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Pairwise Compatibility Graphs:
A Survey∗
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Abstract. A graph G = (V, E) is a pairwise compatibility graph (PCG) if there exists an edge-
weighted tree T and two nonnegative real numbers dmin and dmax such that each leaf u
of T is a node of V and there is an edge (u, v) ∈ E if and only if dmin ≤ dT (u, v) ≤ dmax,
where dT (u, v) is the sum of weights of the edges on the unique path from u to v in T . In
this article, we survey the state of the art concerning this class of graphs and some of its
subclasses.
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1. Introduction. The reconstruction of ancestral relationships is one of the fun-
damental problems in computational biology as it is widely used to provide both
evolutionary and functional insights into biological systems. The evolutionary history
of a set of organisms is usually represented by a tree-like structure called a phyloge-
netic tree, which is a tree where each leaf represents a distinct known taxon and the
internal nodes represent possible ancestors that might have led, through evolution, to
this set of taxa. Moreover, the edges of the tree can be weighted in order to represent
a sort of evolutionary distance among species. In the phylogenetic tree reconstruction
problem, given a set of taxa, we want to find a phylogenetic tree that “best” explains
the given data. Due to the difficulty in determining the criteria for an “optimal”
tree, the performance of the reconstruction algorithms is usually evaluated experi-
mentally by comparing the tree produced by the algorithm with the “known” tree.
However, as the tree reconstruction problem is proved to be NP-hard under many
criteria of optimality, and as real phylogenetic trees usually consist of a large number
of nodes, testing these heuristics on real data is difficult. Thus, it is interesting to
find efficient ways to sample subsets of taxa from a large phylogenetic tree, subject
to some biologically-motivated constraints, in order to test the reconstruction algo-
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rithms on the smaller subtrees induced by the sample. The constraints on the sample
attempt to ensure that the behavior of the algorithm will not be biased by the fact
it is applied on the sample instead of on the whole tree. For instance, as observed in
[32], very close or very distant taxa can create problems for phylogeny reconstruction
algorithms. This leads to the following constraint on the sample: given two positive
integers dmin, dmax, select a sample from the leaves of the tree such that the pairwise
distance between any two leaves in the sample is at least dmin and at most dmax. This
sampling problem was considered in [39] and polynomial algorithms were proposed,
which motivates the introduction of pairwise compatibility graphs (PCGs). Indeed,
given a phylogenetic tree T and integers dmin, dmax we can associate with them a
graph G, called the PCG of T , whose nodes are the leaves of T and for which there is
an edge between two nodes if the corresponding leaves in T are at a distance within
the interval [dmin, dmax]. While it is trivial to construct the graph G starting from
T, dmin, dmax, the inverse problem is difficult.

PCGs can be seen as a generalization of the well-studied class of leaf power graphs
(in which dmin = 0), introduced in the context of constructing phylogenies from
species similarity data [24, 41, 48]. Specifically, interspecies similarity is represented
by a graph G, where the nodes are the species and the adjacency relation represents
evidence of evolutionary similarity. The phylogenetic tree is then built from this graph
such that the leaves correspond to nodes of the graph and two leaves that correspond
to adjacent nodes are separated by a distance of at most dmax in the tree, where dmax

is a chosen threshold of proximity. Although there has been a lot of work done on
this topic (see, e.g., [48, 6, 10, 5]), a complete description of leaf power graphs is still
lacking and remains an important research problem.

Another natural relaxation of the pairwise compatibility constraint is that ob-
tained when dmax is set to ∞. Thus, there is an edge (u, v) in G if and only if
dT (u, v) ≥ dmin. This relaxation leads to the definition of the class of min leaf power
graphs (mLPGs) [20]. It is worth mentioning that initially the mLPG class was de-
fined as the complement of the leaf power graph (LPG) class, in an attempt to better
understand the structure of PCGs. This is the reason why their name evokes power
graphs, although they are not of that type.

In this survey we review the results on the identification of the classes PCG and
mLPG, and some of the results for LPGs. For more details on the characterization of
the LPG class we refer the reader to the nice survey of Brandstädt [3].

This article is organized as follows. Section 2 is devoted to some basic definitions
and some preliminary results. We have included most of the definitions of the graph
classes we mention. However, for further details the interested reader can consult
[9]. In section 3 we survey the main results related to the complexity of recognizing
PCGs. Section 4 is devoted to the graph class LPG∩mLPG. In section 5 we list the
graph classes which are known not to belong to the class PCG. Section 6 includes the
state of the art on the characterization of the PCG class and its subclasses mLPG
and LPG. In particular, it presents the known results on the graph classes contained
in PCGs as well as results concerning the characterization of the PCGs in terms of
forbidden configurations. In section 7 we consider PCGs of particular subclasses of
trees, such as stars and caterpillars. In each section we also include a number of
major open problems. Finally, we conclude in section 8 with some possible research
directions related to PCGs.

2. Basic Definitions. In this section we recall some basic definitions that we use
throughout this paper.
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A graph G = (V,E) is a pairwise compatibility graph (PCG) if there exists a tree
T , a positive edge-weight function w on T , and two nonnegative real numbers dmin

and dmax, dmin ≤ dmax, such that each node u ∈ V is uniquely associated to a leaf lu
of T and there is an edge (u, v) ∈ E if and only if dmin ≤ dT,w(lu, lv) ≤ dmax, where
dT,w(lu, lv) is the sum of the weights of the edges on the unique path from lu to lv
in T . In such a case, we say that G is a PCG of T for dmin and dmax; in symbols,
G = PCG(T,w, dmin, dmax).

A graph G(V,E) is called a leaf power graph (LPG) if there exists a tree T , a
positive edge-weight function w on T , and a nonnegative number dmax such that there
is an edge (u, v) in E if and only if for their corresponding leaves in T , lu, lv we have
dT,w(lu, lv) ≤ dmax; in symbols, G = LPG(T,w, dmax).

A graph G = (V,E) is a minimum leaf power graph (mLPG) if there exists a tree
T , a positive edge-weight function w on T , and an integer dmin such that there is
an edge (u, v) in E if and only if for their corresponding leaves in T lu, lv we have
dT,w(lu, lv) ≥ dmin; in symbols, G = mLPG(T,w, dmin).

We mean by k-leaf power graph (k-min leaf power graph, respectively) a graph
which is an LPG with dmax = k (dmin = k, respectively). In Figure 1, examples of a
PCG, an LPG, and an mLPG are depicted.

A graph G = (V,E) is an exact k-leaf power [8] if there is a weighted tree T such
that each node u ∈ V is uniquely associated to a leaf lu of T and there is an edge
(u, v) ∈ E if and only if dT (lu, lv) = k. It is clear that an exact k-leaf power graph is
a PCG where dmin = dmax = k.
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Fig. 1 An edge-weighted tree T and an example of a PCG, an LPG, and an mLPG.

Observe that here we always assume that dmin, dmax, and the weight of the edges
of the tree of a PCG are all positive real numbers. In the original problem concerning
the LPGs, these quantities were required to be natural numbers. It is proved in [5]
that it is not a loss of generality to consider positive real numbers instead of naturals
for LPGs. This result is extended to the general case of PCGs as follows.

Lemma 1 (see [16]). Let G = PCG(T,w, dmin, dmax), where dmin, dmax are
nonnegative real numbers and the weight w(e) of each edge e of T is a positive real

number. Then it is possible to choose natural numbers ŵ, d̂min, d̂max such that G =
PCG(T, ŵ, d̂min, d̂max).

A graph G = (K,S,E) is said to be a split graph [33] if there is a node partition
V = K ∪ S such that the subgraphs induced by K and S are complete and stable,
respectively.

A graph G = (V,E) is a thin spider [38] if V can be partitioned into three sets
K,S, and R such that:

(i) K is complete, S is stable, and |K| = |S| ≥ 2;
(ii) each node in R is adjacent to each node of K and to no node in S;
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(iii) each node in S has a unique neighbor in K; more formally, there exists a
bijection f : K → S such that every node k ∈ K is adjacent to f(k) ∈ S and
to no other node in S.

The complement of a thin spider is a thick spider.
The special case of these graphs in which R = ∅ is considered in [20] and they

are called n-split matching and n-split antimatching graphs, respectively. Examples
are shown in Figure 2. Note that the 3-split matching is sometimes called a net and
denoted by S̄3, while the 3-split antimatching is denoted by S3 [26].

We will denote by SM and SA the classes of split matching and split antimatching
graphs, respectively.
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Fig. 2 A 4-split matching and a 4-split antimatching.

The Dilworth number [27] of a graph is the size of the largest subset of its nodes
in which no closed neighborhood of any node contains the neighborhood of another.

The class of threshold graphs has been introduced many times in several contexts,
with different names and various equivalent definitions (see, for example, [42]). For
the purposes of this paper, it is sufficient to say that the class of threshold graphs T
is characterized as all the graphs with Dilworth number 1 [25]. Note that threshold
graphs are split graphs. An example of a threshold graph is depicted in Figure 3(a).

A graph G = (V,E) is a threshold tolerance graph [45] if every node vi can be
assigned a real weight ai and a real tolerance ti such that for every (vi, vj) ∈ E ⇔
|ai + aj | ≥ min{ti, tj}. Figure 3(b) shows a threshold tolerance graph. Threshold
tolerance graphs were introduced in [45] as a generalization of threshold graphs. In-
deed, threshold graphs constitute a proper subclass obtained by considering a constant
tolerance function [46].
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Fig. 3 (a) A threshold graph. (b) A threshold tolerance graph.

A graph is planar if it can be embedded in the plane so that no two edges intersect
geometrically except at the node to which both of them are incident. A graph is
outerplanar if it has a planar embedding where all nodes are on the outer face.

A ladder consists of two distinct paths of the same length u1, . . . , un/2 and v1, . . . ,
vn/2 plus the edges (ui, vi), i = 1, . . . , n/2.

A chord of a cycle C is an edge not in the edge set of C whose endpoints lie in
the node set of C. We say that an edge is a chord of a graph if it is a chord of some
cycle in the graph.
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A graph is chordal if every cycle of length at least 4 has a chord.
A sun graph [31] is a graph G on 2n nodes for some n ≥ 3 whose node set can

be partitioned into two sets, W = {w1, . . . , wn} and U = {u1, . . . , un}, such that U
induces a clique, W is an independent set, and for each i and j, wj is adjacent to ui

if and only if i = j or i ≡ j + 1 (mod n). In Figure 4(a) a sun with n = 4 is depicted.
Strongly chordal graphs [31] are sun-free chordal graphs.
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Fig. 4 (a) A sun graph. (b) An interval graph.

A t-caterpillar [36] is a tree in which all the nodes are within distance ≤ 1 of a
central path, called a spine, constituted of t nodes.

A graph G is an intersection graph if its nodes correspond to a family of sets
{Sv : v ∈ V (G)} and (u, v) is an edge of G if and only if Su ∩ Sv �= ∅.

We now consider some graph classes that can be defined through intersection
graphs of special objects.

An interval graph is the intersection graph of a set of intervals on a line (an
example is shown in Figure 4(b)).

A disk graph is the intersection graph of disks in the plane. A graph is a grid
intersection if it is the intersection graph of horizontal and vertical line segments in
the plane. A circular arc graph is the intersection graph of arcs of a circle.

A graph is a rectangle (square) intersection if it has an intersection model con-
sisting of axis-parallel rectangular (squared) boxes in the plane.

A trapezoid graph is the intersection graph of trapezoids between two parallel
lines. A permutation graph is the intersection graph of straight lines between two
parallels.

The following chain of inclusions holds:

interval graphs⊆ circular arc graphs ⊆ permutation graphs⊆ trapezoid graphs.

A graph is a tolerance graph [35] if to every node v can be assigned a closed
interval Iv on the real line and a tolerance tv such that x and y are adjacent if and
only if |Ix ∩ Iy| ≥ min{tx, ty}, where |I| is the length of the interval I. Tolerance
graphs can be described through another intersection model, as they are equivalent
to parallelepiped graphs, defined as the intersection graphs of special parallelepipeds
on two parallel lines.

3. Complexity of Recognizing Pairwise Compatibility Graphs. The problem
of recognizing whether a graph is a PCG is formally defined as follows.

Problem 1 (the PCG recognition problem).
INSTANCE : A graph G = (V,E).
DECIDE : Are there a tree T , an edge-weight function w, and two integers

dmin, dmax such that G = PCG(T,w, dmin, dmax)?
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The complexity of this problem is still unknown. However, in [30] NP-completeness
is proved for following generalizations.

Problem 2 (the max-generalized PCG recognition problem).
INSTANCE : A graph G, a subset S of the edges of its complement graph, and a

positive integer k.
DECIDE : Is there a G′ = PCG(T,w, dmin, dmax) such that G′ contains G as a

(not necessary induced) subgraph but does not contain any edge of S, and at least k
edges of S have distance greater than dmax between their corresponding leaves in T?

Observe that when S = Ē, then the problem becomes exactly that of determining
whether G is a PCG.

It is worth noting that the problem of sampling a set ofm leaves for a weighted tree
T , such that their pairwise distance is within some interval [dmin, dmax], reduces to se-
lecting a clique of size m uniformly at random from the graph PCG(T,w, dmin, dmax).
As the sampling problem can be solved in polynomial time on PCGs [39], it follows
that the max clique problem is solved in polynomial time on this class of graphs,
providing that the tree T , the weight function w, and the two values dmin, dmax are
known or can be found in polynomial time.

Open Problem. Determine the computational complexity of the PCG recognition
problem. Durocher, Mandal, and Rahman [30] conjecture that the PCG recognition
problem is NP-hard.

For LPGs, given an integer k we can formulate the following problem.

Problem 3 (the k-LPG recognition problem).
INSTANCE : A graph G = (V,E).
DECIDE : Is there a tree T such that G = LPG(T, k)?

In [29] it is shown that this problem can be solved in polynomial time if the
(k − 2)-Steiner root problem can be solved in polynomial time. Chang and Ko [23]
give a linear time algorithm for the 3-Steiner root problem, implying that the k-leaf
power recognition problem can be solved in linear time for k = 5.

Open Problem. Determine the computational complexity of the k-LPG recog-
nition problem for k ≥ 6.

4. LPG ∩∩∩ mLPG. Here we give some relations between mLPGs and LPGs, the
two main subclasses of PCG. In particular, the next result holds.

Proposition 2 (see [16]). The class co-LPG coincides with the class mLPG
and, consequently, the class co-mLPG coincides with the class LPG.

The relationship between the classes LPG and mLPG is graphically shown in
Figure 5 and is deduced from the following considerations:

• The union of the classes LPG and mLPG does not coincide with the whole
class PCG. Indeed, the class C of cycles is in the class PCG but does not
belong to the classes LPG or mLPG [16, 55].

• The class T of threshold graphs belongs to LPG ∩mLPG [20].
• The class SM of split matchings belongs to mLPG \ LPG, while the class
SA of split antimatchings belongs to LPG \mLPG [20].

The previous arguments lead to the following summarizing result.

Theorem 3. For the classes of LPG and mLPG, the following relations hold:
(a) mLPG ∪ LPG ⊂ PCG; (b) mLPG ∩ LPG �= ∅; (c) LPG \ mLPG �= ∅; (d)
mLPG \ LPG �= ∅.
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Fig. 5 Relationships between PCG, LPG, and mLPG.

Particular attention in the literature has been given to the characterization of the
intersection of the mLPG and LPG classes. Due to Proposition 2, it is clear that a
self-complemented class that is included either in LPG or in mLPG is also included
in LPG ∩ mLPG. For example, split permutation graphs that are the intersection
class between interval and cointerval graphs are in LPG ∩mLPG as interval graphs
are in LPG (see section 6.1). Nevertheless, a complete characterization of the set of
graphs in this intersection is still missing. A graph class that is known to be included
inside LPG∩mLPG is the class of threshold graphs (which have Dilworth number 1)
[20]. More generally for graphs with arbitrary Dilworth number, the following result
holds.

Theorem 4 (see [19, 18, 17]).
• All Dilworth 1 graphs (i.e., threshold graphs) are in LPG ∩mLPG and the

witness trees are stars.
• All Dilworth 2 graphs are in LPG ∪ mLPG and the witness trees are 2-

caterpillars. A proper subclass of Dilworth 2 graphs (properly containing
threshold graphs) is in PCG ∩mLPG.

• Given a t-caterpillar Γ, for any edge-weight w and any value c, the graphs
LPG(Γ, w, c) and mLPG(Γ, w, c) are Dilworth t graphs; nevertheless, there
are Dilworth t graphs, t ≥ 2, that do not belong to LPG ∩ mLPG. As an
example, the graph depicted in Figure 6 has Dilworth number 3 and is neither
an LPG nor an mLPG.
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Fig. 6 A graph on six nodes that has Dilworth number 3 and is neither a LPG nor a mLPG.

Open Problem. Characterize completely the intersection of mLPG and LPG.

5. Graphs That Are Not PCGs. Initially it was believed that every graph was a
PCG. Indeed, Phillips [49] first proved in an exhaustive way that all graphs with less
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Fig. 7 (a) The first graph proven not to be a PCG. (b) The graph of smallest size proven not to be
a PCG.

than five nodes are PCGs, then the result was extended to all graphs with at most
seven nodes [14] and finally to all bipartite graphs on eight nodes [43].

However, not all graphs are PCGs: Yanhaona, Bayzid, and Rahman [54] showed
a bipartite graph with 15 nodes (depicted in Figure 7(a)) that is not a PCG. Sub-
sequently, Mehnaz and Rahman [43] provided a list of bipartite graphs not in PCG.
More recently, Durocher, Mondal, and Rahman [30] proved that there exists a (not
bipartite) graph with 8 nodes that is not a PCG (depicted in Figure 7(b)). In view
of the previously listed results, this is the smallest graph that is not a PCG. The
same authors also provided an example of a planar graph with 20 nodes that is not
a PCG (depicted in Figure 8). As a consequence, neither bipartite nor planar graphs
are included in the PCG class.

� � � � � � � � � � � � � � � �
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Fig. 8 A planar graph with 20 nodes that is not a PCG.

It is known that graph H depicted in Figure 7(b) is not a PCG [44]. On the
other hand, Figures 9(a), 9(b), and 9(c) show a representation of graph H as a disk
graph, as a circular arc graph, and as square intersection graphs, respectively. This is
enough to ensure that all these graph classes are not in PCG [15]. Moreover, rectangle
(square) intersection graphs are a superclass of grid intersection graphs, and hence
they are not PCGs. Recalling the chain of inclusions stated in the preliminaries, we
can deduce that trapezoid and permutation graphs are not PCGs.

Finally, in [15] it was shown that tolerance graphs are not PCGs.

Open Problem. Find other graph classes that do not belong to the PCG class.

6. Graph Classes in PCG. In this section we list the graph classes which are
proven to belong to the PCG class. For many of these graph classes it is also known
whether or not they belong to mLPG or LPG. Hence, for easier reading we state the
results concerning LPG and mLPG separately.
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Fig. 9 Representation of H as: (a) a disk graph, (b) a circular arc graph, (c) a square intersection
graph.

6.1. LPGs. Observe that trees are sun-free and chordal and that taking powers
and induced subgraphs does not destroy this property [51]. It follows that every LPG
is strongly chordal, i.e., (Cn+4, sun)-free, n ≥ 0 [31].

However, not every strongly chordal graph is an LPG: as an example, the graph
found by Bibelnieks and Dearing [2] and shown in Figure 10 is a strongly chordal
graph and is not an LPG.

�� � � �� �� � � ��

Fig. 10 A strongly chordal graph which is not an LPG.

Neighborhood subtree tolerance (NeST) graphs were introduced by Bibelnieks
and Dearing [2] and were also studied in [37]. For the sake of brevity, we avoid
defining NeST graphs here, and we only mention that Brandstädt et al. [5] show that
LPG coincides with the fixed tolerance NeST graph class.

LPG is a superclass of ptolemaic graphs [4, 5] and even a superclass of directed
rooted path graphs, introduced by Gavril [34]. Interval graphs are LPGs [4]; it follows
that quasi-threshold graphs (that are P4-free interval graphs) are also LPGs.

Open Problem. Characterize the graphs that are in the LPG class.

As we have previously mentioned, a graph is leaf power if it is k-leaf power for
some integer k. Thus, it is interesting to exploit the structure of these subclasses of
LPGs. Obviously, a graph G is a 2-leaf power graph if and only if it is the disjoint
union of cliques, that is, G does not contain a chordless path of length 2. Dom et al.
[29, 28] prove that 3-leaf power graphs are exactly the graphs that do not contain an
induced bull, dart, or gem (see Figure 11).

Brandstädt and Le [6] provide another characterization of 3-leaf power graphs by
showing that they are exactly the graphs that result from substituting cliques into
the nodes of a tree. Moreover, they give a linear time algorithm to recognize 3-leaf
power graphs based on their characterization.
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Fig. 11 (a) A bull. (b) A dart. (c) A gem.

Basic 4-leaf power graphs, i.e., the 4-leaf power graphs without true twins (two
connected nodes with the same neighborhood), are characterized by eight forbidden
subgraphs [50]. It is shown that every 4-leaf power graph results from substituting
cliques into the nodes of a basic 4-leaf power graph. Thus, a characterization of basic
4-leaf power graphs automatically leads to a characterization of 4-leaf power graphs
in general [10].

Concerning 5-leaf power graphs, a polynomial time recognition algorithm was
given in [23]. However, again no structural characterization is known, even for basic
5-leaf power graphs; only for distance-hereditary basic 5-leaf power graphs has a
characterization in terms of 34 forbidden induced subgraphs been discovered [7].

For general k, it is proved that k-leaf power graphs are not included in the (k+1)-
leaf power graphs class [11, 12]. Beside these results, there has not been much progress
made toward the characterization of these graph classes and the following problem
remains open.

Open Problem. Determine the structure of k-leaf power graphs for k ≥ 5.

Recently, Nevries and Rosenke [47] provided a list of seven graphs that cannot
be induced subgraphs of any LPG, and they conjectured that these are sufficient
to characterize LPG in terms of forbidden subgraphs. We remark only that one of
these graphs is the one already presented in Figure 10, while the other six graphs
are strongly chordal graphs of smaller size. Before this work, it was conjectured that
the graph of size 12 in Figure 10 was the smallest strongly chordal graph which does
not belong to LPG. Nevertheless, the results in [47] imply that the smallest known
strongly chordal graph that does not belong to LPG has ten nodes.

Open Problem. It remains an open problem to either prove or disprove the
conjecture stating that the LPG class can be defined as the class of graphs that does
not contain any of the seven subgraphs provided in [47]. It is important to note that
if this conjecture is true, it would imply a polynomial time recognition algorithm for
LPGs.

6.2. mLPGs. A graph is 2K2-free if it does not contain an independent pair
of edges as an induced subgraph. Recall that LPGs are chordal and hence C4-free.
Consequently, their complement mLPG is 2K2-free.

Observe that a tree that is 2K2-free cannot have a path of length greater than 3,
and hence it has a diameter at most 3. It follows that every tree of diameter at least
4 does not belong in the mLPG class.

In [20] it is proved that split matching graphs are not in the mLPG class. As
split matching graphs are 2K2-free, this means that the mLPG class does not coincide
with the 2K2-free graph class.

Finally, it has been proved in [22] that threshold tolerance graphs are strictly
included in the mLPG class.
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Open Problem. It follows from the results presented in this survey that if G is
in LPG∩mLPG, then G is (2K2, Cn+4, sun, split matching, split antimatching)-free.
It would be interesting to characterize the class LPG ∩mLPG in terms of forbidden
subgraphs.

6.3. PCGs. Many graph classes have been proved to be in the PCG class: cy-
cles, single chord cycles, cacti, tree power graphs, Steiner k-power, and phylogenetic
k-power graphs [54, 55]. More recently, even trees, ladder graphs, triangle-free outer-
planar 3-graphs [52], and Dilworth 2 graphs [19] have been proved to be PCGs. All
these graphs admit as a witness tree a caterpillar.

We have already stated that the class of bipartite graphs is not included in the
PCG class. However, in [54] some particular subclasses of bipartite graphs are proved
to be PCGs.

A split matrogenic graph [42] is a graph that can be constructed as a particular
composition of split matchings and split antimatchings. More formally, given a split
graph F = (VK∪VS , E(F )) and a simple graph H = (V (H), E(H)), their composition
is a graph G = (V,E) = F ◦H defined as follows:

• V = VK ∪ VS ∪ V (H),
• E = E(F ) ∪ E(H) ∪ {(a, v) : a ∈ VK , v ∈ V (H)}.
A split matrogenic graph is the composition of t split graphs Gi = (Ki, Si, Ei)

with i = 1, . . . , t such that: either Gi is a split matching, or Gi is a split antimatching,
or Ki = ∅ (and Gi is called stable graph), or Si = ∅ (and Gi is called clique graph)
[53].

In [21] it is proved that if the split matrogenic graph is composed using only split
matching graphs or only split antimatching graphs, then it belongs to the PCG class.

This result was extended to the following larger subclass of split matrogenic graphs
[21].

Theorem 5 (see [21]). Let H = G1 ◦ · · · ◦ Gt be a split matrogenic graph for
which there exists an index 1 ≤ h ≤ t such that G1, . . . , Gh are all split matching
graphs and Gh+1, . . . , Gt are all split antimatching graphs. Then H is in the PCG
class.

In fact, it seems that the order of appearance of a split matching or an split anti-
matching in the composition of a split matrogenic graph is somehow strictly related
to the pairwise compatibility property.

Open Problem. It would be interesting to understand whether the split matro-
genic graph in Figure 12 with 16 nodes constituted of an 8-node split antimatching
composed with an 8-node matching is in the PCG class. The solution of this problem
would shed some light on the possible inclusion of split matrogenic graphs in the PCG
class.

In [16] the authors study the closure properties of the classes PCG, mLPG, and
LPG under some common graph operations such as adding an isolated or universal
node; adding a degree one node; adding a twin; taking the complement of a graph; and
taking the disjoint union of two graphs. Except for its intrinsic interest, this is also
important as it is known that many graph classes can be built by means of recursive
applications of particular graph operations. Using these results it was proved in [22]
that bipartite distance-hereditary graphs are PCGs.

Open Problem. In [16] it was also proved that the classes mLPG, LPG, and
PCG exhibit different closure properties under a given graph operation. In particular,
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Fig. 12 The smallest split matrogenic graph for which it is still an open problem determining
whether or not it belongs to the PCG class. The triple lines between the split antimatching
graph and the split matching graph represent the composition operation.
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Fig. 13 (a) The structure of a PCG generated by a star. (b) The PCG generated by the star depicted
in (c).

the mLPG and LPG classes are not closed under the complement; however, determin-
ing whether the PCG class is closed under the complement is still an open problem.

7. PCGs of a Particular Tree Topology. Given a graph, even knowing that it is a
PCG, it is in general rather difficult to find the witness tree. In fact, in the literature,
most of the trees witnessing that a certain graph class is in the PCG class (or in
the LPG or mLPG classes) are very easy structures, such as stars and caterpillars.
So, it seems interesting to consider the problem of characterizing subclasses of PCGs
derived from a specific topology of the pairwise compatibility tree.

7.1. Stars. Stars are a very simple subclass of trees and hence it is natural to
ask what graphs are PCGs of a star. In [20] it is proved that threshold graphs are
characterized by being LPGs (and mLPGs) of stars. In the same paper, this result
was extended to show that PCGs of stars are in fact a special superclass of threshold
graphs. In particular, the authors define the following superclass of threshold graphs.

The vicinal preorder � of a graph G = (V,E) on the set of nodes V guarantees
that for any two nodes u, v ∈ V , u � v if and only if N(u) ⊆ N [v]. The dual preorder
�∗ is defined by u �∗ v if and only if v � u.

A graph G = (V,E) is nearly three-threshold if it is possible to partition the set
of nodes V into three classes VK , VS1 , VS2 so that the following hold:

(a) The subgraph induced by K ∪ S1 is a threshold graph.
(b) The subgraph induced by K ∪ S2 is a threshold graph.
(c) The subgraph induced by S1 ∪ S2 is a bipartite graph.

Furthermore, the total vicinal preorder related to the graph induced by K ∪ S2 is
the dual of the total vicinal preorder defined by the graph induced by K ∪ S1 (see
Figure 13(a)).
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Theorem 6 (see [20]). If a graph G is a PCG of a star, then G is a nearly
three-threshold graph.

Open Problem. Determine whether the class of graphs that are PCGs of a star
coincides with the class of nearly three-threshold graphs.

7.2. Caterpillars. Another important tree structure considered is the caterpillar.
PCGs of caterpillars are very general graphs, so we first consider a simplified model,
i.e., we assume that w(e) = 1 for each edge of the tree. Observe that this restriction is
natural as in many papers (e.g., see [3, 39]) the tree is not weighted and the distance
is defined as the number of edges on the (unique) path connecting two leaves.

The problem of characterizing PCGs of unit weight caterpillars was considered in
[4] in the special case of LPGs, providing the following result:

Theorem 7 (see [4]). Let G be an n-node connected graph and Γn be a unit
weight n-leaf caterpillar. Then the following statements are equivalent:

1. G = LPG(Γn, dmax).
2. G is a unit interval graph.

In [13], the authors generalize the previous result to PCGs of unit weight cater-
pillars.

Theorem 8 (see [13]). Let G be an n-node connected graph and Γn be a unit
weight n-leaf caterpillar. Then the following statements are equivalent:

1. G = PCG(Γn, dmin, dmax).
2. G = P dmax−2

n − P dmin−3
n if dmin > 3 and G = P dmax−2

n , otherwise, where P i
n

is the ith power of the n-node path.

The authors of [13] then generalize the model to general weighted caterpillars,
giving some properties of the resulting PCG. In particular, they give some conditions
on the weight function w and on dmax such that PCG(Γn, w, dmin, dmax) is either
triangle-free or has an induced clique.

Unfortunately, we are far from giving a characterization, so the following open
problem holds:

Open Problem. Give a complete characterization of PCGs of caterpillars.

7.3. Other Trees. It is worth mentioning that the 7-node wheel W7 is proved
to be a PCG, but not a PCG of a caterpillar [13], and the witness tree is shown in
Figure 14(b) [14]. As a consequence, caterpillars cannot generate all PCGs, and this
fact makes the last open problem of the previous section even more significant.
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Fig. 14 (a) The wheel W7 and (b) the edge-weighted tree T such that W7 = PCG(T,w, 5, 7).

Open Problem. It is not known whether or not wheels on at least eight nodes
are PCGs.

Given a graph known to be in the PCG class, finding its witness tree is far from
trivial. A brute force approach is unfeasible as there are too many n-leaf trees to
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check (and, on each of them, it is necessary to check all possible edge weights). The
following result goes some way toward simplifying the search the topology providing
a unifying tree structure.

Theorem 9 (see [14]). Let G be a graph and T a tree. If G = PCG(T,w, dmin,
dmax), then there always exist a full binary tree Λ, a new edge-weight function w′,
and a new value d′max such that G = PCG(Λ, w′, dmin, d

′
max).

Unfortunately, the previous theorem does not guarantee a unique tree, but it is
still a practical improvement for the pairwise compatibility tree construction problem,
as it leads to the consideration of only a particular subclass of all the n-leaf trees.

8. Conclusions. Pairwise compatibility graphs were introduced in the context of
phylogenetics and they generalize the well-studied class of leaf power graphs. Much
attention has been dedicated to them in the literature; however, as shown by this
survey, many problems remain open and we are still far from a complete character-
ization of the PCG class. Any progress toward the solution of the latter problem
would be interesting not only from a graph theory perspective, but it also could help
in the design of better sampling algorithms for phylogenetic trees. Finally, we con-
clude by observing that lately it has become more and more evident that phylogenetic
networks may provide an alternative to phylogenetic trees and may be more suitable
for datasets where evolution involves significant amounts of reticulate events such as
hybridization, horizontal gene transfer, or recombination [1, 40]. Thus, aside from the
many existing open problems in this area, it could be interesting to consider possible
extensions of these problems and concepts to network graphs.
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[4] A. Brandstädt and C. Hundt, Ptolemaic graphs and interval graphs are leaf powers, in
LATIN 2008: Theoretical Informatics, E. Laber, C. Bornstein, L. Nogueira, and L. Faria,
eds., Lecture Notes in Comput. Sci. 4957, Springer, Berlin, Heidelberg, 2008, pp. 479–491.
(Cited on pp. 453, 457)
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[6] A. Brandstädt and V. B. Le, Structure and linear time recognition of 3-leaf powers, Inform.
Process. Lett., 98 (2006), pp. 133–138. (Cited on pp. 446, 453)
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