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Abstract—The battery limits of today smartphones require
a solution. In the scientific community it is believed that a
promising way of prolonging battery life is to offload mobile
computation to the cloud. State of the art offloading architectures
consists of virtual copies of real smartphones (the clones) that
run on the cloud, are synchronized with the corresponding
devices, and help alleviate the computational burden on the real
smartphones. Recently, it has been proposed to organize the
clones in a peer-to-peer network in order to facilitate content
sharing among the mobile smartphones. We believe that P2P
network of clones, aside from content sharing, can be a useful
tool to solve critical security problems on the mobile network
of smartphones. In particular, we consider the problem of
computing an efficient patching strategy to stop worm spreading
between smartphones. The peer-to-peer network of clones is used
to compute the best strategy to patch the smartphones in such
a way that the number of devices to patch is low (to reduce the
load on the cellular infrastructure) and that the worm is stopped
quickly. We consider two well defined worms, one spreading
between the devices and one attacking the cloud before moving
to the real smartphones; we describe CloudShield, a suite of
protocols running on the peer-to-peer network of clones; and we
show by experiments that CloudShield outperforms state-of-the-
art worm-containment mechanisms for mobile wireless networks.

Index Terms—Cloud computing, smartphones, P2P.

I. INTRODUCTION

The number of mobile apps available for smartphones has
grown exponentially in the last years. They are distributed by
online stores such as the App Store for the iPhone and the
Android Market for Android systems. The App Store makes
a number of checks before making the applications available
for download. Of course, the checks give some reasonable
confidence that the applications run correctly but does not
guarantee that they are immune to viruses and malware. The
Android Market is using a different strategy that helps Android
spread faster—the online store is open without particular
limits or quality checks to application developers that want to
distribute and advertise their applications. Clearly, this makes
Android an even easier target to viruses and malware.

Another strong and very recent trend in mobile comput-
ing is to offload computation of heavy mobile applications
on the cloud. This is useful in many ways. Offloading
computation from mobiles on the cloud helps mitigate the
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well known energy problems of modern smartphones. Recent
work such as MAUI [4], CloneCloud [3], ThinkAir [5], and
SociableSense [10] show how method-based or application
partitioning-based offloading techniques to the cloud drasti-
cally improve computation efficiency and prolong battery life
of mobile devices. More recently, in the C2C platform [6]
every smartphone is associated with a software clone on the
cloud and the clones are interconnected in a peer-to-peer
fashion exploiting the networking service within the cloud.
C2C seems like a perfect candidate to prevent malware spread.
Indeed, the peer-to-peer network of clones on the cloud can be
used both to check newly installed applications and to monitor
virus spreading on the mobile devices.

In this paper we advocate the idea that C2C, a peer-to-peer
network of virtual smartphone clones running on the cloud,
can help stop worm attacks spreading from smartphone to
smartphone on the mobile network. The worm propagates by
using bluetooth connection, mms messages, phone calls, or
any other means of infection available among smartphones.
We work under the assumption that the links of the peer-to-
peer network of the clones reflect the sociality among the real
smartphone users (this is easily done since every clone on
the cloud synchronizes with its corresponding real device).
The first problem that we consider in this paper is to devise
a mechanism to patch the smartphones in such a way that
the number of devices patched is low, to make the scheme
cheap, and that the probability of stopping the worm is high.
As a solution, we propose CloudShield—a suite of schemes
that cope with worm spread on cellular networks by using a
peer-to-peer network of clones on the cloud to compute the
patching strategy. The idea behind CloudShield is as follows:
It selects few “important” clones in the cloud to patch; in
turn, the patched clones transmit the patch to the respective
smartphones by thus effectively containing the worm spread
in the cellular network. We test our strategies on two different
datasets—Facebook [11] and Live Journal [1], [7])—and com-
pare them to the state-of-the-art worm-containment schemes
on dynamic social networks [12], [9]. The experimental results
show that our approaches outperform both [12], [9] in yielding
lower infection rates after patching a smaller number of nodes.

Then, we consider the possibility that the weak link is the
cloud itself. We assume that a worm attacks the p2p network
of clones on the cloud with the goal of spreading on the
smartphones. In this case, the attack is probably faster and
we assume that the patch is not yet available. We propose a
two phase solution: At detection time, we make the clones
weaken the incoming links from their peers in the cloud, so
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that the worm is contained as much as possible. Then, once
the patch is released, we apply our CloudShield schemes to
select effective patching sets, patch the respective clones, and
finally, reset the capacity of the links. Our experimental results
show that this combined strategy yields infection rates reduced
with up to 20% of the nodes.

II. SYSTEM MODEL AND MOTIVATION

In our system each cellphone is associated with a software
clone in the cloud [3], [6]. The clone runs the same operating
system and apps as the real device. The device sends updates
to and gets updates from the clone whenever new data is
generated and a new application is installed. In addition, the
clones are connected to clones of other “friend” devices on the
cloud. Friendship is determined by the rate of communication
between the real devices: Smartphones that call/text/email each
other frequently have the respective clones connected in the
P2P networks on the cloud [6].

Previously presented infrastructure-based worm contain-
ment schemes consider worms that propagate smartphone-to-
smartphone. They aim at individuating a set of crucial smart-
phones to patch so to contain the worm spread in the network.
From the other side, proximity-based schemes distribute the
patch along efficient but slow blue-tooth paths. In this case
as well, flooding the network with the patch may not be an
option since patches are usually large files and smartphones
are battery limited devices. As we already discussed in the
related work section, both schemes try to exploit the social
relationships among the users to better select fewer and more
effective nodes to patch. Here we take a similar approach, but
on the P2P network of clones on the cloud: We send the patch
to few, effective clones, that in turn transmit it individually to
the respective devices. Recall that the clones are up-to-date
with statistics on the communication of the real devices.

However, the P2P network of clones can potentially intro-
duce a new attack to the real devices: A virus/worm that infects
a clone, either during a synchronization with the (infected)
device or during a communication with an (infected) friend
clone, can propagate with enormous speed exploiting the P2P
links in the cloud. The infection is then directly propagated
to the real devices as soon as they communicate with their
clones. One might think that this attack is mitigated if clone
B does not accept digital content or does not install any new
applications suggested by friend clones without consulting
the user first. However note that users get bored of systems
with features that require their intervention. Mr. Clippit for
example, which was Microsoft’s office assistant, was cut
off the system because it annoyed the users with too many
questions and suggestions1. Moreover, experience has taught
us that people tend to blindly agree with settings that allow
automatic download and installation of software suggested
by already installed software or updates. Lastly, but probably
most importantly, even if the user has to intervene and make
a decision every time a friend clone suggests its clone to

1http://www.guardian.co.uk/media/2001/apr/11/advertising2

install an app, she will probably accept the suggestion. Past
experience has shown that phenomena such as viral marketing
in social networks are successful because people tend to follow
suggestions from their friends almost blindly. This was the
case of the Koobface worm that spread on Facebook in 2008:
It sent infected links2 to the list of friends of the victims.

III. THE METHODOLOGY

We consider the P2P network of clones to be a graph G =
(V,E), where V is the set of clones and E is the set of edges
representing the communication links among them. The links
reflect the frequency of communication between the devices in
the real world. Graph G is directed and weighted. The weights
are derived from the frequency of calls/texts/emails/sharing of
files through blue-tooth between the two devices in the real
world.

Unfortunately we cannot replicate the experiments done
in [12], since the dataset of cellphone calls used in that work
is not publicly available. Thus, we use two social-network
datasets that are available and that can be used to replicate the
experiments: (1) FB [11], a large Facebook subgraph of 63’392
nodes used also in [9], and (2) LJ [1], [7], a directed graph
representation of the LiveJournal social network of 4’847’571
nodes. We generate the Facebook’s dataset oriented version by
transforming each friendship link among nodes u and v the
two directed edges (u, v) and (v, u) of the same weight.

The FB dataset is enriched with information on over 1.5M
wall posts between users for the period September 2006–
November 2009. Conversely, the LJ dataset does not include
information of user posts. Note though that the direction of
the edge (u, v) on the Live Journal social network means that
v has subscribed to u′s journal, and thus, gets all the posts
published by u. So, in this case, we suppose that the weight
of all the out-links of a node is 1.

A. Worm propagation model

We use the same worm propagation model used in [9],
[12]: The worm is able to explore the social strength of the
communication links among nodes. Once it infects a node,
it tries to expand to its friends by exploiting communication
opportunities from between the two to send infected files or
suggest installation of malware apps. Thus, the probability of
the actual infection happening depends on both the commu-
nication frequency (link weight) and on how likely is it that
the possible victim accept suggestions sent by the infected
neighbor. This factor is related to the level of trust that the
possible victim has towards the infected node: We are more
likely to follow links included in emails or messages received
by our close friends (which we trust more) than from strangers.

We measure the trust level of a node v towards its neighbor
u as follows:

τv,u =
|OFu ∩OFv|
|OFv|

. (1)

The intuition behind the above equation is that we deem as
more valuable (and thus trust more) people that have many

2http://gawker.com/5103848/why-the-koobface-virus-spread-so-fast
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friends in common with us. Then, the probability that a worm
spreads from node u to node v through link (u, v) becomes:

p(u,v) = w(u,v) · τv,u, (2)

where w(u,v) is the weight of the directed edge (u, v). Again
as in [9], [12] we assume that the time that the worm
takes to spread from an infected peer to another is inversely
proportional to the communication frequency between the peer
and this specific out-friend.

B. The CloudShield Scheme

We base our solution on the idea that socially-important
nodes are typically very influential in terms of information
spreading in general, and in worm spreading in particular.
This is due to a combination of two factors: Their position
in the network and the large number of links. Moreover, we
want the solution that implements this idea to be simple and
computationally efficient in finding the subset of nodes to be
patched. The simplest it is, the less it costs to deal with the
dynamics of the network (links that appear and disappear).
With this in mind we build the following three versions of
our CloudShield solution based on different methodologies on
selection of nodes to patch:

1) Page-rank CloudShield (PR-CS): It deems as important
nodes with high page-rank in the network. The intuition
behind this is as follows: A node is at risk of infection if
it interacts frequently with other nodes with high risk of
infection. Of course, this is very similar to PageRank [2].

2) Degree CloudShield (DG-CS): It deems as important
nodes with high out-degree weight in the network. In-
tuitively, once a node gets infected, the highest its out-
degree, the highest its contribution in further spreading
the worm to other nodes.

3) Greedy Degree CloudShield (G-DG-CS): In social net-
works, the nodes with highest degree tend to cluster.
Following this intuition, we present G-DG-CS, where,
similarly to DG-CS, nodes with high out-degree are
candidates to be patched first. However, the selection is
different: After the highest out-degree weight node is
chosen, all its in-links are dumped and the out-degree
weight of its incoming friends is updated.

As we will see from our experimental results, our sim-
ple schemes outperform previous ones that require compli-
cate computation of network clustering or community sub-
structures (e.g. [12], [9]). This is due to the fact that the worm
exploits the social links/paths in infecting the network. The
more a scheme manages to “destroy” such links by patching
crucial nodes, the more the structure of the network changes,
as far as the worm is concerned. Most importantly, our
schemes require little computation and can be even computed
in a distributed way—without the need of an authority—at the
cost of inducing some traffic overhead on the C2C network.
This makes it easier to handle network dynamics such as
insertion or deletion of edges (new social relationships that
start or old ones that end).

IV. EXPERIMENTAL RESULTS

To validate our CloudShield patching methods we compare
them with the states of the art in terms of infrastructure- based
patching schemes for cellular networks: Clustered Partitioning
(CP) [12] and Community-based partitioning (M) [9]. To
the comparison we also add Random Partitioning, used as a
benchmark in [12].

A. Worm attack model and patching threshold

To model the worm attack at its initial phase we follow the
method in [12], [9]: We first induce the infection to a small
number of users (0.02% of nodes), randomly and uniformly
chosen on the network. This is to simulate the initial worm
sources during the early stages of the infection. The worm
starts spreading in the system till it reaches a certain number
of infection rate (percentage of nodes infected), given by a
patching threshold parameter α. This parameter represents
the timespan between the very first infection phase and the
moment in which the worm is detected and the patch is
generated. Then, we apply the patches to nodes selected by any
of the above schemes. The simulation finishes when the worm
does not expand any further in the network. The performance
of each scheme is measured by the infection rate reached
by the worm as a function of the number of nodes patched
with each of the patching schemes. Each experiment is run
1000 times and the results are averaged. As far as CP [12] is
concerned, since it is impossible to derive the number of nodes
to patch that each k value yields, we compute the patching sets
for every possible value k.

B. Stopping the worm on the cellular network

Here we assume the first attack: The worm is spreading
in the cellular network, and does not attack the cloud. This
scenario is justified by the large number of existing worms that
spread between smartphones by using bluetooth, wi-fi, email,
mms, and so on. For each scheme we study the rate of the
infection as a function of the patching ratio. This is done for
two values of patching threshold α: 2% and 10%. The results
for both FB and LJ are shown respectively in Figures 1 and 2.
Let us start from the FB dataset. First we note that our three
schemes have the best performance. For patching ratios up to
20%, PR-CS outperforms both DG-CS and G-DG-CS. This is
because the Facebook graph is very dense. As a result, DG-CS
tends to send the patch to nodes that are “close” in the graph.
When the values of patching ratio increase, we get a different
scenario: For patching thresholds in the interval [20%, 35%],
G-DG-CS becomes the most performing. This is due to the fact
that the higher is the number of the nodes patched, the larger
is the number of edges dropped by the G-DG-CS scheme.
This procedure makes so that very well connected clusters in
the network get “destroyed” soon after a few cluster members
are patched, and the scheme starts therefore selecting nodes
in other parts of the network by better distributing the patches
on the cloud. That said, this procedure eventually ends up
“destroying” all the strongly connected clusters of the network:
The graph results so sparse that the further selection choices
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Fig. 1. Infection rate vs the percentage of patched nodes for the various
schemes on the FB dataset. “R” denotes the random scheme; “CP” denotes
the Clustering Partition; “M” denotes the Community-Based scheme; “PR-
CS”, “DG-CS”, and “G-DG-CS” denote respectively the Page-Rank, Degree
and Greedy Degree CloudShield schemes.

do not impact much the infection rate. This is why for larger
patching thresholds (from 40% and on) the simple degree
scheme (DG-CS) yields better results.

Now, let us consider the LJ dataset. The graph is much
larger and sparser than FB and the distribution of the out-
degrees of the nodes in LJ decays faster than that of FB.
So, high out-degree nodes are not only very well connected
between them, but also are very central to the graph. Indeed,
the average clustering coefficient for the LJ dataset is higher
than that of the FB dataset (respectively 0.3123 for LJ and
0.22 for FB). So, the node sets chosen by our degree based
schemes here tend to be even more clustered, thus yielding
lower performance with respect to our PR-CS scheme, which
is the best for the DJ dataset. Also note that the features of the
LJ dataset make so that for low values of patching ratios the
CP scheme performs very badly. This is due to the fact that
CP yields very large partitions. So, even though CP “cuts” the
bridge edges between clusters, it does not manage to stop the
worm infecting the many nodes of a given partition.

Note that for higher values of patching threshold all the
schemes perform worse. As the worm has already gotten to
many nodes, it is very difficult to effectively contain it with
the same number of patched nodes by all the schemes.
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Fig. 2. Infection rate vs the percentage of patched nodes for the various
schemes on the LJ dataset. “R” denotes the random scheme; “CP” denotes
the Clustering Partition; “M” denotes the Community-Based scheme; “PR-
CS”, “DG-CS”, and “G-DG-CS” denote respectively the Page-Rank, Degree
and Greedy Degree CloudShield schemes.

C. Stopping the worm on the cloud

We consider the second scheme in which the worm manages
to break down the security of the cloud and overtake the
clones. This scenario considers a worm that might exist in the
future and that could try to exploit the p2p network of clones
in the cloud. It firstly infects a subset of cloud clones, again
considered to be as small as the 0.02% of the whole network.
Then, it starts propagating towards other clones, exploiting the
p2p cloud social links among them. As soon as it manages to
infect the maximum number of clones possible, it makes the
infected clones transmit the worm to the respective cellphones.

In this scenario our schemes contain the worm with the
same efficiency as the previous one. However, here we are
dealing with a stronger worm, for which the patch might
be more difficult and complicated to get. What’s most, even
if the patch is released early, no one guarantees that it is
installed in time by users—recall the example of the SQL
Slammer malware [8], for which the patch was released 6
months earlier than the attack time, that still managed to
infect more than 75’000 users that had not installed the patch
in time. With this in mind, we introduce another parameter
in our system, the detection threshold δ, representing the
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Dataset δ

2% 5% 10%

FB 40%τ 30%τ 25%τ

LJ 50%τ 50%τ 45%τ

TABLE I
VALUES OF QUARANTINE TRUST τq THAT ALLOW THE VIRUS TO EXPAND
TO INFECTION RATE α = 20%. τ DENOTES THE INITIAL TRUST VALUE.
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Fig. 3. Reduction of the infection rate on the FB dataset for the various
schemes when introducing the quarantine phase (δ = 10%). “PR-CS”, “DG-
CS”, and “G-DG-CS” denote respectively the Page-Rank, Degree and Greedy
Degree CloudShield schemes.

fraction of nodes infected at the moment in which the attack is
detected. We improve the efficiency of our approach in worm
containment in the following way: When the attack is detected,
the clones enter in a “quarantine” state, during which they
became more cautious and trust less their incoming friends.
This assumption is indeed realistic: When users know that
a worm is spreading, we pay more attention on what links
we follow and on what software we install. To simulate this
behavior in the p2p network of clones we make each healthy
clone diminish the trust τ towards its incoming friends. The
goal of the quarantine phase is to contain the worm as much
as possible from spreading, till the patch is released.

We study the impact of the quarantine phase on our schemes
by fixing the patching threshold to 20% and the detection
threshold δ to 10%. We run the following experiment: When an
infection rate of δ is reached, clones diminish their incoming
links trust from τ to τq until the worm infects a rate of
α = 20% of the network nodes. Then, we patch the nodes
according to each of our schemes (PR-CS, DG-CS, and G-DG-
CS), restore the trust to its initial value, and wait till the worm
propagation is stopped. Each experiment is run 1000 times and
the results are averaged. Figures 3 and 4 present the reduction
of the infection rate for each scheme when coupled with the
quarantine phase, for three different values of detection rates
δ. As can be noticed from the figures, the gain is very high
for low patching rates (up to 20% on the FB dataset), and it
lowers with the increase of the patching ratio.
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Fig. 4. Reduction of the infection rate on the LJ dataset for the various schemes
when introducing the quarantine phase (δ = 10%). “PR-CS”, “DG-CS”, and
“G-DG-CS” denote respectively the Page-Rank, Degree and Greedy Degree
CloudShield schemes.

V. CONCLUSION

In this paper we advocate the use of a p2p network of
smartphones clones on the cloud as a mechanism to worm
containment. We consider the problem of stopping worms on
the mobile network of smartphones, and then we consider the
problem of stopping a worm spreading on the p2p network. We
introduce simple mechanisms that can be computed quickly by
the P2P network of clones and that outperform the state of the
art on worm containment for mobile cellular networks.
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