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Abstract

A graph G = (V, E) is called a pairwise compatibility graph (PCG) if there exists a
tree T , a positive edge-weight function w on T , and two non-negative real numbers
dmin and dmax, dmin ≤ dmax, such that V coincides with the set of leaves of T , and
there is an edge (u, v) ∈ E if and only if dmin ≤ dT,w(u, v) ≤ dmax where dT,w(u, v) is
the sum of the weights of the edges on the unique path from u to v in T . When the
constraints on the distance between the pairs of leaves concern only dmax or only
dmin the two subclasses LPGs (Leaf Power Graphs) and mLPGs (minimum Leaf
Power Graphs) are defined.

The Dilworth number of a graph is the size of the largest subset of its nodes in
which the close neighborhood of no node contains the neighborhood of another.

It is known that LPG ∩ mLPG is not empty and that threshold graphs, i.e.
Dilworth one graphs, are contained in it. In this paper we prove that Dilworth
two graphs belong to the set LPG ∩ mLPG, too. Our proof is constructive since
we show how to compute all the parameters T , w, dmax and dmin exploiting the
usual representation of Dilworth two graphs in terms of node weight function and
thresholds. For graphs with Dilworth number two that are also split graphs, i.e.
split permutation graphs, we provide another way to compute T , w, dmin and dmax

when these graphs are given in terms of their intersection model.
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interval graphs.

1. Introduction

A graph G = (V, E) is a pairwise compatibility graph (PCG) if there exists a tree
T , a positive edge-weight function w on T and two non-negative real numbers dmin

and dmax, dmin ≤ dmax, such that V coincides with the set of leaves of T , and there is
an edge (u, v) ∈ E if and only if dmin ≤ dT,w(u, v) ≤ dmax where dT,w(u, v) is the sum
of the weights of the edges on the unique path from u to v in T . In such a case, we
say that G is a PCG of T for dmin and dmax; in symbols, G = PCG(T,w, dmin, dmax).
In Fig.1 an example of PCG is depicted.
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Figure 1: a. A pairwise compatibility tree; b. the corresponding pairwise compatibility graph.

The pairwise compatibility graph recognition problem consists in determining
whether a given graph is PCG or not while the pairwise compatibility tree construc-
tion problem consists in finding out a tree T , an edge-weight function w and two
suitable values, dmin and dmax, such that the given graph G is PCG(T,w, dmin, dmax).

Since 2003, when the PCG class was introduced by Kearney et al. [16] dealing
with a sampling problem in a phylogenetic tree, this class of graphs has received
great interest from researchers belonging to different fields, from computational
biology to computational complexity and graph theory. Indeed, the main appli-
cation of the pairwise compatibility graph recognition problem remains in phy-
logenetics, in relation to the reconstruction of a tree expressing the evolutionary
relations among organisms based on quantitative biological data [14]. Neverthe-
less, researchers interested in computational complexity theory are fascinated by
these graphs because the clique problem is known to be polynomially solvable for
PCGs once the pairwise compatibility tree is provided [16] (while it is well known
that, for a general graph, finding whether there is a clique of a given size is NP-
complete [13]). Moreover, the class of PCGs appears interesting by itself from a
graph theoretic point of view; nowadays, there are a few results proving that some
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special classes of graphs are PCGs [1, 15, 17, 19, 20] but only two results for gen-
eral graphs, one affirming that all graphs with a number of nodes not greater than 7
are PCGs [6, 18] and the other one proving that not all graphs are PCGs, by means
of two graphs that cannot be a PCG, one with 15 nodes [20] and the other one with
8 nodes [11].

One of the most recent results concerned with this class of graphs [8] explores
the relation between the PCG class and two particular subclasses resulting from the
cases where the constraints on the distance between the pairs of leaves deal only
with dmax (LPG) or only with dmin (mLPG). More precisely, a graph G = (V, E) is
called a leaf power graph, LPG (respectively minimum leaf power graph, mLPG)
if there exists a tree T , a positive edge-weight function w on T , and a non-negative
real number dmax (respectively dmin) such that V coincides with the set of leaves
of T , and there is an edge (u, v) ∈ E if and only if dT,w(u, v) ≤ dmax (respectively
dT,w(u, v) ≥ dmin), where dT,w(u, v) is the sum of the weights of the edges on the
unique path from u to v in T . In [8] the authors show that the union of these two
proper subclasses does not coincide with the whole PCG class and that neither
of the classes LPG and mLPG is contained in the other. Moreover, the class of
threshold graphs is in both LPG and mLPG.

Threshold graphs correspond to graphs with Dilworth number one [10, 12],
where the Dilworth number of a graph is the size of the largest subset of its nodes
in which the close neighborhood of no node contains the neighborhood of another.
In this paper we consider the wider class of graphs with Dilworth number at most
two proving that they are a subclass of LPG ∩ mLPG, so progressing toward the
characterization of this intersection.

The rest of this paper is organized as follows: Section 2 lists some notions
that are useful for the forthcoming work. The first result presented in this work
is detailed in Section 3, where it is shown that graphs with Dilworth number two
are in LPG ∩ mLPG providing a method to find T , w, dmax and dmin. In Section
4 our attention is focused on split permutation graphs, i.e. the subclass of graphs
with Dilworth number two that are also split graphs. The intersection model of this
subclass is exploited to give another way for finding out T , w, dmin and dmax; to this
aim we introduce two novel transformations that, starting from the permutation
diagram of a split permutation graph, produce the interval intersection model of
the same graph and the permutation diagram of its complement.

The last section proposes some conclusions and open problems arisen from this
work.
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2. Preliminary definitions and properties

In this section we introduce some terminology and recall some definitions that
will be used in the rest of the paper. The reader is referred to [2] for undefined
terms and notation. We consider only simple and connected graphs G = (V, E)
with node set V and edge set E.

A graph G = (K, I, E) is said to be split if there is a node partition V = K ∪ I
such that the subgraph induced by K is a clique, while the subgraph induced by I
is a stable set.

For each node v in a graph G = (V, E), we call its open neighborhood the set
N(v) = {u|(u, v) ∈ E} and its closed neighborhood the set N[v] = N(v) ∪ {v}. Two
nodes x and y are said to be comparable if either N(y) ⊆ N[x] or N(x) ⊆ N[y].
This relation is reflexive and transitive, but it is not antisymmetric as a graph may
contain distinct nodes with the same neighborhood. A chain is a set of pairwise
comparable nodes and the Dilworth number of a graph is the largest number of
pairwise incomparable nodes of the graph or, in other words, the minimum size of
a partition of its nodes into chains.

A graph G = (V, E) is a threshold graph if there is a positive real number S
(the threshold) and for every node v there is a real weight a(v) such that (v,w) is an
edge if and only if a(v) + a(w) ≥ S . Threshold graphs are completely determined
by their set of nodes V , threshold S and node-weight function a, so we indicate
them as G = (V, a, S ). Threshold graphs coincide with Dilworth one graphs [10],
while graphs with Dilworth number at most two coincide with a generalization of
threshold graphs, called threshold signed graphs [4].

A graph G = (V, E) is a threshold signed graph [4] if there are positive real
numbers S ,T (the thresholds) and for every node v there is a real weight a(v) <
min(S ,T ) such that (v,w) is an edge if and only if either |a(v) + a(w)| ≥ S or
|a(v) − a(w)| ≥ T . In Figure 2.a a threshold signed graph is depicted. Notice that if
S = T then the threshold signed graph is simply a threshold graph. For any node
v, if a(v) = 0 then v is an isolated node, so if (u, v) is an edge in a connected graph
G, then a(u) · a(v) , 0. Consider an edge (u, v) of a threshold signed graph. It is
not difficult to see that only one of the two conditions concerning the thresholds
can be satisfied; so, if a(u) · a(v) > 0, meaning that a(u) and a(v) have the same
signs, then it must be that |a(u) + a(v)| ≥ S and the edge (u, v) is called S-edge;
if, on the contrary, a(u) · a(v) < 0, that is a(u) and a(v) have different sign, then it
must be that |a(u) − a(v)| ≥ T and the edge is called T-edge. We call ES and ET

the sets of S - and T -edges. Of course, E = ES ∪ ET . We can consider the partition
of the nodes of G into two sets X and Y such that X = {x ∈ V s.t. a(x) < 0} and
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Y = {y ∈ V s.t. a(y) > 0}. As consequence, (u, v) is an S-edge (T-edge) if u and v
are in the same (different) set X or Y .

Finally, we remark that the graph GS = (V, ES ) is exactly the union of two
node-disjoint threshold graphs, one corresponding to X and one to Y and, con-
sequently, X and Y are two node-disjoint chains, while the graph GT = (V, ET )
is a bipartite graph [2]. From now on we will refer to a threshold signed graph
as G = (V, a, S ,T ) always assuming V = X ∪ Y and S > T , according to the
construction presented in [4].

u u u u u7 5 4 2 1

u u u u u u
−8 −7 −5 −4 −3 −2

S = 10
T = 8.5

a.

u u u u u

uc
7

5
4

2
1

dmin = 10

b.

u u u u u

uc
7

5
4

2
1

u u u u u u

ud

8
7

5
4

3
2

1.5

dmin = 10

c.
Figure 2: a. A threshold signed graph G; b. the star S 5 that witnesses that the graph induced by the
five nodes with positive weight (set Y in the text) is in mLPG; c. the caterpillar C that witnesses that
G is in mLPG.

Given a graph G = (V, E), its complement GC has the same node set V of G and
two nodes are adjacent if and only if they are not adjacent in G.

The class of threshold signed graphs is closed under complement [4].

Interval graphs are the intersection graphs of closed intervals on the real line.
The complement of an interval graph is called co-interval graph [2].

A caterpillar is a tree in which all the nodes are within distance one of a central
path which is called the spine.

3. Graphs with Dilworth Number Two are in LPG ∩ mLPG

In this section we show that any threshold signed graph is both a mLPG and
a LPG exploiting a construction of the edge-weighted witness tree for threshold
graphs. The known construction for threshold graphs [8] uses the definition –
among the numerous equivalent ones of threshold graphs – based on the degree
sequence; here we recall that construction by proposing a slight modification, in
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order to use the definition founded on the threshold S and the node-weight function
a. Informally speaking, in this way we transform a node-weight construction (on
G) into an edge-weight one (on T ).

Construction for Threshold Graphs. The pairwise compatibility tree of
a threshold graph G = (V, a, S ) is a star S n with n + 1 nodes (a central node c
and leaves v1, . . . , vn); the weight of each edge (c, vi), w(c, vi), is equal to a(vi) (in
Figure 2.b it is shown the star S 5 corresponding to the threshold graph induced
by the nodes with positive weights of the graph in Figure 2.a); it can be proven
that G = mLPG(S n,w, S ). It is to notice that it is also possible to construct an
analogous edge-weighted star showing that the threshold graph is in LPG. �

Now we show how to build a tree C that is a caterpillar, an edge-weight function
w and two values dmin and dmax for showing that a threshold signed graph is both
an mLPG and a LPG.

Lemma 1. Let G = (V, a, S ,T ) be a threshold signed graph, with V = X ∪ Y and
S > T, for S ,T positive real numbers. A caterpillar C with edge-weight function w
and a value dmin such that G = mLPG(C,w, dmin) can be found in polynomial time.

Proof. Let us focus on the two threshold graphs induced by Y and X. For
them we construct two stars, S |Y | (whose central node is c) and S |X| (whose central
node is d) using the construction given above with the only exception that when we
handle the threshold graph induced by X, for each node v ∈ X we assign −a(v) to
the edge incident to the leaf corresponding to v. In order to construct the caterpillar
C, connect the central nodes c and d of stars S |X| and S |Y | by means of an edge with
weight w(c, d) = S − T . This value is always positive, as S > T (see Figure 2.c).

Now we have to prove that the mLPG generated by C with dmin = S is exactly
the given threshold signed graph G. Consider any edge (u, v) of G. If u and v are
both in X or both in Y , then |a(u) + a(v)| ≥ S and hence we have that the length
of the edge-weighted path on C is dC(u, v) = w(x, u) + w(x, v) = |a(u) + a(v)| ≥ S ,
(with either x = c or x = d) so proving that (u, v) is also an edge of the mLPG.
If u ∈ Y and v ∈ X then it holds |a(u) − a(v)| ≥ T . Recalling that the nodes in X
have negative weights while the nodes in Y have positive weights, the length of the
corresponding path in C is dC(u, v) = w(u, c)+w(c, d)+w(d, v) = a(u)+S−T−a(v) =

|(a(u) − a(v))| + S − T ≥ T + S − T = S hence (u, v) is also an edge of the mLPG.
Let us now consider in G two not connected nodes u and v, then the following two
inequalities hold: |a(u) + a(v)| < S and |a(u) − a(v)| < T . If u and v belong to the
same set, their distance on C is dC(u, v) = w(x, u) + w(x, v) = |a(u) + a(v)| < S ,
(with either x = c or x = d), and hence (u, v) is not an edge of the mLPG. If,
on the contrary, u ∈ Y and v ∈ X, then dC(u, v) = w(u, c) + S − T + w(d, v) =
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a(u) + S − T − a(v) = |(a(u) − a(v))| + S − T < T + S − T = S and hence, also in
this case, (u, v) is not an edge of the mLPG.

So the proof is concluded since we know that mLPG(C,w, S ) and G have the
same number of nodes, and we have proved that mLPG(C,w, S ) contains all edges
of G and only those. �

Proposition 1. [7] The complement of every graph in LPG is in mLPG and con-
versely, the complement of every graph in mLPG is in LPG. In particular, if G =

LPG(T,w, dmax) then GC = mLPG(T,w,min{u,v}<E(G) dT (u, v)); if G = mLPG(T,
w, dmin) then GC = LPG(T,w,max{u,v}<E(G) dT,w(u, v)).

Lemma 2. Let G be a threshold signed graph G = (X ∪ Y, a, S ,T ) and S > T.
There exists a caterpillar C with edge-weight function w and a value dmax such
that G = LPG(C,w, dmax).

Proof. Consider the graph complement of G, GC . As the class of threshold
signed graphs is self-complemented, GC is also a threshold signed graph, and it is
possible to determine its edge-weight function w and the two thresholds S and T ,
with S > T . Apply now the construction of Lemma 1 to find an edge-weighted
caterpillar C and a value dmin so that GC = mLPG(C,w, dmin). From Proposition
1, it follows that the graph complement of GC is G = LPG(C, w, dmax), where
dmax = max{u,v}<E(G) dT,w(u, v). �

Lemmas 1 and 2 easily imply the following result:

Theorem 1. The class of graphs with Dilworth number at most two is in LPG ∩
mLPG.

4. Split Permutation Graphs

In this section we focus on split permutation graphs, i.e. the subclass of graphs
with Dilworth number two that are also split graphs. For this class, of course,
Theorem 1 holds, but we present another way to find out T , w, dmin and dmax that
can be used when G is given not by means of sets X,Y and by thresholds S ,T ,
but by means of its intersection model. To this aim, we first detail the intersection
model (also called permutation diagram) of split permutation graphs.

A permutation π on the set {1, . . . , n} is a bijection from the set to itself. A
commonly used way of representing a permutation is the so called one-line no-
tation, putting on a line the ordered sequence (π(1), . . . , π(n)). A permutation
graph is the intersection graph of the line segments that connect two parallel lines
in the Euclidean plane, one representing the ordered sequence (1, . . . , n) and one
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(π(1), . . . , π(n)); the i-th segment connects point i on the first line to point π(i) on
the second line. Equivalently, a permutation graph is a graph for which there is
a node for each 1, 2, 3, ...n and an edge between i and j if and only if i < j and
π(i) > π( j).

Let us now analyze the permutation diagram of a split permutation graph,
G = (K, I, Eπ): the line segments corresponding to nodes in K have as endpoints
on the second line the points of the longest decreasing subsequence in π and pair-
wise intersecting, while the line segments corresponding to the nodes in I are all
disjoint. In Figure 3 a split permutation graph and its relative permutation diagram
are depicted.

u u u u u

u u u u

v1 v2 v3 v4 v5

u1 u2 u3 u4

a.

u u u u u u u u u

u u u u u u u u u

v1 v2 u1 u2 v3 u3 v4 v5 u4

u1 v5 v4 u2 v3 v2 u3 u4 v1

b.

Figure 3: a. A split permutation graph G; b. its permutation diagram.

The class of split permutation graphs is precisely the class of split graphs hav-
ing Dilworth number at most two. From the other side, the class of split permu-
tation graphs coincides with the intersection between interval and a co-interval
graphs [5]. Interval graphs are known to be in LPG [3], and from Proposition 1
it follows that the intersection between interval and co-interval graphs is inside
LPG ∩ mLPG. Nevertheless, if a split permutation graph is given by means of its
permutation diagram, it is not clear how to use the results on graphs with Dilworth
number two or on interval graphs to construct the tree that witnesses that it is in
LPG ∩ mLPG. In this section we exploit the permutation diagram of split per-
mutation graphs to produce the edge-weighted trees and the values dmin and dmax

witnessing that these graphs are in LPG ∩ mLPG. To this aim, we first recall the
construction that proves that any interval graph is LPG, and then we present two
novel transformations that, starting from the permutation diagram of a split per-
mutation graph, produce the interval intersection model of the same graph and the
permutation diagram of its complement.
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Construction for Interval Graphs. [3] Given an interval graph G by means
of its interval model, it is possible to construct a caterpillar C and an edge-weight
function w such that G = LPG(C,w, 1) as follows. For each interval Iv, it is not
restrictive to assume that |Iv| ≤ 1 (if not, it is easy to normalize these lengths) and
let mv be its midpoint; intervals are ordered so that 1 ≤ i < j ≤ n if mvi < mv j .
The spine of C is the path p1, . . . , pn and the leaf corresponding to node vi of G is
attached as unique child of pi. The edge-weight function is defined as follows:
w(pi, pi+1) = mvi+1 −mvi for all i = 1, . . . n− 1; w(pi, vi) =

1−|Ivi |

2 for all i = 1, . . . , n.

Transformation 1. Given a split permutation graph G = (K, I, Eπ) by means of
its permutation diagram, it is possible to deduce its interval intersection model in
linear time with respect to the number of nodes of G.

Proof. Remind that the class of split permutation graphs coincides with the
intersection between Dilworth two graphs and split graphs, so it is possible to com-
pute the two chains of G, C1 and C2. If a node v is in the neighborhood of a node u
in Ci, i = 1, 2, then v is also in the neighborhood of all the nodes following u in Ci,
by definition of chain. So, let us consider the only nodes involved in the stable set
I as partitioned according to the two chains, and ordered according to the inclusion
of their neighborhood: s1

i1
, . . . , s1

id1
and s2

j1
, . . . , s2

jd2
. We construct the intervals

corresponding to the nodes in I as follows:

• if s1
ik

, k = 1, . . . , d1 is the r-th node in chain C1, let its corresponding interval
a point at x-coordinate equal to r;

• if s2
jk

, k = 1, . . . , d2 is the r-th node in chain C2, let its corresponding interval
a point at x-coordinate equal to d1 + 1 + r;

Let us now consider one by one, in any order, all the nodes in the clique set K and
construct the corresponding intervals as follows:

• if ci is in the neighborhood of the r-th node of C1 but not of the (r− 1)-th, let
its corresponding interval have its left end-point at x-coordinate equal to r;
if ci is not in the neighborhood of any node of C1, then let its corresponding
interval have its left end-point at x-coordinate equal to d1 + 1;

• if ci is in the neighborhood of the r-th node of C2 but not of the (r − 1)-th,
let its corresponding interval have its right end-point at x-coordinate equal
to d1 + 1 + r; if ci is not in the neighborhood of any node of C2, let its
corresponding interval have its right end-point at x-coordinate equal to d1+1.
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It is easy to see that all the intervals corresponding to nodes in the clique intersect
at least at x-coordinate d1 + 1. Furthermore, the point corresponding to the r-th
stable node of Ci, i = 1, 2 intersect all and only segments corresponding to the
nodes in its neighborhood. So the correctness of this construction follows.

The proof is concluded observing that this construction can be performed in a
time that is proportional to the number of nodes of G. �

Observe that since the partition into two chains may be not unique, so it is the
interval intersection model.

Example. Let us consider the split permutation graph in Figure 3.a. One of the
possible partitions of its nodes into two chains is: C1 = {v1, v2, v3, u2, u1, u4} and
C2 = {v4, v5, u3}. So, following the notation above, s1

1 = u4, s1
2 = u1, s1

3 = u2 and
s2

1 = u3 and their intervals are points at x-coordinates 1, 2, 3 and 5, respectively.
The intervals corresponding to nodes in the clique are positioned as in Figure 4, so
completing the interval intersection model of the graph.

r r r r r
1 2 3 4 5

r r v5

r r v4

r v3

r r v2

r r v1

r u4 r u1 r u2 r u3

Figure 4: The interval model of the graph depicted in Figure 3.a.

Transformation 2. Given a split permutation graph G = (K, I, Eπ) by means of
its permutation diagram, it is possible to deduce the permutation diagram of its
complement graph GC = (I,K, EC

π ) in linear time with respect to in the number of
nodes of G.

Proof. In order to define the permutation diagram of GC , observe that the line
segments corresponding to clique nodes in G correspond to stable nodes in GC ,
so they do not have to intersect anymore, while the line segments corresponding
to the stable nodes of G correspond to the clique nodes in GC and so they must
intersect each others. This situation can be obtained just reversing the order of
the sequence (π(1), . . . , π(n)) on its line of the permutation diagram. This new
permutation diagram characterizes GC because en edge (i, j) is in G if and only if
i precedes j and π( j) precedes π(i) in the permutation diagram, but this happens if
and only if π(i) precedes π( j) in the newly computed permutation diagram, that is
equivalent to a non-edge in GC . �
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Theorem 2. Let G = (K, I, Eπ) be a split permutation graph. A caterpillar C with
edge-weight function w and a value dmin such that G = mLPG(C,w, dmin) can be
found in polynomial time.

Proof. Starting from the permutation diagram of G, we deduce its interval inter-
section model by means of Transformation 1. The proof is completed applying the
Construction for Interval Graphs of the edge-weighted caterpillar C and dmax. �

Theorem 3. Let G = (K, I, Eπ) be a split permutation graph. A caterpillar C with
edge-weight function w and a value dmax such that G = LPG(C,w, dmax) can be
found in polynomial time.

Proof. Starting from the permutation intersection model of G, we deduce the
permutation diagram of GC by means of Transformation 2. Since even GC is an
interval graph, we can run on GC Transformation 1 to deduce its interval diagram.
We obtain the claim by applying the Construction for Interval Graphs to deduce
the edge-weighted caterpillar C and dmax. �

5. Conclusions and Open Problems

In this paper, we have dealt with PCGs and their subgraphs LPGs and mLPGs.
It is known that graphs with Dilworth number 1 (threshold graphs) are in LPG ∩
mLPG; we progressed in the characterization of this intersection proving that also
graphs with Dilworth number two belong to it.

From this result, it naturally arises the question if it is possible to completely
characterize the class LPG ∩ mLPG, listing all the graphs belonging to it, besides
Dilworth at most two graphs.

Concerning the graphs with higher Dilworth number, in [9] it has been proven
that LPGs and mLPGs of trees obtained connecting the centers of k stars with a
path are Dilworth k graphs, but the opposite is not necessarily true for k ≥ 3.

It follows that other classes of graphs belonging to LPG∩mLPG, if they exist,
have to be searched among classes not characterized by their chains.

In this paper we also focus on split permutation graphs, i.e. the subclass of
graphs with Dilworth number two that are also split graphs. Since these graphs
coincide with the intersection between interval and a co-interval graphs, we show
how to deduce the corresponding interval model from the permutation one. The
relations between permutations and intervals provide a specific way to compute
the tree and the values dmin and dmax. This transformation, that starts from the per-
mutation diagram of a split permutation graph producing the interval intersection
model of the same graph and the permutation diagram of its complement, appears
inherently interesting and we catch sight of new applications for it.
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