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Abstract. The Minimum Energy Broadcast problem consists in finding
the minimum-energy range assignment for a given set S of n stations
of an ad hoc wireless network that allows a source station to perform
broadcast operations over S.

We prove a nearly tight asymptotical bound on the optimal cost for
the Minimum Energy Broadcast problem on square grids. We emphasize
that finding tight bounds for this problem restriction is far to be easy: it
involves the Gauss’s Circle problem and the Apollonian Circle Packing.
We also derive near-tight bounds for the Bounded-Hop version of this
problem. Our results imply that the best-known heuristic, the MST-
based one, for the Minimum Energy Broadcast problem is far to achieve
optimal solutions (even) on very regular, well-spread instances: its worst-
case approximation ratio is about 7 and it yields £2(y/n) hops.

As a by product, we get nearly tight bounds for the Minimum Disk
Cover problem and for its restriction in which the allowed disks must
have non-constant radius.

Finally, we emphasize that our upper bounds are obtained via polynomial
time constructions.

1 Introduction

An ad-hoc wireless network consists of a set S of radio stations connected by
wireless links. We assume that stations are located on the Euclidean plane. A
transmission range is assigned to every station: a range assignment r : S — R
determines a directed communication graph G(S, E) where edge (i, j) € E if and
only if dist(4, j) < r(¢) where dist(i, j) is the Euclidean distance between ¢ and
J. In other words, (i,5) € E if and only if j belongs to the disk of radius r(4)
centered at i. The transmission range of a station depends on the energy power
supplied to the station. In particular, the power Ps required by a station s to
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transmit data to another station ¢ must satisfy the inequality

Py
dist(s,t)* —

where « > 1 is the distance-power gradient. In the empty space, a = 2 (see [20]):
this is the case considered in this paper.

Stations of an ad-hoc network cooperate in order to provide specific network con-
nectivity properties by adapting their transmission ranges. A Broadcast Range
Assignment (for short Broadcast) is a range assignment that yields a commu-
nication graph G containing a directed spanning tree rooted at a given source
station s. A fundamental problem in the design of ad-hoc wireless networks is
the Minimum Energy Broadcast Problem (for short Minimum Broadcast): it con-
sists in finding a Broadcast of minimal overall energy power [7,10,18]. A range
assignment r can be represented by the corresponding family D = {D;, ..., Dy}
of disks, and its overall energy power (i.e. cost(D)) is defined as

‘
cost(D) = Z r? where r; is the radius of D; (1)

i=1
The Minimum Broadcast problem is known to be NP-hard [5] and the best-
known approximation algorithm is the MST-based heuristic [1,10]. The MST-
based heuristic computes the minimum spanning tree of the complete graph
induced by S, then, it assigns a direction to the edges from the source s to
the leaves; finally, it assigns to each node ¢ a range equal to the length of the
longest edge outgoing from 4. This heuristic is efficient and easy to implement,
S0, its worst-case approximation analysis has been the subject of several works
over the last five years. In particular, the first constant upper bound (~ 40) on
the approximation ratio was determined in [5]. A rather sophisticated analysis,
recently introduced in [1], yields the tight upper bound 6. The tightness follows
from the lower bound proved in [4, 10] by considering unlike input configurations.
The worst-case analysis is often not sufficient to evaluate the practical inter-
est of a heuristic. It might be the case that the MST-based heuristic provides
nearly optimal solutions for most of natural and practically-relevant instances.

Recently, experimental studies have been presented on this issue [11, 6, 10].

1.1 Our results

Minimum Broadcast Problem. In this paper, we address the above issue
by adopting an analytical approach: we consider Minimum Broadcast and some
other related problems on square grids. Square grids have been often considered
in wireless networks since they well-model some well-spread, practically relevant
ad-hoc network topologies [8, 19, 20]. One can see that the MST-based heuristic,
on a square grid of n points (without loss of generality, adjacent points are
placed at unit distance), returns, in the worst-case, a solution of cost n — 1. On
the other hand, what is the optimal cost on the square grids? One may think that



determining this cost is an easy task for so simple instances. On the contrary,
this is far to be true: as we will see later, this analysis involves the well-known
mathematical Gauss’ Circle problem [15,17] and the Apollonian Circle Packing
[13,21]. Our first contribution is the following result.

Theorem [Broadcast]. If B* is any optimal Broadcast for the square grid G of
n points, then

= —0(vi) < cost(B") < 1.01013% +O(v/)

The upper bound is achieved via a polynomial time construction.

The above upper bound implies that the MST-based heuristic yields, in the
worst-case, a solution cost which is about 7 times larger than the optimum.

Minimum Cover Problem. Any Broadcast yields a (disk) cover of the grid
and a communication graph that contains a spanning tree. A cover C of a set
S of points is a set of disks C = {Ds,..., Dy} of radius at least 1, centered
at some points of S, that covers all points in S. The cost of C is defined as
cost(C) (see Eq. 1). The Minimum Cover problem consists in finding a cover for
S of minimum cost. Observe that this is a variant of the well-known NP-hard
Minimum Geometric Disk Cover [9,16].

In general, a cover does not suffice to provide a feasible solution for the Minimum
Broadcast problem. A natural question here is whether (or when) the minimum
cover cost is asymptotically equivalent to the minimum broadcast cost. This
question is formally addressed by determining the cost of a minimum cover for
square grids.

Theorem [Cover]. If C* is any optimal cover of the square grid G of n points,
then

n/5 < cost(C*) < n/5+ O(yv/n)
The upper bound is achieved via a polynomial time construction.

From the above theorems, it turns out that the cost of the cover is significantly
lower than the cost of the broadcast. However, next theorem shows that this is
not the case when we require that the disks are sufficiently large.

Theorem [Large Disk Cover| Let f(n) = w(1). The cost of any cover of G with
disks of radius at least f(n) is at least = — o(n). The upper bound is achieved
via a polynomial time construction.

We emphasize that there are important network scenarios in which the installing
cost (i.e. the cost of installing an omni-directional transmitter at a given location)
is rather high and it must be "amortized” by a relevant use of the antenna. In
such cases, it is convenient to assign positive range to a station only if such a
range (so, disk) is large enough.

Bounded-Hop Broadcast. An important version of the Minimum Broadcast
problem is the one in which feasible solutions must guarantee a bounded number



of hops: The number of links (i.e. hops) in the path from the source to any
other node must be not larger than a fixed bound. This problem version is
relevant since the number of hops is closely related to the delay transmission
time. The hop restriction finds another application in the context of reliability:
Assume that, in a communication network, link faults happen with probability p
and that all faults occur independently. Then, the probability that a multi-hop
transmission fails exponentially increases with the number of hops. For further
motivations in studying bounded hops communication see [2,12, 14, 22].

A main question here is the following: Does broadcasting with a bounded number
of hops require a significantly larger cost than broadcasting with an unbounded
number of hops? Intuitively speaking, one might figure out that the right answer
is the positive one since the cost is proportional to the area of the solution disks
and bounded-hop solutions require larger disks. Observe also that the use of large
disks yields large disk overlapping. Rather surprisingly, this is not the case: we
derive a broadcast for grids that uses only a constant (i.e. not depending on n)
number of disks and thus yields a constant number of hops. This solution has a
cost which is very close to that of the unbounded-hops version.

Theorem [Broadcast with few Hops]. A positive constant ¢ exists such that it is
possible to construct in polynomial time a broadcast B for G with (only) ¢ disks
(of radius 2(/n)) and such that

cost(B) < 111712 + O(v/n).
™

By comparing the above theorem with Theorem [Large Disks Cover|, we can
state that covering and broadcasting over grids have almost asymptotically-
equivalent cost when the solution disks have non-constant radius (remind that
any broadcast is also a cover). We also remark that the MST-based heuristic
always returns a solution for the grid that has an unbounded (i.e. 2(1/n)) number
of hops. So, our almost optimal polynomial-time construction yields bounded-
hop solutions whose structure significantly departs from that of the MST-based
solutions.

Square grids are thus the first family of well-spread, natural instances that per-
fectly capture the "hardness” of solving the Minimum Broadcast problem via the
MST-based heuristic. It is our opinion that the set of results presented in this
paper provides strong theoretical arguments that open new possibilities in the
design of an efficient heuristic that significantly improves over the MST-based
one (at least) in the case of well-spread and uniform-random instances.

1.2 Preliminaries

We consider a Cartesian coordinates system and a square grid G of side length
m — 1 with its bottom left vertex in the origin. G contains n = m? points at
integer coordinates; the coordinates of point P of the grid will be denoted as
zp and y,. A G-disk D is a disk centered at any point of the grid and having
at least one point of the grid on its boundary. We also denote as D the set of
points of grid G covered by D.



2 The Minimum Cover Problem on the Grid

In this section we study two versions of the disk cover problem of the grid G.
In the first version, we consider coverings by disks of arbitrary radius, while, in
the second one, disks are required to have a minimal non constant radius. For
both versions, we need to evaluate the number N (r) of points of the infinite grid
covered by a G-disk of radius r. This problem, known as Gauss’ Circle problem,
has been extensively studied [15,17] in order to derive the best exponent 6 < 1
such that N(r) < 7r? + cr® for some constant c. However, all these studies are
not useful to provide a good bound on c: instead, we need an upper bound on
N(r) with a small constant ¢ while the exponent § can be 1. The proof of next
lemma is given in the full version of the paper [3].

Lemma 1. For any radius v > 1, it holds that N(r) < 7r? + (7v/2 — 2)r +
L\/r+ %. Moreover, for r > /10, it holds that N(r) < mr? + 2/2r — 5.

The above lemma is now exploited to prove asymptotically tight lower and upper
bounds on the minimum cost of a cover of grid G.

Theorem 1. If C* is any minimum cover of the square grid G of n points, then
n/5 < cost(C*) < n/5+ O(v/n)

The upper bound is achieved via a polynomial time construction.

Proof. We first observe that, for any r > 0, it holds that

N(r) < 5r2. (2)
Indeed, N(1) = 5, N(v/2) = 9, and Lemma 1 implies that N(r) < 572, for any
r > 2. Let Dy, Ds,...D; be the G-disks of an optimal cover and let cost™ be
its cost. Let r; be the radius of D;, 1 < i < ¢. Since D; covers N(r;) points,
Inequality (2) implies that

t t
n < ZN(H) < 257‘3 =5-cost”
i=1 i=1
and so cost™* > %

A cover of G with cost ¥ 4+ O(y/n) is shown in Figure 1 for m = 11. It is easy to
see that the number of grey G-disks (i.e. disks not completely contained in G) is
O(y/n), and the number of white G-disks (i.e. disks completely contained in G) is
not greater than %. Since all G-disks have unit radius, then the cost £ 4 O(y/n)
follows. It is easy to check that the above construction can be computed in time

polynomial in n. ]

The cover resulting by the construction in Theorem 1 uses only G-disks of unit
radius. Next theorem investigates the cost of covers using only G-disks of large,
non constant radius.



Fig. 1. An asymptotically optimum disk cover for G with m = 11.

Theorem 2. Let f(n) = w(1). The cost of any cover of G with G-disks of radius
at least f(n) is at least 2 — o(n).

Proof. Let D1, Do, ...D; be the G-disks of a cover of G and let cost be its cost.
Let r; be the radius of D;, 1 < i < t. As D; covers N(r;) points, Lemma 1
implies that

n < ZN(ri) < Z (m"f + (7V2)r; + %\/7‘74— ;T) < (3)

t t

< Z (777"1»2 + 27rr¢) = mcost + 27TZ T
i=1 =1

By hypothesis r; > f(n), hence we get

t

cost = an > f(n) Zﬁ:

=1 1=

—

and thus

From the above inequality and from Inequality 3, we get n < wcost + 27 Cf?:;':

and, finally,

cost>n<7rf(J:L()7:)_27T> =Z<1—f(n)2+2) =" o).

O

As we shall see in the next section, the lower bound of this theorem is almost
tight.



3 The Minimum Broadcast Problem on the Grid

The aim of this section is to prove lower and upper bounds on the cost of an
optimal broadcast. In particular, in order to prove the lower bound, we introduce
the following definitions. A chain H is a sequence of G-disks Dy, Ds, ..., Dy,
k > 1, such that D, is centered at some point contained in D; for 1 <17 < k.
We also say that a chain H activates a disk D if (i) D does not belong to H,
(ii) the center of D is contained in Dy, and (iii) D does not contain the center
of D;. Furthermore, we define

where the union refers to points of the infinite grid contained in disks D;.
For any r > 1, consider any disk D of radius r; we define

M (r) = min{|U(H) N D| such that H activates D}.

Notice that M (r) does not depend on the choice of D and that any disk of a
broadcast tree not containing the source is activated by a chain of disks belonging
to the tree. The cardinality of the intersection between the disk and the chain is
at least M (r), where r is the radius of the disk. In order to evaluate the broadcast
cost, we need a lower bound on M (r). The proof of next lemma is given in the
full version of the paper [3].

Lemma 2. For any r > 1, it holds that M(r) > 24/2r — 5.
Theorem 3. The cost of any broadcast of G is at least 2 — O(y/n).

Proof. Let D1, Do,...D; be the G-disks of an optimal broadcast of G and let
cost® be its cost. Let r; be the radius of D;, 1 < i < t. If there exists a disk
D; with radius r; > \/g, the thesis holds. Hence, we assume that r; < /2,

1 <i <t In order to exploit Lemma 1, we partition the set {Dy, Da, ... Dy}
into two sets: X and its complement X, where

From Lemma 1, it follows that

t

ZN(H): Z N(ri) + Z N(r;) < Z (712 + 2v/2r; — 5) + Z N(r;)

=1 D;eX D;eX D;eX D;eX
= 7 - cost™ +2\/§ Z T —5|X| + Z (N(Tz) _7T7'722) (4)
D;eX D;eX

As a consequence, we have that



T - COSt* 2 ZN(T,L) — 2\/§ Z r; + 5|X| - Z (N(rl) - ﬂ-r’ig) (5)

i=1 Diex DieX

Now, we derive a lower bound on 22:1 N(r;). Observe that the communication
graph yielded by the optimal broadcast contains a directed spanning tree T
rooted at the source node. We partition {D;, D, ... D;} into two sets Y and Y,
where Y is the set of G-disks that cover the source point. We observe that every
G-disk D; €Y is activated by a chain of G-disks whose centers induce a directed
path in 7. This implies that the number of intersection points between the
activating chain and D; is at least M (r;). Now we prove the following inequality:

t
DSON(r) =n+ Y M(ry)
=1 D;eY
We consider a numbering of the T' disks such that the disks on a root—leaf path
have strictly increasing numbers. Let

E={(pi)|F:1<i<tApe D;} and

F=A{(p,J) | (pJj) € EAj=min{k]|(p,k) € E}}

In other words, (p,j) € F if and only if D, is the "first” disk that covers p.
Clearly, it holds that |E| = Y, N(r;), F C E, and |F| > n. Now, for every i € Y,
let H; be the chain that activates D;. Define E; = {(p,i) | p € U(H;) N D;}.
The following properties hold: (a) E; C E — F; (b) if i # j then E; N E; = 0;
(¢c) |Ei] > M(r;). As for (a), clearly E; C E. Furthermore, if (p,i) € F; then
p € U(H;) N D;; thus, there exists a disk D; € H; such that p € D; and j < i.
This implies that min{k | (p,k) € E} < j < i and so (p,i) ¢ F. The proofs of
(b) and (c) are immediate from the definitions of F; and M (-). Finally, it holds
that

t
Y N(ri)=I|E|=|F|+(|E| = [F) = n+ Y _|E|>n+ > M(r).
i=1 i€y icY

Lemma 2 implies that

S M) =Y M)+ Y. M(ry) >

D;eY D;eYNX D;eYNnX
>2v2 Y m =BV nX|+ > M(r)
D;eYNX D;eYNnX

From the above inequality, Inequality (5), and simple calculations, we get:

meost” >n—2v2 Y r+5X[-5[YNX|+ > M(ri)— Y (N(ri) —wr?)

D;,eYNX D,eYNX D;eX



and

+% Z (M(’f’@) - N(’I”z) + 7TTi2) — % Z (N(T’i) — 7TTi2)

D;eYNX D;eYnX
Now we bound ), cynx 7. Consider the sets
Bp={DjeY |2t <r; <2 1<k<I
where | = [log rmqy | + 1 and 7yq, = max{r; | D; € Y'}. It holds that

1 l
1
Z mSZ”:ZZWSZQH Z”Z (7)
k=1

D;eYNX D;eYy k=1 D;€ By D,;eBy

Replace the G-disks in By U B U ... By by a G-disk with radius (2**1) and
centered in the source point. This operation produces a new broadcast with cost

cost* — > % 4 (2-29)2
D;eB1UByU... By,

Hence, from the optimality of the previous broadcast it must be

Z ,,,i2 < (2 . 2k)2

D;eB1UB2U...By.

From the above inequality and from Inequality (7) we have

l l
IS T = okHS <ottt < 96 = O(V/n) (8)

D,eYNX k=1 k=1
where the last step follows from the initial assumption that broadcast G-disks
have radii less than \/§ . It is possible to exhaustively prove that M (r) — N(r)+

7r? > 0 when r < V10, i.e., 7 € {1,v2,2,v5,v/8,3,1/10}. Hence,
> (M(r;) = N(r;) + 7r;%) >0 9)

D;eYNnX
Moreover, the number of G-disks in ¥ N X is bounded by constant N (\/ﬁ)
Thus,
> (N(r) —7ri?) =0(1) (10)

DiEYﬂY
Finally, by combining Inequality (6) with bounds (8), (9) and (10) we get the
thesis. a

The construction of optimal Broadcasts for the grid is somewhat connected with
the famous problem known as Apollonian Circle Packing [13, 21]. More precisely,



we observe that if it were possible to evaluate the cost of the Apollonian Circle
Packing of the grid then it would be possible to obtain the optimal bound on the
Broadcast cost. We strongly believe that this is the only way to obtain such an
optimal bound. The former problem is known to be a hard mathematical prob-
lem. In order to get a near-tight bound, we here adopt a simpler construction.

Theorem 4. Given any source s € G, it is possible to construct, in polynomial
time, a Broadcast for G of cost 1.010132 + O(y/n).

Proof. In order to provide a Broadcast of cost 1.010132 + O(y/n), we assume
that m — 1 is a multiple of 6. If this is not the case, we can add O(m) new unit
radius G-disks to our construction in order to broadcast to the remaining points.

Fig. 2. An almost optimal Broadcast for the grid where m = 19.

Consider the Broadcast shown in figure 2. Its cost can be computed by sum-
ming up the following three contributions.

— A chain of G-disks of radius 1 from the source point to the middle point of
G. The cost of this chain is O(m).

— A big G-disk of radius r = m74 centered in the middle point of G. This disk
has cost 72 = 2 — O(m).

— A set of G-disks of radius 1 that broadcast to all nodes of G out of the big
G-disk. In order to compute the cost of this set, assume that the origin of
the Cartesian plane lies in the middle point of G and compute only the cost
of the G-disks in the first quadrant, multiplied by 4. Furthermore, observe
that the contribution of the first quadrant consists of % horizontal chains
of unit-radius G-disks whose length depends on their y-coordinates. So the

cost of this contribution is:



4, 4 5 4, 4 4 ("
< 77“2—|—7r—4—4/ V2 = (3z)%dr < §T2+§7‘—4—§/ Vr2 —a?dx <
0 0

3 3

4 4 4 [r? "
<§r2+§r—4—§ {garcsinf—kg 1"2—332]0:

=(4;”)Z+0mw

Finally, the cost of this Broadcast is 7 + (4_?”) 44 0(m) =1.010132 4 O(y/n).
The construction of this solution can be clearly performed in time polynomial
in n.

O

Even when the G-disks must be very large, we are able to provide a Broadcast
whose cost is very close to the lower bound, as shown in the following result.
We remark that its proof makes use of a construction that approximates the
Apollonian Circle Packing of the grid. The proof of next lemma is given in the
full version of the paper [3].

Lemma 3. Let 0 < ¢ < 1 be a constant. For any source s € G, it is possible to
construct, in polynomial time, a broadcast B for G with disks of radius at least
cy/n and such that

mﬂ@:f@;+owm
where
fle) < 7 (0.35483 + 24.6814c*'°%1+v23 — 0.5551c + 0.5¢%)

The following upper bound is an easy consequence of the previous lemma.

Theorem 5. For any source point, there exists a (polynomial-time computable)
Broadcast B for G that uses disks with radius at least % and such that

cost(B) < 1.1171% +O(v/n)

As a consequence, B consists of a constant number of disks.
Observe that Theorem 3 implies that the upper bound of Theorem 5 is almost
tight.



4 Future research

Our asymptotical bounds on the Broadcast Problem on grids are not tight:
achieving tight bounds here is an interesting theoretical open problem. However,
as mentioned in the Introduction, we believe that our results open new promising
directions in the design of new, good heuristics for a wide and practically relevant
class of input configurations: well-spread, regular instances and uniform random
instances [8,19]. This is, in our opinion, the most relevant challenge in this
topic. Efficient implementation, performance analysis and tests of some heuristics
inspired by our constructive upper bounds are the subject of our present research

activity.
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