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ABSTRACT
The ever increasing ubiquitousness of WiFi access points, cou-

pled with the diffusion of smartphones, suggest that Internet every

time and everywhere will soon (if not already has) become a re-

ality. Even in presence of 3G connectivity, our devices are built

to switch automatically to WiFi networks so to improve user ex-

perience. Most of the times, this is achieved by recurrently broad-

casting automatic connectivity requests (known as Probe Requests)

to known access points (APs), like, e.g., “Home WiFi”, “Campus

WiFi”, and so on. In a large gathering of people, the number of

these probes can be very high. This scenario rises a natural ques-

tion: “Can significant information on the social structure of a large

crowd and on its socioeconomic status be inferred by looking at

smartphone probes?”.

In this work we give a positive answer to this question. We or-

ganized a 3-months long campaign, through which we collected

around 11M probes sent by more than 160K different devices. Dur-

ing the campaign we targeted national and international events that

attracted large crowds as well as other gatherings of people. Then,

we present a simple and automatic methodology to build the un-

derlying social graph of the smartphone users, starting from their

probes. We do so for each of our target events, and find that they

all feature social-network properties. In addition, we show that, by

looking at the probes in an event, we can learn important sociolog-

ical aspects of its participants—language, vendor adoption, and so

on.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Network Architec-

ture and Design—Wireless communication

Keywords
Smartphones; Wi-Fi probe requests; social networks.

1. MOTIVATION AND GOALS
WiFi access points (APs) are becoming increasingly ubiquitous

in our homes, offices and public places. Initially, the APs were
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used to free our portable computers (laptops) from the ADSL/LAN

cable. Nowadays, APs also represent a viable option for mobile

devices to get fast and cheap connectivity. So, it is becoming more

and more common for mobile devices to automatically switch to

WiFi connectivity whenever possible. To facilitate this automatic

process, current smartphone OSes store the list of the names (SSID)

of the networks the user typically connects to. Periodically, many

of our smartphones broadcast these SSIDs in the form of Probe
Request to search for available networks [20, 11, 4]. This is done

every few seconds, even when we are far from the WiFi access

points we usually connect to. In a large crowd of people, a very

high number of probe requests are sent every minute. In this paper

we consider the following questions: “What information can we get

on a large crowd from their probe requests?”; “Is it possible to infer

important information on the crowd like its social structure or its so-

cioeconomic status?”; and lastly: “If yes, can this analysis be done

in a simple and automatic way?”. To answer all these questions,

we organized a campaign of probe collection: We targeted large

gatherings of people at city-wide, national, and international events

as well as a university campus. Our campaign lasted three months,

and we managed to collect, using commodity hardware only, a total

of 11,136,711 probes sent by 164,740 different devices.

Our main contribution and findings in this work are the follow-

ing:

• We develop a simple and automated methodology that al-

lows to extract, starting from our datasets, the existing social

connections among the smartphone owners, and use it to un-

cover, for the first time, the underlying social network of the

participants in each event;

• we analyze the properties of these social graphs and show

that they all feature social-network attributes in many aspects

such as diameter, clustering coefficient and degree distribu-

tion;

• we show that important information on the nature of large

events can be learnt from the probes:

– the distribution of the languages of SSIDs, as detected

by our methodology, shows a clear relationship between

the international nature of the event and the density of

foreign participants;

– the distribution of the smartphone vendors varies across

the events and matches the expected socioecomomic

characteristics of the participants.

• by using our datasets, we validate the well-known sociologi-

cal theories of homophily and social influence in the context

of smartphone vendor adoption;



• we perform a temporal analysis of the data collected in our

long-term university campus deployment that uncover strong

correlation between the frequency of the co-occurrence of

devices in the same time slot and the strength of the relation-

ship inferred by our methodology;

An anonymized version of the dataset is available online [41]. The

paper is organized as follows: Section 2 reviews the related work

in this area. Section 3 introduces our data collection methodology

and the events targeted by our analysis. Section 4 presents our main

finding and contribution. Finally, Section 5 draws our conclusions

and discusses possible future works.

2. RELATED WORKS
The use of probe requests as a way to discover nearby known

WiFi networks has recently gained the attention of the community.

In the last few years, the security community has focused on the

potential perils of this technology. Zovi et al. [11], show how both

Windows XP and OSX implementations of this feature exposes

users to a man-in-the-middle attack, where a malicious access point

(AP) pretends to be part of a trusted network (see also Klaus [20]).

More recently, the same concern has been raised for mobile devices

too [4]. In addition, probe requests have been shown to jeopardize

users’ privacy. Franklin et al. [15] show how the timings of pas-

sively collected probe requests can be exploited to fingerprint the

wireless network interface driver. Loh et al. [12] expand on this

idea by noting that not just the driver but also the network device

and the OS can influence the timings between the probes. Finally,

Pang et al. [28] show how, by combining information leaked by

probe requests with other implicitly revealed identifiers, one can

recognize users even when MAC addresses and names are replaced

by pseudonyms.

Probe requests can also help WiFi monitoring and user track-

ing. Musa et al. [32] describe how to exploit probes to passively

track smartphones and infer the trajectory of their users. Rose et

al. [34] show how probes can be used to reveal past behavior of

users. Cunche et al. [9] use probe requests to decide whether two

devices potentially belong to socially linked users. They leverage

the intersection between the SSIDs in the probe requests of the two

devices and use a metric inspired by the Adamic-Adar [1] similar-

ity to smooth out the influence of frequently used SSIDs. Later on,

Cheng et al. [7] extended the previous analysis with spatial tempo-

ral information on probe requests on a small sample of users. These

works focus on pairs of users, possibly recurrently observed over

time, and aim at best characterizing their relationship.

In this work, we take a different approach: We focus on large

scale events involving thousands of users. We capture the probe

requests of the devices during the event, and, from that, we aim at

building a snapshot of the society that the participants represent. A

snapshot rich enough to reflect, as accurately as possible, the socio-

logical features and peculiarities of the crowd in the event (e.g. lan-

guage, wealth), and, simultaneously, the properties and features of

the emerging social-network. Our datasets are collected at a large

scale and target city-wide, campus-like, national, and international

events.

Our methodology builds also on the work of [26, 25, 22, 40, 23],

which analyze the social graphs induced by affiliation networks. To

the best of our knowledge, we are the first to adapt and refine these

techniques to large datasets of probes. This allows us to introduce

an easily automated methodology through which it is possible to

define and analyze large-scale social networks of mobile devices

users. Finally, for the first time we perform language detection

on the broadcast SSIDs, and exploit the vendor ID of the captured

devices to validate the theory of homophily and social influence

between smartphone users.

3. DATA COLLECTION METHODOLOGY
According to the 802.11 standard [37], a WiFi access point can

announce its presence by broadcasting Beacons—frames contain-

ing network configuration parameters such as the service set iden-

tifier (SSID) and supported data rates. In particular, the SSID is a

string that identifies the WiFi AP in a human readable format (e.g.,

“Home network”, “Free WiFi”). Client devices—referred to as Sta-
tions by the standard—can use two methods to detect access points

in range: Passive and active scanning. In the former, the client pas-

sively listens for beacons of nearby access points and uses them to

decide which network to connect to. Conversely, with active scan-

ning, it is the client that actively searches for available networks by

sending Probe Request frames. The probe requests can be either

directed to a specific network, by indicating its SSID, or broadcast
to any network within range. An example of both types of probes

is given in Table 1. Upon receiving a Probe Request, any AP be-

longing to the network the probe is directed to replies with a Probe
Response enabling the client to initiate a connection.

Probe requests are an efficient way for energy-limited devices

(like smartphones) to detect known and unknown WiFi networks

within range. By sending active probes, a mobile device can keep

the WiFi radio on for just a few milliseconds, the amount of time

it takes for any response to be received. Directed probe requests

are also useful for connecting to “hidden” networks whose APs

do not broadcast its SSID. To further improve this mechanism, a

Preferred Network List (from now on PNL) of networks a device

has connected to in the past is maintained by the OS to transparently

connect or switch between known networks whenever possible.

3.1 Probes collection: Technical details
Mobile devices periodically send probe requests with a frequency

that is vendor specific but that we observed to be typically between

15 and 60 seconds, depending on the power state of the device.

Since probe requests are used in the discovery phase that comes

before the actual association to the access point, they are sent in

the clear over all transmission channels in sequence. This makes

intercepting (sniffing) probe requests an easy task, requiring just

commodity hardware like the internal wireless card of a laptop set

in monitor mode.

In our collection campaign we used the following hardware:
• 4 × MacbookPro equipped with a Broadcom

BCM43xx card;

• 1 × ThinkPad X61 equipped with an Atheros network card;

• 1 × fixed external Ubiquity SuperRange Cardbus antenna1.
Overall, we collected around 11M probes sent by around 160K

unique devices. We collected data in more than eight different

events and locations with large gatherings of people. After data

collection we used the tshark network analyzer to filter out all cor-

rupted probes with a bad checksum (field FCS in Table 1). Then,

we built a database that associates each device, as identified by its

MAC address (field SA), to the list of SSIDs (field SSID) derived

from its probes.

3.1.1 Description of the datasets
As many metropolises, Rome hosts several important events with

both national and international audience and is a recurrent venue of

large political and religious gatherings. Some of these events be-

came target of our study. In particular, in our data collection cam-

paign we targeted the following scenarios: 1) Events of national

1http://dl.ubnt.com/src_datasheet.pdf



Frame Ctrl Duration DA SA BSSID Seq Ctl SSID FCS
. . . . . . ff:ff:ff:ff:ff:ff 10:9a:42:42:42:42 ff:ff:ff:ff:ff:ff . . . null (Broadcast) . . .

. . . . . . ff:ff:ff:ff:ff:ff 10:9a:42:42:42:42 ff:ff:ff:ff:ff:ff . . . “Free WiFi” . . .

. . . . . . ff:ff:ff:ff:ff:ff 10:9a:42:42:42:42 ff:ff:ff:ff:ff:ff . . . “Home WiFi” . . .

Table 1: Example of Probe Requests sent by device with MAC address 10:9a:42:42:42:42. One broadcast probe (on top), and two
directed to the “Free WiFi” and the “Home WiFi” networks respectively.

audience; 2) events of international audience; 3) events with au-

dience consisting of mostly local residents; 4) a train station; 5) a

university campus; 6) other. The first four were one-shot events

lasted from 40 minutes to 6 hours each. Data collection was phys-

ically carried out by a team of 5 researchers that joined the event

equipped with their laptops. The fifth dataset was collected through

a fixed hardware placed in a university campus over a continuous

period of 6 weeks. The last dataset includes probes collected by

the research group in other occasions (e.g. commuting from home

to office). In the remaining of this section we describe in details

each of the scenarios/events that we targeted. Details on the num-

ber of devices and number of probes of each datasets are given in

Table 2.

3.1.2 National Events
In our collection campaign we targeted the political meetings

of two very large parties in Italy: The Movimento Cinque Stelle

(M5S), a recently-established progressive party that unexpectedly

got 28% of the votes, and the conservative party Popolo della Lib-

ertà (PDL), one of the most important parties in the Italian political

scene. The Movimento Cinque Stelle closed its electoral campaign

in Rome, with a meeting held on February 22th 2013 in one of the

largest square in Rome area (“Piazza San Giovanni”). This event

is denoted in our dataset as Politics 1. The Popolo della Libertà

called for a post-electoral meeting in Rome on March 23rd. The

meeting was held in a famous square in the city center (“Piazza

del Popolo”). This dataset is denoted as Politics 2. As the police

reported, in both cases the event participants came from all over

Italy.

3.1.3 International Events
On February 11th, 2013, Pope Benedict XVI announced his res-

ignation, after 8 years of service as the Head of the Catholic Church.

The day of his farewell Angelus2, February 24th, Vatican City

was literally invaded by pilgrims and tourists from all around the

world, as police reported. The same happened on March 17th,

when the newly elected Pope Francis delivered his first Angelus.

The datasets relative to these two events are denoted as Vatican 1
and Vatican 2 respectively.

3.1.4 City-wide probes: The Mall
For this case study we aimed at collecting data from local resi-

dents of Rome. So, we targeted a location known for hosting many

families and groups of friends all at once: One of the biggest malls

in Rome (Porta di Roma). To make sure to get a relevant affluence

of people, we chose to collect the data on a special afternoon, right

before Easter (March 30th, 2013), when many Romans like to shop.

The data collection lasted 3 hours and a half.

3.1.5 Train Station
In this case study we targeted Termini, the Rome central train

station, and collected the probes for a total of 7 hours split in a time

2The Angelus is the Pope’s speech and prayer delivered every Sun-
day at noon from his window overlooking Saint Peter’s square.

range of four days. The collection was carried out by positioning

at vantage points in the station so as to maximize the area covered.

3.1.6 University
This dataset was collected by deploying an antenna in a fixed

point located at one of the main entries of our university campus.

Differently from the other datasets, in this case we collected probes

continuously for a period of 6 weeks, collecting probes requests

mostly transmitted by devices of students entering and leaving the

campus.

3.1.7 Others
This dataset consists of probes collected individually by 3 mem-

bers of our research group during several tours across the city per-

formed in a time span of 4 weeks while, for example, commuting

from home to work or shopping.

3.1.8 All
Our last dataset, denoted as All, is generated by merging all the

previously described datasets together. We will refer to this dataset

when giving global statistics on the aggregate data we collected.

4. DATA ANALYSIS
Our objective is to show how WiFi probe requests collected in

big events or in a given area of a city reveal a number of insights on

the sociological characteristics of the crowd in the event or on the

target population. We do so by means of a methodology compris-

ing social networks analysis techniques, sociological theories and

natural language processing.

4.1 Vendors of the devices in the datasets
Today’s market of mobile devices is very dynamic and lively. Pe-

riodically, the major vendors either launch newer versions of their

flagship products or introduce a product line destined to a new seg-

ment of the market. We hereby investigate what type of influence

this has on the data we collected. To do so, we grouped by ven-

dor the over 160K devices we detected (see Table 2) and computed

the percentage of devices of each vendor. The vendor of a device

can be obtained by looking at the sequence of the first 3 bytes of

the MAC address field of any of its WiFi probes and matching it

against the IEEE Public OUI3 list. This is the official database that

lists the space of MAC addresses assigned to each vendor. The 6

most common vendors we found in our datasets are shown in Fig-

ure 1. The most common vendor in out datasets is Apple (57%

of devices), followed by Samsung (17%), Nokia (6%), HTC (1%),

Sony (1%) and RIM (1%). These results do not necessarily mea-

sure the market penetration of these brands—a number of factors

may have influenced the distribution of the vendors like the range

of the WiFi antennas, the probability that users leave the WiFi in-

terface on, or the frequency with which devices scan for nearby

networks. However, they are qualitatively similar to those obtained

3http://standards.ieee.org/develop/regauth/
oui/oui.txt



Dataset Devices PNLs (%) Total Probes Directed Probes (%) Broadcast Probes (%) SSIDs

Politics 1 (P1) 16,695 4,677 (28.0%) 1,190,481 406,002 (34.1%) 784,479 (65.9%) 14,740

Politics 2 (P2) 12,619 4,144 (32.8%) 330,936 117,644 (35.5%) 213,292 (64.5%) 11,145

The Mall (M) 9,731 3,859 (39.6%) 820,806 394,184 (48.0%) 426,622 (52.0%) 10,451

Train Station (TS) 14,640 5,371 (36.6%) 393,143 218,234 (55.5%) 174,909 (44.5%) 17,295

University (U) 17,131 8,853 (51.6%) 5,349,894 2,803,104 (52.4%) 2,546,790 (47.6%) 14,751

Vatican 1 (V1) 23,430 7,631 (32.5%) 1,234,416 555,361 (45.0%) 679,055 (55.0%) 29,533

Vatican 2 (V2) 22,219 6,817 (30.6%) 507,945 208,028 (40.0%) 299,917 (60.0%) 23,345

Others 60,445 21,824 (36.1%) 1,309,090 642,526 (49.0%) 666,564 (51.0%) 42,105

All 164,740 59,684 (36.2%) 11,136,711 5,345,083 (48.0%) 5,791,628 (52.0%) 133,351

Table 2: Statistics on the probes captured in our target events. The column “PNLs” reports the number (and percentage) of devices
that disclosed at least one entry of their Preferred Network List.
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Figure 1: Vendors distribution (All datasets).

 0

 20

 40

 60

 80

 100

Apple
Sam

sung

Nokia
HTC

Sony
RIM

P
er

ce
nt

ag
e 

of
 v

en
do

r’s
 d

ev
ic

es

Figure 2: Vendor percentage of devices that exposed part or all
the SSIDs in their Preferred Network List (dataset All).

by Musa et. al. in [32], and we can observe that all vendors in

our list are amongst the market leaders of mobile devices, such as

smartphones and tablets. This suggests that our datasets indeed

capture a representative sample of the most commonly used mobile

devices.

A question that we raise is how the choice of a particular ven-

dor affects the probability that all or part of the PNL is exposed

by means of directed probe requests. This is relevant for our anal-

ysis, and may also be an important information from a security

and privacy point of view. An adversary, by using just commodity

hardware, might collect the SSIDs in the PNL of a user’s device

and perform an Evil Twin man-in-the-middle attack [4] against the

user. Also, the names of the networks may reveal sensible infor-

mation on the user, such as the place where she lives or works, the

communities she belongs to, and the places she likes or frequently

visits. The percentage of devices of each of the most common ven-

dors in the datasets is reported in Figure 2: 92% of RIM devices

disclosed part of their PNL, followed by HTC (55%), Sony (35%),

Apple (35%), Samsung (31%) and Nokia devices (13%).

4.2 SSIDs Analysis
Today it is becoming more and more common to find WiFi ac-

cess points not only in homes and workplaces, but also in public

environments such as restaurants, hotels, and pubs. As a result, the

probability that users connect to the WiFi networks of the places

they visit is increasing too. Intuitively, this should produce two

side effects: First, SSIDs of WiFi networks of public places that

are popular among the people that participated to an event should

be found in many of their devices. Second, a significant fraction of

the PNLs of these devices should store more than one SSID—e.g.

home WiFi, office WiFi, and so on. We investigate whether the

datasets we collected confirm these two intuitions. To do so, we re-

constructed the PNLs of the devices in our datasets by collecting all

the directed probe requests we logged. The total number of devices

with a non-empty PNL is around 59K. The results of our analysis

for Politics 1 (P1), Vatican 1 (V1), University (U) and the Mall, as

well as for all the datasets together (All), are shown in Figure 3.

The other datasets show similar trends.

The distributions of the popularity of the SSIDs are reported in

Figure 3(a) for a selection of the datasets, one for each type of

event we targeted. As the figure shows, in our datasets the dis-

tributions are heavy-tailed, with very few highly popular access

points coexisting with hundred of thousands of SSIDs stored in a

handful of PNLs. It is also interesting to notice that this result is

consistent across different datasets independently on the data col-

lection methodology. In fact, the datasets collected in local events

(P1, Mall), those collected in international events (V1), and the

long term dataset (U) show the same type of distribution. As ex-

pected, many popular SSIDs are relative to the WiFi network of

public places, such as airports, tourist attractions, university cam-

puses and so on. Among them, there are also SSIDs of a number of

city-wide WiFi networks, such as “Provincia WiFi”, serving around
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Figure 3: Distribution of the popularity of the SSIDs (a) and of the sizes of the PNLs (b) relative to the All, Politics 1 (P1), Vatican 1
(V1), University (U), and The Mall (Mall) datasets.

300K users in Rome, and “Guglielmo”, a WiFi network with more

than 9K hotspots across Europe. Although we found SSIDs that are

popular only because they have very generic names (e.g., “Hotspot”

or “Dlink”), our results suggest that popular, public networks can

indeed be detected by our data collection methodology.

The distributions of the lengths of the PNLs are shown in Fig-

ure 3(b). All the distributions present a peculiar shape: Up to

about 16, the curves approximately follow a heavy-tailed distribu-

tion, then we observe a peak and a very steep drop. This behavior is

easily explained by the fact that many vendors limit the number of

different networks to which send directed probe requests to 16. For

instance, we found that in the Android OS this limit is hard-coded

as a constant with value 16 in the wireless driver source code4.

These results, which are consistent across all the datasets, confirm

the intuition that a significant fraction of users have more than just

1 SSID in the PNL of their device. More in detail, for the All

dataset, 50% of the PNLs of all the devices store one SSID only,

around 30% store between two and 10 SSIDs, and the remaining

20% store more than 10 SSIDs.

4.3 Uncovering the underlying social network
A contribution of our work is to show how WiFi probes can be

used as a new lens to look at a crowd and uncover important infor-

mation about it. One relevant information is the social structure of

the set of people in the crowd.

We can regard the PNL of a device as a list of significant places

visited by the user—significant enough that the user spent some

time to connect to the access point. Therefore, the fact that two

users share one or more SSIDs in the PNL of their devices should

intuitively provide some information on the existence of a social

relationship between the two. This intuition is supported by recent

findings on the spatio-temporal properties of human behavior that

have shown how social relationships can be correctly inferred be-

tween people sharing similar location trails [14, 10]. We investigate

whether, by considering social links inferred from WiFI probes, we

can uncover a social network that underlies the crowd that partic-

ipated to the events we targeted. We do so by describing an auto-

matic method for inferring social links between users starting from

4http://androidxref.com/4.1.1/xref/external/
wpa_supplicant_8/src/drivers/driver.h

the PNLs of their mobile devices. We then apply this method to

show how full-fledged social networks emerge from our datasets.

4.3.1 From affiliation networks to social networks
The SSIDs in the PNLs of a set of devices can be represented in

the form of an affiliation network [23, 5]. An affiliation network,

denoted as G= (V1,V2,E), is a bipartite graph that connects a set V1

of actors and a set V2 of groups they belong to. In our case, V1 is

the set of devices that disclosed at least one entry of their PNL, V2

is the set of the network SSIDs we collected, and an edge (v1,v2)∈
E represents v1 having v2 in its PNL. Statistics of the affiliation

networks relative to each of our datasets are reported in Table 3.

Starting from an affiliation network of devices and SSIDs we

can build a social network Ḡ = (V1, Ē) between devices as fol-

lows: First, we define a similarity measure f : V1 ×V1 → R that,

given two devices u and v, yields the strength of the social relation-

ship between their respective users. Then, we impose a minimum

threshold τ and place an edge {u,v} ∈ Ē only if f (u,v) > τ . A

first possible choice of a similarity measure would be one based

the size of the intersection between the PNLs of the two devices.

In order for an edge to be placed, we would require at least τ = k
common SSIDs. Although widely used in the literature [22, 23],

this similarity measure would not work in our case as it gives the

same importance to all SSIDs regardless of their popularity. In fact,

in Section 4.2 we have seen how very popular SSIDs correspond to

city-wide free networks, or to networks with very generic names

(e.g., “Dlink”) that, intuitively, should not produce strong social

links. On the other hand, less popular SSIDs of home or small

private networks clearly denote a potential strong relationship be-

tween users that connect to them. We therefore need a similarity

measure that takes into account both the intersection of the PNLs

and the popularity of the SSIDs. The similarity measure we found

out to be the one best matching our needs is the Adamic-Adar [1]

which penalizes SSIDs of popular networks in favour of those of

networks shared by few people only (see Figure 4). More formally,

the Adamic-Adar measure is defined as follows:

fADA(u,v) = ∑
w∈N(u)∩N(v)

1

log2(|M(w)|) (1)

where N(u) is the PNL of the device u, and M(w) is the set of

devices with the SSID w in their PNLs. In other words, the Adamic-



Dataset |V1| |V2| |E| d1 d2

Politics 1 (P1) 4,677 14,740 24,494 5.24 1.66

Politics 2 (P2) 4,144 11,145 17,722 4.28 1.59

The Mall (M) 3,859 10,451 19,374 5.02 1.85

Train Station (TS) 5,371 17,295 27,515 5.12 1.59

University (U) 8,853 14,751 32,608 3.68 2.21

Vatican 1 (V1) 7,631 29,533 48,498 6.36 1.64

Vatican 2 (V2) 6,817 23,345 37,149 5.45 1.59

Others 21,824 42,105 80,502 3.69 1.91

All 59,684 133,351 277,214 4.64 2.08

Table 3: Statistics on the affiliation networks of the probes detected in the various experimental settings. The values |V1| and |V2|
refer, respectively, to the number of devices and SSIDs extracted from the directed probe requests. The value |E| is the number
of links between the devices and SSIDs. The average number of SSIDs each smartphone is linked to, and the average number of
smartphones announcing an SSID are given in the columns d1 and d2 respectively.
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Figure 4: Adamic-Adar similarity: Several networks (e.g., pubs, workplaces) shared by a moderate or large amount of people are
necessary for a relationship between two users to be correctly inferred. On the other hand, a single, private home network used by
just a handful of persons may be enough.

Adar measure discounts the importance of an SSID by a factor that

is logarithmic in the number of the devices that connected to it,

which also well adapts to the heavy-tail distribution of the SSIDs

popularities reported in Figure 3(a).

Among the other possible graph similarity measures found in

the literature [21, 17, 1, 19, 27], those based on the Jaccard Co-

efficient [27] would not work because they do not reduce the im-

portance of popular SSIDs. Measures based on random walks and

nodes distance [27, 19] are instead not directly applicable in our

case as affiliation networks are bipartite. Finally, measures based

on textual similarity of SSIDs, determined by applying standard

techniques in information retrieval [29], would not be suited in our

context, as two nodes with exactly the same single (and very com-

mon) SSID would receive the maximum possible similarity score.

4.3.2 Topological properties of the social networks
We studied a number of structural properties of the social net-

works we extracted from our datasets and compared them with

those of commonly studied online social networks [24]. We found

that, consistently in all our datasets, Adamic-Adar with threshold

values close to τ = 0.3 generates social networks with structural

properties that are similar to those of other well-known social net-

works. We therefore discuss the results obtained with this thresh-

old. Note that in our discussion we ignore nodes without edges as

they are irrelevant to our study.

Table 4 reports, for each of our social networks: The number |V |
and |E| of nodes and edges in the network, the average node de-

gree d̄, the number of connected components NC, the size of the

biggest connected component BCC, the diameter D, and the effec-

tive diameter Deff of the BCC (the 90th percentile of the length of

the shortest paths between nodes of the biggest connected compo-

nent), the triadic closure tc, and the clustering coefficient cc. As we

can observe, although our networks feature a large number of con-

nected components (column NC), the biggest one (column BCC)

always includes between 75.9% and 94.2% of all the nodes. The

length of the longest shortest path (column D) and the 90th per-

centile of the shortest paths lengths (column Deff) of the BCCs of

our networks are close to those of popular online social networks.

For comparison, those computed on a publicly available Facebook

dataset are equal to 8 and 4.7 respectively [30]. We found structural

similarities between our networks and popular online social net-

works also when we measured their density by means of the clus-

tering coefficient (column cc) and the triadic closure [39, 16] (col-

umn tc). These are close to those computed in a publicly available

Twitter dataset, which are 0.56 and 0.06 respectively [30]. Consis-

tently with other social networks, in our networks too the distribu-

tion of the nodes degrees follows a power law [3]. These distribu-

tions are reported in Figure 5 for a group of datasets spanning the

various types of events we targeted: Politics 1, Vatican 1, the Mall,

and the long-term University dataset. Finally, for the same datasets,

we report in Figure 6 the distributions of the connected components

sizes. These show that most of the connected components, exclud-

ing the biggest component, contain between 1 and 10 nodes. The

same property can be found in the other datasets too.

Overall, these results show that the Adamic-Adar metric allows

to bring to light meaningful social structures from all our datasets.

We show experimentally why the same cannot be said about a sim-

ilarity measure based just on the size k of the intersection between



Dataset |V | |E| d̄ NC BCC (%) D Deff tc cc

Politics 1 (P1) 2,119 28,250 13.33 89 1,896 (89.4%) 9 3.88 0.144 0.491

Politics 2 (P2) 1,566 9,452 6.04 77 1,375 (87.8%) 10 4.57 0.154 0.505

The Mall (M) 1,742 33,835 19.42 74 1,533 (88.0%) 8 3.66 0.189 0.537

Train Station (TS) 2,397 16,045 6.69 90 2,164 (90.2%) 10 4.56 0.127 0.484

University (U) 2,448 96,498 39.42 59 2,307 (94.2%) 8 3.49 0.200 0.549

Vatican 1 (V1) 4,337 44,502 10.26 159 3,936 (90.7%) 9 4.47 0.145 0.453

Vatican 2 (V2) 3,423 32,239 9.42 172 3,003 (87.7%) 10 4.56 0.149 0.469

Others 8,770 134,188 15.30 798 6,662 (75.9%) 10 4.44 0.132 0.507

All 26,410 572,519 21.68 1,244 23,241 (88.0%) 11 4.70 0.132 0.460

Table 4: Structural properties of the social networks induced by using the Adamic-Adar measure with threshold τ = 0.3.
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in the social networks induced by Adamic-Adar with threshold
τ = 0.3 from the All, Politics, Vatican 1, University and The
Mall datasets.

two PNLs. To do so, we use a KNC-Plot, a tool for analysing the

macroscopic properties of the graphs generated from our affilia-

tion networks defined by Kumar et al. [22]. A KNC-Plot provides

a visual indication on how the number of connected components

and the size of the biggest connected component (BCC) change ac-

cording to the minimum number k of common SSIDs required for

an edge to be placed. Figure 7 shows a sample of the KNC-Plots

of the Politics 1, Vatican 1, the Mall and University datasets. Ac-

cording to the figure, when the threshold k is equal to 1 almost all

the nodes are connected. But increasing just slightly k produces a

steep degradation in the connectivity structure of the graphs. For

instance, with k = 2 the BCCs shrink to around 50% of the nodes,

whereas with k = 3 they shrink to about the 25%. In other words,

the similarity measure based on the size of the intersection of the

PNLs generates an all-or-nothing effect that makes it hard to gain

any insight on the social structure that underlies our datasets. A

similar result was observed in a user-interest graph derived from

Flickr [22].

4.4 Homophily and social influence in vendor
adoption

Social networks based on WiFi probes may be a useful tool for

studying the effects that physical proximity has on people in our

society. Indeed, the way we derived our social networks lever-

ages the intuition that users that connect to the same WiFi ac-

cess point are likely to be socially connected to each other—the

higher the Adamic-Adar measure that generates a link, the higher

the chance that two users meet regularly or even live in the same

place. According to a widely studied sociological theory known

as homophily [31], physical proximity should cause interconnected

users to be related in terms of, for instance, interests, social extrac-

tion, age, or gender. Starting from this observation, we evaluate

whether our large scale data collection methodology may be used

to experimentally confirm theories like that of homophily and so-

cial influence. We do so by measuring the homogeneity in device

vendors adoption in groups of socially interconnected people. In

fact, the choice a user makes of a particular vendor over another

results from a number of factors, such as the user’s wealth or age

or social influence. We therefore expect people closely related to

each other to tend to use devices of the same vendor.

As a measure of the homogeneity in device vendor adoption be-

tween socially connected users, we use the assortativity [33]. In

our case, the assortativity quantifies the extent to which users of

devices of a given vendor are likely to be connected to each other

rather than with users of devices of different vendors. More for-

mally, given a social network G = (V,E) and a partition C of its

nodes according to their respective vendors, the assortativity of G
is defined as follows:

a(G) =
∑i∈C eii −∑i∈C c2

i
1−∑i∈C c2

i
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Figure 7: KNC-Plot for the Politics 1 (P1), Vatican 1 (V1), Uni-
versity (U), and The Mall datasets.

where ci is the fraction of nodes that belong to vendor i and ei j is

the fraction of edges connecting nodes of vendor i to nodes of ven-

dor j. The assortativity gets values in the [−1,1] range. If most of

the social relationships are between users who chose the same de-

vice vendor, then assortativity is positive, as ∑i∈C eii is close to 1.

In the opposite case, that is, if most of the social relationships are

between users who chose different device vendors, then assortativ-

ity is negative, as the values eii are close to 0. Finally, if social

relationships are independent of the device vendor, then assortativ-

ity has values close to 0, as eii ≈ cici.

For each dataset, we study how the assortativity of the corre-

sponding social network varies according to Adamic-Adar thresh-

old τ , so that we can verify whether mutual influence increases

with the strength of the social links. We also perform a significance

test to rule out the possibility that the assortativity of the graph

depends only on the distribution of vendors popularity (shown in

Figure 1). The test consists in generating, for each dataset, a ran-

domized version of the corresponding affiliation network with the

same in-degree and out-degree distribution as the original one. This

is done by iteratively switching the endpoints of pairs of randomly

selected edges until the affiliation network converges to a random

bipartite graph. Then, we compare the assortativity of the social

networks obtained from the original and randomized affiliation net-

work with a given Adamic-Adar threshold.

The results of our measurements are reported in Figure 8 for a

sample of our datasets. The other datasets present similar character-

istics. As the figure shows, the vendor assortativity of our networks

is not only always positive, but also significant, and the assortativ-

ity of the randomized network approximates zero. Second, as the

Adamic-Adar threshold increases, the assortativity increases too,

meaning that stronger social links are associated to stronger mutual

influence.

4.5 Social Analysis
Collecting probe requests of a large number of mobile devices

is an effective way to take a social snapshot of a crowd that par-

ticipated to an event or that live in a certain area. So far, we have

proved it by showing how it is possible to infer the social rela-

tionships between people in the crowd by leveraging the SSIDs in

the PNLs of the devices. The social networks we extracted share

the main properties of those emerging from other contexts, which

confirms that our analysis methodology is sound. We now take a
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Figure 8: Vendor assortativity of the social network (“Origi-
nal”) vs. vendor assortativity of the randomized social network
(“Random”) for different Adamic Adar threshold τ values.

further step. We show that certain characteristics of the popula-

tion that participated to the different events might be inferred from

the probe requests sent by their devices. In particular, we focus on

users’ language and on vendors popularity.

4.5.1 Inferring user languages
We observed that a large fraction of the SSIDs stored in directed

probe requests consist of natural language strings. In fact, as al-

ready discussed in Section 4.2, the SSIDs of many public WiFi

networks reveal the name of touristic attractions (e.g., “Tour Eif-

fel”), hotels (“manhattan hotel”), bars (“Caffe Barberini”), and so

on. On the other hand, we found that many broadband subscribers

customized the SSID of their WiFi network in a number of different

ways. For instance, some of them use their name. Some others use

their SSID as a way to communicate something to their neighbors

(“Please don’t steal our WiFi”), or even to cheer for their favorite

football club (“Forza Roma”). Intuitively, this should make it pos-

sible to get a hint on the language of the social context where a user

lives by just looking at the SSIDs in the PNL of her device. The

language would correspond either to the nationality of the user, if

she lives in her country, or to the language of the country where

she spends most of the time. Following this intuition, we defined

an automatic and scalable user language identification procedure

based on the name of the networks in the PNLs. When applied

to one of our datasets, this technique helps deduce the national or

international nature of the event, and the composition in terms of

nationality of the crowd in the event.

Automatic language detection.
Inferring the language of an SSID is not always an easy task as

SSIDs are very short (about 13 characters on average) and typi-

cally difficult to analyze due to the lack of white spaces or the use

of special characters. This makes even the state-of-the-art meth-

ods for language identification of short texts [2, 6] unsuitable for

our task. We therefore opted for a simple, ad-hoc methodology

that turned out to be very effective. Given an SSID, we tokenize it

after removing special characters and stop-words (including com-

mon words such as “WiFi” and “aDSL”). Each of the words is then
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Figure 9: Distribution of languages in the different scenarios.
Datasets are sorted by percentage of Italian devices.

searched in a large corpora5 of texts in 5 languages (Italian, En-

glish, French and German) and assigned the language where it ap-

pears with highest frequency. The language of an SSID is then

given by the language of the majority of its words. If no language

is detected, or in case of ties, the language of the SSID is classified

as unknown. Similarly, the language of a user is set to be that of

the majority of the SSIDs in the PNL of her device, classifying it

as unknown in case of ties. We also improved the accuracy of our

automatic classification by complementing it in two ways. First,

we manually annotated the language of the first 2K most popular

SSIDs (∼ 2% of the total) in our All dataset. Due to the skewed

distribution of SSIDs popularity (see Figure 3), these SSIDs appear

in a very large fraction of PNLs (∼ 75%), thus greatly improving

the detection accuracy with a manual task that requires just a few

minutes to be completed. Second, we associated to SSIDs contain-

ing the name of popular broadband providers the language of the

country where the provider operates. For instance, “FASTWEB” is

assigned to Italian, “Orange” to French, “Verizon” to English and

so on. This is particularly useful to classify the language of those

broadband WiFi networks that were left with their default SSID.

We checked the accuracy of our classification method over a ran-

domized sample of 1000 devices manually annotated by a panel of

three independent judges. On average, the judges found the per-

centage of correctly classified devices to be 92%. To measure the

level of agreement between the judges, we used a standard NLP

approach known as Free-Marginal k agreement [38]. The resulting

agreement value of k = 82% validates the reliability of our manual

review process.

Results.
Figure 9 reports the distribution of the languages detected in our

datasets. For clarity, in the figure we explicitly show the Italian and

5Available at http://wacky.sslmit.unibo.it/doku.
php?id=corpora

English languages only, aggregating all the remaining ones as “Oth-

ers”. Our results show a strong correlation between the percentage

of Italian devices and the international nature of the events. More

in detail, Vatican 1 (V1) and Vatican 2 (V2)—described as inter-

national events in Section 3.1.1—are amongst the datasets with the

lowest percentage of Italian devices. The Train Station (TS) dataset

too shows characteristics typical of an international event. This is a

direct consequence of the fact that the central train station in Rome

is located in one of the most international areas of the city. The

train station also happens to be the main hub connecting the city to

its airports, which makes it an almost forced stop of any tourist that

visits Rome. The Mall, Politics 1 (P1), Politics 2 (P2), and Other

datasets show, instead, a high (i.e., > 50%) percentage of Italian de-

vices, confirming the fact that these events mostly consisted of an

Italian crowd. Nevertheless, the percentage of Italian devices that

were detected in these datasets is still significantly lower than that

of the University (U) dataset. This is because the surroundings of

the university entrance where we positioned our fixed antenna (see

Section 3.1.1) were almost exclusively frequented by students. As

in our university there are very few courses that are taught in En-

glish, these students are either Italian, or foreigners speaking Italian

and living in an Italian social context.

Assortativity of SSIDs’ languages.
Our SSID language detection method can also be used to verify

the intuition that people tend to connect to networks of the same

nationality. To do it, we first build the graph GSSID of WiFi net-

works that share common users. More specifically, we add an edge

between two networks if there is at least one device that connected

to both of them. Then, we compute the language assortativity of

GSSID with the same technique described in Section 4.4 but, this

time, by partitioning the nodes of the graph according to their lan-

guage. The result confirms our intuition as we found a positive

and significant language assortativity of 0.20. By comparison, the

language assortativity of the randomized graph of SSIDs is −0.01,

showing that the result does not depend on the distribution of lan-

guage popularity.

4.5.2 Demographics of brand penetration
We now focus on device vendors. Our objective is to understand

what the distribution of vendors in a dataset reveals about the cat-

egories and the socioeconomic status of people that participated to

the corresponding event. In Figure 10 we show the distributions of

the device vendors of each of our datasets. Notice how the distribu-

tion of vendors varies in a less marked way from event to event with

respect to that of users languages. This is expected, as language

characterizes people in a much stronger way than the choice of a

device vendor. However, note that the vendor distribution is com-

puted over the total number of devices in each dataset, which can

be up to 4 times higher than the number of devices we could infer

the language of (compare column “Devices” with column “PNLs”

on Table 2). Therefore, small variations in the distributions can be

considered significant in this case. That said, there are two trends

that emerge from our results. First, the Vatican 1, Vatican 2 and

Train Station datasets all feature a very similar vendor distribution,

which is characterized by a high (∼ 62%) percentage of Apple de-

vices and a low (∼ 15%) percentage of Samsung devices with re-

spect to most of the other datasets. Interestingly, these datasets

correspond also to the events where we observed a significant pres-

ence of tourists. Based on the observation that Apple devices are

typically more expensive that the others, these results can suggest

that foreigners visiting Rome may represent a sample of people that

are, on average, wealthier than those that participated to the local
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Figure 10: Distribution of vendors in the different scenarios.
Datasets are sorted by percentage of Apple devices.

events. This is reasonable, since a trip to a foreign country, espe-

cially in a historical city like Rome, can be rather expensive. Local

events, on the opposite, have the potential to attract an audience

which is wider both in terms of social extraction and economic sta-

tus. Second, we noticed that the differences in vendor popularity

between local events is correlated with the difference we observed

in the average age and social status of the people that participated.

Again, this may be caused by Apple devices being more expensive.

More in detail, we can notice a steep drop in the percentage of Ap-

ple devices when comparing the Politics 2 (∼ 65%) to the Politics 1

(∼ 54%) dataset, and the Mall (∼ 60%) to the University (∼ 51%)

dataset. In fact, the people that participated to the Politics 2 event

organized by the conservative party were, on average, older and

wealthier than those that participated to the Politics 1 event. Also,

the Mall is frequented by a wider range of people with respect to

the University, which is mainly frequented by students who are typ-

ically on a budget. Finally, notice how the Others (∼ 60% of Apple

devices) dataset shows a distribution very similar to that of the Mall

dataset. Both datasets, in fact, represent a rather uniform sample of

population. Overall, these results suggest that difference in vendor

distribution between two events might reveal a significant differ-

ence in the people that participated to them. The most compelling

evidence of this fact is that the difference in age and socioeconomic

status we observed between supporters of Politics 1 and Politics 2

parties is well represented by their difference in terms of popularity

of Apple devices.

4.6 Temporal analysis on the University data-
set

As opposite to the other datasets, which have been collected

during one-shot events, the University dataset is the result of a

6 weeks long observation period performed from a fixed vantage

point at the campus entrance. In this section we show how this

long-term dataset allows to characterize the social dynamics of an

observed area and to get further insights on its target population.

Also, we study the correlation between co-occurrence of people

and the strength of their social relationship as inferred by using the

Adamic-Adar metric. Our studies are related to those regarding the

characteristics of human social behavior [18, 35].

4.6.1 Recurrent patterns
Figure 11(a) reports the number of new (solid column) and known

(dashed column) devices that were detected in each day of obser-

vation. Figure 11(b) reports, instead, the number of detected de-

vices in a sample day. Our observations are consistent with the

intuition that students’ life is very predictable. Indeed, according

to Figure 11(a), the number of detected devices abruptly decreases

in correspondence of both week-ends and days when courses are

suspended due to seasonal vacations (e.g., Week 1). Plus, consis-

tently across all working days, the number of detected devices has a

peak around lunch time (Figure 11(b)) and decreases in the evening.

Also the repetitive schedule typical of students’ life is captured in

this dataset, as it takes only a few days for the number of newly

detected devices to drop down to 30% of the total (Figure 11(b)).

This suggests that the probability that a student does not visit the

campus for more than a couple of working days in a row is small.

In fact, most of them visit the campus with a very high frequency,

which is confirmed by Figure 12 where we plot the distribution

of the number of times the devices were detected in different time

slots of 1 hour. According to the distribution, 40% of the devices

were detected more than 100 times (∼ 2 times per day on average).

Overall, these results show how a long-term collection of probes

requests adds a further dimension to the characterisation of a tar-

get population. In our case, we found a number of properties that

match the typical students’ movements patterns. This complements

the other insights we inferred on students’ language and socioeco-

nomic status.

4.6.2 Smartphone co-occurrences
As observed in other contexts [8, 13, 36], the simultaneous pres-

ence of pairs of people in a given place denotes the existence of a

possible social relationship between them. At the same time, the

Adamic-Adar similarity we defined in Section 4.3 is based on a

similar intuition, as it assigns a higher strength to social links con-

necting people that are more likely to frequent the same places.

Intuitively, there should be a correlation between these two ways of

inferring social links. The long-term University dataset allows to

confirm this by verifying whether increasing values of the Adamic-

Adar similarity between two devices correspond to a higher proba-

bility of their simultaneous occurrence. To do so, we first divide the

time in slots of 120 seconds, which are sufficiently large to allow

most of the devices to transmit their probes. Then, we group pairs

of devices together in buckets according to their Adamic-Adar sim-

ilarity. Finally, we average the number of co-occurrences observed

for the pairs in each bucket. The results, shown in Figure 13, con-

firm our hypothesis, as we can observe a positive correlation be-

tween the Adamic-Adar similarity and the average number of co-

occurrences (Pearson coefficient 0.858. 1-tailed p-value < 0.005).

5. CONCLUSIONS AND FUTURE WORK
Probe requests, both broadcast and directed ones, are a useful

tool that enables energy-limited mobile devices to efficiently and

transparently discover available access points and switch between

them. The goal of this work was to show that, besides from their

basic utility, smartphone probes actually bring insightful and inter-

esting information about a crowd at an event or about a target pop-

ulation. To fully investigate this idea, we organized a three months

long campaign of probe collection. During our campaign we tar-

geted scenarios differing in both terms of scale and characteristics

of the population involved: From campus and city-wide, to national
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and international scenarios. As a result we collected more than

11M probes sent by more than 160K different smartphone devices

overall.

In this paper, we presented an in-depth study of these novel

and large-scale datasets. The most important findings of our study

are the following: First, we developed an automated methodology

through which to derive the underlying relationship graphs between

the users in each scenario, and showed how all these graphs feature

properties that are typical of social networks—user and SSID de-

grees distributed as a power law, short diameter, high clustering co-

efficient and so on. Then, we studied how, in our social networks,

groups of interconnected people tend to choose the same device

vendor with a probability that increases with the strength of their

social relationship. These results support the theory of homophily

and social influence between people living in geographical prox-

imity. We also performed, for the first time, language detection on

the broadcast SSIDs, and exploited the vendor ID to show how the

probes can directly reflect the sociological aspects of the people

involved in each scenario like nationality, age, and socioeconomic

status.

We believe this is just a first step towards a new, non invasive

methodology for uncovering non-online social networks. As a fu-

ture work, we plan to include information regarding the location

of the networks referred to by the probes. This could be done, for

instance, by using crowd sourced databases of 802.11 networks ob-

served around the world, like Wigle6. This extra information will

help us to achieve an even stronger characterization of the sample

of the population contained in our datasets.
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