati si verifica. Sia C il circuito che prende in input b1/b2/b3/b13/b14/b15 e d in output 1 sse X=1. La rete di interconnessione richiesta pertanto



dove la linea spessa contiene solo i 12 bit delle mantisse. Inoltre i multiplexer selezionano l'input più in alto se il segnale di controllo vale 1, l'input più in basso altrimenti.

Esercizio 2.

Questo esercizio è del tutto analogo al progetto di un sommatore sequenziale che è stato fatto durante una esercitazione e fa anche parte delle prove circuitmaker 2003-2004.

L'automa può trovarsi in due stati possibili: S0, in cui il risultato della precedente comparazione ha prodotto z=0, ed S1, in cui il risultato della precedente comparazione ha prodotto z=1.

L'automa (descritto mediante tabella di transizione) è il seguente:

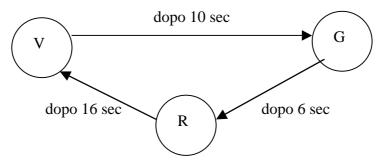
Stato di partenza↓ /Input (xy)→	00	01	10	11
S0	0/S0	0/S0	1/S1	0/S0
S1	1/S1	0/S0	1/S1	1/S1

Poichè l'output coincide con l'informazione che occorre tenere in memoria, conviene un automa di Moore.

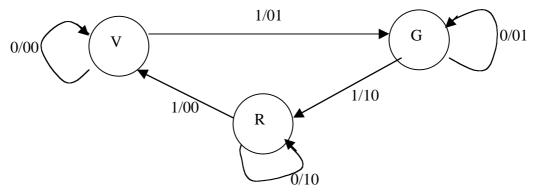
Compito B

Esercizi 1 e 2

Intuitivamente, l'automa di Moore che descrive il comportamento richiesto è il seguente.



Se disponessimo di un circuito C che continuamente dia in output 1 una volta contati 10 segnali di clock, poi dia in output nuovamente 1 una volta contati altri 6 segnali di clock ed infine dia in output 1 una volta contati altri 16 segnali di clock (e in tutti i momenti intermedi dà in output 0), l'automa verrebbe tradotto nell'automa di Mealy (dove associamo alle uscite Z0Z1 = 00 l'accensione del verde e lo spegnimento delle altre due luci, a 01 l'accensione del giallo e lo spegnimento delle altre due luci, e a 10 l'accensione del rosso e lo spegnimento delle altre due luci).



Facciamo la sintesi di questo automa, lasciando per dopo la sintesi del circuito C. Associamo a V, G e R le ovvie codifiche Q0Q1 = 00, 01, 10. Da ciò la tabella degli stati futuri è

X	Q0	Q1	Z0	Z 1	Q0	Q1 (t+1)	J0	K0	J1	K1
0	0	0	0	0	0	0	0	-	0	-
0	0	1	0	1	0	1	0	-	-	0
0	1	0	1	0	1	0	-	0	0	-
0	1	1	-	-	-	-	-	-	-	-
1	0	0	0	1	0	1	0	-	1	-
1	0	1	1	0	1	0	1	-	-	1
1	1	0	0	0	0	0	-	1	0	-
1	1	1	-	-	-	-	-	-	-	-

Usando le mappe di Karnaugh si ottengono le espressioni minime

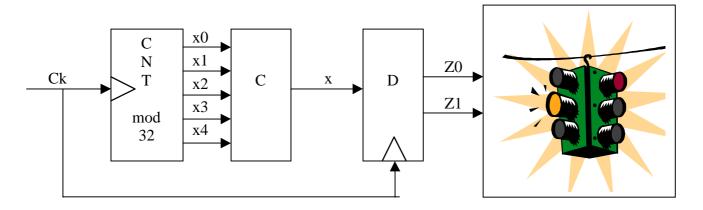
$$Z0 = \underline{x} \ Q0 + x \ Q1$$
 $Z1 = \underline{x} \ Q1 + x \ \underline{Q0} \ \underline{Q1}$ $J0 = x \ Q1$ $J1 = x \ \underline{Q0}$ $K0 = K1 = x$ da cui è immediato ricavare il circuito risultante D.

Supponiamo di avere un **contatore modulo 32** (l esrcizio 2 richiedeva di disegnarne esplicitamente lo schema circuitale) che prenda in input il clock con frequenza 1 Hz e diamo in input a C le cinque uscite x4/x3/x2/x1/x0 del contatore. Il circuito C dovr implementare la funzione booleana che d 1 se e solo se

In questa maniera, prendendo come stato iniziale R e il contatore resettato, abbiamo il compartamento desiderato. Ovviamente, l'output di C sarà l'input x del circuito D (sintetizzato a partire dall'automa appena mostrato). Pertanto, utilizzando il procedimento per ottenere la forma canonica disgiuntiva e usando poi gli assiomi dell'algebra di Boole, si ottiene che

$$x = \underbrace{x4 \ x3 \ x2 \ x1 \ x0}_{= \ x3 \ x2 \ x1 \ x0} + x4 \ x3 \ x2 \ x1 \ x0}_{= \ x2 \ x0} + \underbrace{x4 \ x3 \ x2 \ x1 \ x0}_{= \ x4 \ x3 \ x2}_{= \ x4 \ x3 \ x1}$$

che è la funzione che C deve calcolare. In definitiva, il circuito richiesto è ottenuto come segue



OSS: l'esercizio poteva essere risolto <u>più semplicemente</u> prendendo il contatore MOD 32 ed associare alle uscite da 00000 a 01010 la luce verde, da 01011 a 10000 la luce gialla e da 10001 a 11111 la luce rossa.

Soluzione compito C

Esercizio 1

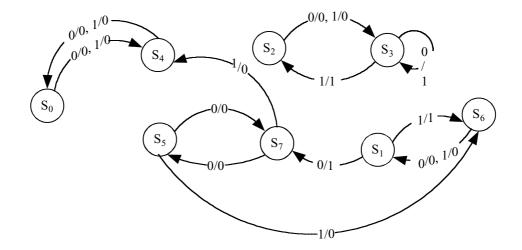
Si ha:

$$\begin{split} J_0 &= Q_1 \\ K_0 &= x \\ J_1 &= Q_0 \\ K_1 &= Q_2 \\ J_2 &= \overline{Q_1} \\ K_2 &= \overline{Q_0} \\ z &= \overline{\overline{Q_0} + Q_2} = Q_0 \cdot \overline{Q_2} \end{split}$$

Il diagramma degli stati è il seguente:

X	$Q_2(t)$	$Q_1(t)$	$Q_0(t)$	\mathbf{J}_2	\mathbf{K}_{2}	\mathbf{J}_1	\mathbf{K}_{1}	$\mathbf{J_0}$	\mathbf{K}_{0}	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$	Z
0	0	0	0	1	1	0	0	0	0	1	0	0	0
0	0	0	1	1	0	1	0	0	0	1	1	1	1
0	0	1	0	0	1	0	0	1	0	0	1	1	0
0	0	1	1	0	0	1	0	1	0	0	1	1	1
0	1	0	0	1	1	0	1	0	0	0	0	0	0
0	1	0	1	1	0	1	1	0	0	1	1	1	0
0	1	1	0	0	1	0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1	1	0	1	0	1	0
1	0	0	0	1	1	0	0	0	1	1	0	0	0
1	0	0	1	1	0	1	0	0	1	1	1	0	1
1	0	1	0	0	1	0	0	1	1	0	1	1	0
1	0	1	1	0	0	1	0	1	1	0	1	0	1
1	1	0	0	1	1	0	1	0	1	0	0	0	0
1	1	0	1	1	0	1	1	0	1	1	1	0	0
1	1	1	0	0	1	0	1	1	1	0	0	1	0
1	1	1	1	0	0	1	1	1	1	1	0	0	0

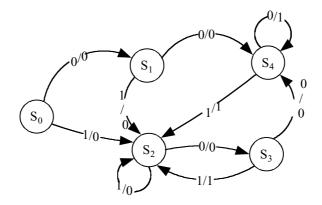
L'automa di Mealy relativo è il seguente:



L'automa è minimizzabile: gli stati S_0 e S_4 possono essere fusi in un unico stato.

Esercizio 2

L'automa di Mealy è il seguente:



dove:

- S₀ indica lo stato iniziale
- S₁ lo stato in cui è stato riconosciuto "0"
- S₄ lo stato in cui è stata riconosciuta una stringa "00...0" di lunghezza almeno 2
- S₂ lo stato in cui è stato riconosciuto un "1"
- S₃ lo stato in cui è stato riconosciuto "10"

Si noti che non è necessario tenere uno stato per la stringa "101" perché è sufficiente tenere traccia dell'ultimo "1". Infatti concatenando un bit alla stringa "101" non si ottiene nessuna sequenza valida. Lo stesso ragionamento si può applicare alla stringa "001" e così via.

Si poteva anche realizzare l'automa con tutti i possibili stati e poi minimizzarlo, ma sarebbe stato più laborioso.

Stato	Input 0	Input 1
S_0	$S_{1}/0$	$S_{2}/0$
S_1	S ₄ /0	$S_{2}/0$
S_2	S ₃ /0	$S_{2}/0$

S_3	S ₄ /0	$S_{2}/1$
S_4	S ₄ /1	$S_2/1$

Gli stati si codificano con 3 FF di tipo JK. La tabella degli stati futuri è la seguente:

Stato	$Q_2(t)$	$Q_1(t)$	$Q_0(t)$	X	\mathbf{J}_2	\mathbf{K}_2	\mathbf{J}_1	K ₁	$\mathbf{J_0}$	\mathbf{K}_{0}	$Q_2(t+1)$	$Q_1(t+1)$	$Q_0(t+1)$	Z
C	0	0	0	0	0	X	0	X	1	X	0	0	1	0
S_0	0	0	0	1	0	X	1	X	0	X	0	1	0	0
S_1	0	0	1	0	1	X	0	X	X	1	1	0	0	0
\mathbf{s}_1	0	0	1	1	0	X	1	X	X	1	0	1	0	0
S_2	0	1	0	0	0	X	X	0	1	X	0	1	1	0
\mathbf{S}_2	0	1	0	1	0	X	X	0	0	X	0	1	0	0
S_3	0	1	1	0	1	X	X	1	X	1	1	0	0	0
\mathbf{b}_3	0	1	1	1	0	X	X	0	X	1	0	1	0	1
S_4	1	0	0	0	X	0	0	X	0	X	1	0	0	1
\mathbf{S}_4	1	0	0	1	X	1	1	X	0	X	0	1	0	1
	1	0	1	0	X	X	X	X	X	X	X	X	X	X
	1	0	1	1	X	X	X	X	X	X	X	X	X	X
	1	1	0	0	X	X	X	X	X	X	X	X	X	X
	1	1	0	1	X	X	X	X	X	X	X	X	X	X
	1	1	1	0	X	X	X	X	X	X	X	X	X	X
	1	1	1	1	X	X	X	X	X	X	X	X	X	X

Applicando le mappe di Karnaugh si ottiene:

$$J_1 = x \; , \; K_1 = J_2 = Q_0 \cdot \overline{x} \; , \; K_2 = x \; , \; J_0 = \overline{Q_2} \overline{x} \; , \; K_0 = 1 \; , \; z = Q_2 + Q_1 \cdot Q_0 \cdot x$$

Esercizio 3

Per ottenere il valore decimale di un numero in complemento a due $c_{n-1}c_{n-2}...c_1$ c_0 si usa la seguente formula:

$$N = -c_{n-1}2^{n-1} + \sum_{i=0}^{n-2} c_i 2^i$$

per n = 3 e al variare della sequenza di bit si ottiene:

Compl. a 2	Decimale
000	0
001	1
010	2
011	3
100	-4
101	-3
110	-2
111	-1

Soluzione compito D

Esercizio 1

Si ha:

$$J_1 = x \oplus y$$

$$K_1 = y + \overline{Q_1}$$

$$J_2 = x \cdot Q_1$$

$$K_2 = \overline{Q_2}$$

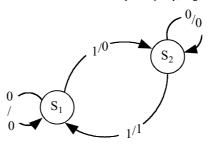
$$z = Q_2$$

Il diagramma degli stati è il seguente:

X	y	$Q_2(t)$	$Q_1(t)$	J_2	\mathbf{K}_2	\mathbf{J}_1	\mathbf{K}_{1}	$Q_2(t+1)$	$Q_1(t+1)$	Z
0	0	0	0	0	1	0	1	0	0	0
0	0	0	1	0	1	0	0	0	1	0
0	0	1	0	0	0	0	1	1	0	1
0	0	1	1	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1	0
0	1	0	1	0	1	1	1	0	0	0
0	1	1	0	0	0	1	1	1	1	1
0	1	1	1	0	0	1	1	1	0	1
1	0	0	0	0	1	1	1	0	1	0
1	0	0	1	1	1	1	0	1	1	0
1	0	1	0	0	0	1	1	1	1	1
1	0	1	1	1	0	1	0	1	1	1
1	1	0	0	0	1	0	1	0	0	0
1	1	0	1	1	1	0	1	1	0	0
1	1	1	0	0	0	0	1	1	0	1
1	1	1	1	1	0	0	1	1	0	1

Esercizio 2

L'automa minimizzato è costituito da due soli stati S_1 ' = { S_1 , S_2 , S_3 , S_6 } e S_2 ' = { S_4 , S_5 , S_7 , S_8 }:



La codifica con 1 FF di tipo JK è immediata:

X	$Q_1(t)$	\mathbf{J}_1	\mathbf{K}_{1}	$Q_1(t+1)$	Z
0	0	0	X	0	0

0	1	X	0	1	0
1	0	1	X	1	0
1	1	X	1	0	1

Applicando Karnaugh si ottiene:

$$J_1 = x , K_1 = x$$

infine banalmente $z = x \cdot Q_1$

Esercizio 3

Per ottenere il valore decimale di un numero in complemento a due $c_{n-1}c_{n-2}...c_1$ c_0 si usa la seguente formula:

$$N = -c_{n-1}2^{n-1} + \sum_{i=0}^{n-2} c_i 2^i$$

per cui si ha:

$$0011 = 2^{1} + 2^{0} = 2 + 1 = 3$$

$$1111 = -2^{3} + 2^{2} + 2^{1} + 2^{0} = -8 + 4 + 2 + 1 = -1$$