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Abstract

L(h, 1)-labeling, h = 0, 1, 2, is a class of coloring problems arising from fre-
quency assignment in radio networks, in which adjacent nodes must receive
colors that are at least h apart while nodes connected by a two long path must
receive different colors. This problem is NP-complete even when limited to pla-
nar graphs. Here, we focus on L(h, 1)-labeling restricted to regular tilings of
the plane and to outerplanar graphs. We give a unique parametric algorithm
labeling each regular tiling of the plane. For these networks, a channel can be
assigned to any node in constant time, provided that relative positions of the
node in the network is locally known. Regarding outerplanar graphs with max-
imum degree ∆, we improve the best known upper bounds from ∆ + 9, ∆ + 5
and ∆ + 3 to ∆ + 3, ∆ + 1 and ∆ colors for the values of h equal to 2, 1 and
0, respectively, for sufficiently large values of ∆. For h = 0, 1 this result proves
the polinomiality of the problem for outerplanar graphs. Finally, we study the
special case ∆ = 3, achieving surprising results.

keywords: L(h, 1)-labeling, radio networks, outerplanar graphs, regular tiling.

1 Introduction

A radio network is a network consisting of radio transmitters/receivers distributed
over a region. Communication takes place by a node broadcasting a signal over a fixed
range (the size of which is proportional to the power of the node’s transmitter). Any
receiver within the range of the transmitter can get the signal in a single hop; all others
receivers will get it in multiple hops. In this context, radio frequency assignment is a
widely studied research area. The task is to assign radio frequencies to transmitters
at different locations without causing interference. This situation can be modeled
by a graph, whose nodes are the radio transmitters/receivers, and whose adjacencies
indicate possible communications and, hence, interference. Consequently, the problem
is closely related to graph coloring, where colors represent possible frequencies.

Among all the problems of radio frequency assignment modeled as coloring of
graphs, we are interested in L(2, 1)-labeling, introduced by Griggs and Yeh [12]: ’close’
transmitters must receive different frequencies and ’very close’ transmitters must re-
ceive frequencies that are at least two frequencies apart. In terms of graphs, two
transmitters/receivers are ’close’ if they are connected by a two long path in the
graph and ’very close’ if they are adjacent in the graph. The practical reasoning
leading to these constraints is that the frequencies of a radio station and its neighbors
must be sufficiently different that their signals will not interfere (direct collision);
furthermore, a radio station must not receive signals of the same frequency from any
of its adjacent neighbors (hidden collision). Here we consider two variants weakening
the condition on direct collisions: the L(1, 1)- and L(0, 1)-labeling problems. In the
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first problem adjacent stations are required to have different frequencies, while in the
second one only hidden collisions are avoided.

Formalizing:

Definition 1.1 [3] An L(h, 1)-labeling of a graph G = (V, E), h = 0, 1, 2, is a func-
tion f from the node set V to the set of all nonnegative integers such that
1. |f(x) − f(y)| ≥ h if {x, y} ∈ E and
2. |f(x) − f(y)| ≥ 1 if ∃z ∈ V s.t. {x, z} ∈ E and {z, y} ∈ E.

A span of such a labeling is the difference between the largest and the smallest
label. The L(h, 1)-number of G, denoted by λh,1(G), is the smallest span necessary to
L(h, 1)-label G.

Remark 1 The number of used colors for a L(h, 1)-labeling of a graph G is equal to
λh,1(G) + 1, as the smallest used color is 0.

For some special classes of graphs – such as paths, cycles, wheels and k-partite
graphs – tight bounds for the number of colors necessary for an L(h, 1)-labeling are
known and such a coloring can be computed efficiently [8, 10, 12]. Nevertheless, in
general, the decisional version of the problem is NP-complete for all the values of
h = 0, 1, 2 [1, 12]. Therefore, for many classes of graph – such as chordal graphs [15],
interval graphs [8], split graphs [3], unigraphs [6], hypercubes [17], clique graphs of
some classes of graphs [7] – approximate bounds have been looked for.

1.1 Our Results

In many real life cases the actual network topologies are planar, because they consist
of communication stations located in geographical area with non intersecting com-
munication channel. Since the L(h, 1)-labeling problem remains NP-complete, even
when restricted to planar graphs [1, 11], in this paper we study the L(h, 1)-labeling
problem on two subclasses of planar graphs: the regular tilings of the plane (includ-
ing cellular networks, that are hexagonal grids, and their interference graphs, that
are triangular grids) and the class of outerplanar graphs, interesting because all the
nodes lie on the border of the external face.

Concerning regular tilings, we provide a unique parametric algorithm that opti-
mally solves the L(h, 1)-labeling problem on each of the three regular tilings for all
three values of h = 0, 1, 2. Furthermore, we give a function of the coordinates of each
node in the network conputing the channel in constant time in a distributed fashion.

To the best of our knowledge, in the literature there is a result due to Bertossi,
Pinotti and Tan [2], presenting three different algorithms for the three regular tilings
of the plane in the special case h = 2. Furthermore, a result due to van den Heuvel,
Leese and Shepherd [13] – concerning a variation of the problem: the span is cyclic –
deals with squared and triangular tilings.

As regards outerplanar graphs, the previous best known results are due to Bod-
laender et al. [3] and to Zhou at al. [19]. If h = 2, Bodlaender et al. prove that
at most ∆ + 9 colors are sufficient to L(2, 1)-label an outerplanar graph with max-
imum degree ∆ and they suspect this bound is not tight. In particular, they leave
reducing the additive term 9 as an open problem conjecturing the tightest bound
could be ∆ + 3. Here this conjecture is proved when the outerplanar graph has max-
imum degree ∆ ≥ 8. A linear time algorithm that produces, for outerplanar graphs,
an L(2, 1)-labeling feasible, but not necessarily optimal, is provided. Moreover, for
smaller values of ∆, we guarantee that the number of colors used is bounded by 11,
which improves anyway the bound ∆+9. Nevertheless, we conjecture that the bound
∆ + 3 holds for any outerplanar graph of degree ∆ ≥ 4. Indeed, in the special case
∆ = 3, we show an outerplanar graph needing ∆ + 4 colors and we present an algo-
rithm L(2, 1)-labeling with at most ∆ + 6 colors for any outerplanar graph of degree



3. Understanding whether ∆ + 6 is a tight bound or not remains an open problem.
Note that our algorithms run in O(n) time improving by a factor ∆ the best known
results [3].

The paper by Zhou et al. [19] presents a polynomial time algorithm for solving a
generalization of the L(1, 1)-labeling on partial k-trees. With a simple modification,
this algorithm can be used to solve also the L(0, 1)-labeling problem. Hence, this
algorithm works on outerplanar graphs in the case h = 0 and h = 1 since outerplanar
graphs are series-parallel graphs, and series-parallel graphs are exactly partial 2-trees
[4]. In the present paper, time complexity is reduced from O(n3) to O(n) for h = 0, 1.
More precisely, our linear time algorithm guarantees an optimal L(h, 1)-labeling for
outerplanar graphs of degree ∆ ≥ 4 if h = 0 and ∆ ≥ 7 if h = 1 using no more than
∆ and ∆ + 1 colors, respectively. Consequently, the output is an optimal labeling
because ∆ and ∆ + 1 are proven to be the minimum number of colors necessary to
L(h, 1)-label any graph, h = 0, 1, for sufficiently large values of ∆ (∆ ≥ 4 and ∆ ≥ 7,
respectively).

This paper is organized as follows: the next Section is devoted to the L(h, 1)-
labeling of the regular tilings of the plane. Subsequent sections deal with outerplanar
graphs: in Section 3 some preliminary results are stated, then – in Section 4 – an
algorithm for L(h, 1)-labeling outerplanar graphs is provided; finally, the special case
∆ = 3 is treated in Section 5. Concluding remarks and some open problems are
outlined in Section 6.

2 Regular Tilings of the Plane

In this section we focus on the problem of L(h, 1)-labeling any regular tiling, for
h = 0, 1, 2. More in detail, we show that ∆+2h−1 colors are necessary and sufficient
to give an L(h, 1)-labeling, 0 ≤ h ≤ 2, to a regular tiling of degree ∆. Similar results
have been independently achieved in [2] for h = 2 and in [13] for a variation of the
problem restricted to squared and triangular tilings.

Here we provide a unique simpler parametric algorithm that optimally solve the
L(h, 1)-labeling problem on all the three regular tilings for all the three values of h =
0, 1, 2. We also show how to convert this algorithm into its constant time distributed
version.

The tiling problem consists in covering the plane with copies of the same polygon
and it is known that the only regular polygons that can be used in a tiling are
hexagons, squares and triangles [14]. Let ∆ be the degree of the tiling: for the
hexagonal tiling ∆ = 3, for the squared tiling ∆ = 4 and for the triangular tiling
∆ = 6. In these three different cases, it is possible to highlight a common basic
element that is a hexagon: in the hexagonal tiling, we take the hexagonal tile (see
Fig.1.a). In the squared tiling, the hexagon is generated by two adjacent squares,
producing a hexagon with a chord (see Fig. 1.b). Finally in the triangular tiling, the
hexagon is generated by a group of 6 triangles, building a wheel (see Fig. 1.c).

Next lemma estimates a lower bound on the number of colors necessary to L(h, 1)-
label regular tilings.

Lemma 2.1 Any L(h, 1)-labeling of a degree ∆ regular tiling of the plane, 0 ≤ h ≤ 2,
uses at least ∆ + 2h − 1 colors.

Proof: All nodes in the tiling have degree 3, 4 or 6, depending from the shape of
the tiling (hexagonal, squared or triangular, respectively). Consider any node a of
the tiling of degree ∆ and let α1, α2, . . . , α∆ be the colors assigned by an optimal
L(h, 1)-labeling to the nodes adjacent to a. These colors must be different in view of
Property 2. of Def. 1.1, because each pair of these nodes is connected by a two long



Figure 1: Hexagonal basic element H in the three tilings.

path via a. Property 1. suggests how many colors we have to add in order to color a
according to the h-value. Let α0 be the color of a.

If h = 0, α0 may be chosen among the ∆ colors α1, α2, . . . , α∆.
h = 1, implies not to use α0 for a’s adjacent nodes, i.e. to add one new color: in

this case globally ∆ + 1 colors are required.
Finally, if h = 2, we need three colors more in order to guarantee that |α0−αi| ≥ 2

for any 1 ≤ i ≤ ∆, then ∆ + 3 colors are necessary. It is to notice that if α0 is either
the first or the last used color, it seems that ∆ + 2 colors are sufficient because one
between α0 +1 and α0−1 will be out of the span. Nevertheless, we need ∆+3 colors,
because our reasoning must be done for the general node a and, if a certain node is
colored with the first or the last used color, then at least one among its neighbors is
not, and this node can be chosen as new a.

Now we prove that, for each regular tiling, ∆ + 2h − 1 colors are also sufficient.

Lemma 2.2 There exists an L(h, 1)-labeling of the degree ∆ regular tiling of the
plane, 0 ≤ h ≤ 2, using ∆ + 2h − 1 colors.

Proof: Consider a hexagonal basic element of the tiling H , whose nodes are named
according to Fig. 1. Suppose we have provided an L(h, 1)-labeling of H with the
following properties:
color(a) + f1 = color(c); color(f) + f1 = color(d);
color(b) + f2 = color(f); color(c) + f2 = color(e);
color(a) + f3 = color(e); color(b) + f3 = color(d);
for some f1, f2, f3 ∈ Z where the sums are computed modulo ∆ + 2h − 1.

The coloring of any hexagonal element H ′ adjacent to H can be deduced by the
coloring of H in the following way: the color of each node in H ′ is obtained from the
color of the corresponding node in H adding one of the functions fi. The choice of
the function depends on the shared edge between H and H ′; namely, (c, d), (f, e) and
(e, d) imply to sum f1, f2 and f3, respectively, while (a, f), (b, c) and (a, b) imply to
sum −f1, −f2 and −f3, respectively.

By iterating this procedure, to all non-labeled hexagonal elements adjacent to
some colored hexagonal element, we obtain a feasible L(h, 1)-labeling, because of the
constraint we imposed to the initial one (see Fig. 2).

Now, we have to provide a coloring for H – among all the feasible ones – satisfying
the constraints given at the beginning of the proof. Of course, for each value of h we
have a different coloring of H .

Let us consider h = 2, first. In this case we have a ‘universal’ coloring, that is
a coloring feasible for all the shapes of tilings: we assign to a, b, c, d, e and f colors
1, 3, 0, 4, 2 and 5, respectively, and to g – if it exists – color 7, where f1 = −1, f2 = 2
and f3 = 1.



Figure 2: A feasible L(2, 1)-labeling of the regular tilings of the plane.

If h = 1, we have to distinguish different labelings of H according to the shape
of the tiling. In particular, for the hexagonal tiling, the sequence a, b, c, d, e, f can
be colored with colors 0, 1, 3, 2, 1, 3; for the squared tiling the sequence of colors is
0, 1, 4, 2, 1, 3; finally, in the triangular tiling, H can be colored with the sequence
1, 4, 0, 5, 2, 6 plus color 3 for node g; in any case it holds f1 = −1, f2 = 2 and f3 = 1.

Finally, if h = 0, a possible coloring for H is 0, 1, 2, 2, 1, 0, where f1 = 2, f2 = −1
and f3 = 1, and it is feasible both for the hexagonal and for the squared tiling; for the
triangular tiling we can color H with the sequence 0, 1, 4, 3, 2, 5 plus 0 in the middle,
where f1 = −2, f2 = −2 and f3 = 2.

Theorem 2.3 For any degree ∆ regular tiling of the plane and h = 0, 1, 2, λh,1 =
∆ + 2h − 2.

Proof: Lemmas 2.1 and 2.2 prove the assertion.

We remark that our bound on the number of colors has the same elegant appear-
ance as the following general lemma:



Lemma 2.4 [1, 12, 18] For any graph G, the following lower bound holds: λh,1 ≥
∆ + h − 1.

For these networks, a channel can be assigned to any node in constant time,
provided that relative positions of the node in the network is locally known. As an
example, we will show only the function relative to the hexagonal tiling, in order not
to make tedious the reading. Analogous functions can be derived for the other tilings.

Let us consider the hexagonal tiling as in Fig. 3. The general node of coordinates
(i, j) must be labeled with color:

0 if either i = 0 mod 3 and j = ⌊i/3⌋+ 0 mod 4 or i = 1 mod 3 and j = ⌊i/3⌋+ 2
mod 4;

1 if either i = 0 mod 3 and j = ⌊i/3⌋+1 mod 4 or i = 2 mod 3 and j = ⌊i/3⌋+0;

2 if either i = 1 mod 3 and j = ⌊i/3⌋+ 3 mod 4 or i = 2 mod 3 and j = ⌊i/3⌋+ 1
mod 4;

3 if either i = 0 mod 3 and j = ⌊i/3⌋+2 mod 4 or i = 1 mod 3 and j = ⌊i/3⌋+3+0
mod 4;

4 if either i = 0 mod 3 and j = ⌊i/3⌋+ 3 mod 4 or i = 2 mod 3 and j = ⌊i/3⌋+ 2
mod 4;

5 if either i = 1 mod 3 and j = ⌊i/3⌋+ 1 mod 4 or i = 2 mod 3 and j = ⌊i/3⌋+ 3
mod 4.
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Figure 3: A feasible L(2, 1)-labeling of the hexagonal tiling of the plane, where the
coordinates of the nodes are highlighted.

3 Preliminary Results

In this section we introduce some notations and two lemmas which the algorithm
presented in the next section is based on.



A graph G is called planar if it can be represented on a plane by distinct points
for nodes and simple curves for edges in such a way that any two such curves do not
meet anywhere other than at their endpoints. The representation of G on the plane,
according to the mentioned conditions, is called an embedding. A graph is outerplanar
if it can be embedded in the plane so that every node lies on the boundary of the outer
face. It follows that, once the first node has been chosen, clockwise order induces a
total order on the nodes of the graph.

In the following, we assume that the graphs we handle are loopless, simple and
connected.

3.1 Ordered Breadth First Search

Consider an embedding of an outerplanar graph G, choose a node r and induce the
total order on the nodes clockwise. Now, compute a Breadth First Search starting
from node r in such a way that nodes coming first in the ordering are visited first. In
the following we will call Ordered Breadth First Search (OBFS) such a computation
and Ordered Breadth First Tree (OBFT) the (unique) resulting tree (for an example,
see Fig. 4.b). The left to right direction on each layer l of the OBFT induces a
numbering of the nodes: we will call vl,i a node lying on layer l that occupies the i-th
position in the left to right ordering on the layer (see Fig. 4.c).
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Figure 4: An outerplanar graph and its OBFT.

Before characterizing OBFTs for outerplanar graphs, we have to recall the prop-
erties of a general Breadth First Tree.

Fact 3.1 Let T = (V, E′) be a Breadth First Tree for a general graph G = (V, E); for
each non tree edge (vl,h, vl′,k), l′ ≥ l, it holds:



- either l′ = l or
- l′ = l − 1 and r < k, where r is the index of the father of vl,h at layer l − 1.

Lemma 3.2 Every OBFT of an outerplanar graph G has the following properties:
- if a non-tree edge connects nodes vl,h and vl,k, h < k, then k = h+1 (e.g. see edges
(v4,1, v4,2) and (v3,3, v3,4) in Fig. 4.c);
- if a non-tree edge connects nodes vl,h, child of vl−1,r, and vl−1,k, then k = r +1 and
vl,h is the rightmost child of vl−1,r (e.g. see edges (v5,2, v4,2) and (v3,3, v2,3) in Fig.
4.c).

Proof: We prove the two properties separately, starting from the first one.
Let us suppose, by contradiction, k > h + 1.
First, consider the case vl,h and vl,k children of the same node vl−1,r; it follows

that vl,h+1 is child of vl−1,r, too. Consider the subgraph induced by vl,h, vl,h+1 and
vl,k, that appear on the outer face of G in this order clockwise for the definition of
OBFT. Node vl−1,r can lie either outside or inside this sequence. In the first case a
crossing occurs between edges (vl−1,r, vl,h+1) and (vl,h, vl,k); in the second case vl−1,r

cannot lie in the middle of the sequence, otherwise even the root of the tree would lie
in the middle of the sequence and the OBFS would visit vl−1,r’s children in a different
order: in any case, we have a contradiction.

Now, let vl,h and vl,k be children of two different nodes, vl−1,r and vl−1,s, respec-
tively, r < s. It is not restrictive to suppose vl,h+1 child of vl−1,r. Indeed, vl,h+1

child of vl−1,s leads to analogous reasonings, and vl,h+1 child of another node vl−1,t

moves the role of vl−1,r to the first common ancestor of vl−1,r and of vl−1,t. Again,
vl,h, vl,h+1 and vl,k must be in this order clockwise on the external face of G and vl−1,r

lies in the middle of the sequence, otherwise edges (vl−1,r, vl,h+1) and (vl,h, vl,k) would
cross. Suppose first vl−1,r is between vl,h+1 and vl,k: vl−1,s can be positioned either
before or behind vl,k. If vl−1,s is behind vl,k then we have an absurd because it is not
possible to position on the outer face of G any common ancestor of vl−1,r and vl−1,s

without introducing crossings; hence, let vl−1,s be before vl,k. Also this case is not
possible since any common ancestor w of vl−1,r and vl−1,s (included the root) cannot
lie both outside and inside the sequence. Indeed, w outside the sequence would gener-
ate crossings in G or would contradict the assumption r < s. Indeed, in order to avoid
crossings in G, w must be between vl−1,r and vl−1,s. This fact and the definition of
OBFT imply that s < r.

Suppose now vl−1,r between vl,h and vl,h+1. Then, the only possible position for
vl−1,s is between vl,h+1 and vl,k; hence, any common ancestor of vl−1,r and vl−1,s

(included the root of the OBFT) must lie in the same interval, i.e. again r < s, a
contradiction.

Now, we prove the second property, and show separately the two conditions. First
we show that it must be k = r + 1, and then that vl,h must be the rightmost child.

Suppose k > r + 1, then we have the ordered sequence vl−1,r, vl−1,r+1, vl−1,k on
the outer face of G. As in the previous case, it is not restrictive to assume that these
three nodes are children of the same father vl−2,p. Consequently, vl−2,p lies outside the
sequence vl−1,r, vl−1,r+1, vl−1,k. It is easy to see that, anywhere vl,h is positioned, it is
impossible to insert both edge (vl−1,r, vl,h) and edge (vl,h, vl−1,k) without introducing
any crossing. An absurd arises from considering k > r + 1.

Now, it remains to prove that vl,h is the rightmost child of vl−1,r . If we suppose the
existence of a right sibling vl,h+1 of vl,h, the sequence vl,h, vl,h+1 would be ordered
clockwise on the outer face of G. Node vl−1,r can lie either outside or inside the
sequence. If it is outside, we have the ordered sequence vl−1,r, vl,h, vl,h+1. If vl−1,r+1

lies outside the sequence, edge (vl,h, vl−1,r+1) introduces a crossing. Also vl−1,r+1 in
the middle of the sequence leads to a contradiction, since every common ancestor of
vl−1,r and vl−1,r+1 must lie between vl−1,r+1 and vl,h+1, and therefore vl,h+1 would



come before vl,h in the ordering. It remain to consider the case in which vl−1,r lies
between vl,h and vl,h+1. Now, vl−1,r+1 must lie outside the sequence, and any common
ancestor of vl−1,r and vl−1,r+1 must do the same. A contradiction holds because this
configuration leads vl−1,r+1 to come before vl−1,r in the ordering.

3.2 Graph W∆

Our L(h, 1)-labeling algorithm of outerplanar graphs is based on the coloring of simple
substructures, that are studied in the following.

Let W∆(V, E) be the outerplanar graph defined as follows:
V = {v0, v1, . . . , v∆}; |V | = ∆ + 1 and E = {(v0, vi), 1 ≤ i ≤ ∆} ∪ {(vi, vi+1), 1 ≤ i ≤
∆ − 1} (see Figs. 5 and 6).

Lemma 3.3 For any W∆ and h = 0, 1, λh,1(W∆) = ∆ + h − 1.

Proof: Let us prove first that ∆ + h colors are necessary to L(h, 1)-label W∆, h =
0, 1. Let α0, α1, . . . , α∆ be the colors assigned to v0, v1, . . ., v∆, respectively. Observe
that:
- αi 6= αj for each 1 ≤ i, j ≤ ∆ for Property 2. of Def. 1.1, as each pair of nodes vi

and vj are connected by a two long path via v0 (∆ colors);
- |α0 − αi| ≥ h for each 1 ≤ i ≤ ∆ for Property 1. of Def. 1.1, as v0 is adjacent
to each vi (at least h more colors). Therefore, at least ∆ + h colors are necessary.
This number of colors is also sufficient, indeed possible L(h, 1)-labelings of W∆ are
the following:
- if h = 1, let α0, α1, . . . , α∆ be different colors from 0, 1, . . . , ∆ in any order;
- if h = 0, let α1, α2, . . . , α∆ be different colors from 0, 1, . . . , ∆ − 1 in any order; let
α0 be any already used color. As an example see Fig. 5.

2

3 4 1 0 5

2

0 1 3

2

0 1 2 3 4

a b c

Figure 5: Two possible L(1, 1)-labelings of W∆ (a. and b.) and an L(0, 1)-labeling of
W∆ (c.).

Lemma 3.4 For any W∆, ∆ ≥ 4, λ2,1(W∆) = ∆ + 1.

Proof: The proof of the necessity is exactly the same as that one of the previous
Lemma, substituting 2 to h.

The sufficiency is shown providing some possible L(2, 1)-labelings. When ∆ = 4,
an optimal L(2, 1)-labeling is shown in Fig. 6.a. For ∆ ≥ 5, a possible labeling rule
is the following:
- set α0 = 0; this choice inhibits colors 0 and 1 to nodes v1, . . . , v∆;
- label the sequence v1, v2, . . . , v∆ with ∆+1, ∆−1, ∆−3, . . . , 3, ∆, ∆−2, ∆−4, . . . , 2
if ∆ is even and ∆ + 1, ∆− 1, ∆− 3, . . . , 2, ∆, ∆− 2, ∆− 4, . . . , 3 if ∆ is odd (see Fig.
6.b).

Finally, observe that if ∆ ≤ 3, ∆ + 2 colors are not enough to color the graph
because there is no way to satisfy the condition |αi −αi+1| ≥ 2, i = 1, 2 (see Fig. 6.c).
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Figure 6: W∆ with some possible L(2, 1)-labelings.

It is to remark that Lemma 3.4 works only assigning either color 0 or color ∆ + 1
to v0. Indeed, if v0 were colored with any color in the range [1, ∆] one more color
would be necessary.

Corollary 3.5 For any W∆, ∆ ≥ 4, if v0, the node of degree ∆, has an assigned color
α0 different from 0 and from ∆ + 1, λ2,1(W∆) = ∆ + 2.

Proof: Labels α0 − 1, α0 and α0 + 1 are inhibited to nodes αi, i = 1, . . .∆. Then
the necessity follows.

For the sufficiency, we label v1, . . . v∆ with ∆ colors different from α0, α0 − 1 and
α0 + 1 and we assign to two consecutive nodes, among v1, . . . v∆, colors at distance
at least two. A possible way to label is depicted in Fig. 6.d.

Now, we want to highlight a general L(2, 1)-labeling scheme for W∆, ∆ ≥ 4, sum-
marizing the results in the last two claims.

Given a W∆, ∆ ≥ 4, whose v0 has already been colored, and ∆ + k consecutive
available colors, k ≥ 0, if k colors are forbidden for v1, . . . , v∆, let us call c1, . . . , c∆

the ∆ non forbidden colors in increasing order. Then, assign to v1, . . . , v∆ colors:
c∆, c∆−2, . . . , c2, c∆−1, c∆−3, . . . , c1 if ∆ is even and
c∆, c∆−2, . . . , c1, c∆−1, c∆−3, . . . , c2 if ∆ is odd.

...

vl-1,kvl-1,k-1 vl-1,k+1

vl-2,s+1vl-2,s

vl,ivl,i-1 vl,j vl,j+1

Al-1,k

vl-1,r

Figure 7: Subgraph Al−1,k.

Before concluding this section, let us consider a special subgraph of W∆, that will
be essential for the algorithm described in the next section.

Let G be an outerplanar graph of maximum degree ∆ and T be one of its OBFTs.
Call Al−1,k the subgraph of G induced by a general node vl−1,k and by the group of
all its children in T , vl,i, . . . , vl,j (see Fig. 7).

For each Al−1,k, we want to highlight the fan of edges outgoing from it:



a. one tree edge connecting vl−1,k with its father;

b. at most three non tree edges connecting vl−1,k with two nodes at the same layer
l − 1 and with one node at layer l − 2;

c. at most two non tree edges connecting the leftmost sibling vl,i with vl,i−1 and
with the rightmost child of vl,i−1, vl+1,r;

d. at most one non tree edge connecting the rightmost sibling vl,j with vl−1,k+1;

e. at most one non tree edge connecting the rightmost sibling vl,j with vl,j+1;

f. all the tree edges from vl,i, . . . , vl,j to their children.

For the sake of completeness, we have listed all the edges incident to Al−1,k;
nevertheless, the edges of kind e and f will not be used by our algorithm.

Remark 2 Al−1,k is a subgraph of W∆, therefore for it Cor. 3.5 holds a fortiori.

4 An Algorithm for Outerplanar Graphs

In this section, we present a linear time algorithm for L(h, 1)-labeling an outerplanar
graph. For h = 2, we prove that ∆ + 3 colors are always sufficient if ∆ ≥ 8. In this
way we prove the conjecture left open in [3]. Although, for small degree, we leave
the conjecture open, our algorithm improves anyway the previously known results,
guaranteeing 11 colors instead of ∆ + 9, (≥ 13).

For h = 0, 1, we prove that the problem is polynomial and we provide an optimal
coloring for sufficiently large values of ∆ (∆ ≥ 4 and ∆ ≥ 7, respectively).

Using the results of the previous section, we can describe the following algorithm,
finding an L(2, 1)-labeling of an outerplanar graph:

Algorithm Label Outerplanar Graphs

Input: An outerplanar graph G of maximum degree ∆;
Output: An L(2, 1)-labeling of G;

1. Consider a maximum degree node v and run an OBFS starting from v.

2. Label v with color 0.

3. Label layer 1 according to Lemma 3.4.

4. Repeat for each layer l ≥ 2, from left to right, from top to down:

• Ordinately consider vl−1,k and subgraph Al−1,k: vl−1,k has already been
colored, while vl,i, . . . , vl,j must still be labeled.

• Label nodes vl,i, . . . , vl,j according to Cor. 3.5 (cf. Remark 2), eliminating
from the feasible colors all colors forbidden by edges of kind a, b, c and d ;

Theorem 4.1 Given an outerplanar graph G of degree ∆, algorithm Label Outerplanar

Graphs correctly computes an L(2, 1)-labeling; if ∆ ≥ 8 the algorithm uses at most
∆ + 3 colors, otherwise it uses at most 11 colors.



Proof: The correctness of the algorithm directly descends from Lemma 3.4 and
from Corollary 3.5.

For what concerns the number of used colors, we will prove by induction on the
number of colored nodes that ∆+3 colors are always enough if ∆ ≥ 8 and, to do that,
we will distinguish how each kind of edges acts on the number of necessary colors.
We consider only edges from a to d, since the edges of kind e and f do not connect
any node of Al−1,k to colored nodes and thus can be left out.

Basis: Our algorithm uses ∆ + 2 colors to correctly color layers 1 and 2 of the
tree in view of Lemma 3.4.

Induction: Assume we have already colored with ∆+ 3 colors all nodes in layers
1, . . . , l − 1, and all nodes in layer l, l ≥ 3, from left to node vl,i−1, while vl,i has to
be colored. We will prove that we do not need to add further colors.

It is not restrictive to assume that vl−1,k has degree ∆ in G; indeed, if its degree is
lower, then less colors are enough. First observe that, as stated in Cor. 3.5, at most
three colors must be eliminated from the ∆ + 3 available colors, to label vl,i, . . . , vl,j .

Edge of kind a forbids one color more, since the father of vl−1,k is connected by
a two long path to each vl,t, i ≤ t ≤ j. So we have at least (∆ + 3) − 3 − 1 = ∆ − 1
available colors.

Now, let us consider the x non tree edges of kind b, 0 ≤ x ≤ 3. The ∆ − x − 1
siblings vl,i, . . . , vl,j must avoid the color of the x nodes adjacent to their father, hence
have (∆− 1)−x available colors, that are enough in view of the reasonings after Cor.
3.5 if ∆ − 1 − x ≥ 4, i.e. ∆ ≥ 8.

Let us suppose that there exists an edge of kind c and, in particular vl,i is directly
connected to vl,i−1. Then, vl,i+1 must be colored differently from vl,i−1, while vl,i

needs a label distant at least two from vl,i−1 and different from the colors of vl,i−1’s
adjacent nodes at layers l and l−1 (at most three). So, vl,i can choose its color among
(∆ − 1 − x) − 3 − 3, vl,i+1 among (∆ − 1 − x) − 1 and all other nodes are colored
according to Cor. 3.5. Observe that from these considerations it follows ∆ ≥ 11. If,
on the contrary, vl,i is connected to vl,i−1 by means of a two long path, it must avoid
the color of vl,i−1. It is to notice that if vl,i is connected to vl,i−1 both by an edge
and a two long path, then this second connection does not add any constraints.

Finally, let us assume there exists the edge of kind d. Then vl,j−1 needs to be
colored differently from vl−1,k+1, while, vl,j must avoid the three colors including the
color of vl−1,k+1 and all the colors of vl−1,k+1’s adjacent nodes at layers l − 1 and
l − 2 (at most three). Hence, (∆ − 1 − x) − 1 colors are feasible to color vl,j−1 and
only (∆− 1− x) − 3 − 3 to color vl,j . Again, we can apply Cor. 3.5 and label all the
siblings, if ∆ ≥ 11.

The limitation ∆ ≥ 11 can be improved to ∆ ≥ 8 by observing that, in the
previous reasonings, nodes vl−2,s+1, vl−1,k−1 and vl−1,k+1 are considered twice.

If 3 ≤ ∆ ≤ 7, all the previous reasonings continue to hold if we substitute to ∆+3
value 8+3=11 for the colors anyway available.

Better results can be derived if the input graph is triangulated:

Theorem 4.2 Given an outerplanar triangulated graph G of degree ∆, algorithm
Label Outerplanar Graphs correctly computes an L(2, 1)-labeling; if ∆ ≥ 8 the al-
gorithm uses at most ∆ + 2 colors, otherwise it uses 10 colors.

Proof: It is possible to repeat the proof of the previous theorem, observing that
vl−1,k and vl−1,k+1 must be connected, since G is triangulated. It follows that vl−1,k

cannot have more than ∆ − 2 children and therefore ∆ + 2 colors are enough.

Theorem 4.3 Given an outerplanar graph G, Algorithm Label Outerplanar Graphs

runs in O(n) time, independently from its degree ∆.



Proof: The algorithm runs in O(n) steps, each one labeling a group of siblings,
children of the general vl−1,k. Each step takes time proportional both to the number of
the neighbors of Al−1,k and to the time necessary to guarantee the L(2, 1)-constraints.

The number of the neighbors is constant and reaches at most 12: 1 (in view of
edge a) + 3 (in view of edges b) + 4 (in view of edges c, considering also at most three
neighbors of vl,i−1) + 4 (in view of edge d, considering also at most three neighbors
of vl−1,k).

It remains to show how a shrewd implementation allows one to check the L(2, 1)-
constraints in O(1) time. Let the set of available colors be maintained in an ordered
linked list, whose records are also pointed by an array. For each already colored
neighbor, its color is eliminated from the list in constant time by means of the array;
once the colors of all the neighbors have been checked, the first available color is
pointed by the head of the list.

An obvious lower bound for any degree ∆ graph is λ2,1 ≥ ∆ + 1. Then, for
outerplanar triangulated graphs, ∆ ≥ 8, our algorithm provides an optimal L(2, 1)-
labeling, while for outerplanar graphs, ∆ ≥ 8, it generates a labeling at most one color
far from optimum. Our conjecture is that Algorithm Label Outerplanar Graphs gives
an optimal solution also in this latter case.

By slightly modifying Algorithm Label Outerplanar Graphs, Theorem 4.1, The-
orem 4.3 and their proofs, we obtain the following results:

Theorem 4.4 Given an outerplanar graph G of degree ∆, there exists an algorithm
that correctly computes an L(h, 1)-labeling in polynomial time, h = 0, 1. If ∆ ≥ 4 and
h = 0 the algorithm uses at most ∆ colors, otherwise it uses 4 colors. If ∆ ≥ 7 and
h = 1 the algorithm uses at most ∆ + 1 colors, otherwise it uses ∆ + 3 colors.

The previous theorem improves the known bounds of ∆ + 3 and ∆ + 5 colors to
L(0, 1)- and L(1, 1)-label outerplanar graphs, respectively. Furthermore, observe that
at least ∆ and ∆ + 1 colors are necessary to L(0, 1)- and L(1, 1)-label any degree
∆ graph; hence, this theorem states the optimality of the solution found by the
algorithm, when ∆ ≥ 4 and h = 0 or ∆ ≥ 7 and h = 1.

It has been proven that the L(h, 1)-labeling is NP-complete both in general [1]
and when restricted to planar graphs [3, 11]. In this paper we have proven that:

Corollary 4.5 The L(h, 1)-labeling problem on a degree ∆ outerplanar graph G is in
P, if:

• h = 0 and ∆ ≥ 4,

• h = 1 and ∆ ≥ 7, and

• h = 2 and ∆ ≥ 8 and G is triangulated.

5 The special case ∆ = 3

In the previous subsection we proved that, for rather big values of ∆, ∆+3 colors are
enough to L(2, 1)-label a degree ∆ outerplanar graph. From the other side, if ∆ = 2,
it is known that any L(2, 1)-labeling needs ∆ + 3 colors [12]. For 4 ≤ ∆ ≤ 7 we are
not able to prove the same bound, nevertheless we conjecture that it holds. Different
considerations must be done in the special case ∆ = 3: indeed, it is possible to prove
in an exhaustive way that the graph in Fig. 8, requires ∆ + 4 colors. This implies
that the inequality λ2,1 ≤ ∆ + 2 is false, for ∆ = 3. More formally:



Figure 8: A cubic outerplanar graph for which ∆ + 3 colors are not enough.

Theorem 5.1 For the class of outerplanar graphs with ∆ = 3, ∆ + 3 colors are not
always sufficient.

In the following we call cubic outerplanar graphs the graphs belonging to the class
of outerplanar graphs with maximum degree ∆ = 3. Their behavior is completely
different from the other outerplanar graphs even if they are very simple in structure
and must have at least two nodes of degree lower than three.

In the following we propose an algorithm running on cubic outerplanar graphs
that improves the results of Thm. 4.1 when ∆ = 3: L(2, 1)-labeling is guaranteed
with at most 9 (instead of 11) colors, and at most 8 colors if the graph is triangle-free.

It remains an open problem to understand if this result is tight or not.
Before detailing the algorithm we need to do a pre-computation on the considered

graph. Let G = (V, E) be a cubic outerplanar graph, embedded with all its nodes
on a circle and all its edges inside the circle (see Fig. 9.a). Since we deal with the
embedding of G, it makes sense to speak about its faces. There exists at least an
internal face, say f̃ , otherwise G is a tree and it is known that it can be optimally
L(2, 1)-labeled with at most ∆ + 3 colors [12].
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Figure 9: A cubic outerplanar graph represented with its nodes in circle, and high-
lighting its blocks.

We want to visit all the faces of G (not included the external one) starting from
f̃ and to induce an order on them. Let G′ be the portion of G already visited at the
current step. At the beginning G′ is empty. At the first step we visit f̃ and put it
in G′, i.e. we put in G′ all its nodes and edges. If there exists a not yet visited face



f having at least an edge in common with G′, then we visit f and we add it to G′

(see face II in Fig. 9.b). If no face has such a property, then we look for a face f
having only one node in common with G′ (see face V in Fig. 9.b); if neither such a
face exists, we visit an edge incident to some node of G′ and add it to G′ (see edge
IV in Fig. 9.b).

This step is iterated until all the graph has been visited, i.e. G′ = G. At the
end of the procedure we have partitioned the graph into cycles and paths (blocks in
general), sorted according to the visiting order (see Fig. 9.b). Observe that two cycles
in the sequence can share an edge (and consequently two nodes) but not a unique
node, as ∆ = 3. We want to transform this representation in order to guarantee that
all the cycles are edge-disjoint. Face f̃ is a cycle. Let us call R1 = {f̃} the current
transformed structure. For each successive block bi in the order, if it has no edges in
common with Ri−1, then Ri = Ri−1 ∪ {bi} (see Fig. 9.c, block b5). Let bi share an
edge e with Ri−1. Then bi is a cycle; let us distinguish two cases according to that
e belongs to a cycle of Ri−1 or not. If e is in a cycle of Ri−1, let us call pi the path
resulting by removing e from bi; Ri = Ri−1 ∪ {pi} (see Fig. 9.c block b6). If e is in
a path pj , j < i, of Ri−1, break pj into two subpaths pj(1) and pj(2) eliminating e
from pj ; Ri = Ri−1 − {pj} ∪ {pj(1)} ∪ {pj(2)} ∪ {bi} (see Fig. 9.c, subpaths b2(1)
and b2(2) and block b3). In this way, G is represented by B blocks, that are either
disjoint cycles or paths; on this representation, the previous order holds, even if paths
belonging to the same face take consecutive, though arbitrary, numbers (see Fig. 9.c).

The following two properties hold:

Property 1: In Ri, each block bi is connected to Ri−1 by means of at most two
nodes.

Property 2: Let x and y be two nodes belonging to the same block bi, and let
bi be a cycle; if a path external to bi connects x and y, then x and y are adjacent in
the cycle bi.

The first property descends from the definition of the order of the blocks; the
second one holds since G is outerplanar and in view of the construction of this rep-
resentation. The previous properties lie on the basis of the correctness of algorithm
Label Cubic Outerplanar Graphs.

Before detailing the algorithm that L(2, 1)-labels G, we need some preliminaries
lemmas:

Lemma 5.2 Given a simple path P (n) with n nodes, if one of the endpoints of P (n)
is already colored with a color in 0 . . . 4, then 5 colors are enough to L(2, 1)-label P (n).

Proof: Let P (n) and C(n) be constituted by nodes v0, v1, . . . , vn−1, and let v0 be
colored with color c. An easy modification of the L(2, 1)-labeling of any simple path
[12, 18] leads to the following rule: color(vi) = (c + 2i) mod 5.

Lemma 5.3 Given a simple cycle C(m) with m nodes, if either one or two of its
adjacent nodes are already colored with color in the range 0 . . . 5, then 6 colors are
enough to L(2, 1)-label it, if m is at least 4; 7 colors are enough if m = 3.

Proof: The statement can be proved in a exhaustive way, using the L(2, 1)-labeling
of simple cycles [12, 18]. Observe that 7 colors are necessary only in the case m = 3
and when the two already colored nodes have labels 1 and 4, respectively.

The algorithm we now propose L(2, 1)-labels any cubic outerplanar graph G con-
sidering cycles and edges in their order, and labeling their nodes according to the
ordering of the blocks.



Algorithm Label Cubic Outerplanar Graphs

Input: An outerplanar graph G of maximum degree 3;
Output: An L(2, 1)-labeling of G;

1. Divide G into B ordered blocks and individuate the edge disjoint blocks to be
considered as cycles;

2. b1 is a cycle: label it with the first 5 colors;

3. FOR i = 2 TO B DO
For each colored node connected by a two long path to any node not yet colored
in bi, eliminate its color from the sequence of available colors;
case 1 (bi cycle)

IF bi is a cycle and either one or two of its adjacent nodes are already colored
THEN Label bi according to Lemma 5.3;

case 2 (bi path, one endpoint colored)
IF bi is a path and one of its endpoints is already colored

THEN Label bi according to Lemma 5.2;
case 3 (bi path, two endpoints colored)

IF bi is a path and both its endpoints are already colored
THEN Consider bi as a cycle and label it according to case 1;

Theorem 5.4 Given a cubic outerplanar graph G, algorithm Label Cubic Outerplanar

Graphs correctly computes an L(2, 1)-labeling in polynomial time using at most ∆+6
colors; if G is triangle free, then the number of necessary colors is ∆ + 5.

Proof: It is easy to see that algorithm Label Cubic Outerplanar Graphs runs in
polynomial time.

The correctness of the algorithm descends from Properties 1 and 2; infact, Prop-
erty 1 guarantees that in bi no more than two nodes are already colored at steps
1, 2, . . . , i− 1, while Property 2 ensures that, in bi, the two already colored nodes are
either endpoints (if bi is a path) or adjacent nodes (if bi is a cycle). Hence, algorithm
Label Cubic Outerplanar Graphs covers all the possible cases.

It remains to prove that ∆ + 6 colors are always enough to L(2, 1)-label G (∆ + 5
if G is triangle free). Let us assume to have ∆ + 6 = 9 colors. Only 5 of them are
necessary to color b1. Consider now the general block bi. If case 1 holds and only one
node of Bi is colored, then bi is hanged to Ri−1 by means of a path through a node
v (see Fig. 10.a). Let x be the adjacent node of v not belonging to bi; of course, x is
already colored, and it is 2 far from the other adjacent nodes of v in bi. Therefore,
the algorithm eliminates its color; among the 8 remaining colors, in view of Lemma
5.3, 6 colors are enough to L(2, 1)-label bi. If bi has two adjacent nodes colored, the
color of at most two nodes must be eliminated (see Fig. 10.b); if bi is a triangle, all
the 7 remaining colors could be necessary, if bi is a larger cycle, 6 colors are always
enough (cf. Lemma 5.3). Analogous considerations hold in case 3, i.e. if bi is a path
connected to Ri−1 by means of its two endpoints (see Fig. 10.c). Finally, if bi is a
path and for it case 2 holds, then at most two colors must be eliminated and, among
the remaining ones, no more than 5 are used to color bi. In any case, no more than
9 colors are used and, if G is triangle free, 8 colors are enough.

Observe that it is possible to slightly modify algorithm Label Cubic Outerplanar

Graphs so that it outputs an L(h, 1)-labeling, h = 0, 1, as we did for algorithm Label
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Double lines represents the part of the graph already colored, simple lines the part to
be colored.

Outerplanar Graphs. Nevertheless, in this case, the bounds on the number of colors
are exactly the same as those stated in Thm. 4.4, i.e. 4 + h colors. Graph in Fig. 8
requires exactly 4 + h colors to be L(h, 1)-labeled, h = 0, 1.

6 Conclusions and Open Problems

In this paper we study the L(h, 1)-labeling problem of two subclasses of planar graphs:
the regular tilings of the plane and the outerplanar graphs.

For regular tiling, we present a simple unique parametric algorithm to solve the
L(h, 1)-problem for each h = 0, 1, 2 and for each shape of the tiling (triangular,
squared and hexagonal). Furthermore, we give a function of the coordinates of each
node in the network conputing the channel to be assigned in constant time in a
distributed fashion.

Concerning outerplanar graphs, we give an algorithm that L(2, 1)-labels a degree
∆ ≥ 8 outerplanar graph using no more than ∆ + 3 colors, and at most 11 colors
otherwise.

Although for 4 ≤ ∆ ≤ 7 our bound on the number of colors is rather high,
nevertheless we conjecture that the bound ∆ + 3 holds for any outerplanar graph of
degree ∆ ≥ 4. On the contrary, in the special case ∆ = 3, in Fig. 8 we show a
cubic outerplanar graph needing ∆+4 colors. Furthermore, we provide an algorithm
L(2, 1)-labeling a cubic outerplanar graph using no more than 9 = ∆ + 6 colors. It
remains an open problem to understand whether ∆ + 6 is a tight bound or not.

Both in the case h = 0 and h = 1 algorithm Label Outerplanar Graphs guarantees
an optimal labeling for ∆ ≥ 4 and ∆ ≥ 7 respectively, proving also the polinomiality
of the problem, when restricted to outerplanar graphs. It remains an open problem
to understand if this algorithm can be distributed.

Fig. 11 summarizes all the known results and open problems related to the number
of colors. Starting from these results, the experimental result by Bruce and Hoffmann
[5] has improved the lower bounds for small values of ∆ (3 ≤ ∆ ≤ 6). Observe that
the boundary line between values 7 and 8 for ∆ is recurrent in the literature when
planarity is involved. We cite as examples:

- it is NP-complete to decide if the inequality λ2,1 ≤ 8 holds for planar graphs
with ∆ < 8 [3];

- it is stated the conjecture that the chromatic number χ(G2) ≤ ∆+5 if 4 ≤ ∆ ≤ 7
and χ(G2) ≤ ⌊3/2∆⌋+ 1 otherwise [16];

- the chromatic index of a degree ∆ planar graph is ∆ if ∆ ≥ 8 and becomes ∆+1
if ∆ ≤ 7 [9].
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Figure 11: Summary of the known results and of the open problems: maximum
degree ∆ of an outerplanar graph versus the number of used colors. • indicates the
lower bound on the number of used colors, ◦ indicates the value that nowadays is
guaranteed, 2 indicates the existence of at least a graph requiring its y coordinate
number of colors.


