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Abstract

An L(h, k)-labeling of a graph G is an integer labeling of vertices of G, such that adjacent
vertices have labels which differ by at least h, and vertices at distance two have labels which
differ by at least k. The span of an L(h, k)-labeling is the difference between the largest and the
smallest label. We investigate L(h, k)-labelings of trees of maximum degree ∆, seeking those
with small span. Given ∆, h and k, span λ is optimal for the class of trees of maximum degree
∆, if λ is the smallest integer such that every tree of maximum degree ∆ has an L(h, k)-labeling
with span at most λ. For all parameters ∆, h, k, such that h < k, we construct L(h, k)-labelings
with optimal span. We also establish optimal span of L(h, k)-labelings for stars of arbitrary
degree and all values of h and k.
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1 Introduction

In classic vertex coloring of graphs (cf. [18]), a condition is imposed only on colors of adjacent nodes:

a proper coloring can be viewed as an integer labeling of vertices, such that adjacent vertices have

labels differing by at least 1. Recently, vertex labelings of graphs respecting a stronger condition

were intensly studied [1, 8, 9, 15, 20, 22]: restrictions are imposed both on labels of adjacent nodes

and of nodes at distance 2 in the graph. An L(h, k)-labeling of a graph G is an integer labeling

of vertices of G, such that adjacent vertices have labels which differ by at least h, and vertices

at distance two have labels which differ by at least k. A span of such a labeling is the difference

between the largest and the smallest label. Hence a classic vertex coloring of graphs is an L(1, 0)-

labeling, and the smallest span of such a labeling for a given graph G is χ(G) − 1, where χ is the

chromatic number.

L(2, 1)-labelings were first studied in [15] in connection with the channel assignment problem (cf.

[16]), in which close transmitters (vertices at distance 2) have to be assigned different channels, and

very close transmitters (adjacent vertices) have to be assigned channels at least two apart. In many

subsequent papers, e.g., [2, 3, 5, 6, 7, 9, 11, 19, 21, 23] the minimum span of L(2, 1)-labelings was

studied for different classes of graphs. In [10], the authors introduced the general notion of L(h, k)-

labelings of graphs as a special case of the notion of L(m1, . . . mN )-labelings introduced in [15].

This notion was further studied in [4, 12, 13, 14, 17]. In particular, in [13], the authors investigate

L(h, k)-labelings of trees for h ≥ k and ∆ ≥ 3. For these parameters they obtain optimal span for

infinite trees. In this paper, we present results that are complementary with respect to those in

[13].∗Namely, we investigate L(h, k)-labelings of trees, for arbitrary positive integers h < k, seeking

such labelings with small span. Unlike for classic vertex coloring, the smallest span of an L(h, k)-

labeling of trees heavily depends on their maximum degree ∆, hence we use it as a parameter in

our considerations. We look at the problem from a different point of view with respect to [9], where

the authors designed a polynomial algorithm to find the minimum span of an L(2, 1)-labeling for

a given tree. Instead, we look at the class of trees of maximum degree ∆, as a whole. Given ∆, h

and k, span λ is optimal for the class of trees of maximum degree ∆, if λ is the smallest integer

such that every tree of maximum degree ∆ has an L(h, k)-labeling with span at most λ. For all

parameters ∆, h, k, such that h < k, we construct L(h, k)-labelings with optimal span. For h ≥ k,

values of optimal span follow from [13].

The paper is organized as follows. In Section 2, we introduce terminology and summarize our

results. Section 3 is devoted to the derivation of optimal span for the class of trees of maximum
∗At the time of writing this paper, we were unaware of [13] which was not published yet. Our approach and

techniques significantly differ from those in [13].
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degree ∆, when h < k. In Section 4, we derive the value of the optimal span for stars of arbitrary

degree, for all values of h and k. Finally, in Section 5, we conclude the paper presenting open

problems.

2 Terminology and summary of results

2.1 Terminology

Given positive integers h and k, an L(h, k)-labeling of a graph G = (V,E) is a function L : V −→ N

(where N is the set of natural numbers) such that |L(u) − L(v)| ≥ h, if u, v are adjacent, and

|L(u)−L(v)| ≥ k, if u and v are at distance 2. For an L(h, k)-labeling L, the integer L(v) is called

the label of v. The span of an L(h, k)-labeling is the difference between the largest and the smallest

value of L. Without loss of generality we assume that the smallest value of L is 0.

∆ ≥ 2 denotes the maximum degree of a tree. For any ∆ ≥ 2 and for any positive integers h and

k, we denote by λ(∆, h, k) the smallest integer λ such that every tree of maximum degree ∆ has

an L(h, k)-labeling with span at most λ.

We often consider trees as rooted at a fixed vertex. In this case, usual notions of parent, child and

level are meant with respect to this root. Level i is the set of vertices at distance i from the root.

The height of a tree is the largest index of its level.

2.2 Summary of results

We derive the following exact values of λ(∆, h, k), for h < k:

• if h ≤ k/2 then λ(∆, h, k) = h + (∆− 1)k;

• if k/2 ≤ h ≤ ∆
2∆−1k then λ(∆, h, k) = (2∆− 1)h;

• if ∆
2∆−1k ≤ h ≤ k then λ(∆, h, k) = ∆k;

The detailed proofs of these results are presented in the next section. In all cases, upper bounds

on λ(∆, h, k) are proved by constructing an L(h, k)-labeling for all complete trees of degree ∆, i.e.,

for trees in which all internal vertices have degree ∆. Lower bounds on λ(∆, h, k) are proved by

constructing a tree of maximum degree ∆, for which every L(h, k)-labeling has span at least equal

to some given integer. More precisely, we show that the complete tree of degree ∆ and sufficiently

large height must have this property.

As we will show, relatively large values of λ(∆, h, k) are witnessed by trees of large height. This fact

is not accidental: we show that for trees of height 1, i.e., for stars, the span of L(h, k)-labelings is
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in fact smaller. Indeed, for stars of degree ∆, we establish the minimum span of an L(h, k)-labeling

for arbitrary h and k. Its value is:

• (∆− 1)k, if h ≤ k/2;

• (∆− 2)k + 2h, if k/2 ≤ h ≤ k;

• (∆− 1)k + h, if h ≥ k.

3 Derivation of λ(∆, h, k), for h < k

In this section we derive exact values of λ(∆, h, k), for h < k.

Theorem 3.1 If h ≤ k/2 then λ(∆, h, k) = h + (∆− 1)k.

Proof: In order to prove λ(∆, h, k) ≤ h+(∆−1)k, consider any complete tree of degree ∆, rooted

at node r. Consider the following labeling L. L(r) = 0, and labels of all other nodes are defined as

follows. Labels of nodes at even levels are taken from the set A = {0, k, 2k, ..., (∆−1)k}, and labels

of nodes at odd levels are taken from the set B = {h, h + k, h + 2k, ..., h + (∆− 1)k}. Children of

r get all labels from B. For a given internal node v 6= r at an even (resp. odd) level, children of

v get all labels from the set B (resp. A), except the label of the parent of v. Since h ≤ k/2, the

above defined labeling is an L(h, k)-labeling . Its span is h + (∆− 1)k.

In order to prove λ(∆, h, k) ≥ h + (∆ − 1)k, consider a complete tree T of degree ∆ and height

h+(∆− 1)k. Let r denote its root. Suppose that there exists an L(h, k)-labeling L of T with span

strictly smaller than h + (∆− 1)k. We have L(r) < h + (∆− 1)k.

Claim. There exists an internal vertex v of T such that labels of all neighbors of v are larger than

L(v).

We construct the following sequence (vi : i < h + (∆ − 1)k) of vertices. v0 = r. If vi satisfies

the claim, we are done. Otherwise, vi+1 is any neighbor of vi such that L(vi+1) < L(vi). Since

L(r) < h + (∆ − 1)k, there cannot exist a descending sequence of h + (∆ − 1)k + 1 non-negative

integers starting from L(r). Hence some vi, for i < h + (∆− 1)k must satisfy the claim.

Now the proof of the theorem can be concluded as follows. Let v be an internal vertex of T satisfying

the claim. Labels of all ∆ neighbors of v must be at least h, and differences between any pair of

them must be at least k. Hence the largest label of a neighbor of v must be at least h + (∆− 1)k.

This is a contradiction. �
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Theorem 3.2 If k/2 ≤ h ≤ ∆
2∆−1k then λ(∆, h, k) = (2∆− 1)h.

Proof: In order to prove λ(∆, h, k) ≤ (2∆ − 1)h, consider any complete tree of degree ∆, rooted

at node r. Consider the following labeling L. L(r) = 0, and labels of all other nodes are defined

as follows. Labels of nodes at even levels are taken from the set A = {0, 2h, 4h, ..., (2∆− 2)h}, and

labels of nodes at odd levels are taken from the set B = {h, 3h, 5h, ..., (2∆ − 1)h}. Children of r

get all labels from B. For a given internal node v 6= r at an even (resp. odd) level, children of v get

all labels from the set B (resp. A), except the label of the parent of v. Since h ≥ k/2, the above

defined labeling is an L(h, k)-labeling . Its span is (2∆− 1)h.

In order to prove λ(∆, h, k) ≥ (2∆ − 1)h, consider a complete tree T of degree ∆ and height

(2∆−1)h+2∆−1. Let r denote its root. Suppose that there exists an L(h, k)-labeling L of T with

span strictly smaller than (2∆ − 1)h. We have L(r) < (2∆ − 1)h. The following claim is proved

similarly as that in the proof of Theorem 3.1.

Claim 1. There exists a vertex v of T at level at most (2∆− 1)h such that labels of all neighbors

of v are larger than L(v).

Let v be a node satisfying the claim. Differences between labels of all neighbors of v must be at

least k. If L(v) ≥ k then a′ ≥ ∆k ≥ (2∆ − 1)h, where a′ is the largest label of any neighbor of v.

This is a contradiction. Hence L(v) < k.

From now on, consider the tree T as rooted in v (not in r). Notions of child, sibling and parent are

now meant with respect to root v. Let w be the child of v with smallest label. Denote a = L(w).

Hence a ≥ h. If a ≥ k then a′ ≥ ∆k ≥ (2∆ − 1)h, where a′ is the largest label of any child of v.

This is a contradiction. Hence a < k.

We construct two sequences of vertices: (x1, x2, ..., x∆−1) and (y1, y2, ..., y∆−1). The construction

is inductive. x1 is the child of w with smallest label, and y1 is the child of x1 with smallest label.

Suppose that x1, x2, ..., xr−1 and y1, y2, ..., yr−1 are already constructed. xr is the child of yr−1 with

the rth label in increasing order, and yr is the child of xr with the rth label in increasing order.

Since v is at level at most (2∆− 1)h and T has height (2∆− 1)h + 2∆− 1, the above construction

can be carried out.

Claim 2.

1. 2rh ≤ L(xr) < rk + h.

2. (2r + 1)h ≤ L(yr) < (r + 1)k.
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Claim 2 is proved by induction on r. We first prove it for r = 1.

Suppose that L(x1) < a. Then L(x1) < k. We also have L(v) < k and |L(v)− L(x1)| ≥ k. This is

a contradiction. Hence L(x1) ≥ a. Since w is adjacent to x1, this implies L(x1) ≥ a + h ≥ 2h.

Suppose that L(x1) ≥ k + h. We have L(y1) > a because a < k and |L(y1)− a| ≥ k. Since y1 and

w are at distance 2 in the tree, this implies L(y1) ≥ a + k ≥ h + k. Consequently, adjacent vertices

x1 and y1 have labels at least k + h. These labels must differ by at least h. Hence one of these

labels is at least k + 2h ≥ 2k. The largest labeled sibling of the corresponding vertex must have

label at least (∆− 2)k + 2k = ∆k ≥ (2∆− 1)h. This is a contradiction. Hence L(x1) < k + h.

Together with the previously proved inequality, this gives 2h ≤ L(x1) < k + h, which is part 1. of

Claim 2, for r = 1.

Suppose that L(y1) < L(x1). Since vertices x1 and y1 are adjacent, this implies L(y1) ≤ L(x1)−h <

k. We also have a < k and L(y1) − a ≥ k. This is a contradiction. Hence L(y1) ≥ L(x1). Since

vertices x1 and y1 are adjacent, this implies L(y1) ≥ L(x1) + h ≥ 3h.

Suppose that L(y1) ≥ 2k. Then the largest labeled sibling of y1 must have label at least (∆−2)k +

2k = ∆k ≥ (2∆− 1)h. This is a contradiction. Hence L(y1) < 2k.

Together with the previously proved inequality, this gives 3h ≤ L(y1) < 2k, which is part 2. of

Claim 2, for r = 1. Hence Claim 2 is proved for r = 1.

Now we prove the inductive step. Suppose that Claim 2 is true for 1,2,...,r − 1. We prove it for r.

Suppose that L(xr) < L(yr−1). Hence L(xr) < rk. We have L(xr−1) < (r − 1)k + h < rk. Vertex

xr has r−1 siblings with smaller labels. Hence there are r+1 vertices (these r−1 siblings, xr itself,

and xr−1) which have labels differing by at most k, all smaller than rk. This is a contradiction.

Hence L(xr) ≥ L(yr−1). Since xr and yr−1 are adjacent, this implies L(xr) ≥ L(yr−1) + h ≥ 2rh.

Suppose that L(xr) ≥ rk + h. We have L(yr) > L(yr−1). (Otherwise there would be r + 1 vertices

with labels differing by at most k, all smaller than rk: r − 1 siblings of yr with smaller labels, yr

itself, and yr−1. This is impossible.) Since yr and yr−1 are at distance 2 in the tree, this implies

L(yr) ≥ L(yr−1) + k. Hence L(yr) ≥ (2r− 1)h + k ≥ rk + h. Both vertices xr and yr have labels at

least rk + h. Since these vertices are adjacent, their labels must differ by at least h. Hence one of

them is at least rk + 2h ≥ (r + 1)k. It has ∆− 1− r siblings with larger labels. Hence its largest

labeled sibling has label at least (r +1)k +(∆−1− r)k = ∆k ≥ (2∆−1)h. This is a contradiction.

Hence L(xr) < rk + h.

Together with the previously proved inequality, this gives 2rh ≤ L(xr) < rk + h. This is part 1. of

the inductive step of Claim 2.
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Suppose that L(yr) < L(xr). Since vertices xr and yr are adjacent, this implies L(yr) ≤ L(xr)−h <

rk. Hence there are r + 1 vertices with labels differing by at most k, all smaller than rk: r − 1

siblings of yr with smaller labels, yr itself, and yr−1. This is a contradiction. Hence L(yr) ≥ L(xr).

Since xr and yr are adjacent, this implies L(yr) ≥ L(xr) + h ≥ (2r + 1)h.

Suppose that L(yr) ≥ (r+1)k. Vertex yr has ∆−1−r siblings with larger labels. Hence its largest

labeled sibling has label at least (r +1)k +(∆−1− r)k = ∆k ≥ (2∆−1)h. This is a contradiction.

Hence L(yr) < (r + 1)k.

Together with the previously proved inequality this gives (2r + 1)h ≤ L(yr) < (r + 1)k, which is

part 2. of the inductive step of Claim 2. This conludes the proof of Claim 2.

Our theorem is now an immediate consequence of Claim 2, for r = ∆ − 1: we get L(y∆−1) ≥

(2(∆− 1) + 1)h = (2∆− 1)h. This is a contradiction. Hence every L(h, k)-labeling of T must have

some label at least (2∆− 1)h.

�

Theorem 3.3 If ∆
2∆−1k ≤ h < k then λ(∆, h, k) = ∆k.

Proof: In order to prove λ(∆, h, k) ≤ ∆k, consider any complete tree of degree ∆, rooted at r.

Consider the following labeling L. All labels are taken from the set S = {0, k, 2k, ...,∆k}. L(r) = 0.

Children of r get labels k, 2k, ...,∆k. Children of any node v 6= r get all labels from S, except that

of v and of the parent of v. Since h < k, labeling L is an L(h, k)-labeling .

The proof of λ(∆, h, k) ≥ ∆k is similar to that of the lower bound in Theorem 3.2, using the

assumption h ≥ ∆
2∆−1k. �

4 Minimum span for stars

As we have seen in the proofs of lower bounds in Section 3, relatively large values of λ(∆, h, k) are

witnessed by trees of fairly large height. In this section we show that this fact is not accidental.

In particular, for trees of height 1, i.e., for stars, the span of L(h, k)-labelings is smaller. More

precisely, we prove the following result.

Theorem 4.1 For stars of degree ∆, the minimum span of an L(h, k)-labeling is:

1. (∆− 1)k, if h < k/2;

2. (∆− 2)k + 2h, if k/2 ≤ h ≤ k;
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3. (∆− 1)k + h, if h > k.

Proof: Case 1. h < k/2.

Consider the following labeling of the star of degree ∆. The center of the star gets label bk/2c,

and its leaves get labels 0, k, 2k, ..., (∆ − 1)k. Since h ≤ k/2, this is an L(h, k)-labeling . Its span

is (∆− 1)k. On the other hand, for any L(h, k)-labeling of the star, ∆ values differing by at least

k are needed for the leaves, hence the largest label must be at least (∆− 1)k.

Case 2. k/2 ≤ h ≤ k.

Consider the following labeling of the star of degree ∆. The center of the star gets label h, and its

leaves get labels 0, 2h, 2h+ k, ..., 2h+(∆− 2)k. Since k/2 ≤ h, this is an L(h, k)-labeling . Its span

is (∆− 2)k + 2h.

In order to prove the lower bound, consider any L(h, k)-labeling of the star of degree ∆. If the center

has label 0 then labels of leaves (in increasing order) must be at least h, h + k, ..., h + (∆ − 1)k.

Since h + (∆ − 1)k ≥ (∆ − 2)k + 2h, we are done. If 0 is the label of a leaf, then consider

labels of leaves in increasing order. Since they differ by at least k, they must be of the form

0 ≤ k + α1,≤ 2k + α2, ...,≤ (∆ − 1)k + α∆−1, where 0 ≤ α1 ≤ α2 ≤ · · · ≤ α∆−1. If the center

has label larger than (∆ − 1)k + α∆−1, it is at least h + (∆ − 1)k ≥ (∆ − 2)k + 2h, and we are

done. Otherwise, let i be the index for which the value x of the center satisfies the inequalities

ik + αi ≤ x ≤ (i + 1)k + αi+1. Since x must differ by at least h from the label of each leaf, we

have (i + 1)k + αi+1 − (ik + αi) ≥ 2h, hence αi+1 ≥ αi + 2h − k, which implies α∆−1 ≥ 2h − k.

Consequently, the span of the labeling is at least (∆− 1)k + 2h− k = (∆− 2)k + 2h.

Case 3. h > k.

Consider the following labeling of the star of degree ∆. The center of the star gets label (∆−1)k+h

and its leaves get labels 0, k, 2k, ..., (∆ − 1)k. This is an L(h, k)-labeling , for any values of h and

k. Its span is (∆− 1)k + h.

The proof of the lower bound is similar to that in Case 2, using the assumption h ≥ k. �

5 Conclusion

We established the optimal span of an L(h, k)-labeling for trees of maximum degree ∆ and h < k.

For h ≥ k, values of optimal span follow from [13]. For trees of degree ∆ and heigth 1, i.e. for

stars, we obtained the exact values of optimal span for arbitrary parameters h and k. These values

are smaller than values of optimal span for the class of all trees of maximum degree ∆.

An interesting open problem is to generalize the algorithmic result from [9] to the case of arbitrary
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h and k: find a polynomial algorithm (or prove that it does not exist) to determine the minimum

span of an L(h, k)-labeling for an arbitrary tree. (Recall that such an algorithm was given in [9],

for h = 2 and k = 1.)

Finally, it would be interesting to determine the minimum span of an L(h, k)-labeling for important

classes of graphs, such as, e.g., hypercubes, and to find good bounds on this number for arbitrary

graphs.
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